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4 Cellular Dynamics: Pathways of Gene Expression

The dynamics of neurons and neural networks are sufficiently complicated that
we turn to simple systems of gene regulation for our first studies of nonlinear dif-
ferential equations. The interiors of cells are filled with complex structures that
are constantly changing. Modern molecular biology has developed astounding
technologies to determine the constituents of cells, including the ability to se-
quence the entire genomes of organisms. The “central dogma” of molecular
biology describes how proteins are produced from genes. Gene expression has
two main steps: (1) transcription of DNA produces mRNA with complementary
nucleotide sequences and (2) translation produces proteins with amino acid se-
quences corresponding to sequential triplets of nucleotides in the mRNA. Proteins
also play a key role in the regulation of gene expression by binding to DNA to
either block or enhance the expression of particular genes. Thus, there are feed-
back loops in which protein induces or inhibits gene expression which produces
protein. There are large numbers of proteins, and these interact with each other
as well.

We model these feedback processes in the same way we model chemical re-
actions. The variables in the models are concentrations of mRNA and proteins.
We assume that the rates of production of these molecules are functions of their
concentrations. However, the complexity of the reaction networks is daunting.
Few reaction rates have been measured, and the protein interactions are far more
complicated than the elementary reactions described by the law of mass action.
Without well-established laws for deriving reaction rates, we make simplified
models that incorporate basic aspects of gene expression and regulation. The
models are unlikely to be quantitatively accurate, but they can give insight into
qualitative features of the dynamics of the regulatory networks.

We will study two simple examples of synthesized networks of gene regula-
tion. These are systems that have been constructed with plasmids and inserted
into bacteria as demonstrations that it may be possible to engineer gene regula-
tory networks in analogy with the way we design electrical circuits or industrial
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chemical reactors. There is much interest in developing these techniques of “syn-
thetic biology” into a new domain of bioengineering (Ferber 2004). Differential
equations models provide the starting point for this engineering. Beginning with
components whose characteristics we understand, we want to build systems from
these components that accomplish a desired task. Here we define the desired tasks
by the system dynamics, in one case building a gene regulatory circuit that oscil-
lates and in the other building a circuit that acts like a switch or memory element
in a computer. Transcription and translation are simpler in bacteria than in eu-
karyote cells where much larger molecular complexes carry out transcription and
translation. In this chapter, we consider gene expression in bacteria only.

The gene regulation models we study are nonlinear systems of differential equa-
tions. It is seldom possible to find explicit expressions for the solutions of such
equations. In our discussion of enzyme kinetics in Chapter 1, we performed an
analysis that led to approximate solutions. Here we confront the typical situation
in which we rely upon numerical methods to solve initial value problems for the
equations. The initial value problem specifies a starting state for the system at
an initial time and then uses the differential equations to predict the state of the
system at later times. The methods we use employ a time-stepping procedure.
We do a computation with the equations that predicts the state of the system a
short time after the initial time. Then we update the state to the predicted state
and repeat the procedure, computing a new predicted state a short time later than
the last update. Iterating the computation of new predicted states and updates
many times, we arrive at a prediction of the state of the system at much later
times.

Frequently, we are interested in the asymptotic behavior of the system—the
state(s) of the system after very long times. Will the system approach an equi-
librium where the state no longer changes, will it continue to change in regular
periodic oscillations, or will it continue to change in more complicated ways?
This chapter and the next introduce mathematical theory that helps us to an-
swer these questions. The mathematics characterizes patterns of dynamical be-
havior that are found repeatedly in different systems and provides guidelines for
the numerical investigation of specific systems. This chapter uses examples of
synthetic gene regulation networks to introduce the phenomena that are studied
more systematically from a mathematical perspective in Chapter 5.

4.1 Biological Background

Regulation of transcription by molecules that bind to DNA plays a critical role in
the development of each cell and in determining how it responds to its environ-
ment. Transcription and translation can be compared with an assembly line: the
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steps on the assembly line are the individual reactions that happen during the
entire process. Genes are “switched” on and off. However, unlike on an assem-
bly line, there is no supervisor flipping the switch. Instead, there are complex
networks of chemical reactions that underlie the regulation of gene expression.
Transcription of a gene requires that the polymerase locate the beginning and the
end of the gene. In addition to coding sequences that contain the templates for
proteins, the DNA has regulatory sequences of nucleotides. Polymerases attach
to promoter regions of DNA that lie near the beginning of a coding region for a
gene (or an operon, a group of genes that are transcribed together) and detach
at terminator regions. The rate at which gene transcription occurs is determined
largely by the binding rate of polymerase to promoter. This varies from gene to
gene, and it is also actively regulated by other proteins. Repressor proteins bind
to the promoter of a gene, preventing transcription. Activators are proteins that
increase transcription rates.

Pathways are reaction networks that connect gene products with activators and
repressors. They can be enormously complex, involving hundreds of chemical
species (Kohn 1999). Pathways can be viewed graphically as a depiction of the
chemical species that participate in varied reactions. Loops within these net-
works indicate feedback, in which a sequence of reactions starting with a partic-
ular chemical species affects the rate of production of that species. The simplest
loops are ones in which a gene codes for a repressor of that gene. Pathways of
gene expression and regulation are central to many fundamental biological pro-
cesses, including cell division, differentiation of cells during development and
the generation of circadian rhythms.1 Schematic pathway information is ade-
quate for many purposes, such as identifying mutations that are likely to disrupt
a pathway, or potential targets for drugs. However, we also need to know the
rates of reactions if we are to predict quantitative properties of the system. For
example, we might want to model the effect of a nonlethal mutation, a change
in substrate on the doubling time of a bacterial population, or the free-running
period of a circadian rhythm oscillator. Additionally, many gene regulatory pro-
cesses support several different dynamical behaviors. In these cases dynamical
models are needed in order to understand the processes.

To understand what is happening in the cell, we would like to measure fluctu-
ating chemical concentrations and reaction rates. There have been breathtaking
improvements in biotechnologies during the past fifty years, but we are still far
from being able to observe the details needed to construct accurate dynamical
models of these cellular processes. That makes it difficult to construct dynamic
models that reproduce observed phenomena accurately. A few researchers have

1Interest in pathways is intense: the Science Magazine Signal Transduction Knowledge Environment provides
an online interface (http://stke.sciencemag.org/cm/) to databases of information on the components of cellular
signaling pathways and their relations to one another.
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begun to circumvent these difficulties by turning the problem around: instead
of developing models to fit experimental data on cells, they have used the new
technologies to engineer biological systems that correspond to simple models.
This approach is attracting attention in the scientific press as “synthetic biology”
(Ferber 2004). In this chapter we shall look at two examples of synthesized net-
works that perform different functions. The first is a “clock” and the second is a
“switch.”

4.2 A Gene Network That Acts as a Clock

Elowitz and Leibler (2000) constructed an oscillatory network based upon three
transcriptional repressors inserted into E. coli bacteria with a plasmid. They chose
repressors lacI, TetR, and cl. The names and functions of the repressors are unim-
portant; what matters is that lacI inhibits transcription of the gene coding for TetR,
TetR inhibits transcription of the gene coding for cl, and cl inhibits transcription
of the gene coding for lacI. This pattern of inhibition describes a negative feedback
loop in the interactions of these proteins and the expression of their genes on the
plasmid. Figure 4.1 shows a representation of this gene regulatory network.

In the absence of inhibition, each of the three proteins reaches a steady-state
concentration resulting from a balance between its production and degradation
rates within the bacterium. But with cross-inhibition by the other two repres-
sors, this network architecture is capable of producing oscillations. Imagine that
we start with lacI at high concentration. It inhibits TetR production, so that the
concentration of TetR soon falls due to degradation. That leaves cl free from
inhibition, so it increases in concentration and inhibits lacI production. Conse-
quently, lacI soon falls to low concentration, allowing TetR to build up, which
inhibits cl and eventually allows the concentration of lacI to recover. Thus the
concentration of each repressor waxes and wanes, out of phase with the other re-
pressors. For this scenario to produce oscillations, it is important that the length
of the loop is odd, so that the indirect effect of each repressor on itself is negative:
1 inhibiting 2 which allows 3 to build up and inhibit 1. The same kind of alter-
nation would occur in a sequential inhibition loop of length 5, 7, and so on. But
in a loop of length 4, one could have repressors 1 and 3 remaining always at high
concentration, inhibiting 2 and 4, which always remain at low concentrations.

However, oscillations are not the only possible outcome in a loop of length
3. Instead, the three repressor concentrations might approach a steady state in
which each is present, being somewhat inhibited by its repressor but nonetheless
being transcribed at a sufficient rate to balance degradation. To understand the
conditions under which one behavior or the other will be present, we need to
develop a dynamic model for the network.
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Figure 4.1 A schematic diagram of the repressilator. Genes for the lacI, TetR and cl

repressor proteins together with their promoters are assembled on a plasmid which

is inserted into an E. coli bacterium. A second plasmid that contains a TetR promoter

region and a gene that codes for green fluorescent protein is also inserted into the

bacterium. In the absence of TetR, the bacteria with these plasmids will produce

green fluorescent protein (from Elowitz and Leibler 2000).

4.2.1 Formulating a Model

Elowitz and Leibler formulated a model system of differential equations that de-
scribes the rates of change for the concentration pi of each protein repressor and
the concentration mi of its associated mRNA in their network. Here the sub-
scripts i label the three types of repressor: we let i take the values lacI, tetR, cl.
For each i, the equations give the rates of change of pi and mi. If we were inter-
ested in building a model of high fidelity that would be quantitatively correct,
we would need to measure these rates and determine whether they depend upon
other quantities as well. That would be a lot of work, so we settle for less. We
make plausible assumptions about the qualitative properties of the production
rates of repressors and their associated mRNAs, hoping that analysis of the model
will suggest which general properties are important to obtain oscillations in the
network. The assumptions are as follows:

• There is a constant probability of decay for each mRNA molecule, which has the

same value for the mRNA of all three repressors.

• The synthesis rate of mRNA for each repressor is a decreasing function of the

concentration of the repressor that inhibits transcription of that RNA. Again, the

three functions for each mRNA are assumed to be the same.
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• There is a constant probability of decay for each protein molecule, again assumed

to be the same for the three repressors.

• The synthesis rate of each repressor is proportional to the concentration of its

mRNA.

• Synthesis of the mRNA and repressors is independent of other variables.

None of these assumptions is likely to be satisfied exactly by the real network, with
the possible exception of the fourth. Rather, they represent the main features of
the network in the simplest possible way. We construct such a model hoping that
the dynamical properties of the network will be insensitive to the simplifying
assumptions we make.

The model equations are

ṁi = −mi + α

1 + pn
j

+ α0

ṗi = −β(pi − mi).

[4.1]

When i takes one of the values lacI,tetR,cl in the equations for ṁi, the correspond-
ing value of j is cl,lacI,tetR. That is, j corresponds to the protein that inhibits tran-
scription of i. This model has been called the repressilator (a repression-driven
oscillator).

The differential equations for the concentrations of the mRNAs mi and proteins
pi all consist of two components: a positive term representing production rate,
and a negative term representing degradation. For mRNA the production rate is
α/(1 + pn

j ) + α0 and the degradation rate is −mi; for protein the production rate
is βmi and the degradation rate is βpi. Thus each concentration in the model
is a “bathtub” (in the sense of Chapter 1) with a single inflow (production) and
outflow (degradation). The dynamics can become complicated because the tubs
are not independent: the “water level” in one tub (e.g., the concentration of one
repressor) affects the flow rate of another.

The parameters in these equations are α0, α, β, and n, representing the rate of
transcription of mRNA in the presence of a saturating concentration of repressor,
the additional rate of transcription in absence of inhibitor, the ratio of the rate
of decay of protein to mRNA, and a “cooperativity” coefficient in the function
describing the concentration dependence of repression.2

2Units of time and concentration in the model have been “scaled” to make these equations “nondimensional.”
This means that the variables mi, pi, and time have been multiplied by fixed scalars to reduce the number of
parameters that would otherwise be present in the equations. One of the reductions is to make the time variable
correspond to the decay rate of the mRNA so that the coefficient of mi in the equation for ṁi is −1: when time is
replaced by τ = at in the equation

dx
dt

= −ax

the result is
dx
dτ

= dx
dt

dt
dτ

= (−ax)
1
a

= −x.
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The model uses the function α/(1 + pn
j ) + α0 to represent the repression of

mRNA synthesis. As the concentration of the inhibiting protein increases, the
synthesis rate falls from α + α0 (when inhibiting protein is absent) to α0 (when
inhibiting protein is at very high concentration). The Hill coefficient n reflects
the “cooperativity” of the binding of repressor to promoter. This function is
“borrowed” from the theory of enzyme kinetics, and is used here as a reasonable
guess about how the synthesis rate depends upon repressor concentration. It is
not based upon a fit to experimental data that would allow us to choose a rate
function that corresponds quantitatively to the real system. This is one more
way in which the model is unrealistic.

Exercise 4.1. How would the repressilator model change if the transcription rates of
the three genes differed from each other? if the translation rates of the three mRNA
differed from each other?

4.2.2 Model Predictions

The model gives us an artificial world in which we can investigate when a cyclic
network of three repressors will oscillate versus settling into a steady state with
unchanging concentrations. This is done by solving initial value problems for the
differential equations: given values of mi and pi at an initial time t0, there are
unique functions of time mi(t) and pi(t) that solve the differential equation and
have the specified initial values mi(t0), pi(t0). Though there are seldom formu-
las that give the solutions of differential equations, there are good numerical
methods for producing approximate solutions by an iterative process. In one-step
methods, a time step h1 is selected and the solution estimated at time t1 = t0 + h1.
Next a time-step h2 is selected and the solution estimated at time t2 = t1 + h2, us-
ing the computed (approximate) values of mi(t1), pi(t1). This process continues,
producing a sequence of times tj and approximate solution values mi(tj), pi(tj).
The result of these computations is a simulation of the real network: the output
of the simulations represents the dynamics of the model network.

Figure 4.2 illustrates the results of a simulation with initial conditions

(mlacI , mtetR, mcl, placI , ptetR, pcl) = (0.2, 0.1, 0.3, 0.1, 0.4, 0.5)

and parameters (α0, α, β, n) = (0, 50, 0.2, 2) while Figure 4.3 gives the solutions for
the same initial conditions and parameters except that α = 1. These two simu-
lations illustrate that the asymptotic behavior of the system depends upon the
values of the parameters. In both cases, the solutions appear to settle into a reg-
ular behavior after a transient period. In the simulation with the larger value of
α, the trajectory tends to an oscillatory solution after a transient lasting approx-
imately 150 time units. When α is small, the trajectory approaches an equilib-
rium after approximately 50 time units and remains steady thereafter. Approach
to a periodic oscillation and approach to an equilibrium are qualitatively different
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Figure 4.2 Solutions of the repressilator equations with initial conditions

(mlacI , mtetR, mcl, placI , ptetR, pcl) = (0.2, 0.1, 0.3, 0.1, 0.4, 0.5). The parameters have val-

ues (α0, α, β, n) = (0, 50, 0.2, 2).

behaviors, not just differences in the magnitude of an oscillation. When α is
small, there are no solutions that oscillate and all solutions with positive con-
centrations at their initial conditions approach the equilibrium found here. We
conclude that there must be a special value of the parameter α where a transition
occurs between the regime where the solutions have oscillations and the regime
where they do not. Recall that α represents the difference between transcription
rates in the absence of repressor and in the presence of high concentrations of
repressor. Oscillations are more likely to occur when repressors bind tightly and
reduce transcription rates substantially.

Model simulations allow us to answer specific “what if” questions quickly.
For example, we can explore the effects of changes in other parameters upon
the model behavior. Figure 4.4 shows a simulation for parameters (α0, α, β, n) =
(1, 50, 0.2, 2) and the same initial value as above. Here, we have made the “resid-
ual” transcription rate in the presence of repressor positive. Again the oscillations
die away and the trajectory approaches an equilibrium solution. The rate of ap-
proach is slower than when (α0, α, β, n) = (0, 1, 0.2, 2).

So when do trajectories tend to oscillatory solutions and when do they tend
to equilibrium (steady-state) solutions? Are other types of long-term behavior
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Figure 4.3 Solutions of the repressilator equations with initial conditions

(mlacI , mtetR, mcl, placI , ptetR, pcl) = (0.2, 0.1, 0.3, 0.1, 0.4, 0.5). The parameters have val-

ues (α0, α, β, n) = (0, 1, 0.2, 2).

possible? These are more difficult questions to answer. Chapter 5 gives a general
introduction to mathematical theory that helps us answer these questions. Dy-
namical systems theory provides a conceptual framework for thinking about all
of the solutions to systems of differential equations and how they depend upon
parameters. Here we preview a few of the concepts while discussing the dynamics
of the repressilator.

Equilibrium solutions of a system of differential equations occur where the
right-hand sides of the equations vanish. That is, in order for all state variables
to remain constant, each of them must have its time derivative equal to 0. In our
example, this condition is a system of six nonlinear equations in the six variables
mi, pi. This may seem daunting, but we can rapidly reduce the complexity of the
problem by observing that the equations ṗi = −β(pi − mi) imply that mi = pi at
the equilibria. This leaves only three variables (the three m’s or the three p’s) to
solve for.

Next, we observe that the system of equations [4.1] is symmetric with respect to
permuting the repressors and mRNAs: replacing lacI,tetR,cl by cl,lacI,tetR through-
out the equations gives the same system of equations again. A consequence of this
symmetry is that equilibrium solutions are likely to occur with all the mi equal.
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Figure 4.4 Solutions of the repressilator equations with initial conditions

(mlacI , mtetR, mcl, placI , ptetR, pcl) = (0.2, 0.1, 0.3, 0.1, 0.4, 0.5). The parameters have val-

ues (α0, α, β, n) = (1, 50, 0.2, 2).

Thus, if −p + α/(1 + pn) + α0 = 0, there is an equilibrium solution of the system
[4.1] with mi = pi = p for each index i. The function E(p) = −p + α/(1 + pn) + α0,
plotted in Figure 4.5, is decreasing for p > 0, has value α0 + α at p = 0, and tends
to −∞ as p → ∞, so it has exactly one positive root p. This equilibrium solution
of the equation is present for all sensible parameter values in the model. A slightly
more complicated argument demonstrates that other equilibrium solutions (i.e.,
ones with unequal concentrations for the three repressors) are not possible in
this model.

The stability of the equilibrium determines whether nearby solutions tend to
the equilibrium. The procedure for assessing the stability of the equilibrium is to
first “linearize” the system of equations and then use linear algebra to help solve
the linearized system of equations.3 The linearized system has the form ξ̇ = Aξ

where A is the 6 × 6 Jacobian matrix of partial derivatives of the right-hand side
of [4.1] at the equilibrium point. The stability of the linear system is determined

3We will discuss linearization and the mathematical theory of linear systems of differential equations in
Chapter 5.
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Figure 4.5 Graph of the function E(p) = −p + 18/(1 + p2) + 1.

by the eigenvalues of A. In particular, the equilibrium is stable if all eigenvalues
of A have negative real parts.

By analyzing the eigenvalues of the Jacobian matrix, Elowitz and Leibler find
that the stability region consists of the set of parameters for which

3X2

4 + 2X
<

(β + 1)2

β
[4.2]

where

X = − αnpn−1

(1 + pn)2

and p is the steady state defined by [4.3]

p = α

1 + pn
+ α0.

The stability region [4.2] is diagrammed in Figure 4.6. If the parameter com-
bination Y = 3X2/(4 + 2X) lies in the “Stable” region in the diagram, the equi-
librium is stable; otherwise it is unstable and the network oscillates. The curve
Y = (β + 1)2/β that bounds the stability region attains its minimum value 4 at
β = 1. Recall that β is the degradation rate of the proteins, and the model has
been scaled so the mRNAs all degrade at rate 1. Thus, the minimum occurs when
the proteins and mRNAs have similar degradation rates. This situation gives the
widest possible range of values for the other model parameters, which determine
the values of X and Y , such that the model equilibrium is unstable. Elowitz
and Leibler conclude from this analysis that the propensity for oscillations in
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Figure 4.6 Diagram of the stability region for the repressilator system

in terms of β and the parameter combination Y = 3X2/(4 + 2X), with

X defined by equations [4.3].

the repressilator is greatest when the degradation rates for protein and mRNA are
similar.

If the parameters are such that Y < 4, then the equilibrium is stable for any
value of β. If Y > 4, then there is a range of β values around β = 1 for which
the equilibrium is unstable. So the larger the value of Y , the broader the range
of β values giving rise to oscillations. To make use of this result for designing
an oscillating network, we have to relate the stability region (defined in terms
of Y) to the values of the model parameters (α, α0, n). This is difficult to do in
general because the relationships are nonlinear, but one situation conducive to
oscillations can be seen fairly easily. Suppose that α0 = 0; then in [4.3] we have
p = α/(1 + pn) and so

α = p(1 + pn). [4.4]

This implies p ≈ 0 if α ≈ 0, while p will be large if α is large. Moreover, substituting
[4.4] into the definition of X in equation [4.3] we get

X = − npn

1 + pn
.

Thus if p ≈ 0 we will have X ≈ 0 and therefore stability of the equilibrium. In-
creasing α (and consequently increasing p and the magnitude of X) gives larger
and larger values of Y , moving into the “Unstable” region in Figure 4.6. This
suggests that one way to get oscillations is by using repressors that bind tightly
(α0 ≈ 0) and cause a large drop in the synthesis of mRNA (α large). On the other
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hand, if α0 becomes large, then [4.3] implies that p ≥ α0 so p is also large. The
first line of equation [4.3] then implies that X is small when α0 is large, giving
stability.

So the model suggests three design guidelines to produce an oscillatory net-
work:

• comparable degradation rates,

• tight binding by the repressors, and

• genes that are abundantly expressed in the absence of their repressors.

Exercise 4.2. In the repressilator model, the limit β → ∞ corresponds to a situation
in which the mRNA and repressor concentrations for each gene and gene product
are the same. Why? In this limit, the model reduces to one for just the three mRNA
concentrations. Implement this model and explore (1) the differences between its
solutions and those of the full repressilator model with β = 10 and (2) whether the
reduced model can also produce oscillations.

4.3 Networks That Act as a Switch

The second example we examine is a simpler network with a toggle switch or
“flip-flop” that was designed by Gardner, Cantor, and Collins (2000). The bio-
logical systems that they engineered are similar to the ones Elowitz and Leibler
utilized: E. coli altered by the insertion of plasmids. The primary difference be-
tween the two lies in the architecture of the altered gene regulatory networks
of the engineered bacteria. Instead of a cyclic network of three repressors that
inhibit synthesis of a mRNA, Gardner et al. engineered a network of just two
repressors, each of which inhibits the synthesis of the mRNA for the other. Their
goal was to produce regulatory systems that were bistable. A system is bistable
if it has more than one attracting state—in this case two stable equilibria. They
successfully engineered several networks that met this goal, all using the lacI re-
pressor as one of the two repressors. Figure 4.7 shows a schematic diagram of
the network together with data illustrating its function. They also demonstrated
that there are networks with the same architecture of mutual inhibition that are
not bistable.

To understand which kinetic properties lead to bistability in a network with
mutual inhibition, we again turn to differential equations models. The differen-
tial equations model that Gardner et al. utilized to study their network is simpler
than the system [4.1]. The kinetics of mRNA and protein synthesis for each re-
pressor is aggregated into a single variable, leaving a model with just two state
variables u and v representing concentrations of the two repressors. The model
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Figure 4.7 A schematic diagram of bistable gene regulatory networks in bacteriophage

λ. Two genes code for repressor proteins of the other gene. (a) A natural switch. (b)

A switch engineered from cl and Lacl genes in which the repressor of the lacl gene is

a temperature sensitive version of the Cl protein. Green fluorescent protein is also

produced when the cl gene is expressed. (c) In the first gray bar, IPTG eliminates

repression of the clts gene by Lacl. The cell continues to produce Cl when IPTG is

removed. In the second gray period, the temperature is raised, eliminating repression

of the lacl gene by Cl protein. Transcription of the the cl gene stops and does not

resume when the temperature is reduced (from Hasty et al. 2002).

equations are

u̇ = −u + αu

1 + vβ

v̇ = −v + αv

1 + uγ
.

[4.5]

The system [4.5] is simpler than the repressilator system [4.1]. The repressila-
tor equations [4.1] can be reduced to a smaller system of equations using similar
reasoning to that used in Chapter 1 to develop the Michaelis-Menten equation
for enzyme kinetics. If β is large in the repressilator model [4.1], then pi changes
rapidly until pi ≈ mi holds. If we make the approximation that pi = mi, then
the repressilator equations yield a system similar to [4.5] with one differential
equation for each of its three mRNA-protein pairs. Biologically, this assumes
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a situation where protein concentrations are determined by a balance between
fast translation and degradation processes. Transcription (mRNA synthesis) hap-
pens more slowly than the translation of protein, so the protein concentration
remains in balance with the mRNA concentration. Since this approximation in
the repressilator model corresponds to increasing β without bound, the stability
diagram Figure 4.6 suggests that the oscillations disappear in the reduced system.

Comparing model [4.5] with [4.1], we also see that it assumes α0 = 0 but al-
lows different synthesis rates and cooperativity for the two repressors. If αu = αv

and β = γ , then the system is symmetric with respect to the operation of inter-
changing u and v. We make this assumption in investigating the dynamics of
the model. We set

αu = αv = a, and β = γ = b. [4.6]

The system [4.5] does not admit periodic solutions.4 All of its solutions tend to
equilibrium points. Thus we determine whether the system is bistable by finding
the equilibrium points and their stability. We exploit the symmetry of [4.5] with
[4.6] to seek equilibrium solutions that are symmetric under interchange of u
and v; that is, u = v. We see from [4.5] that a symmetric equilibrium (u, u) is a
solution of f (u) = 0 where f (u) = −u + a/(1 + ub). There will always be exactly
one symmetric equilibrium because

• f (u) is decreasing: f ′(u) = −1 − baub−1/(1 + ub)2 < 0,

• f (0) = a > 0, and

• f (a) = −a1+b/(1 + ab) < 0.

Looking for asymmetric equilibria takes a bit more work. To do that we have
to consider the two nullclines—the curves in the (u, v) plane where u̇ = 0 (the u
nullcline) and where v̇ = 0 (the v nullcline). These are given, respectively, by the
equations

u = a/(1 + vb) [4.7]

v = a/(1 + ub). [4.8]

Figure 4.8 shows these curves for selected values of a when b = 2. There is al-
ways one point of intersection at the symmetric equilibrium, which exists for any
values of a and b. For a = 1 the symmetric equilibrium is the only intersection
and hence the only equilibrium, but for a = 3 there are three points of intersec-
tion and hence three equilibrium points for the model. The transition between
these situations (called a bifurcation) occurs when the nullclines are tangent to

4For those of you who have studied differential equations, the proof is short: the divergence of the system [4.5]
is negative, so areas in the phase plane shrink under the flow. However, the region bounded within a periodic
solution would be invariant and maintain constant area under the flow.
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Figure 4.8 Plots of the nullclines for the model [4.5] in the

(u, v) plane for values of a below, above, and exactly at the

bifurcation between one and three equilibria for the model.

each other at the symmetric equilibrium, that is, they have the same slope (the
case a = 2 in Figure 4.8).

Exercise 4.3. For what parameter combinations (a, b) do the two nullclines have ex-
actly the same slope at the symmetric equilibrium?
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Figure 4.9 Bifurcation diagram of the (b, a) plane for the model [4.5]. For values

of (b, a) below the bifurcation curve, there is a single equilibrium point, while

for values of (b, a) above the bifurcation curve, there are three equilibrium

points.

The conclusion of this exercise is that the bifurcation of the symmetric equi-
librium occurs where

a = b(b − 1)−(1+b)/b.

Figure 4.9 shows the graph of this function. Note that, when b = 2, the bifur-
cation occurs at a = 2. For values of (a, b) below the bifurcation curve, there is
a single equilibrium point, while for values of (a, b) above the bifurcation curve,
there are three equilibrium points.

Figures 4.10 and 4.11 show phase portraits in these two cases. In Figure 4.10
the symmetric equilibrium is stable, and all solutions tend toward it. In Figure
4.11, the symmetric equilibrium has become unstable but the two other equilibria
are both stable. Some initial conditions produce trajectories that approach one
stable state while other initial conditions produce trajectories that approach the
second stable state. The bifurcation that occurs in the model is called a pitchfork
bifurcation because one equilibrium splits into three as a parameter is varied.
Pitchfork bifurcations are typically found at symmetric equilibria in systems that
have a symmetry. Figure 4.11 also shows the nullclines of the system. The three
equilibrium points lie at the intersections of the nullclines. These figures illustrate
the visualization of phase portraits for systems of two differential equations. We
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Figure 4.10 Phase portrait of the (u, v) plane for the model [4.5] with (b, a) =
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Figure 4.11 Phase portrait of the (u, v) plane for the model [4.5] with (e, a) =
(3, 2). There are three equilibrium points, located at the intersections of the

nullclines (the curves that reach the boundary of the bounding box).
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see the paths taken by points (u, v) as they move along solutions to the system
of equations. The techniques that we have applied here,

• nondimensionalizing the model to reduce the number of parameters,

• plotting the nullclines to locate equilibria, and

• determining the local stability of the equilibria as a function of parameter values,

are often all it takes to determine the important properties of a model’s solutions.
As with the repressilator, the model [4.5] gives clues about how to choose re-

pressors in this regulatory network that will make a good toggle switch. In partic-
ular, increasing protein synthesis rates makes the two stable states of the system
move farther apart in the phase plane. The enhanced distance between the re-
pressor concentrations makes it both easier to distinguish the two stable states
and harder for perturbations to push the switch from one state to another. Large
distance between the stable states makes it hard for “noise” to cause the system
to switch spontaneously between them; larger inputs are needed to switch the
system when one desires to do so. It is not evident on the phase plane plots, but
increasing a also makes the switching between the states faster. Increasing the
cooperativity parameter b makes the bifurcation value of the protein synthesis
rate a decrease. We conclude that large a and b both work to make the switch
more robust but perhaps harder to purposefully switch between states.

Exercise 4.4. Explore the behavior of the solutions to the system [4.5] when the
parameters αu 
= αv and β 
= γ. Can you find significantly different types of dynamical
behavior than in the cases where each pair of parameters is equal?

4.4 Systems Biology

“Systems biology” is a new term, created in the past few years to describe an
area of research whose boundaries remain fuzzy. Although organs, organisms,
and ecosystems are all systems—in the conventional sense that we can regard
them as composed of interacting elements—systems biology tends to focus on
processes at the cellular level. The new journal Systems Biology has the following
introduction:

Systems biology involves modelling and simulating the complex dynamic inter-

actions between genes, transcripts, proteins, metabolites and cells using integrated

systems-based approaches. Encompassing proteomics, transcriptomics, metabolomics

and functional genomics, systems biology uses computational and mathematical mod-

els to analyze and simulate networks, pathways and the spatial and temporal relation-

ships that give rise to cause and effect in living systems. Such work is of great impor-

tance to a better understanding of disease mechanisms, pharmaceutical drug discovery

and drug target validation.
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The “omics” listed above refer to methods for collecting and analyzing large
amounts of data about the molecular biology of cells. Whole genome sequences
of many organisms are one striking example of such data. The humane genome
has billions of nucleotides and thousands of genes. Computational tools are
needed to manage these data, and even tasks like searching for similar sequences
in different genomes require efficient algorithms. Systems biology seeks to dis-
cover the organization of these complex systems. Cells have intricate internal
structure, with organelles like ribosomes and mitochondria and smaller molecu-
lar complexes like DNA polymerase that play an essential role in how cells func-
tion. Structural information is not enough, however, to understand how cells
work. Life is inherently a dynamic process. There are varied approaches that sys-
tems biology is taking to model and simulate these dynamics. Systems biology
research has been accelerating rapidly, but this is an area of research that is in its
infancy and fundamentally new ideas may be needed to close the enormous gap
between goals that have been articulated and present accomplishments.

The models of gene regulation in this chapter are simple examples of systems
biology models. One simplified view of the cell is to regard it as a soup of reacting
chemicals. This leads us to model the cell as sets of chemical reactions as we have
done with our simple gene regulation circuits. Conceptually, we can try to “scale
up” from systems with two or three genes and their represssors to whole cells
with thousands of genes, molecules, and molecular complexes that function as
distinct entities in cellular dynamics. Practically, there are enormous challenges
in constructing models that faithfully reproduce the dynamical processes we ob-
serve in cells. We give a brief overview of some of these challenges for systems
biology research in this section, from our perspective as dynamicists.

Much of current systems biology research is directed at discovering “networks”
and “pathways.” Viewing the cell as a large system of interactions among com-
ponents like chemical reactions, its dynamics is modeled as a large set of ordinary
differential equations. There is a network structure to these equations that comes
from mass balance. Each interaction transforms a small group of cellular com-
ponents into another small group. We can represent the possible transforms as a
directed graph in which there is a vertex for each component and an arrow from
component A to component B if there is an interaction that directly transforms
A to B. We can seldom see directly the interactions that take place in the cell,
but there are two classes of techniques that enable us to infer some of the net-
work structure. First, we can detect correlations of the concentrations of different
entities with “high-throughput” measurements. Example techniques include mi-
croarrays that measure large numbers of distinct mRNA molecules and the simul-
taneous measurements of the concentration of large numbers of proteins with
mass spectrometry. Second, genetic modifications of an organism enable us to
decrease or enhance expression of individual genes and to modify proteins in
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specific ways. The effects of these genetic modifications yield insight into the
pathways and processes that involve specific genes and proteins.

Exercise 4.5. Draw a graph that represents the interactions between components of
the repressilator network.

Construction of networks for gene regulation and cell signaling is one promi-
nent activity for systems biology. Networks with hundreds to thousands of nodes
have been constructed to represent such processes as the cell cycle (Kohn 1999)
and the initiation of cancer (http://www.gnsbiotech.com/biology.php). For the
purposes of creating new drugs, such networks help to identify specific targets
in pathways that malfunction during a disease. Can we do more? What can
we infer about how a system works from the structure of its network? We can
augment the information in the network by classifying different types of entities
and their interactions and using labels to identify these on a graph. Feedback in
a system can be identified with loops in the graph, and we may be able to deter-
mine from the labels whether feedback is positive or negative; i.e., whether the
interactions serve to enhance or suppress the production of components within
the loop. However, as we have seen with the simple switch and repressilator
networks, a single network can support qualitatively different dynamics that de-
pend on quantitative parameters such as reaction rates. Thus, we would like
to develop dynamic models for cellular processes that are consistent with the
network graphs.

Differential equation models for a reaction network require rate laws that de-
scribe how fast each reaction proceeds. In many situations we cannot derive the
rate laws from first principles, so we must either measure them experimentally
or choose a rate law based on the limited information that we do have. Isolat-
ing the components of reactions in large network models and measuring their
kinetics is simply not feasible. As in the two models considered earlier in this
chapter, the Michaelis-Menten rate law for enzyme kinetics derived in Chapter
1 and mass action kinetics are frequently used in systems biology models. The
functional forms chosen for rate laws usually have parameters that still must be
given values before simulations of the model are possible. With neural models
for the electrical excitability of a neuron, the voltage clamp technique is used to
estimate many of the model parameters, but better experimental techniques are
needed for estimating parameters in the rate laws of individual cellular interac-
tions. Thus, estimating model parameters is one of the challenges we confront
when constructing dynamic models of cellular networks.

Transformation of networks and rate laws into differential equations models
is a straightforward but tedious and error-prone process when done “by hand.”
Moreover, comparison and sharing of models among researchers is much eas-
ier when standards are formulated for the computer description of models. Ac-

This content downloaded from 
�������������96.248.68.89 on Sun, 18 Jul 2021 13:26:09 UTC�������������� 

All use subject to https://about.jstor.org/terms

http://www.gnsbiotech.com/biology.php


January 18, 2006 16:07 m26-main Sheet number 150 Page number 128

128 Chapter 4

cordingly, substantial effort has been invested in the development of special-
ized languages for defining systems biology models. One example is SBML, the
Systems Biology Markup Language, that is designed to provide a “tool-neutral”
computer-readable format for representing models of biochemical reaction net-
works (http://sbml.org/index.psp).

Exercise 4.6. Describe the types of computations performed by three different sys-
tems biology software tools. You can find links to many tools on the homepage of
the SBML website.

Once a model is constructed we face the question as to whether the simula-
tions are consistent with experimental observations. Since even a modest-size
model is likely to have dozens of unmeasured parameters, we can hardly expect
that the initial choices that have been made for all of these will combine to yield
simulations that do match data. What do we do to “tune” the model to improve
the fit between simulations and data? The simplest thing that can be done is
to compute simulations for large numbers of different parameters, observing the
effects of parameter changes. We can view the computer simulations as a new
set of experiments and use the speed of the computer to do lots of them. As the
number of parameters increases, a brute force “sweep” through the parameter
space becomes impossible. For example, simulating a system with each of ten
different values of k parameters that we vary independently requires 10k simula-
tions altogether. Thus, brute force strategies to identify parameters can only take
us so far.

When simulations have been carried out for differential equation models aris-
ing in many different research areas, similar patterns of dynamical behavior have
been observed. For example, the way in which periodic behavior in the repressi-
lator arises while varying parameters is similar to the way in which it arises in the
Morris-Lecar model for action potentials. Dynamical systems theory provides a
mathematical framework for explaining these observations that there are “univer-
sal” qualitative properties that are found in simulation of differential equations
models. We use this theory to bolster our intuition about how properties of the
simulations depend upon model parameters. Tyson, Chen, and Novak (2001) re-
view model studies of the cell cycle in yeast, illustrating how dynamical systems
theory helps interpret the results of simulations of these models.

Mathematics can also help estimate parameters in a model in another way. If
we are interested in the quantitative fit of a model to data, then we can formulate
parameter estimation as an optimization problem. We define an objective function
that will be used to measure the difference between a simulation and data. A com-
mon choice of objective function is least squares. If x1, . . . , xn are observations and
y1, . . . , yn are the corresponding values obtained from simulation, then the least
squares objective function is

∑
(yi − xi)

2. It is often useful to introduce weights
wi > 0 and consider the weighted least squares objective function

∑
wi(yi − xi)

2.
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The value of this objective function is non-negative and the simulation fits the
data perfectly if and only if the value of the objective function is zero. The value
of any objective function f will depend upon the parameters of a model. The op-
timization problem is to find the parameters that give the minimum value of the
objective function. There are several well-developed computational strategies for
solving this optimization problem, but it would take us far afield to pursue them
here. Some of the computational tools that have been developed for systems biol-
ogy (http://www.gepasi.org/,http://www.copasi.org) attempt to solve parameter
estimation problems using some basic optimization algorithms. The methods
have been tested successfully on systems of a few chemical reactions, but we still
do not know whether they will make significant improvements in estimating pa-
rameters of large models. Some of the difficulties encountered in application of
optimization methods to estimating parameter of network models are addressed
by Brown and Sethna (2003).

4.4.1 Complex versus Simple Models

Finding basic “laws” for systems biology is a compelling challenge. There is still
much speculation about what those principles might be and how to find them.
There is wide agreement that computational models are needed to address this
challenge, but there is divergence of opinion as to the complexity of the models
we should focus upon.

Taking advantage of experimental work aimed at identifying interaction net-
works in cells, systems biologists typically formulate and study models with many
state variables that embrace the complexity of the system being modeled, rather
than trying to identify and model a few “key” variables. Nobody denies the neces-
sity of complex models for applied purposes, where any and all biological details
should be incorporated that improve a model’s ability to make reliable predic-
tions, though as we discuss in Chapter 9, putting in too much biological detail
can sometimes be bad for forecasting accuracy. For example, in a human cancer
cell model developed to help design and optimize patient-specific chemother-
apy (Christopher et al. 2004), the diagram for the cell apoptosis module includes
about forty interlinked state variables and links to two other submodels of unde-
scribed complexity (“cell cycle module” and “p53 module”).

But for basic research, there is a long-standing and frequently heated debate
over the value of simple “general” models versus complex “realistic” models as
tools. On one side Lander (2004, p. 712) dismisses both simple models and the
quest for generality:

. . . starting from its heyday in the 1960s, [mathematical biology] provided some

interesting insights, but also succeeded in elevating the term “modeling” to near-

pejorative status among many biologists. For the most part mathematical biologists
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sought to fit biological data to relatively simple models, with the hope that fundamen-

tal laws might be recognized . . . . This strategy works well in physics and chemistry, but

in biology it is stymied by two problems. First, biological data are usually incomplete

and extremely imprecise. As new measurements are made, today’s models rapidly join

tomorrow’s scrap heaps. Second, because biological phenomena are generated by large,

complex networks of elements there is little reason to expect to discern fundamental

laws in them. To do so would be like expecting to discern the fundamental laws of

electromagnetism in the output of a personal computer.

In order to “elevate investigations in computation biology to a level where ordi-
nary biologists take serious notice”, the “essential elements” include “network
topologies anchored in experimental data” and “fine-grained explorations of
large parameter spaces” (Lander 2004, p. 714).

The alternative view is that there are basic “pathways,” “motifs,” and “mod-
ules” in cellular processes that are combined as building blocks in the assembly
of larger systems, and that there are definite principles in the way in which they
are combined. In contrast to Lander, we would say that biological phenomena
are generated by evolution, which uses large complex networks for some tasks;
this distinction is crucial for the existence of fundamental laws and the levels
at which they might be observed. Evolution has the capacity to dramatically
alter the shape and behavior of organisms in a few generations, but there are
striking similarities in the molecular biology of all organisms, and cross-species
comparisons show striking similarities in individual genes. Natural selection has
apparently preserved—or repeatedly discovered—successful solutions to the basic
tasks that cells face. Biological systems are therefore very special networks which
may have general organizational principles.

We build complex machines as assemblies of subsystems that interact in ways
that do not depend upon much of the internal structure of the subsystems. We
also create new devices using preexisting components—consider the varied uses
of teflon, LCDs, and the capacitor. Many biologists (e.g., Alon 2003) have argued
that designs produced by evolution exhibit the same properties—modularity and
recurring design elements—because good design is good design, whether pro-
duced by human intelligence or the trial-and-error of mutation and natural se-
lection. Alon (2003) notes in particular that certain network elements that per-
form particular tasks, such as buffering the network against input fluctuations,
occur repeatedly in many different organisms and appear to have evolved inde-
pendently numerous times, presumably because they perform the task well. The
existence of recurring subsystems with well-defined functions opens the possi-
bility of decomposing biological networks in a hierarchical fashion: using small
models to explore the interactions within each kind of subsystem, and different
small models to explore the higher-level interactions among subsystems that per-
form different functions. How well this strategy works depends on the extent to
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which whole-system behavior is independent of within-subsystem details, which
still remains to be seen.

Proponents of simpler models often question the utility of large computer sim-
ulations, viewing them as a different type of complex system that is far less inter-
esting than the systems they model. In the context of ecological models, math-
ematical biologist Robert May (1974, p. 10) expressed the opinion that many
“massive computer studies could benefit most from the installation of an on-line
incinerator” and that this approach “does not seem conducive to yielding gen-
eral ecological principles.” In principle one can do “fine-grained explorations of
large parameter spaces” to understand the behavior of a computational model, as
Lander (2004) recommends; in practice it is impossible to do the 1050 simulation
runs required to try out all combinations of 10 possible values for each of 50
parameters. Similarly Gavrilets (2003) argued that the theory of speciation has
failed to advance because of over-reliance on complex simulation models:

The most general feature of simulation models is that their results are very specific.

Interpretation of numerical simulations, the interpolation of their results for other

parameter values, and making generalizations based on simulations are notoriously

difficult . . . simulation results are usually impossible to reproduce because many tech-

nical details are not described in original publications.

According to Gavrilets (2003) the crucial step for making progress is “the devel-
opment of simple and general dynamical models that can be studied not only
numerically but analytically as well.” Ginzburg and Jensen (2004) compare com-
plex models with large parameter spaces to the Ptolemaic astronomy based on
multilayered epicycles: adaptable enough to fit any data, and therefore mean-
ingless.

Of course the quotes above were carefully selected to showcase extreme posi-
tions. Discussions aiming for the center are also available—indeed, the quotes
above from May (1974) were pulled from a balanced discussion of the roles of
simple versus complex models, and we also recommend Hess (1996), Peck (2004),
and the papers by Hall (1988) and Caswell (1988) that deliberately stand at op-
posite ends of the field and take aim at each other. The relative roles that simple
and complex dynamic models will play in systems biology are uncertain, but it
seems that both will be used increasingly as we accumulate more information
about the networks and pathways of intracellular interactions.

4.5 Summary

This chapter has explored the dynamics of differential equation models for two
synthetic gene regulation networks. The models were chosen to illustrate how
simulation is used to study nonlinear differential equations. The focus is upon
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long-time, asymptotic properties of the solutions. We distinguish solutions that
tend to an equilibrium, or steady state, from solutions that tend to periodic orbits.
In the next chapter, we give an introduction to the mathematics of dynamical
systems theory as a conceptual framework for the study of such questions. The
theory emphasizes qualitative properties of solutions to differential equations
like the distinction between solutions that tend to equilibria and those that tend
to periodic orbits. The results of simulations are fitted into a geometric picture
that shows the asymptotic properties of all solutions.

The application of dynamical systems methods to gene regulatory networks
is a subject that is still in its infancy. To date, systems biology has been more
effective in developing experimental methods for determining networks of in-
teractions among genes, proteins, and other cellular components than in de-
veloping differential equation models for these complex systems. Simulation
is essentially the only general method for determining solutions of differential
equations. Estimating parameters in large models that lead to good fits with data
is an outstanding challenge for systems biology. We do not know whether there
are general principles underlying the internal organization of cells that will help
us to build better models of intracellular systems. The mathematics of dynami-
cal systems theory and optimization theory do help us in investigations of large
models of these systems.
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