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Preface

What is the purpose of this text? After many years of teaching at our university, we
have noticed that mathematics students tend to not have a formal background in
biological systems. On the other hand, biology students often have a fear of
mathematics. Many biology students may have always been interested in science
and, in part, chose biology because of a perception that it was one scientific field that
could be pursued without needing any math skills or background. We think that this
misconception has gradually increased in significance.

Although statistics might be present in most biology degree programs, mathe-
matics up to and beyond calculus is often not. We believe that a common educational
scenario in biology has at least partially neglected mathematics. Therefore, the
students are minimally trained in mathematics through graduate school and on into
academic or other research work. Not being comfortable with applications of
mathematics, they tend not to use it as a primary feature in their research. Later in
their careers if they stay in academia, they are arguably not likely to encourage their
graduate students in this regard. Thus the cycle continues.

Our goal with this text, therefore, is to provide an introduction to this interdisci-
plinary field in a way that will not overly terrify the undergraduate biology major, but
will highlight what can be learned about biological systems by applying an approach
based in mathematics. In terms of expectations for student backgrounds, we would
suggest, as we do for our courses, that students should have mathematics up to at
least introductory calculus, although we provide a review in an appendix of this text.
For biology, students should have an introductory series in biology to provide a basic
background in biology. Although additional prior course work would be useful, our
goal is to draw from students aiming for majors in biology or mathematics.

In summary, this little book is intended to be an “invitation” (as the title says) to
mathematical biology which: (1) can serve as a stepping stone to more comprehen-
sive books, while (2) also offering a selected variety of topics that could be studied in
deeper detail later on. It is intended for students with a minimal knowledge (fresh-
man level) in mathematics and biology. As explained in the Introduction, the task
can be accomplished with the use of computer software like Mathematica,
MATLAB, or Python that we use in this text.
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Chapter 1 ®)
Introduction Chack or

What is mathematical biology? The field of mathematical biology may be defined as
the application of mathematical approaches for understanding biological processes.
This may involve traditional mathematics such as developing analytical solutions
but also numerical, computational approaches utilizing computational methods.
Therefore, we will describe some of these numerical methods, and we will also
provide tutorials in the use of a few computer software systems that have become
very useful in applying the mathematical approaches. To that end, it is worth
considering that biological systems tend to be extraordinarily complex and mathe-
matical descriptions of these systems are often not solvable by analytical methods. A
quick perusal of several journals in mathematical biology shows that research papers
are typically dominated by computational approaches. Thus the field of computa-
tional biology has become increasingly important, as noted in the Math 2025 report
(National Research Council 2013). Computational biology has been defined by some
as equivalent to bioinformatics, but we choose a broader definition encompassing
any use of computational approaches to studying biological systems. Given the
growing role of computational approaches in biology, an increasing focus on courses
that teach computational methods will be important, as noted by Pevzner and Shamir
(2009). This could include numerical methods and computer programming along
with an introduction to existing software tools such as Mathematica, MATLAB, or
Python.

Why is mathematical biology important? For the next generation of biologists to
contribute to new mathematical directions at this interface, much greater interaction
between biologists and mathematicians will be necessary. The importance of an
enhanced link between mathematics and biology is clear from the NSF-sponsored
workshop entitled Mathematics and Biology: The Interface, Challenges and Oppor-
tunity, where the authors describe the potential for mathematics to revolutionize
biology as Newton’s calculus did for physics (Levin 1992). Benefits will flow in
both directions: such interactions will also enrich mathematics, as has occurred in the
past where dynamical systems and chaos theory were largely developed in response
to biological problems.
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2 1 Introduction

We are inclined to believe that many biologists traditionally do not have a strong
(or even adequate) formal background in mathematics and tend to avoid using
mathematics in their research. Therefore, they do not see a need to require mathe-
matical training for their students — and the cycle continues! A modern physicist
would be lost without mathematics and perhaps the same will be true of future
biologists. The problem is not just with biologists and their lack of mathematical
training: Michael Reed in the Department of Mathematics at Duke University has
written, “most mathematicians know less biology than their 10th grade daughters”
(Reed 2004). In the traditional academic environment among the sciences, most
faculty are members of a specific scientific discipline and largely conduct their
research and scholarly activities within that discipline. These traditional units may
inhibit the degree of collaboration that will be so important for fields such as biology,
where progress will depend on “the phase transition that comes with the total
integration of mathematical and empirical approaches” to biology (Levin 1992).
Therefore, we believe that the lack of training beginning at early career stages and
the lack of facilities to encourage interaction serve as major barriers for this emerg-
ing mathematical biology field (Bialek and Botstein 2004).

As part of addressing the needs just described, this text is organized to focus on
the presentation of a broad array of biology topics, many of which would be covered
in introductory biology courses but typically without the use of mathematical
approaches. These topics cover a range from ecological systems such as population
modeling, models of epidemics and infectious diseases, and evolutionary processes
such as natural selection. Mathematical approaches in this text include discrete
equations and ordinary differential equations, where we will present a variety of
tools ranging from analytical or graphical solutions to computational methods using
software such as Mathematica, MATLAB, and Python. It is our hope that these
examples and the application of readily amenable graphical approaches and compu-
tational software will serve to inspire students toward a greater appreciation for the
role of mathematics in biology.
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Chapter 2 ®)
Exponential Growth and Decay Shex

Many physical phenomena are governed by an (approximate) exponential growth or
exponential decay, and clearly biological phenomena are not an exception as we
shall see next. Typical examples of such growth and decay situations, which are
rather exact and appear in most calculus books, are bacteria growth, infectious
disease recovery, and radioactive decay (an interested reader may want to check
“compound interest” as related to exponential growth).

2.1 Exponential Growth

Example 2.1 A culture of bacteria in a food fertile medium increases in size during
a certain time interval Af (as each cell divides into two) and continues doing that for
as long as there is food available in the medium. For example, let us consider the case
of the bacterial species Escherichia coli (which is well known to live in human
intestines).

Say one places 60 cells of Escherichia coli bacteria in a broth-nutrient medium, and
each cell divides into two every 20 min. Then, after the first 20 min there are
120 cells, after 20 more minutes there are 240 cells, then 480 cells after 60 min,
and so on, the number of cells keeps doubling for as long as there is food available in
the medium in question, let us say 180 min.

Therefore, assuming that there is plenty of nutrients to last for 3h (n =9, 9 times
20 min is 3 h), there will be a total of

N=(60)2°  where2’ =512

In other words, there will be 30,720 cells of Escherichia coli in the medium after
180 min (n = 9). Now, if we go far beyond n = 9, it is natural to guess that such
subdividing process will slow down, tending to level off after the food or nutrient is
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4 2 Exponential Growth and Decay
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Fig. 2.1 Number of cells following exponential growth as illustrated in Example 2.1, starting with
60 cells

gone. In fact, we shall see this leveling off in another example below. Note that
considering the above situation for all further integers n would eventually lead to the
unrealistic exponential growth situation

N =(60)2" foralln>1

One can also express this exponential growth model in the form of a discrete time
equation.

Nyi1 =N, + kN, (2.1)

where k is calculated from the doubling of cells in 20 min converted to our time unit
of minutes:

k=251

From Eq. 2.1 and starting with 60 cells at t = 0, we would calculate the number of
cells at t = 60, 120, and 180 min as 480, 3840, and 30,720 respectively (Fig. 2.1).
Note that starting with 60 cells at time zero would give the same value of 30,720
t = 3 h as noted above.

Example 2.2 The previous example of exponential growth appears to suggest that
the number of cells would increase without limit. However one can imagine that for
many actual populations of organisms, limitations would be present that prevent the
unbounded growth. Here, we will consider a population of bacteria growing under
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Table 2.1 Bacterial cell
growth over the course of
several hours

Time (hours) Population size
0.0031
0.0046
0.0094
0.0218
0.0469
0.0759
0.0989
0.1172
0.1310
0.1407
0.1481
0.1532
0.1551
0.1575
0.1580
15 0.1590

Population size was estimated by the optical density of the
medium
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lab conditions. Data were provided courtesy of Ernesto Abel-Santos in the Depart-
ment of Chemistry and Biochemistry at the University of Nevada, Las Vegas. An
experiment was performed measuring the growth of Bacillus anthracis at various
hours in a certain medium. One can notice from the table that there is an initial rapid
growth (like in Example 2.1) but after about 10 h, the growth slows, eventually
leveling off approaching the so-called “carrying capacity” of the medium. This
pattern is sometimes referred to as an S curve or a logistic curve (Table 2.1).

We can fit a curve to this set of data that follows a logistic function. In this case,
we used a MATLAB function that minimizes the errors between the data points and
the fitted curve, an approach that has been called nonlinear least squares. The fitted
curve appears to reasonably approximate the actual observed data (Fig. 2.2). The
curve fitting process also gives us estimates of two important parameters: a growth
rate and a carrying capacity.

Looking back at the previous table and graph, we can note a value for the carrying
capacity, estimated by the curve fitting as 0.1562. Indeed, it is natural to infer that the
change Ap,= p,..1 — P, 1s proportional to the product p,, (0.1562 — p,,), since Ap,, is
approximately zero when (0.1562 — p,,) = 0. In other words, we are inferring that

Apn:anrl _pn:rpn(o'1562_pn) (22)

where r > 0 is some constant. In fact, the logistic curve fit described earlier gives a
value of r = 4.417. Therefore, we get the formula

Pup1 =Dy + 4417p,(0.1562 — p,,)
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Fig. 2.2 Bacterial cell population size (estimated as optical depth) as a function of time. The circles
show the observed data and the line shows the logistic curve fit to those data points

which can be solved numerically to get p; = 0.0052 from py = 0.0031, then p, from
p1, and so on. If you are up to the task of doing the calculations and plotting these
predicted values, you can compare those in the previous table and the plot in Fig. 2.2.
Of course we can automate this process with a simple Python program as
shown here:

# Discrete Logistic
import numpy as np
import matplotlib.pyplot as plt

r=4.41708
K=10.15618
steps = 15

p =np.zeros (steps+1)

n =np.zeros (steps+1)

pl0] =0.0031

n[0] =0.0

for i in range (0, steps) :

pli+1] =pli] + r*p[i]* (K - p[i])
n[i+l] =n[i] +1.0
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# Display data
print (np.transpose([n,pl))

# plot results

plt.plot(n,p, 'b.', fillstyle='full")
plt.xlabel ('Time"')

plt.ylabel('p")

plt.show()

# Save results to afile
np.savetxt ('Discretelog.txt', np.transpose([n,pl), fmt="'%4.1f %
8.4f', delimiter="',"', newline='\n")

We will examine further this logistic population model in the next chapter.

2.2 Exponential Decay

Example 2.3 Now, a realistic “exponential decay” governs the spontaneous decay
of the mass m of a radioactive substance (Nagy 2011; Sharon and Sharon 2021). In
this case, starting with a certain mass my, it gets halved after each length of time H.
Here, H is called the half-life of the substance [a characteristic of each radioactive
substance indicating the time in years when its mass gets halved].

Thus, an initial mass m is halved to my/2 at time t = H, then halved to my/4 at time
t = 2H, and so on “ad infinitum.” Indeed, this exponential decay is rather exact and
the half-life of radioactive substances can vary from some thousands to millions of
years. For instance, carbon-14 (an isotope of the common carbon-12), which is used
in estimating the age of an artifact, has a half-life of about 5730 years, while
uranium-235 has a half-life of about 710 million years!

As you can infer from Example 2.1, the rather accurate process of exponential
decay for radioactive substances is governed by the equation

my, =my(1/2)",n=0,1,2,3, ... (nH years)
For time expressed in years, we can calculate:
my=mo(1/2)""

As applied to the exponential growth in Example 2.1, we can also express a discrete
time equation for exponential decay as:

Nt+1:Nt_kNl‘ (2.3)
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Fig. 2.3 Exponential decay of radioactive carbon-14, starting with my = 100 over a time period of
four half-lives. Symbols are plotted every 400 years

where the decay constant k is:
k=1n(2)/H

We can solve the discrete exponential decay equation (Eq. 2.3) for the case of '*C
with a half-life of 5730 years over a time period of four half-lives or 22,920 years
(Fig. 2.3).

Example 2.4 Now we consider another example of exponential decay from a
biological perspective concerning the recovery of infected individuals in a popula-
tion. [ represents the number of infected individuals. Within a population of infected,
1/4 of them recover per day and let us call this value A = 0.25. Therefore, our time
unit is one day and our infected recovery model becomes:

]rH—l :In _/Iln

We can solve this numerically starting with an initial size of the infected population
Iy = 100 (see Fig. 2.4).



2.4 Exercises 9

Infected

0 5 10 15 20 25
Time (days)

Fig. 2.4 Exponential decay in the size of the infected population

2.3 Summary

We considered pure exponential growth for a population of bacteria in a growth
medium assumed to be unlimited for their growth. Rapid growth occurs but without
limit and this would be unreasonable for an actual population which would have
limited food available. A second example considered growth in a population of
bacteria. Although the initial growth was rapid as in the first example, it eventually
slowed to approach a constant carrying capacity of the growth medium. A third
example considered exponential decay of a radioactive substance whereby the
remaining radioactive matter decreases by half after each half-life interval, charac-
teristic of the particular radioactive substance. Lastly, we considered the exponential
decay of a population of infected individuals, which also declines rapidly at first to
approach zero whereby all of the initially infected individuals have recovered.

2.4 Exercises

2.4.1 For Example 2.1, we considered exponential growth for a population of cells
starting with 60 cells. Calculate and plot the population growth starting with
only 10 cells and the same value of the growth constant.
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2.4.2 Consider the model for growth with a carrying capacity as described by
Eq. 2.2. In the earlier text, we choose values for r and K from the bacteria
experiment. Solve this model and plot the population size for a doubled value
of r to show how an increased growth rate constant would change the timing of
the population’s approach to its carrying capacity.

2.4.3 Solve and draw a decay plot using Eq. 2.2 for uranium-235 with a half-life of
710 million years. A related calculation was done earlier for carbon-14
(Fig. 2.3).

References

Nagy S (2011) Kinetics of radioactive decay. In: Vértes A, Nagy A, Klencsar Z, Lovas R, Rosch F
(eds) Handbook of nuclear chemistry, 2nd edn. Springer Science+Business Media, Dordrecht
Sharon M, Sharon M (2021) Nuclear chemistry, 2nd edn. Springer Nature, Cham



Chapter 3 )
Discrete Time Models Gecie

The previous chapter presented a model of exponential growth. However, we also
saw that in a realistic situation of growth of a bacterial culture where measurements
were taken at discrete times (hours, in that case), the population did not grow without
limit but tended to level off in an S-shape form, called a “logistic curve.” What
happened here was that, due to the limited amount of food in the medium, the growth
of bacteria cells slowed down due to competition for food and, as a consequence, the
population also started to grow at a slower pace tending more and more to stabilize in
growth. In this chapter, we will present a general model for such growth along with
two alternative models.

Mathematically, this process can be described by a so-called “Discrete Logistic
Model.” That is an equation of the form similar to that expressed in Chap. 2, Eq. 2.2.

N, r
N,+|:N,+rN,(1—f’) =N+ N, — N? (3.1)
where r is a reproductive rate constant and K is a carrying capacity of the model. As
shown in Chap. 2, an exponential growth model is biologically unrealistic because it
shows unlimited growth. As we will see, the discrete logistic model incorporates a
carrying capacity which prevents unlimited growth. The term with N? represents

intraspecific competition within the population.

3.1 Solutions of the Discrete Logistic

Therefore Eq. 3.1 is an example of the Discrete Logistic Model. A solution, using
r = 1.5 and K = 100, would look like the typical S-shaped logistic curve (Fig. 3.1).
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12 3 Discrete Time Models
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Fig. 3.1 A plot of the solution for the discrete logistic population model with r = 1.5 and K = 100

3.2 Enhancements to the Discrete Logistic Function

We should note that implementation of the Discrete Logistic Equation runs into a
problem, giving a negative value for large values of N. Of course, there are also
alternative forms to the Discrete Logistic Equation as suggested by de Vries et al.
(2006) that resolve this problem.

Option I One of the alternative models is the so-called Beverton-Holt model
(Beverton and Holt 1993; Geritz and Kisdi 2004), derived for fisheries, with the
Discrete Logistic Eq. 3.1 being replaced by

r

(r—1)N,
R

Nipi = N, (3.2)

with r > 1 and (of course) K > 0. Note N,,; > 0 for all 7.

Option IT Another model is the so-called Ricker model (Ricker 1954; Geritz and
Kisdi 2004), also derived for fisheries, with the Discrete Logistic Eq. (3.1) being
replaced by

Nt+]:€r(li%)Nl (33)

with » > 1 and K > 0. Again, note that N,,; > O for all 7.
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Fig. 3.2 Growth functions (g(/V)) for the three discrete model options. DLM, discrete logistic
model; B-H, Beverton-Holt model; Ricker, the Ricker model. For the results shown here, r = 1.5
and K = 100

All three of these models can also be expressed in terms of a growth function
such that:

Nit1 =g(Nr)Nz

If we look at the manner in which the growth functions g(N) depend on N (Fig. 3.2)
we can see how the issue leading to a negative N,, arises for the discrete logistic but
not for the Beverton-Holt and Ricker models. Note in the figure that all three
functions meet at N = K (100 in this graph), where the growth function equals 1.0.

Finally, as pointed out in the Preface and Introduction, our upcoming approach
will make extensive use of Computer Algebra Software (CAS) like Mathematica and
MATLAB to compensate for the minimal requirement of mathematical knowledge
at the Freshman level that we are assuming in this course. (Of course, the reader must
understand the meaning of the mathematical parameters and terminology being used,
as well as be able to properly interpret the results!)
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3.3 Summary

The discrete logistic model resolved a problem with the simple exponential growth
model presented in Chap. 2 by incorporating a carrying capacity that keeps the
population from growing without limit. On the other hand, the discrete logistic
model has a weakness such that with sufficiently large values of N, the next
calculated population size will be negative. The alternative models such as the
Beverton-Holt and Ricker models resolve this weakness by the use of a growth
function that does not become negative.

3.4 Exercises

3.4.1 Solve the Beverton-Holt model and present a graph showing the population
size versus time when r = 1.5 and K = 50.

3.4.2 Solve the Ricker model and present a graph showing the population size
versus time when r = 1.5 and K = 50.

3.4.3 Using either the Beverton-Holt or Ricker models, show that for an initial value
of the population size (V) greater than K, the population declines to the steady-
state K. Solve the model and present your results as a graph of population size
versus time.
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Chapter 4 )
Fixed Points, Stability, and Cobwebbing Shex

In Chap. 3, we studied a few examples of Discrete Time Models. In particular, we
derived the important example of the Discrete Logistic Equation shown in Eq. 3.1. In
this chapter, we shall consider a general form of a Discrete Time Model (also called a
“Discrete Dynamical System” in mathematics). We will introduce methods for
determining the fixed points (values of the population size (x) which do not change
for future time steps), and the stability of these fixed points.

4.1 Fixed Points and Cobwebbing

A General Discrete Time Model is a discrete time equation of the form:
Xor1 =f (), n=0,1,2, ... (4.1)

where f(x) is a given real function together with an initial state x,,. The orbit of Eq. 4.1
is the sequence of points of the form

x1 =f(x0), xy=f(x1), ...

And so on, for all n, starting with n = 0. Here are some more definitions.

Definitions
1. An Equilibrium State or a fixed point of f(x) is any X satisfying

&) =% (4.2)
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2. An equilibrium state is said to be stable if any orbit starting sufficiently close to x
stays close to x. Otherwise, X is said to be unstable. In typical situations if X is
stable, such orbits will approach X, while if X is unstable, orbits go away from x
from at least one of its sides.

3. Cobwebbing is a graphical technique used to visualize orbits on the graph of f{x)
in order to determine whether a given fixed point is stable or unstable (see Elaydi
1999).

We give a couple of examples below. For the first one, dealing with the biolog-
ically meaningful discrete logistic time model considered in Chap. 3, we illustrate
Definition 1 by finding the fixed points. In the second example, still dealing with the
discrete logistic time model, we illustrate Definitions 2 and 3.

Example 4.1 Consider a simple discrete logistic model of the form:

Xpp1 = ax,(1 —x,)
Then from

fx)=ax(1—x)
and setting f{x) = x, we obtain

ax(l—x)=x
which yields the equilibrium states, or fixed points
i'=0and ¥=1-1/a

We can illustrate all three definitions using Mathematica (Fig. 4.1).

Adding the cobwebbing process to Fig. 4.1 shows the stability of the fixed point
at x = 0.6 (Fig. 4.2). The process is carried out by starting a vertical line at some
point along the x-axis and drawing vertically to the f{x) curve. Then continue the line
horizontally to the diagonal ( f{x) = x) line. Repeat that process until it becomes clear
if the lines are approaching the fixed point (where the two curves meet). Here
(Fig. 4.2) it can be seen that the cobwebbing lines move away from the unstable
fixed point at x = 0 and toward the stable fixed point at x = 0.6. In practice, one
should also draw cobwebbing lines from a point on the x-axis greater than 0.6.
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Discretelogistic

Create model function
fIx_] :=ax(1 - x)

Set parameters

a=2.5;

Find fixed points

Solve[ f[x] - x==0, x]
{{x—>0.}, {x—>0.6}}

Plot results

Plot[{f[x], x}, {x, 0, 0.8}]

08
! \

041

0.2

L L L L
0.2 0.4 0.6 0.8

Fig. 4.1 Mathematica notebook showing the finding of fixed points
4.2 Linear Stability Analysis

We can also test stability through Calculus, via the analytical version of the so-called
“Linear Stability Analysis” (see Elaydi 1999). Namely, suppose xis a fixed point of a
given discrete time equation

Xn+1 :f(xn)

where f(x) is a “nice” differentiable function. Then

o If|f'(x)] is less than 1 (i.e., — 1 <f'(X) < 1) then % is stable.

 If |f'(x)] is greater than 1 (i.e., f'(X) < — 1 or f’(%) > 1), then X is unstable.

o If|f'(x)|isequal to 1 (i.e., f'(x) =1 orf’(x) = — 1), the linear stability analysis is
inconclusive and one should use cobwebbing to decide on stability.
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X

Fig. 4.2 Cobwebbing to show the stability of the fixed point at x = 0.6

Example Consider a discrete logistic equation:

)C2
Xntl = 2 (xn - 7n>

where f{x) = 2x — x> Then, solving f(x) = x for x and calculating f /(x) =2 —2xand
noting that the fixed points are X' =0 and ¥*> = 1, we calculate that

ity
(%)

2

0

And we conclude that &' is unstable and #* is stable.
This can also be shown using Mathematica (Fig. 4.3).

4.3 Summary

In this chapter, we have described the calculation of fixed points for a general
discrete time model. Next, we considered a method for determining if those fixed
points are stable or unstable using the graphical approach of cobwebbing. A more
analytical approach for assessing the stability of fixed points was derived as linear
stability analysis based on methods from calculus for finding the derivative of the
model function. Two examples were presented using the software Mathematica for
finding fixed points and applying the linear stability analysis. Later, we will see
examples where the linear stability analysis is inconclusive and the complementary
cobwebbing method should be used.
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Discretelogistic

Create model function and derivative

mio- FI[x_] :=2x =x”~2
fprime[x_] =D[f[x], x]

2-2x

Find fixed points
ni - Solve[f[x] - x==0, x]

{{x—>e}, {x>1}}

Assess stability of fixed points

fprime[0]
2

Thisfixed point is unstable.

ni - fprime[1]
[2]

Thisfixed point is stable

Fig. 4.3 Mathematica notebook showing the application of linear stability analysis

4.4 Exercises

4.4.1 Consider a discrete equation:
Xnt+1 = 4x, — x%
Find the fixed points and determine their stability using linear stability
analysis.

4.4.2 Consider a discrete equation:

2, .3
X1 = 3%, — 3%, + x,,
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Find the fixed points and determine their stability using linear stability
analysis.
4.4.3 Consider a discrete equation:

Xn+1 = 1 —x,

Find the fixed points and determine their stability using linear stability
analysis or cobwebbing.
4.4.4 Consider this difference equation:

2
Xpp1 =X, — X, + 1

You can find a fixed point at x = 1. Using linear stability analysis, show
that assessing the stability of this fixed point is inconclusive. Next, draw a
cobwebbing plot of f{x) versus x. Notice that the fixed point appears to be
stable starting at x < 1, but unstable starting at x > 1. For such a case, the fixed
point would be referred to as unstable.

Reference

Elaydi SN (1999) An introduction to difference equations. Springer Science+Business Media,
New York



Chapter 5 )
Population Genetics Models Shex

In Chap. 4, we defined and studied the notions of equilibrium state or fixed point,
stability, and cobwebbing, and illustrated them with a few examples. In this chapter,
we shall consider a biology application to Population Genetics. The first application
will consider wing color in moths in the case where two phenotypes (the outward
expression of a trait) are present: moths with white or black wings. Next, we will
expand this to a situation where three phenotypes are present, with white, black, or
gray wing colors.

First, we need to review some basic terminology in genetics (see e.g. King 2003).
Here are some definitions.

“Genes” are the fundamental units of heredity carrying information from one
generation to the next. Due to mutations, a gene can exist in a number of different
forms, or alleles; in our introductory approach we will only consider genes with
2 alleles A and a. Alleles (one for each parent) do interact to produce a trait, e.g.,
eye color in humans.

“Chromosomes” are structures in the cell nucleus that carries the genes.
“Diploid Organisms” are those consisting of two sets of chromosomes.

“Genotype” refers to the actual genetic makeup of an individual. The specific alleles
present, e.g., AA, Aa, and so forth.

“Phenotype” refers to an outwardly expressed trait of an individual.
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5.1 Two Phenotypes Case

Let us consider the trait wing color in moths. The following modeling approaches
were inspired by Tatum (2003). In general, many traits are determined by two alleles.
Since we are only considering two alleles, A and a, a particular moth can have one of
the following three allele compositions, AA, Aa, or aa. So, if we assume that the
moths have one of two phenotypes, “white-winged” or “’black-winged,” let us say
that moths with the allele composition AA or Aa develop white wings and moths with
the allele composition aa develop black wings. In other words, we are assuming that
the allele A determines the color white-wing regardless of the allele a, and we say
that the allele A is dominant and a is recessive. Then, the following questions
naturally arise in a given population of moths:

(i) How do the allele frequencies change over the various generations of the
population in question?
(i1)) Do recessive alleles disappear over time?
(iii) Does a selection mechanism exist?

For this case of two phenotypes, we have two scenarios:
I. No selection occurs. In this scenario, one makes the following assumptions:

* Random mating

* No mutations can occur (so new alleles do not enter the population)
* No gene flow or migration

* No selection occurs

* A large population is present so that genetic drift does not occur

Letting p,, denote the frequency of one allele (say A) at the nth generation (n = 0,
1, 2, ...), then one has (as demonstrated below)1

pn+1 =Dn

for all n. This is the situation of the so-called Hardy-Weinberg Law (see Hardy
1908; Weinberg 1908; Crow 1988). Clearly, in this situation, the answers to (i)—(iii)
above are:

(i) Allele frequencies do not change over generations.
(i) and (iii) No, recessive alleles do not disappear and selection is not considered for
this case.

"Note the frequency g, of the allele a satisfies p, + ¢, = 1 for all n = 0, 1, 2,... so it would not
matter which allele we picked to study its frequency because we can always calculate the frequency
for the allele by that formula.
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Table 5.1 Punnett Square

o Parent 2 A a
based on the probabilities for 1
each possible offspring Pn —Pn
Parent 1 A Dn P2 Pl —pp)
a_1-p Pl = p) (L =py)’

Proof of Hardy-Weinberg Law: We will use the so-called Punnett Square,” depicted
below. The table shows how the frequencies of the alleles A and a of any given
generation determine the three different genotypes AA, Aa = aA, and aa in the
following generation (Table 5.1).

The probability p,,,; of getting the allele A in an individual with genotype AA, Aa,
or aa is 1, 1/2, or 0, respectively. Thus, the weighted average of probabilities of
getting the allele A in generation n + 1 is given by

n+1 — -
p2+2p,(1—p,) + (1—p,)* (o + (1 =p,))?* 1)
=Pn

II. Selection is occurring

In our previous case (I), recall that we consider the trait wing color in moths with
the phenotype white-winged moths corresponding to the allele composition AA or
Aa, and the phenotype black-winged moths corresponding to the allele composition
aa. Now, with selection present, this means that parameters a, p with respective
values 0 < a < 1,0 < B < 1 are assigned representing the fractions of white-winged
moths and black-winged moths, respectively, that survive to produce each next
generation. Say, a value of a = 0.4 less than § = 0.8 would mean that white-
winged moths would have a 40% chance of surviving as opposed to black-winged
moths having an 80% chance of surviving from each generation to the next. Perhaps
because white-winged moths are more visible to predators than black-winged moths.
In this case, we write o < P and say that black-winged moths have a selective
advantage over the white-winged moths. Then, similarly to the Hardy-Weinberg
situation, the weighted average of probabilities of getting the allele A in generation
n + 1, considering also the selective pressures a and f, will now be given by

Pui1 =
- ap? + 20p, (1= p,) +B(1 —p,)*
- Pn (5.2)
ap? + 2ap, —20p2 — (1 —2p, + p2)

B op,
- (B-w)p-2(B-)p, + B

%See e.g. King (2003).
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Fig. 5.1 Cobwebbing for the scenario with a = 0.1 and p = 0.8, showing that p,, = 0 is a stable
steady-state as indicated by the circle at that point

Using Eq. 5.2, we will consider two scenarios, giving one moth phenotype the
advantage over the other.

Scenario 1 (o < f) using « = 0.1 and = 0.8 (Fig. 5.1). Black-wing moths have the
selective advantage.

Scenario 2 (o« > B) using a = 0.8 and f = 0.1 (Fig. 5.2). White-wing moths have the
selective advantage

5.2 Three Phenotypes Case

Let us continue to consider the trait wing color in moths, but now with the three
genotypes AA, Aa, and aa giving rise here to three phenotypes. Let us suppose that
genotype AA develops white-wing moths under selective pressure 0 < a < 1, geno-
type aa develops black-wing moths under selective pressure 0 < 3 < 1, and genotype
Aa develops gray-wing moths under selective pressure 0 <y < 1. In this situation,
similarly to the case of 2 phenotypes, after a little bit of algebra, we arrive at the
following expression for p,,,; in terms of p,:
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Fig. 5.2 Cobwebbing for the scenario with @ = 0.8 and = 0.1, showing that p, = 1 is a stable
steady-state as indicated by the circle at that point

Pt = ~op, + (1/2) - 2yp, (1 =p,) +0- (1 —p,)’
n+ (Xp% + 2ypn(] _pn) + B(l _pn)2 (53)

- (@—y)pa + 1Py
" (a—2y + B)p2 +2(y —B)p, + B

We are going to consider 4 different scenarios depending on the relative selective
advantage for the three phenotypes, hence the strengths of o, , and y.

Scenario 1 (a0 >y > f), using the relative strength parameter values o« = 0.8, y = 0.5,
and p = 0.1 (Fig. 5.3). White-wing moths have the selective advantage. Regard-
less of the initial frequency of the allele A, the frequency of A tends to one and
only white-wing moths eventually survive.

Scenario 2 (o < y < P) using the relative strength parameter values a = 0.1,y = 0.5,
and B = 0.9 (Fig. 5.4). Black-wing moths have the selective advantage and
regardless of the initial frequency of the allele A, the frequency of A tends to
zero and only black-wing moths eventually survive.

Scenario 3 (y > a, p) using the relative strength parameter values « = 0.1, y = 0.5,
and B = 0.2 (Fig. 5.5). Gray-wing moths have the selective advantage and
regardless of the initial frequency of the allele A, the frequency of A tends to an
intermediate value and all 3 phenotypes of moths eventually survive and coexist.
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Fig. 5.3 Cobwebbing for the scenario with « = 0.8, y = 0.5, and p = 0.1, showing that p, = 1 is a
stable steady-state as indicated by the circle at that point
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Fig. 5.4 Cobwebbing for the scenario with a = 0.1, y = 0.5, and p = 0.9, showing that p, =0 is a
stable steady-state as indicated by the circle at that point
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Fig. 5.5 Cobwebbing for the scenario with o« = 0.1, y = 0.5, and p = 0.2, showing a stable steady-
state at an intermediate value of p,, as indicated by the circle at that point
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Fig. 5.6 Cobwebbing for the scenario with @ = 0.8, y = 0.1, and p = 0.6, showing that p, = 0 and
pn = 1 are both stable steady-states as indicated by the circles at those points

Scenario 4 (y < a, f) using the relative strength parameter values a = 0.8, y = 0.1,
and f = 0.6 (Fig. 5.6). Gray-wing moths have the selective disadvantage and
depending on the initial frequency of the allele A, either the frequency of A will
approach zero, or the frequency of allele a will approach zero. All moths will
either be white-wing (AA), or black-wing (aa).
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5.3 Summary

When considering the case of two phenotypes (white or black wing color), the model
included selection factors that determined the selective advantage for each pheno-
type. The phenotype having the greater selective advantage led to a situation where
only that one respective moth wing color was present in the population after some
period of time. For the three phenotypes case various selective advantage factors
were tried. Two scenarios led to only one phenotype eventually being present.
Another scenario led to the coexistence of all three phenotypes. Lastly, if the gray-
winged moths had a selective disadvantage, the population either became all white-
winged moths or all black-winged moths depending on the initial value of the allele
frequencies.

5.4 Exercises

5.4.1 Refer to the Mathematica application in Fig. 4.1 of Chap. 4. For this exercise,
you would modify the notebook, changing the function to the one expressed in
Eq. 5.2. Solve the two phenotypes case based on the values of the selection
factors used in Figs. 5.1 and 5.2. Your notebook would create plots like that
shown in Fig. 4.1 that could be used for cobwebbing.

5.4.2 Refer to the Mathematica application in Fig. 4.1 of Chap. 4. For this exercise,
you would modify the notebook, changing the function to the one expressed in
Eq. 5.3. Solve the three phenotypes case based on the values of the selection
factors used in Fig. 5.5, leading to the coexistence of all three phenotypes.
Your notebook would create a plot like that shown in Fig. 5.5 that could be
used for cobwebbing.

5.4.3 Using any of the software tools we have introduced, develop a solution for the
two phenotypes case that will allow you to create a plot of p,, versus n.
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Chapter 6 )
Chaotic Systems Shex

We have described the discrete logistic population model in Chap. 3. Here we will
offer a slightly modified version that, under some conditions, will show very unusual
behavior. You will see that chaotic systems can have an extreme sensitivity to initial
values and to the values of the parameters.

6.1 Robert May’s Model

This model was developed by Robert May, a theoretical ecologist, who provided an
introduction with papers in the mid-1970s (May 1975, 1976). The model equation is
deceptively simple:

N[+1:aNt(1_N[) (6.1)

For this model, the population size (V) is expressed as a fraction of the population
carrying capacity, and so it is typically a quantity between O and 1. The value of
a must be between 0 and 4 but we leave it to Exercise 6.5.1 to show this is true.

6.2 Solving the Model

May’s model could even be solved with just a calculator, but let’s consider a
computer application. A simple Python program (Fig. 6.1) could be used or a closely
related MATLAB program could also be used (Fig. 6.2).

For small values of the parameter a, the solution looks similar to that described
earlier for the discrete logistic model. But see what happens as the value of a is
increased (Fig. 6.3). As you can see, for intermediate values of a, the solution
oscillates between two values. For larger values of a, the solution oscillates in a
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# May's Chaotic system population model
import numpy as np
import matplotlib.pyplot as plt

a=1.5

steps = 15

N = np.zeros (steps+l)

t = np.zeros(steps+l)

N[O] = 0.05

t[0] = 0.0

for 1 in range (0, steps):
N[i+l] = a*N[i]*(1 - N[i])
t[i+l] = t[i] + 1.0

print (N)

# plot results

plt.plot (t,N)

plt.xlabel ('Time")
plt.ylabel ('N")

plt.savefig ("MaysChaos.svg")

plt.show ()
Fora=1.5
0.30
0.25
N

0.20 4

0.15 4

0.10 4

0.05
T T T T T T T T
0 2 4 6 8 10 12 14

Time

Fig. 6.1 A Python program for solving May’s model and the graph of the solution as drawn by the
program

manner that appears to show no particular pattern. Even more useful is to compare
solutions using this larger value of @ and with small changes in the initial starting
value for the population size (Fig. 6.4). Although these small changes in the initial
population size are not visible as separate curves initially, eventually the populations
oscillate with completely different patterns. This extreme sensitivity to initial con-
ditions is the classic hallmark of a chaotic system. Indeed this sensitivity is behind
our inability to accurately predict weather beyond a time frame of several days, as
noted by Edward Lorenz (see Lorenz 1963, 1995). As an aside, the term “butterfly
effect” is often used in describing this high sensitivity to initial conditions and may
have its source in a short story by the science fiction writer Ray Bradbury entitled A
Sound of Thunder as published in 1952.
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% Script to run the solution

steps = 20;

N = zeros(1,steps);

t = zeros(1,steps);

N(1) = ©.05;

for 1 = 1:1:steps
N(i+1) = maysfunc(N(i));
t(i+1l) = t(i) + 1;

end

plot(t,N);

title('Mays model solution for a = 1.5')

xlabel('Time")

ylabel('N")

function [ nnew ] = maysfunc( n )
a = 1.5;

nnew = a*n*(1-n);

end

May's model solution fora = 1.5
0.35 T T T

03r b

025 F b

0.15 b

0.05

0 5 10 15 20
Time

Fig. 6.2 MATLAB approach for solving May’s population model

6.3 Model Fixed Points

We discussed the idea of fixed points in relation to discrete equations earlier. May’s
model equation has a fixed point that may be determined analytically as follows:

N=aN(1—N)
1=a(1-N)
1/Ja=1-N

N=1-1/a
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Fora=3.1 Fora=3.8
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Fig. 6.3 Solutions of May’s model for larger values of the parameter a, with Ny = 0.05
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Fig. 6.4 Five solutions of May’s model with each having a 1% change in the initial population size
and using a = 3.8

We can examine the stability of this fixed point (note that N = 0 is also a fixed
point) with Mathematica (Fig. 6.5). Note that in the first graph, even though the
initial population size was close to the fixed point, the solution eventually deviates
and begins oscillating again. Why is this? For a = 3.8, using the above expression,
the fixed point is

N=1-1/38
N=1-10/38
N =38/38 — 10/38 =28/38
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May’s Chaos and fixed points

Clear[a];

Find fixed points for May’s model

Solve[axnx (1=n) =n =8, n]

[{n—»@}, {n_. 'l*a}}

a

Consider the model behavior for a= 3.8

a=38/18;

rtable = RecurrenceTable[{n[t +1] = axn[t]« (1-n[t]), n[0] == ©.736842}, n, {t, 0, 58}];

ListLinePlot[rtable, PlotRange - {{@, 50}, {@, 1}}]

10

08k

06}

04F

02F

00

0 10 20 30

The solution becomes chaotic

What if the initial N is given as the fraction 28/38 instead
of a close approximation as in the above case?

40 50

33

rtable = RecurrenceTable[{n[t +1] =a+«n[t]+ (1-n[t]), n[0] = 28/38}, n, {t, @, 30}]

3-14 14 14 14 14

14 14 14
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Fig. 6.5 Mathematica notebook application of May’s population model

14 14 14 14 14 1.

}
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This quantity is a rational number, but when expressed in a floating point
variable, cannot be perfectly represented with a limited number of digits. A little
work with a calculator that can consider 32 digits gives a value of
0.7368421052631578947368. .. which repeats after the 18th digit to the right of
the decimal. A typical Python (or C-language) program with variables of type float
or double can only carry about 16 digits. Therefore, it should not be surprising that
the solution in the first part of the Mathematica notebook (Fig. 6.5) begins to
oscillate again because we cannot perfectly represent this value of the fixed point.
However, notice the second part of the notebook where the initial value is left as a
fraction 28/38. Mathematica has the interesting feature whereby if you enter a value
as a fraction, the value is kept in that form and not converted to the floating point
form, thus maintaining its accuracy for subsequent calculations. As you can see in
the notebook for this case, the solution stays at this initial value. With reference to
our earlier discussion of fixed points and stability, we would say that in this case
28/38 is a fixed point but an unstable fixed point because even a very slight deviation
from that value of N leads the solution away from the fixed point. Hopefully, you see
this as another outcome of the high sensitivity of this chaotic system to initial
conditions.

6.4 Summary

Robert May’s model shows very different behaviors depending on the value of the
parameter a. Small values a such as between 1 and 2 appear similar to the discrete
logistic described in Chap. 3. However for values such as 3.1, the population
oscillates between two values. Larger values of a such as 3.8 lead to chaotic
oscillations in N. For these large values of a, the solution is also very sensitive to
small changes in the initial value for N. These behaviors are classic characteristics of
chaotic systems.

6.5 Exercises

6.5.1 For Eq. 6.1 to make sense, the values of N should be between 0 and 1. First,
find the value of N between 0 and 1 such that N(1 — N) has a maximum value.
You will find that maximum value to be % corresponding to N = . Since
aN(1 — N) must be always less than 1, show that @ must be less than 4.

6.5.2 Solve May’s model for the value of a = 4.1, showing what eventually happens
to N.

6.5.3 Notice the example in Fig. 6.4 showing the model’s sensitivity to the initial
value. Create a similar approach showing solutions for small changes in the
value of a, starting at 3.8.
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Chapter 7 ®)
Continuous Time Models Chack or

The exponential growth of a culture of bacteria in a limited growth medium would
not continue indefinitely without bounds due to the limitation of food in the medium,
which practically speaking would lead to an eventual leveling of the number of
bacteria. In this chapter, we will derive a Continuous Time Model for the phenom-
enon of logistic growth. Next, we will develop an approach, called phase-line
analysis, to find steady states and assess their stability in continuous time models.
Lastly, we will extend this logistic model to consider the inclusion of a harvesting
component (such as in fisheries) to the equation, with three possible forms.

7.1 The Continuous Logistic Equation

Recall that in Chap. 2 we introduced examples of discrete exponential growth
situations through experiments on growth of bacteria in a food medium at various
discrete time intervals (say, in hours). Such an experiment would lead over time to a
discrete set of points in an S-shaped curve called a discrete logistic curve. In Chap. 3,
we introduced the notion of a discrete time model of the form

N,
N1 :Nt+rNt( - Et)

as a more realistic model than the purely discrete exponential growth model.

In this chapter, we will consider a continuous version of the discrete logistic
equation called the Continuous Logistic Equation, given by a differential equation of
the form
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W_rn(1-9). (7.1)

Here, N (population size or density, the dependent variable) is a function of 7 (time,
the independent variable), with » > 0 and K > 0 being given parameters.

7.2 Equilibrium States and Their Stability

An autonomous differential equation is one of the form (see e.g. Boyce and DiPrima
1992)

% =f()

such that the independent variable ¢ does not appear explicitly on the right-hand side
of the equation. In this case, it is very easy to determine its equilibrium or steady-
states and their stability from the graph of f{ y) representing dy/dt versus y, a so-called
phase-line analysis.

For example, let us apply phase-line analysis to the continuous logistic Eq. 7.1 as
shown in Fig. 7.1.

The points of intersection of the curve with the N-axis (in this case, N = 0 and
N = 1) represent the steady states of the continuous logistic equation. For regions of
the graph where the curve f{ilV) representing dN/dt is positive, we draw arrows on the
horizontal axis pointing to the right because N would be increasing. On the other
hand, for regions where the curve filV) is negative, we draw arrows pointing to the

0.25

0.2

0.05

-0.05

Fig. 7.1 Phase-line analysis applied to the continuous logistic equation. For this example,
r=K=1
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Time

Fig. 7.2 The solution of the continuous logistic equation for r = 1.1, K = 100

left because N would be decreasing. Observing the region near the steady-states, if
the arrows appear to converge on the steady-state, we conclude that the given steady-
state is stable. If the arrows point away at least on one side of the steady-state, we
conclude that the given steady-state is unstable.

Perhaps one would be interested in visualizing the trajectory of the population
over time in a graph of N(f) versus ¢. For simplicity, we illustrate that in the case of
the logistic equation

N1

a=M(-%)

with r = 1.1 and K = 100 and starting with a small Ny much less than K. The solution
would describe a logistic curve (Fig. 7.2).

One can solve this ODE for the above case using a Python program with the ODE
solver “solve_ivp” as shown here:

# Logistic growth model

import numpy as np

import matplotlib.pyplot as plt

from scipy.integrate import solve ivp

#n - population size

def LogisticModel (t, n) :
r=1.1
k=100
return r*n* (1-n/k)
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no=2.0
t0=0
tf =10

steps = 10*tf

sol = solve ivp(LogisticModel, [tO, tf], [n0], method='RK45',
dense_output=True)

t =np.linspace(t0,tf, steps+1)

n=sol.sol(t)

# Display data
#print (np.transpose([t,n[0]]1))

# plot results
plt.rcParams|['font.family']='Times New Roman'
plt.plot(t, n[0])

plt.xlabel('Time"')

plt.ylabel ('Population size')
plt.savefig('Logistic.svg')

# Save results to afile
f =open('Logistic.txt', "w")
for i in range (0, steps+1, 1) :
print ("$5.1f, $6.2f" % (t[i], n([0] [i]), file=f)
f.close()

The solution could also be obtained using the ODE solvers in MATLAB (see
Appendix 4) or Mathematica (see Appendix 3)

7.3 Continuous Logistic Equation with Harvesting

In this section, we will introduce some models for the study of fisheries and hunting
(see e.g. Giordano et al. 2003). This will be done by adding a negative term to our
continuous logistic Eq. 7.1 representing the amount of harvesting (fishing or hunt-
ing) taken from the current population N(f) per unit of time.

(1) The simplest situation corresponds to constant harvesting. Clearly, this is not
very realistic, since it does not take into account the number of organisms in the
population at each time, N(f), and can lead to extinction when the existing
population N(f) gets smaller than H.

‘%:m(l-%’)—fl (7.2)
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(ii)

(iii)

A better situation corresponds to harvesting at a fixed fraction of the current
population N(7) at each time (e.g., 0.5N, or 0.3N, etc.), which is governed by the
equation

dN N
E—rN(l— E) —HN (7.3)

This way, because the harvesting is set to be a fixed proportion of the
population N(¢) at each time ¢, one can show that we avoid having extinction
of any given population.

An even better situation happens when harvesting is a function that can vary
with N(¢) but is limited depending on fishing ability
dN ( N ) aN

—:rN 1—— _b—"——N

T 74 (7.4)

where a and b are positive constants. If N is small relative to b, then harvesting
will be proportional to N as in case (ii). However, if N is much greater than b,
then harvesting approaches the constant a. This situation would apply if the
harvesters have only a limited capability to harvest, a not unreasonable
situation.

Now let’s determine the stability of the new two steady states in harvesting case
(i) (Fig. 7.3). The steady-state N = 0.113 is unstable because the population N is
going away of this steady-state on its left as well as on its right. The steady-state
N = 0.887 is stable because the population N is going toward this steady-state both
from the left and from the right. Notice that this form of harvesting decreases the

Fig. 7.3 Phase-line analysis applied to the continuous logistic equation with constant harvesting as
in case (i) with r = K = 1 and H = 0.1. For comparison, the upper curve shows the case without
harvesting as depicted in Fig. 7.1. The lower curve shows the case with harvesting and here the
arrows apply to this case
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stable steady-state from the value without harvesting while also increasing the value
of the unstable steady-state. We leave the analysis of the other two cases to the
exercises below.

7.4 Summary

In this chapter, we have presented a continuous time logistic model for population
growth that includes a carrying capacity term to prevent the population from
growing without limit. The phase-line analysis method was developed for finding
steady-states of an ordinary differential equation model and to assess their stability.
Three model additions were presented to consider various approaches to modeling
harvesting. In the first case with harvesting expressed as a constant rate independent
of population size, the stable steady-state population size is reduced in comparison to
the steady-state population without harvesting.

7.5 Exercises

7.5.1 Consider the harvesting case (i) with H constant, independent of N (Fig. 7.3).
Calculate the maximum harvesting rate to insure the population does not go
extinct.

7.5.2 Case (ii) is described by Eq. 7.3, where the harvesting rate is proportional to
the population size N. Create a plot corresponding to this case (similar to
Fig. 7.3) for a value of H = 0.5

7.5.3 Case (iii) is described by Eq. 7.4. If N is small, then harvesting will be
proportional to N as in case (ii). However, if N is much greater than b, then
harvesting approaches the constant a. Create a plot corresponding to this case
(similar to Fig. 7.3) for a = 10 and b = 50.
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Chapter 8 )
Organism-Organism Interaction Models oy

8.1 Interaction Models Introduction

The models introduced in Chap. 7 considered a single group of organisms. Here, we
will expand this into groups of two organisms that interact in some manner. The
nature of the interactions can take on several forms (see Beltrami 1987; Murray
2002). Organisms can compete for resources, they can involve one group that is a
predator and the other a prey, or they may have an interaction that is beneficial to
both groups, termed a mutualism. First, let’s consider how we will model the process
of interactions. How many interactions occur in a given time?

We will take an approximation of the number of interactions from the Law of
Mass Action, which is often used to describe chemical reactions. The rate of such a
reaction can be taken as proportional to the product of the concentrations of the two
chemicals. We will apply this concept to interactions between groups of organisms,
where the rate of interaction will be proportional to the product of the number of
organisms in each group. In a general form, a model of the two groups would be

dN

d—tl :(XNI +ﬁN1N2

AN (8.1)
d—t2 =7YN, + 0NN,

where N, and N, are the sizes of population 1 and population 2 (N; and N, > 0). The
constants a, B, v, and d can be positive or negative in this general case. It is useful to
think of the biological meanings of the sign on those constants. If a is positive, its
term will cause population N; to grow, whereas if o is negative, its term will cause
population N; to decline. In fact if we ignore the interaction term with the product N,
N,, the model equation describes exponential growth or decay. The previous state-
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ment for « would also apply to y in the equation for N,. Now if B is positive in the
interaction term for population N, we would be describing an interaction that tends
to increase N;. Likewise, if d is positive in the interaction term for population N,, we
would be describing an interaction that tends to increase N,. On the other hand, if § is
negative in the interaction term for population N;, we would be describing an
interaction that tends to decrease N;. Likewise, if O is negative in the interaction
term for population NV,, we would be describing an interaction that tends to decrease
N>.

In the remainder of this chapter, we will consider models will three combinations
of the sign issues described above for the constants a, §, v, and 8. Instead of using
these Greek letters for the constants, we will use a, b, ¢, and d as positive constants so
that we can explicitly show the sign of each term in the equation. This will become
apparent in each case below.

8.2 Competition

For a competition model, the interaction terms for both organism groups will be
negative to reflect the reduction in population size that may occur due to the
interaction. Note that if we also used a negative term for the population growth
(anegative a and v in Eq. 8.1), the combination of negative growth and competitive
interaction would lead to both populations declining to zero: so we will not consider
that example here. Our competition model would be expressed as

% :ClN1 —bN1N2
d}\; (8.2)
d—l2 :CNz—leNz

with a, b, ¢, d > 0.

We can analyze this model through phase-plane analysis, a process extending the
phase-line analysis for a single ODE used in Chap. 7. Instead of identifying steady-
state points as in phase-line analysis, we find lines upon which each population does
not change: these are called nullclines or isoclines.

For population Ny, the two nullclines are found as follows:

@ :0:aN1 —leNz

dt
_ _aNi_a
N1—0 and Nz—le—b

(8.3)
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Fig. 8.1 Phase-plane diagram for the competition model

For population N,, the two nullclines are found as follows:

% :OZCszleNz
Ny ¢ (8.4)
N2:O and N]:d—lvzzg

The above nullclines are then plotted in a graph (Fig. 8.1). We then identify points in
each of the four regions in the graph and determine the directions each population
would move if the solution were located at each of the four points. For example in
the right half region (Fig. 8.1), the vertical arrows should reflect how N, would
change in this region, Here, N, is greater than c¢/d and from the nullclines equations
(Eq. 8.4), dN,/dt would be negative, hence the arrows point downward. From this
approach, the vertical arrows on the left half would point upward because N is less
than c/d. Horizontal arrows indicate how N; would change in each region. For the
upper half, N, is greater than a/b and so from the nullclines equations (Eq. 8.3),
dN,/dt would be negative, hence the arrows point to the left. Arrows in the lower half
would thus point to the right.

For this competition model, it appears that either population N; or N, might win.
However, the winning population grows without limit and this would be a weakness
of this model that we will address in Chap. 10.
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8.3 Predator-Prey

For a predator-prey model, the interaction terms for the predator (P) will be positive
to indicate that the predation event positively affects the predator group and the
interaction term for the prey group () will be negative to reflect the reduction in
population size that would occur due to predation. Our predator-prey model would
be expressed as

dP

i aP + bPN

N (8.5)
~— =cN —dPN

dt

with a, b, ¢, d > 0. Note that if we used a positive term for the predator population
growth, the combination of positive growth and positive interaction would lead to
the predator population growing without limit. So we will not consider that example
here. Similarly, if we used a negative term for the prey population growth, the
combination of negative growth and negative interaction would lead to the prey
population declining to zero. Such a scenario can be solved, but we just consider it
not interesting from a biological perspective.
For the predator population, the two nullclines are found as follows:

dpP
aP  a
P=0 and N—b—P—E

For the prey population, the two nullclines are found as follows:

d—N:Och—dPN
dt

cN ¢
N=0 and PidNia

The above nullclines are then plotted in a graph (Fig. 8.2). We then identify points in
each of the four regions in the figure and determine the directions each population
would move if located at each of the four points.

For this predator-prey model, the two populations oscillate in a steady manner.
The predation interaction results in a decline in the prey population when the
predators are at large numbers (the right half of Fig. 8.2). On the other hand, a
small predator population allows the prey population to grow (left half of Fig. 8.2). If
the prey population is small, the predator population declines for lack of food
(bottom half of Fig. 8.2). Of course if the prey population is large, the predator
population will grow because of a good food supply (upper half of Fig. 8.2). Note
that a weakness of this model is apparent if the predator population is zero, the prey
population (see Eq. 8.5, if P = 0, the prey equation becomes a simple exponential
growth model) grows without limit.
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Fig. 8.2 Phase-plane diagram for the predator-prey model

8.4 Mutualism

For a mutualism model, the interaction terms for both organism groups will be
positive to reflect the increase in population size that may occur due to the interac-
tion. Our mutualism model would be expressed as

dN,

d— = —aN1 +bN1N2
d]\; (8.6)
d—t2 = —cNy 4+ dN|N,

with a, b, ¢, d > 0. Note that if we also used a positive term for the population growth
(a positive o and v in Eq. 8.1), the combination of positive growth and positive
interaction would lead to both populations to grow without limit, so we will not
consider that example here.

For the N, population, the two nullclines are found as follows:

ANy _ o _ —aN, + bN N,

dt
_ _aNi _a
N1—0 and Ng—le _b
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Fig. 8.3 Phase-plane diagram for the mutualism model

For the N, population, the two nullclines are found as follows:

dN2 N

—dt =0= CN2 dN1N2
¢Ni _ ¢

N>,=0 and led—N] =7

The above nullclines are then plotted in a graph (Fig. 8.3). We then identify points in
each of the four regions in the figure and determine the directions each population
would move if located at each of the four points.For this model with the two
populations having a mutualistic interaction, large numbers of both populations
lead to growth of both populations (upper right of Fig. 8.3). Whereas small numbers
of both populations lead to a decline in both populations because of the reduced
mutual interaction (lower left of Fig. 8.3). The steady-state with both populations at
zero is a stable steady-state in this case. A weakness of this model can be seen if both
populations are at large numbers, because they will both grow without limit.

8.5 Summary

Here, we developed a system of two ODEs that could be used as a general form for
interactions between two populations of organisms. Phase-plane analysis was intro-
duced as a method for finding steady-states and assessing their stability. Three forms
of interaction models were considered. Competition between the two populations led
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to one species winning while the other goes to zero, but the winning species grew
without limit. A predator-prey interaction was considered next, leading to the two
populations oscillating. Lastly, mutualism, an interaction that benefits both
populations, was treated in which case both populations approach zero or grow
without limit. These weaknesses will be addressed in Chap. 10.

8.6 Exercises

8.6.1 Consider the case of competition (Eq. 8.2). Use one of the ODE solvers (see
Appendices for the tutorials) found in either Mathematica, MATLAB, or
Python to develop a numerical solution of this ODE system giving N; and
N, as functions of time. Use these values for the parameters and initial
conditions: a = 0.5, b = 0.01, ¢ = 0.5, d = 0.025, N(0) = 25, N»(0) = 60.
Run the solution for around 10 time steps. Draw a plot of the two population
sizes versus time. Your results should make sense based on the earlier phase-
plane diagram (Fig. 8.1).

8.6.2 Consider the case of predator-prey interaction (Eq. 8.5). Use one of the ODE
solvers (see Appendices for the tutorials) found in either Mathematica,
MATLAB, or Python to develop a numerical solution of this ODE system
giving N, and N, as functions of time. Use these values for the parameters and
initial conditions: a = 0.5, b = 0.01, ¢ = 0.5, d = 0.03, Py, = 5, and Ny = 10.
Run the solution for around 50 time steps. Draw a plot of the two population
sizes versus time and also a plot of predator versus prey population sizes
showing the orbits that would develop. Your results should make sense based
on the earlier phase-plane diagram (Fig. 8.2).

8.6.3 Consider the case of mutualism (Eq. 8.6). Use one of the ODE solvers (see
Appendices for the tutorials) found in either Mathematica, MATLAB, or
Python to develop a numerical solution of this ODE system giving N; and
N, as functions of time. Use these values for the parameters: a = 0.5, b = 0.01,
¢ = 0.5, and d = 0.025. Run your program for two cases: (i) N(0) = 25,
N>(0) = 20 and (ii) N1(0) = 25, N,(0) = 75. Run the solutions for around
20 time steps. Draw a plot for each case of the population sizes versus time.
Your results should make sense based on the earlier phase-plane diagram
(Fig. 8.3).
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We can also develop models for the interaction between hosts and parasitoid insects.
We will see these are related to our previous predator-prey models in Chap. 8,
although the host-parasitoid model presented here is for a discrete system.

9.1 Beddington Model

Our equation system was developed by Beddington et al. (1975):

H[+] :H[er(l 71‘1,/[() 7uPt

P,+]:0cH,(1—efaP’) 6-1)
where H is the host population and P is the parasitoid population. The parameter K is
the carrying capacity for the host insects, r is the prey reproductive rate, and the
positive parameters a and a are controlling the interaction. Note that Beddington
et al. (1975) described this as an improvement over the earlier Nicholson-Bailey
model (Nicholson and Bailey 1935), where the host population could grow as
density-independent without the presence of the parasitoid (Hassell and May
1973). In the Beddington model (Eq. 9.1), the host population includes an exponen-
tial term for its growth relative to a carrying capacity (K).
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9.2 Some Solutions of the Beddington Model

Case 1

We can examine some possible behaviors of this model by choosing values for the
parameters of the model (Eq. 9.1), in this case a = 0.005, a = 3.0, r = 1.1, K =
200, and solve using a MATLAB program shown in Sect. 9.3 of this chapter.

In this scenario (Fig. 9.1), the two populations oscillate for some time but eventually
the oscillations dampen and they appear to be stabilizing at constant values of both
populations.

For an alternative view of the solution, we can plot a graph with the parasitoid
population against the host population (Fig. 9.2). The population oscillations now
appear as orbits, which gradually collapse because of their dampening as shown in
the previous plot (Fig. 9.1).

Case 2
Here, we increased the value of K by 25% (from 200 to 250) and kept the other
parameter values the same.

In this scenario (Fig. 9.3), the host and parasitoid populations oscillate steadily,
although there is a curious slight variation in the maximum values of the parasitoid
population with each oscillation.
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Fig. 9.1 Beddington model solution for Case 1
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Fig. 9.4 Alternative plot of the solution for Case 2. The initial values for the two populations are
indicated with “Start” and the population sizes move in a counter-clockwise fashion for the
advancing time values

We can also plot the solution with the parasitoid population against the host
population (Fig. 9.4). The population oscillations still arrear as orbits, but they do not
collapse reflecting the continued steady oscillations as shown in the previous plot
(Fig. 9.3).

9.3 MATLAB Solution for the Host-Parasitoid Model

One method for solving these host-parasitoid models uses MATLAB. The function
for the host and parasitoid populations could be set up as:

function [h] = Host(h, p)
$HOST population

global alpha a r K;

h = h*exp(r* (1-h/K)-a*p);
end

function [p] = Parasitoid(h, p)
$PARASITOID function
global alpha a r K;
p = alpha * h * (1- exp(-a*p));
end
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A script was used to solve the model and draw the plot:

% Host-parasitoid model solution
clear H P T

global alpha a r K;

a = 0.005;

alpha = 3;

r=1.1;

K = 200;

H(1) = 50; % Set the pop initial sizes

P(l) = 10;

T(1) = 0;

for 1 = 1:300 % Calculate pop sizes for 300 time steps
H(i+1l) = Host(H(i), P(i));
P(i+1) = Parasitoid(H(i), P(i));
T(i+l) = T(i) + 1;

end

plot(T, H, T, P) % Draw graph with both populations versus time

For the above MATLAB objects, the model parameters were declared as “global”
so they could be shared simply among all three components.

9.4 Python Solution for the Host-Parasitoid Model

Python could also be used to solve this model using the program shown here. The
plot generated will show the two populations with time on the horizontal axis.

# Host-parasitoid model

import numpy as np
import matplotlib.pyplot as plt
import math

# Set parameter values
a=0.005

alpha=3.0

r=1.1

K=200

steps = 300

h =np.zeros (steps+1)
p =np.zeros (steps+1)
t =np.zeros (steps+1)

#Set initial values

h[0] =50
pl0] =10
t[0] =0

for i in range (0, steps) :
h[i+1] =h[i] *math.exp(r* (1-h[i] /K) -a*p[i])
pli+1l] =alpha *h[i] * (1-math.exp(-a*p[i]))
t[i+1] =t[i] +1
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# plot results

plt.plot (t,h, label = "Host")
plt.plot(t,p, label = "Parasitoid")
plt.xlabel ('Time"')

plt.ylabel ('h(t), p(t)")
plt.legend()

plt.show()

9.5 Summary

The basic Beddington model was expressed for describing host-parasitoid interac-
tions. As we saw for our predator-prey models in Chap. 8, the host and parasitoid
insect populations can show oscillatory behavior. In some cases the oscillations
dampen and the populations approach stable values. However, for other cases, the
two populations may continue to oscillate without dampening.

9.6 Exercises

9.6.1 The Beddington host-parasitoid model, like many models for interacting
populations, can display a range of behaviors depending on the values of
model parameters. Case 1 shown above displays populations that initially
oscillate, but gradually show an approach to stable values. Try out one of
the solution approaches (MATLAB or Python) to show how doubling the
value of a for the host-parasitoid interaction results in undamped oscillations
of the populations.

9.6.2 The Beddington host-parasitoid model, like many models for interacting
populations, can display a range of behaviors depending on the values of
model parameters. Case 1 shown above displays populations that initially
oscillate, but gradually show an approach to stable values. Try out one of
the solution approaches (MATLAB or Python) to show how decreasing the
value of K for the host population has a strong effect on the time it takes for the
populations to stabilize.
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Chapter 10 )
Competition Models with Logistic Term Shex

Recall from the competition model in Chap. 8 that the form used for the model lead
to one population declining to zero while the other grew without limit, a decidedly
unrealistic result from a biological perspective. In a model of exponential growth of a
single population, we could approach the similar problem of unlimited growth by
adding a term for competition within the population (intraspecific), that term includ-

ing a carrying capacity. Here, we will try a similar approach (see Beltrami 1987;
Murray 2002).

10.1 Addition of Logistic Term to Competition Models

The extended model is expressed as:

dN] :alNl (K] —N1 —(XN2>

dt K,
(10.1)
@—a N K> — Ny — BN,
dr 22 K>
Note that we can rewrite the above equations as:
dﬂ :ClNl —bN1N1 _CN1N2
dt
o (10.2)
d—lz :dN2 — gNgNz — hN1N2
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These forms are equivalent if the coefficients in Eq. 10.2 are related to the coeffi-
cients in Eq. 10.1 as follows:

. _a :al(x
a=a "*K1 =K
_ as _azﬁ

d=a K, h= K>

However, with the form in Eq. 10.2, we can perhaps readily see that the first
interaction terms (with N;N; and N,N,) represent an intraspecific competition
(within each population) and the second interaction terms (with N|N,) represent an
interspecific competition (between the two populations).

Next, we calculate the nullclines for this system.

For N;:
dny K| —N;—oaN,
7—0—&]1\/1( K] )
N1:0 and K]*le(XNQZO
For N»:

dN> o K> — N> — BN,
dr 0(12N2< K2

N2:0 and KZ—NZ—BN1:O

Note that for this system, the nullclines are not necessarily vertical or horizontal lines
given by constants as was the case in Chap. 8. We will plot these lines by finding the
intercepts on the two axes. For example for the nullclines of Ny, the intercept on the
horizontal axis (when N, = 0) is K; and the intercept on the vertical axis (when
N; = 0) is Kj/a. Similarly for the nullclines of N,, the intercept on the vertical axis
(when N; = 0) is K, and the intercept on the horizontal axis (when N, = 0) is K»/p.

We will consider three cases based on the relative values of the constants in our
system of equations.

Case (i): For this scenario, we choose values for the model parameters such that
Kl/oc > K2 and Kz/ﬁ < K] (Flg 101)

In this case, N wins as indicated by the circle at K, which is a stable steady-state.

Case (ii): For this scenario, we choose values for the model parameters such that
K1/0L > K2 and Kl < Kz/ﬁ
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~~ N, line

K]/uz

N,

K,

Fig. 10.1 Phase-plane diagram for Case (i). Arrows show trajectories from the starting points
indicated by the asterisk symbols

In this case, both species coexist at intermediate sizes. The circle (Fig. 10.2)
indicates the stable steady-state.

Case (iii): For this scenario, we choose values for the model parameters such that
K> > Kj/o and K»/p < K, (Fig. 10.3).

In this case, one species wins but which species is the winner is not clear from the
start. The steady-state where the two nullclines cross in the middle of the figure is an
unstable steady-state. The two steady-states with either N; winning at K| or N,
winning at K, are stable.

10.2 Predator-Prey-Prey Three Species Model

We have been considering models of two interacting groups of populations. There is
no reason that we have to be limited to only two groups. For one extension of these
approaches for interacting populations, let’s consider a model of two prey organisms
that interact competitively and one predator population that can prey upon the other
two. Hopefully, you will see an interesting and meaningful biological result from
this model.
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Fig. 10.2 Phase-plane diagram for Case (ii). Arrows show trajectories from the starting points
indicated by the asterisk symbols
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Fig. 10.3 Phase-plane diagram for Case (iii). Arrows show trajectories from the starting points
indicated by the asterisk symbols
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dN ki —N; —oN
d—tlzlel (%) —piNIP

dN ks — N — BN
T;ZQZNZ(%ZﬁO pNsP

% =vP\N1P + ¥,p,NoP — mP

The first two equations are for the prey organisms (N, and N,) that compete with
each other, including intra- and inter-specific competition terms. The third organism
is the predator (P) that can consume either prey organism. The prey equations also
include a term for predation, with p; and p, as predation rate coefficients. The
predator equation includes terms for predation of the two prey species. The terms
have constants (y) that reflect the idea that typically more than one predation event
(1/y) is needed to generate one more predator. Lastly, predators die at a rate
described by the last term in the predator equation.

This model is more complicated than our previous interaction models. It becomes
difficult to use the visual approaches exemplified by phase-lines and phase-planes.
We would need a 3D phase volume approach. Instead, we will focus on using our
computer software to develop actual solutions to the system.

10.3 Predator-Prey-Prey Model Solutions

Let’s try using MATLAB to solve this ODE system (see the tutorial in Appendix 4).
The equation system is contained in the MATLAB function:

function yprime = predpreyprey(t,y)

al = 0.2;
K1 = 150;
alpha = 0.5;
pl = 0.008;
a2 = 0.4;
K2 = 100;
beta = 0.75;
p2 = 0.002;

gammal = 0.2;

gamma2 = 0.2;

m = 0.1;

yprime = [al*y(1)* (Kl-y(l)-alpha*y(2))/Kl - pl*y(1)*y(3);...
a2*y(2)* (K2-y (2) -beta*y (1)) /K2 - p2*y(2)*y(3);...
gammal*pl*y (1) *y(3) + gammaZ*p2*y(2)*y(3) - m*y(3)];

end

The model would be solved using these MATLAB statements:
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>> tspan = [0 100] ;

>>yzero = [10; 10; 10];

>> [t y] = ode45 (@predpreyprey, tspan, yzero)
>>plot (t,y)

Note that the above statement for the initial values (yzero = .. .) allows the model
to run with all three organisms. To leave out the predators, use this statement instead:

>>yzero = [10; 10; 0] ;

Model solutions without the predator

When the predator is not present in the model, the two competing prey organisms
show a behavior similar to case (i) earlier in this chapter, where one group of
organisms wins and the other goes to zero (Figs. 10.1 and 10.4).

Model solutions with the predator present

In this scenario the predator is present at nonzero initial numbers (Fig. 10.5). The
three populations oscillate at first before stabilizing. Ultimately all three organisms
coexist. This result suggests that under some circumstances, the presence of a
predator in an ecosystem might allow competing organisms to coexist, even if
they are at smaller numbers than the single winning species for the case where a
predator was not present (Fig. 10.4).

Population size

Time

Fig. 10.4 Predator-prey-prey model solutions for the case with zero predators
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Fig. 10.5 Predator-prey-prey model solutions for the case with predators present

10.4 Summary

In this chapter, we modified the competition model from Chap. 8 so as to prevent the
populations from increasing without bound. Depending on the position of the
nullclines in the first quadrant (positive N; and N,) we can get three possible kinds
of solutions. In one case, either N| or N, wins but growing to its carrying capacity
instead of without bound. In a second case, a stable steady-state exists where the
nullclines cross and indicate a point where the two populations will coexist. In the
last case, the nullclines cross at an unstable steady-state where they intersect, leading
to one population winning (growing to its carrying capacity) with the other popula-
tion going to zero. However, in this last case, either population can win depending on
their initial values, unlike the first case where the winning population does not
depend on the starting point. The predator-prey-prey model was used to show that
the presence of a predator could allow the two prey populations to co-exist, whereas
without the predator, one of the two competing prey organisms disappears.
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10.5

10.5.1

10.5.2

10.5.3

10  Competition Models with Logistic Term
Exercises

Consider a simplified form of the competition model shown in Eq. 10.1:

dN,
dr
dN,
dr

1
=N, —N?— MLE

2

=N, — % - %N N2

Find the equations for the nullclines and draw a phase-plane graph of N,
and N, including those nullclines. On the phase-plane graph, for each region
determined by the nullclines, show the trajectory and final outcome for the
two populations.
Using either MATLAB, Python, or Mathematica, solve the competition
model illustrated in case (i) above, drawing a plot of N; and N, versus
time. Possible parameter values for this scenario of case (i) would be:
a;=02,a,=04,a=0.9, =09, K; =150, and K, = 100. The initial
values are not critical, but you could try N{(0) = 150 and N,(0) = 150. Note
how these parameter values satisfy the case (i) scenario.
Using either MATLAB, Python, or Mathematica, solve the competition
model illustrated in case (i) above, drawing a plot of N; and N, versus
time. Possible parameter values for this scenario of case (ii) would be:
a;=02,a,=04, a=0.9,p=0.9, K; =100, and K, = 100. The initial
values are not critical, but you could try N{(0) = 150 and N,(0) = 150. Note
how these parameter values satisfy the case (ii) scenario.
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Chapter 11 ®)
Infectious Disease Models Gecie

With the current pandemic associated with the SARS-Cov-2 virus, the interest
among the public and particularly among students toward models of infectious
diseases is likely to be quite enhanced. Therefore, this chapter will provide an
introduction to some of the mathematical modeling approaches to the spread and
dynamics of infectious diseases among the human population.

11.1 Basic Compartment Modeling Approaches

Compartment models divide a system into groups and each group has an ordinary
differential equation describing how the members of that group change with time.
For example, a simple model of susceptible (S), infected (/), and recovered (R)
organisms could be represented with the diagram in Fig. 11.1.

11.2 SI Model

The flow of individuals from the susceptible group into the infected (and therefore
infectious) group can be treated as a simple product of S and I (analogous to a law of
mass action). If we assume that the recovery process is proportional in a simple
linear manner to the number of infected members, an ODE system for S and I could
be written as:

as
£ — _pst
Ztl (11.1)
— =PBSI — oI
dt p
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Fig. 11.1 Compartment
diagram for a simple SIR
model S ]
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Fig. 11.2 Solution of the simple epidemic model showing S and / for parameter values f = 0.001
and 8 = 0.03 and initial values Sy = 40, I, = 10

We can consider one possible solution for the above model given parameter values
f =0.001 and & = 0.03 and initial values Sy = 40. I, = 10. In this case, the number
of infected people grows slightly before declining to zero and the number of
susceptible people that are never infected gradually declines to about
11 (Fig. 11.2). Although we do not show this, decreasing O significantly still
shows the number of infected declining to zero, but in that case essentially all
susceptible in the population become infected.

A common question with infectious disease models of this form would be: Does
an epidemic develop? In other words, given some initial numbers of susceptible and
infected individuals, does the infected quantity grow with time?
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dl
@ 27
I >0 77

Yes, an epidemic does develop if the initial number of susceptible individuals is
greater than the quantity shown here:

So>% (and I > 0)

For the model solution shown above, if S, is greater than 0.03/0.001 = 30, the
number of infected individuals would grow and this is indeed the case (Fig. 11.2),
where S, was 40.

A common expression from mathematical models of epidemics is the basic
reproduction number, Ry, which provides an estimate of the number of infections
created by one individual in the infectious population (7). For the SIR model shown
above, we can calculate:

_ BSo
Ro=

Given the parameters used in the above example, Ry = 1.33. If this quantity is greater
than 1, the model would predict that an epidemic would occur (I would grow
initially) and this is indeed what can be seen (Fig. 11.2).

11.3 SI Model with Growth in S

What if the population (S) can grow, separate from the disease process?

S _ o5 pst

dt 11.2)
dl (11,
o =SI =51

This model includes an ability for growth in S that is just proportional to S — a simple
approach but admittedly one that would lead to exponential growth in § if no
infectious individuals are present (I, = 0). One possible solution for this model
(Fig. 11.3) given parameter values o = 0.06, § = 0.001, and & = 0.03 and initial
values Sy = 40, I, = 10 shows a very different behavior than the previous case with
no growth of the susceptible population. Here the population appears to go through
epidemic cycles, whereby the susceptible population grows leading to a rapid
increase in infections and a rapid decline in the susceptible uninfected individuals,
followed by a collapse of the epidemic and another growth cycle.
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Fig. 11.3 Solution of the simple epidemic model that allows for growth in the susceptible
population showing S and / for parameter values o = 0.06, f = 0.001, and & = 0.03 and initial

values So = 40, I, = 10

Mathematical models of epidemics with vaccination have also been useful for
estimating the fraction of individuals among the population that must be immunized
to confer a herd immunity. An earlier expression (see Hethcote 2000; Elbasha and
Gumel 2021) for this fraction leading to a herd immunity (v*) assuming the vaccine

is perfectly effective and confers a lasting immunity gives:
v=1-— R_O

where Ry is the basic reproduction number or the number of infections created by
each infected individual. For example, if Ry is 2.0, we would expect that herd
immunity would arise from 50% immunization. An R, value for measles of
18 would lead to an estimated critical vaccination proportion of 94% (Scherer and
McLean 2002). This approach has been expanded to allow for an imperfect response
to the vaccine and for an immunity that wanes over time (Elbasha and Gumel 2021):

where o is the rate at which the immunity wanes with time, 1/p is the average life
expectancy of the population, and ¢ is the efficacy of the vaccination. The ratio:
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()

1l

gives the fraction of a lifetime for which protection exists by the vaccine. Consid-
ering a case where Ry is 2.0, a vaccine has an efficacy of 80% (¢ = 0.8), and the
vaccine protection lasts 80% of a lifetime, gives a required threshold for herd
immunity of 78% as compared to 50% for the case of a perfect vaccine with lifetime
immunity.

More advanced models add additional compartments such as groups in the
population that are exposed (E) to the infectious agent but not yet infectious, or
capable of spreading the disease. Such models are often termed SEIR models.
Additional examples include vaccinated groups or break all the groups into
age-structured sections. For further exploration of epidemic disease modeling, the
reader may wish to examine references such as Hethcote (2000) or Li (2018).

11.4 Applications Using Mathematica

Here is an example of a Mathematica notebook that could be used to generate the
solution shown for the SIR model above with no growth in the susceptible popula-
tion. Readers not familiar with Mathematica might wish to consider the tutorial in
Appendix 3.

Infection model without pop. growth

Model equations

ds _ _
at =P
di _

& =BsI-61

Set parameters
B=0.001;
5=0.03;

Solve numerically
sol = NDSolve[ {s'[t] = - @s[t] ~i[t], i'[t] =@s[t] ~i[t] - 6i[t], s[0] =40, i[0] =10},
{s, i}, {t, @, 28000}, AccuracyGoal -+ 30, PrecisionGoal » 12, MaxSteps - 180000];

Plot solution
Plot[Evaluate[{s[t], i[t]} /. sol], {t, @, 308}, AxesOrigin- {@, @}, PlotRange - Full]
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11.5 Applications Using MATLAB

The following list of a MATLAB script and function could be used to generate the
solution shown for the SIR model with growth of the susceptible population. Readers
not familiar with MATLAB might wish to consider the tutorial in Appendix 4.

function SI
%Script for SI model

tspan = [0 20000];

yzero = [40 10];

options = odeset('RelTol',le-13, 'AbsTol',1le-13);
[t y] = oded45(@SIode, tspan, yzero, options);
plot(t,y)

xlabel ("Time")
ylabel ('Population size')
(

legend('s', 'I")
end
function [ yprime ] = SIode( t, y )

$SI Infection model

Detailed explanation goes here
alpha = 0.0003;
beta = 0.001;

d = 0.03;

yprime = [alpha*y(l) - beta*y(l)*y(2);
beta*y (1) *y(2) - d*y(2)];

end

11.6 Summary

Here, we have introduced examples of infectious disease models. Simple models
with susceptible and infected populations, not including the growth in the suscepti-
ble population, can show an increase in the number of infected individuals
depending on the size of the susceptible population. Eventually the number of
infected declines towards zero, but depending on the recovery rate (d), some of the
susceptible are never infected or all may be infected before the disease runs its course
(I declines to zero). If a growth term is included in the susceptible population,
solutions can show a repeating cycle of disease outbreaks.

11.7 Exercises

11.7.1 Consider the simple SI model shown in Eq. 11.1, with these values for the
parameters and initial conditions: p = 0.001, & = 0.03, Sy = 40, and [, = 10.
Determine if an epidemic will ensue under these conditions.

11.7.2 Consider the simple SI model shown in Eq. 11.1, with these values for the
parameters and initial conditions: f = 0.001, & = 0.03, Sy = 50, and I, = 10.
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Solve this model using either Mathematica, MATLAB, or Python and draw a
phase-plane plot of S versus I. The time span can run from 0 to 500.

11.7.3 Consider the SI model with growth in S as expressed in Eq. 11.2. Solve this
model using either Mathematica, MATLAB, or Python and draw a phase-
plane plot of S versus /. Use these values for the parameters and initial
conditions: o = 0.06, p = 0.001, & = 0.03, Sy = 40, and I, = 10. The time
span can run from 0 to 500. Describe the behavior of the system as time
progresses.
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12.1 Introduction to Energy Budgets

Organisms exist in a state of continuous exchange of energy with their environ-
ments. These energy forms include electromagnetic radiation (e.g., sunlight
absorbed or radiation emitted at infrared wavelengths), exchange with the air or
other fluids in convection, heat conducted between the organism and a physical
surface, and energy associated with the evaporation of water through its latent heat of
vaporization and formed by metabolism in the organism. In this chapter, we will
consider these energy exchanges as ultimately determining the temperature of a leaf.
Mathematical models of the processes are often described as energy budgets in the
sense of an accounting of energy inputs and outputs. The various components of
these budgets are summarized in Table 12.1. Note that each term will have units of
watts per meter squared: a watt is a joule per second and so these are energy flow
rates per unit of a surface.

An early pioneer in the consideration of organism energy budgets was David M
Gates, who combined his work in the text Biophysical Ecology (Gates 1980)
published while he was a professor at the University of Michigan. One of us (PJS)
was fortunate enough to have been a student when this text was being written and
took the course by Dr. Gates, who regaled the class with fascinating stories based on
his observations of organisms and how they appeared in various settings with
extreme high air temperatures and sunlight intensities.

For our consideration of energy budgets in this chapter, we will make the
simplification of steady-state. In other words, the flows are constant and we do not
consider heat storage by our leaf. In addition, we will not consider metabolism as a
source of energy in our leaf flows and also not consider any heat flow from
conduction to other objects. For an energy budget of an animal, particularly a
large mammal, metabolism would be an important component (see the text by
Gates for examples).
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Table 12.1 Components of  Eperoy component Variable in budget Units

the energy budget model Radiation input 0. Wm 2
Radiation output Qour W m™2
Convection C W m 2
Metabolism M Wm?
Evaporation E W m?

12.2 Radiation

The exchange of energy through electromagnetic radiation involves certain compo-
nents that we can readily observe visually, such as absorbed sunlight which may also
include light from the sky or reflected from the ground or other objects. But there are
also important radiation components at longer wavelengths that we cannot see
directly: in the infrared. All objects, including the surfaces of our leaf, give off
radiation, whose quantity can be estimated from the Stefan-Boltzmann law:

4
Q()ut = SGTleaf

where Q,,; is the energy emitted with units of W m 2, ¢ is the emissivity (with
values between 0 and 1), ¢ is the Stefan-Boltzmann constant (approximately
567 E-8 Wm 2K ), and Theqr is the leaf surface temperature with kelvin units.
The reader may be familiar with the term “black-body,” which refers to an object that
is a perfect absorber and emitter at all wavelengths: for this object the emissivity (¢)
would be 1.0.

12.3 Convection

The exchange of energy with a fluid flowing around an object (the air in this case for
our leaf) is termed convection (C). This exchange can occur either as an outflow from
the leaf if it is warmer than the air or as an inflow if the air is warmer than the leaf.

where T, is the air temperature, &, is the convection coefficient that depends on
wind speed (V), object size (D), and a shape factor k; = 9.14 for a flat surface.

12.4 Transpiration

The evaporation of water from the leaf (E) can cool the leaf because the process
requires energy.
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where wy,; is the saturated vapor concentration in the air inside the leaf stomata or in
the surrounding air. For this expression, evaporation is proportional to the vapor
concentration difference between the inside of the leaf and the surrounding air,
whose vapor concentration is the saturated concentration multiplied by the air
humidity (4). Evaporation also depends on the resistance to diffusion due to the
leaf stomata (., and that of the boundary layer above the leaf surface (v,;.). The
boundary layer resistance term has wind speed in the denominator and so V cannot
be exactly zero. Therefore to simulate a lack of wind, we will choose some small
value such as 0.01 m s~'. The formulae above give transpiration in mass units
(kg m s ') and this must be converted to energy units by multiplying E by the heat
of vaporization for water (A), where A is 2.427 E6 J/kg. (This value does change
slightly with temperature of the water but we will not consider this aspect.)

12.5 Total Energy Budget

Combining all the budget components together, with positive inputs and negative
outputs gives:

Q0 — €6 (Tiag +273.15)* = he (Tieas — Tair) — 2 (%) =0

Note that it is possible for the convection term to be either an input or an output.
The evaporation (transpiration) term can in principle also be an energy input if water
is condensing as dew or frost on the leaf. An example of this last possibility will be
discussed later. The budget terms must add to zero as indicated above because this is
a steady-state energy budget and so the flows must balance such that leaf temperature
is constant for the conditions supplied (heat storage not considered).

Notice that T}, is present in the budget in various forms such that we cannot
readily rearrange the equation analytically to solve for T}, We will therefore need
to use a numerical method, often termed root finding methods because we are
looking for roots of the function on the left-hand side of the budget equation.
There are many such methods, but we will focus on the one called Newton’s Method
(Table 12.2).
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Table 12.2 Possible values for the various model parameters. If the model is solved for these test
case values, the resulting leaf temperature should be 27.59 °C

Variable Test case value Range for experimenting Units
0. 800 200-900 W m™2
h 0.5 0-1

1% 1.0 0.01-5 ms™!
D 0.05 0.001-0.25 m

€ 0.95 0-1

Toir 25.0 5-40 °C

Fleaf 100 100-2000 sm™!

12.6 Solving the Budget: Newton’s Method for Root

Finding

The Python module scipy has a function for root finding using Newton’s method that

is applied in the program shown here:

from scipy import optimize
import math

# Enter parameter values
Qa = 800.0

h=20.5

vV =1.0

D = 0.05

rleaf = 100.0

emiss = 0.95

Tair = 25.0

lamb = 2.427e6

x1l = 25.0

def wsat(T):

def f(Tleaf):
global Qout, C, E

C = hc * ( Tleaf - Tair )

return Qa - Qout - C - E

root = optimize.newton(f, x1)

psat = 0.61078 * math.exp( 17.269 * T / ( T + 237.3
return 2.17 * psat / ( 273.15 + T )

Qout = emiss * 5.67e-8 * (Tleaf+273.15)**4
hc = 9.14 * math.sqrt (V) / math.sqgrt (D)

rair = 200 * math.sgrt (D) / math.sqgrt (V)
E = lamb * ( wsat( Tleaf ) - h * wsat( Tair ) ) / ( rleaf + rair

print ('Leaf temperature = %.4f ' & (root) )
print ('Energy terms')

print (' Radiation absorbed = %.1f ' % (Qa))
print (' Radiation out = %.1f ' % (Qout))
print (' Convection = %$.1f ' % (C))

print (' Evaporation = %.1f ' % (E))

)
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If you run the above Python program, the results should be displayed as:

Leaf temperature = 27.5939
Energy terms
Radiation absorbed = 800.0
Radiation out = 440.7
Convection = 106.0
Evaporation = 253.3

A related programming form for MATLAB is shown here:

71

function [ Sum ] = Budget( Tleaf )

global Qa h V D rleaf emiss Tair lamb x1 Qout C E
Qout = emiss * 5.67e-8 * (Tleaf+273.15)"4;

hc = 9.14 * sqrt (V) / sqgrt(D);

C = hc * (Tleaf - Tair);

rair = 200 * sqgrt(D) / sgrt(V);

Psat = 0.61078 * exp( 17.269 * T / (T + 237.3));
wsat = 2.17 * Psat / (273.15 + T);
end

global Qa h V D rleaf emiss Tair lamb x1 Qout C E
Qa = 800;

root = fzero( @Budget, x1 );

fprintf ('Leaf temperature = %$.4f\n', root)
fprintf (' Radiation absorbed = %.1f\n', Qa)
fprintf (' Radiation out = %.1f\n', Qout)
fprintf (' Convection = %.1f\n', C)

fprintf (' Evaporation = $.1f\n', E)

E = lamb * (Wsat(Tleaf) - h * Wsat(Tair)) / (rleaf + rair);
Sum = Qa - Qout - C - E;

end

function [ wsat ] = Wsat( T )

The first component shown above is the function containing the leaf energy
budget (saved in the file Budget.m). The second component above is the function
calculating the saturation water vapor concentration (saved in a file Wsat.m). The
third component is a script (saved as the file LeafBudget.m) that enters some values
for the budget variables, calls the root finding function (fzero), and then displays
results from the budget solution. Note that several variables are treated as global
variables to simplify the printing of the results. If run with MATLAB, this program

generates the following results:

>> LeafBudget
Leaf temperature = 27.5939
Radiation absorbed = 800.0
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Radiation out = 440.7
Convection = 106.0
Evaporation = 253.3

Here is a Mathematica notebook that could be used to solve the leaf energy

budget:

Leaf energy budget

Enter variable values

Qa = 800.0;
h = 0.5;
v = 1.0;
d = 0.05;

rleaf = 100.0;
emiss = 0.95;

Tair = 25.0;
lamb = 2.427%x"6;
x1 = 25.0;

hc = 9.14 % Sqrt[v] / Sqrt[d];
rair = 200 * Sqrt[d] / Sqrt[v];

Create the functions for saturation water vapor conc.

psat[T_] := ©.61078  Exp[ 17.269 + T / (T + 237.3)]
wsat[7_] := 2.17 % psat[T] / (273.15 + T)

Create the functions for the energy budget

Qout[t_ ] := emiss x 5.67x"-8 * (t+ 273.15) ~4;

conv[T_] := hc * (T - Tair);

evap[T_] := lamb * (wsat[T] - h % wsat[Tair]) / (rleaf + rair);
sum[T_] := Qa - Qout[T] - conv[T] - evap[T];

Solve the energy budget

root = FindRoot [sum[TLeaf], {TLeaf, x1}]

{TLeaf - 27.5939}

Show the results

Print["Leaf temperature = ", NumberForm[TLeaf /. root, {6, 4}1]
Print[" Radiation absorbed = ", NumberForm[Qa, {6, 1}1]
Print[" Radiation output = ", NumberForm[Qout[TLeaf /. root], {6, 1}11]
Print[" Convection = ", NumberForm[conv[TLeaf /. root], {6, 1}11]
Print[" Evaporation = ", NumberForm[evap[TLeaf /. root], {6, 1}11]
Leaf temperature = 27.5939

Radiation absorbed = 800.0

Radiation output = 440.7

Convection = 106.0

Evaporation = 253.3
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12.7 Experimenting with the Leaf Energy Budget

Once we have a way to solve the leaf energy budget, we can do many experiments to
see how various environmental conditions affect the leaf temperature. Here, we will
consider two examples, but one could design many others. For these two cases, we
will consider a bright sunny day with O, of 800 W m 2 and a nighttime with Q, of
250 W m 2. Notice that the chosen nighttime value is not zero; the leaf surface still
absorbs radiation at infrared wavelengths from the sky and other surroundings, like
the ground. As described in detail by Gates (1980) these nighttime values can vary
considerably depending on air temperature, but we have chosen one representative
possible value.

It is worth remembering that all of our energy budget terms express energy flows
per unit surface area. Students in our classes have sometimes thought that a large leaf
will get hotter because it is absorbing more total energy due to its large size. But the
other energy terms would also increase in total energy. As we will see below, if a
large leaf gets hotter in bright sunlight, it is because of the effects of leaf size on the
other budget terms like convection.

1. Effect of wind speed on leaf temperature

Solving the leaf energy budget for a range of wind speeds from 0.05 to 5.0 m/s
(and assuming the test case values for other variables (Table 12.2)) gives the leaf
temperatures as shown in Fig. 12.1.

The wind speed appears in the leaf energy budget in two terms: the convection
coefficient and the leaf boundary layer resistance. As wind speed increases, the
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Fig. 12.1 Leaf temperature for a range of wind speeds under high radiation (bright daylight) and
low radiation (nighttime) conditions



80 12 Organism Environment Interactions

convection coefficient increases, leading to a closer coupling of the leaf to the air
temperature. Whether this would warm or cool the leaf depends on the radiation
absorbed. For the bright sunny day in this case, the leaf is above air temperature and
so convection cools the leaf. For the nighttime case, the leaf is cooler than air
temperature and so convection warms the leaf. The leaf in these scenarios is also
being cooled by evaporation and increasing wind speed increases evaporation by
reducing the boundary layer resistance (r,;,). The experiment can be extended further
by changing the leaf stomatal resistance (7., to reduce evaporative cooling. This
could be relevant here because many plants will close their stomata at night when
there is no sunlight to drive photosynthesis, thus conserving water.

Another interesting result from these solutions becomes apparent if you pay
attention to the energy budget components along with the leaf temperature. For the
low radiation condition at nighttime and at the lowest wind speed, the evaporation
term becomes negative. This means that dew would be forming on the leaf surface,
whereby the process is leading to a slight heat input to the leaf.

2. Effect of leaf size on leaf temperature

Solving the leaf energy budget for a range of leaf size from 0.001 to 0.5 m
(assuming a wind speed of 0.5 m/s and the test case values for the other variables)
gives the leaf temperatures as shown in Fig. 12.2.

Leaf size appears in the energy budget in two terms: the convection coefficient
and the leaf boundary layer resistance. Larger leaves will have a reduced convection
coefficient and reduced convection, thus leading to a leaf that can deviate consider-
ably from air temperature. On the other hand, larger leaves will have an increased
boundary layer resistance leading to reduced evaporative cooling. Notice that very
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Fig. 12.2 Leaf temperature for a range of leaf sizes under high radiation (bright daylight) and low
radiation (nighttime) conditions
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small leaves of a few millimeters size are very close to air temperature regardless of
the radiation absorbed value.

As shown in this scenario for the nighttime light condition, a larger leaf can cool
(by radiative output) well below air temperature. One can also play with the air
humidity, which broadly speaking tends to increase at night when air temperature
declines. If we increase the air humidity from 0.5 to 0.8 (80% relative humidity), a
leaf of 0.25 m size shows a negative evaporation term, again signifying that dew is
forming on the leaf.

The effects of wind speed and leaf size shown here apply to our leaf’s energy
budget, but similar effects can be apparent in other circumstances. If we want to
measure air temperature accurately, especially with low wind speed, we need a
thermometer with a small size that will have a high convection coefficient and be
closely coupled to the air. If you have a chance to be out at night with a dark clear sky
and nearly zero wind, you might notice that your face looking up at the sky feels
colder than when the wind picks up. Or that on a night with a high humidity and low
wind speed, dew (or frost) tends to form on large surfaces (like the roof of a car)
because it has cooled radiatively below the air temperature unlike a small surface that
is more closely coupled to the air temperature.

12.8 Summary

An energy budget model was developed to describe the interactions between a leaf
and its environment, giving rates of energy and water vapor exchange and deter-
mining the temperature of the leaf. Examples were given of an implementation of the
budget with Mathematica, MATLAB, and Python programs. A couple of interesting
scenarios were examined: the effects of wind speed and the effects of leaf size. Wind
speed appears in the budget within the convection term, having a nonlinear relation-
ship between the convection coefficient and wind speed. The effect of wind speed is
complicated because it depends on the radiation absorbed (a bright sunny day as
opposed to at night). Higher wind speed increases convection and this can either
decrease the leaf temperature if it is above air temperature, illustrated by a bright
sunny day, or increase the leaf temperature if it is below air temperature, illustrated
by the nighttime case. Leaf size also has a complicated effect on leaf temperature. On
a bright sunny day where the leaf temperature was above air temperature, increasing
leaf size leads to an increase in leaf temperature. At nighttime where the leaf
temperature was below air temperature, increasing leaf size leads to a further
decrease in leaf temperature. This last observation can help explain why large
surfaces are more likely to show dew or frost condensation at night, particularly if
the humidity is high.
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12.9

12.9.1

12.9.2

12.9.3

12 Organism Environment Interactions
Exercises

The leaf energy budget includes the relative humidity of the air. Check the
budget equations to see where the relative humidity appears. Show how this
parameter affects the temperature of the leaf. Choose a bright sunny day, like
the test case values in Table 12.2 and pick several values of humidity from
dry, such as 5% or 10% (entered as 0.05 or 0.10) up to a humid day with 80%
or 90%.

Included in the leaf energy budget is a parameter called 7, that describes the
resistance for water diffusing out of the leaf stomata. Increasing resistance
implies that the stomata are closing. Run a program for the energy budget to
see how different stomatal resistances affect the leaf temperature, choosing a
range of values for ;. Use the test case (Table 12.2) for most budget values.
Why would your results depend on the relative humidity of the air?

Our example of using the leaf energy budget to study the effects of leaf size
considered the case of nighttime with low radiation absorbed. Under some
conditions, we could see a negative evaporation term, indicating condensa-
tion was occurring. Solve the energy budget for those conditions and show
how the occurrence of dew formation depends on the humidity of the air,
tending to occur when the humidity is high.
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Appendix 1: Brief Review of Differential
Equations in Calculus

Here we shall start by giving a brief review of what is minimally needed to recall the
basic material about first-order ordinary differential equations (ODEs) used in this
text. In fact, we will not bother going over all the rules of differentiation which you
may have forgotten by now (except, perhaps for (x")’ = nx"~"), since you can review
that by yourself or ask the instructor. However, we find important that we recall the
following basic concepts:

Definitions
1. A nice (say, “continuous”) function y = f (f) defined on an “interval” [ has a
derivative at ¢ if

. t+ Af) —f(t .
lim flet An = f(1) exists.
At—0 At
Such limit is usually denoted by % or f(1)!
2. A first-order ODE is an equation involving an unknown function y of one variable
x and its derivative y’ with respect to (w.r.t.) x. In explicit form, it is written

Y =f(xy), (x,y)inD (A.1.1)

Remarks: (i) D denotes a “nice” domain of points (x,y) in the plane of the given
function f of two variables.
(ii) A solution for the ODE is a function

"Recall that both the independent variable t and the dependent variable y could be denoted by other
letters. In fact, it is common to use ¢ as independent variable to indicate time, in which case, the
derivative % represents the instantaneous rate of change of y w.r.t. ¢
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Appendix 1: Brief Review of Differential Equations in Calculus

y=h(x)

defined on an interval I of real numbers having its graph contained in the domain
D and satisfying

K (x)=f(x,h(x)) forallxinl (A.1.2)

(iii) When an initial condition is prescribed in (ii), i.e., a point (x, yo) in D in
the graph of f (see A.1.1) is given, then a unique solution of A.l1.1 can be
obtained. Then we say that an Initial Value Problem (IVP) is given and we
write it as:

¥ (x) =f(x,y(x)) forall xin I (A.1.3)
Y(x0) =¥o (A.1.4)

A solution for the IVP is a function defined on an interval I of real numbers
having its graph contained in the domain D and with (x(,y,) belonging to D that
satisfies the conditions

W (x) =f(x,h(x)) forall xinI
h(x0) = yo

Example 1 IVP 1)

Lo

This differential equation is of type called separable, because we can separate the
variables on each side of the equation, as follows.

1

ydy 3 dx

/ldy: /3 dx
Yy

ln|y|:3x—|— Co

Therefore, taking the exponential of each side, we get
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e Infy| _ e3x+C0

bl = e

In other words, we get
y=Ce> where C = +
For the IVP on this example,
Ce™™ =y,
Using xo = 0 and yo = 2 (our initial condition) gives
X

y=2

Example 2 The Initial Value Problem (IVP 2)

dx_ 2
E—x
x(2)=1/2

Using separation of variables, we find a general solution”:

Using the given initial condition x(2) = '4, we find C = 4, so that the solution of our
IVP 2% is

o]
T4t

2You should try to find this general solution!

3Note here that had the initial condition been given as x(#) = 0 for a given f,, the unique solution of
this new IVP would necessarily be the zero solution x = 0, regardless of the value of #,.
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Geometric Interpretation of the IVP

Let us think about what (A.1.1) and (A.1.4) mean for having a unique solution
(although we won’t prove this math result but it can be shown under suitable
hypotheses!). First, the initial condition (A.1.4) says that the solution has its graph
passing through the point (xo, o). Then, (A.1.1) says that the “slope” of the graph at
that point must be the “value” f (xo, yo). Now, imagine that we could draw tiny little
arrows at all the possible points (xy, yo) with their directions given by their
corresponding slopes f (xo, yo). And then connect those points to get curves that
follow their directions [i.e., connect the dots!]. The two resulting pictures would be
what is called in mathematics a “vector field” and its corresponding “solution
curves”. As a matter of fact, any CAS software would allow us to see those vector
fields and their solution curves! Let us do that for the two Examples considered
above. With the help of (say) Mathematica, we obtain Figs. A.1.1 and A.1.2 below
corresponding to Examples 1 and 2, respectively.

e

.

i

-10 —

XO 5 10

Fig. A.1.1 Vector field and its solution curves for Example 1. The highlighted (red) curve shows
the unique solution for the given IVP
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JMJ

Fig. A.1.2 Vector field and its solution curves for Example 2. The highlighted (red) curve shows
the unique solution for the given IVP

We should understand that the solution curves displayed in Figs. A.1.1 and A.1.2
indicate their flows in relation to each other and single out the particular solution
curve passing through a given point (xy, yo) in the display. In this manner, those
graphical displays can be used to suggest possible steady-states (namely where y =0
in both Figs. A.1.1 and A.1.2). Moreover, notice that the flows in each of the figures
are well suited to show that the steady-statey = 0 is unstable in both cases: nearby
flows diverge away from y = 0 on both sides in Fig. A.1.1, and on one of the sides of
y = 01in Fig. A.1.2, hence the instability of y = 0 in each situation.

A related plot of the vector field and solution curves could be drawn for the
Logistic Equation described in Chap. 7:

dN )
T=N-N

This plot is shown in Fig. A.1.3.
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Fig. A.1.3 Vector field and its solution curves for the Logistic Equation discussed in Chap. 7. Note
here that the steady-stateN = 0 is unstable whereas N = 1.0 is stable



Appendix 2: Numerical Methods
for Solving ODEs

One computational approach for solving an ODE (or system of ODEs) relies on a
finite difference method as applied to the model equation. For a simple example,
consider an exponential growth model for a population of organisms:

dN
— =rN

dt
where N is the population size, ¢ is time, and r is the growth rate parameter. We then
translate this equation into a finite difference approximation:

AN
TlNrN

AN = rNAt

Starting with an initial condition of N at = 0, we can advance our solution for time
steps with the spacing of Ar:

Nip1=N,+ AN

A graphical explanation for this method (often referred to as Euler’s Method) shows
how errors arise at each step because the slope of the function at the starting time is
assumed to apply for the entire interval (Fig. A.2.1). Note that reducing the size of the
time step (A7) would result in less error, a point that we will come back to a bit later.

A more accurate method with less error could be termed the Runge-Kutta second-
order method and uses two estimates of the change in N after one time step.
Graphically we can see (Fig. A.2.2) that the resulting error is less than that obtained
with only the initial slope estimate as used in Euler’s Method. In this case, two
estimates are made for the change in N, termed AN’ and AN”. The final estimate for
AN then relies on the average of the two estimates.
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AN=r Ny At
10.0

5.0

Error

!
AN

|

Ny

0.0

0.0 At 1.0 . 2.0
Time

Fig. A.2.1 Graphical representation of the simple Euler’s Method for solving an ODE based on a
finite difference representation. The curving red line shows the actual exponential function that
could be developed as an analytical solution to this exponential growth model

15.0
AN'=r N, At
AN" = r N At
10.0 |-
_ AN'+ AN"
N AN ="
N
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N AN’ l
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0.0
0.0 At 1.0 . 2.0
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Fig. A.2.2 Graphical representation of the Runge-Kutta second-order method. The estimate for the
change in N is based on an average of two estimates (AN’ and AN")



Appendix 2: Numerical Methods for Solving ODEs 91

st
1" order

o order

Error
)

th
4" order

|
0.01 0.1 1
Time step size

Fig. A.2.3 Errors in the numerical solution of the logistic population ODE (discussed in Chap. 7)
for three different finite difference methods, based on the solution at time 3.0 for values of r = 0.5
and K = 100

A still better approach called the Runge-Kutta fourth-order method uses four
estimates of the change in N over the time step. The reason that we call this method
“better” is illustrated in Fig. A.2.3. Note that for all three methods, the error can be
made smaller by reducing the time step size (which of course increases the compu-
tational effort). But the higher order methods result in smaller errors, but even more
importantly, errors that decrease faster with reduction in time step size.
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A few introductory notes. This tutorial assumes that you have Mathematica (www.
wolfram.com) running on your computer. The program is generally used by creating
what are called “notebooks,” which are documents containing statements to
Mathematica and the results generated by the program. Your Mathematica installa-
tion should have access to a full set of documentation including more complete
tutorials, particularly in the documentation called “Fast introduction.” Here, we
provide a simpler introduction that our students have typically completed within
an hour or so. You can also find many tutorial introductions on YouTube.

Start your Mathematica program and open a new notebook. One aspect of
Mathematica that students often forget at the beginning is that if you have entered
a statement that you want Mathematica to execute, you have to press the shift-enter
keys or the enter key on your keyboard numeric pad. Try typing “2+2” and then
shift-enter. You should see:

In[l]= 2+2
Out[1]= 4

The labels “In” and “Out” are provided by Mathematica along with a number
indicating that particular input and output statement (these numbers are left off in the
statements below). Mathematica has many functions like a calculator:

In[.]= 2"8
Out[.]= 256

In[.]= Sin[Pi/2]
Out[.]= 1

Note that the functions built into Mathematica start with an upper-case letter and
that Pi is available as a special quantity. The arguments to the built-in functions are
provided in square brackets. This is often a stage where students learn that syntax is
important! You cannot generally substitute parentheses where square brackets are
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called for and if you enter “sin” without the first letter in upper-case, Mathematica
will not know you are calling for the sine function.
The usual standard arithmetic operations are available like in a calculator:

In[.]= 6.8+5.1
Out[.]= 119

Priorities exist for operations, such that multiplication and division have higher
priority than addition and subtraction:

In[.]J= 2+3*4
Out[.]= 14
Note that 3 is multiplied by 4 before adding 2. Exponentiation has a still higher
priority:
In[.]= 14273
Out[.]= 9
Note that 2 is cubed before adding 1. You can also use parentheses to control
priority:
In[.]= (4+2)/3
Out[.]= 2

This forces the addition before dividing by 3.
One interesting aspect of Mathematica is that it tries to maintain perfect accuracy
in operations such as:

In[.]= 2/3*%2
Out[.]= 4/3

Whereas a calculator might display 1.3333. ..
You can always request a numerical answer using the “N” function:

In[.]J= N[2/3*2]
Out[.]= 1.33333

Or with some specified number of digits:

In[.]= N[Pi,20]
Out[.]= 3.1415926535897932385

Try this above input statement by replacing the 20 with a larger value like 200.
Working with Variables

Generally, letters or words starting with lower-case are used for the names of
variables, such as in:

In[.]= x=2.5
Out[.][= 2.5
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Now you can use that variable x in other calculations

In[.]= 3*x
Out[.]= 7.5

Working with Your Own Functions

Mathematica comes with many built-in functions such as Sqrt[x], Exp[x], Log[x],
Sin[x], Arcsin[x], and many others. But you can also define your own. Let’s create a
function called “f” (you can give them any name).

In[.]J= flx_]=2%*x"2

Note that this is a function of x and that the brackets are required, the underscore

after the first x is required, as is the “="". Now we can use this function.
In[.]= f1[2]
Out[.]= 8

Finding Derivatives

We can use the “D” function to find derivatives.

In[.]= DJ[2 x"2, X]
Out[.]= 4x

Note that we entered the function without the explicit multiply symbol *. This
works because Mathematica assumes that two variables are to be multiplied if there
is a space character in between them. If you want x multiplied by y, you can enter
x*y or x y (with the space). If you just enter xy, Mathematica will assume that you
are referring to a variable named xy.

If you are following this tutorial completely, you might get an error message from
that last call to the D function. This is because we earlier set the variable x to the
value 2.5. Mathematica will keep that value forever (until you restart the program).
In this case, we want Mathematica to treat X as an unknown variable. So we need to
clear the value of x:

In[.]= Clear[x]

Now, the D function should give the result shown above. You can also save the
result of the derivative function as another function.

As an aside, three of the errors noted above are very common when students first
start using this program:

» Typing xy when we mean x y or x*y

» Inconsistent use of upper-case and lower-case (sin instead of Sin, for example)

* Expecting a symbol to be treated as an unknown variable when it has a value set
(need to clear the variable).

We can also create a function using the result of a function like D for calculating a
derivative
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In[.]= deriv[x_] = D[3 * x"3, x]
Out[.][= 9x°

Note that this definition uses just = instead of =. Now you can evaluate that
derivative for some value:

In[.]= deriv[1.2]
Out[.][= 12.96

Solving Equations

The Solve function can be used to solve many expressions.
In[.]= Solve[a x"2 +bx +c =0, x]
Out[.]: {{X—> bﬁz/:24ac}’{x_} b+\/2224ac}}
In[.]= Solvely =4 x + 2, x]
Outl.]J= {{x—>L(-2+y)}}

In[.]= Solvely = 3 Exp[x], x, Reals]
Out[.]= {{x— ConditionalExpression [Log[3],y > 0] } }

The “ConditionalExpression” indicates that the solution is valid for positive
values of y. If you leave out the words “Reals,” you will get a more complicated
solution that is also valid for complex numbers.

Symbolic Math Quick Tour

In[.]= Expand[(x +2) * 2]
Out[.]= 4+4 x + x*

In[.]= Factor[x"2 + X — 6]
Out[.]= (-2 +x)3B +x)

In[.]= Collectfax +4y + c X, x]
Out[.]J= (a+c)x+4y

In[.]= Together[x 2/ (x"2—1) + x/ (x*2 - 1)]
Out[.]=

X
—1+x

In[.]= Cancel[ x*2-1)/x—-1)]
Out[.]= 1+x

Sharing of Variables

By default, if you have several notebooks open at once, Mathematica notebooks
share symbols such as variables across all of those notebooks. You can change this
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behavior such that symbols will be local to individual notebooks and not shared in
common.

To make notebook symbols local on an individual notebook basis, see the
Mathematica program menu item “Evaluation -> Notebook’s Default Context. ..”
and then choose “Unique to this notebook.”

If you want every notebook that you work with to have local symbols, you need to
set an option called “CellContext.” Follow the menu item route
“Edit. . .Preferences. . .Advanced” and press “Open Option Inspector.”. Look under
“Cell Options. . .Evaluation Options” and find the option called “CellContext” and
set it to “Notebook.” You can also find this option by searching for “context” in the
Lookup field near the top of the Options dialog.

Creating Plots in Mathematica

A simple plot of a function can be created. This statement should generate the plot
as shown.

Plot[x"2, {x, —2,2}]

4

1 2

You can also create a plot from a series of data points. Here, we will use the
Table function to enter the points and then draw a plot with lines connecting the
points.

mytable = Table[{x, x*2}, {x, —2, 2, 0.5}]

This will create a table with pairs of points having x values from —2 to 2 with a
spacing of 0.5 along with the corresponding squares of those x values. Entering this
statement will draw the plot:

ListLinePlot[ mytable ]
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-2 -1 1 2
Next, we can create a plot of a quadratic function, specifying the x-axis range

from —2 to 2 and labels for the axes.

a=1;b=0,c=0;
Plot[a x*2 + b x + ¢, {X, —2, 2}, AxesLabel -> {x, f[x]}]

w

N

Using Mathematica to Solve the Discrete Logistic Population Model

The following set of statements comes from a notebook that was used to work
with the discrete logistic population model that was described in Chap. 3.
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Discrete logistic using functions

Create model function and derivative

fix_1:=rx (1-x)
fprime[x_]=DI[f[x], X]
r (1-x)-r x

Set parameters
r=1.5;

Find fixed points
Solvel[f[x] - x==0, x]
{{x->0.},{x->0.333333}}

Assess stability of fixed points

fprime[0]
1.5

This fixed point is unstable.

fprime[1/3]
0.5

This fixed point is stable.

Plot results for cobwebbing
Plot[{f[x], x}, {x, 0, 0.6}]
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Using Mathematica with OrdinaryDifferential Equations

Mathematica has functions for working with ordinary differential equations. The
notebook shown below considers the logistic population model and how you can
solve this equation with an analytical approach (using the DSolve function in
Mathematica) giving an explicit solution expressing the population size as a function
of time. Also shown is a numerical approach (using the NDSolve function in
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Mathematica) that gives a numerical solution that is used here for a plot of the
population size with time.

The logistic ODE:dn/dt=rn (1-n/k)

ni - Clear[k, r, NO]

Enter the ODE (as dn/dt=f(n))

m = f[n_] :=rn(1-n/k)

Find the steady-states

Solve[f[n]==0, n]

{{n—>0}, {n—>k}}

Directly solve ODE using analytical solution
i - Clear[r, k, noe];

ni - soll = DSolve[{n'[t]==Ff[n[t]], n[@]==ne}, n[t], t]

«++ Solve: Inverse functions are being used by Solve, so some solutions may not be found; use Reduce for complete solution
information
outf, =
i"tkne

Tt s—————
k-ne+j"tne
o - glt_] :=Evaluate[n[t] /. sol1]
ni = N = 2j
ni = r=0.25;

ni - k =50;3
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mi - Plot[g[t], {t, @, 40}, AxesLabel ={t, n}]

n

50
40
30

20

10 20 30 40

Directly solve ODE using numerical solution

ni - s0l12 =NDSolve[{n'[t]==F[n[t]], n[@]==ne}, n, {t, 0, 40}]

. . . Domain:~ 0, 40, ~
n InterpolatingFunctionx IR W -
Output: scalar

h[t_] :=Evaluate[n[t] /. sol2]
Plot[h[t], {t, @, 40}, AxesLabel—>{t, n}]

n

50
40
30

20

101
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MATLARB is one of the programs that we will be using for numerical computations.
This tutorial is an introduction to some of the features of the program. You should
follow through the tutorial while actually in front of the computer running the
program so that you can enter commands and see the results for yourself.

1. The Main MATLAB Window

Below is a view of the MATLAB window. Each component is actually a separate
window that can be undocked from the main window frame and moved around on
your screen, but by default they are usually docked and arranged as shown.

© The Editor(s) (if applicable) and The Author(s), under exclusive license to 103
Springer Nature Switzerland AG 2023

D. G. Costa, P. J. Schulte, An Invitation to Mathematical Biology,
https://doi.org/10.1007/978-3-031-40258-6
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Workspace

Command history

Current folder Command window
contents

The Command window is where you will type in many of the statements or
calculations shown below. You can use the arrow keys on your keyboard to

scroll back through previously entered statements.
The Current folder shows a list of files present in the folder on your computer as
shown in the line above the window.
The Workspace shows a list of variables which contain data that you are using. You
can double-click on these to open a spreadsheet view of the data and edit those
values.
The Command history shows a list of commands that have been entered in the
command window. You can double-click on these to re-enter and execute them to

avoid having to retype previous commands.

2. Entering Simple Commands
Try entering this statement into the Command window (type as shown followed

by "Enter," the >> prompt is supplied by MATLAB):

>>x=1+2
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You should see the following in the command window below the line that you
just entered:

Also notice that the Workspace window now contains an entry for this new
variable. If you double-click on that entry in the Workspace, you will see a
spreadsheet view containing only one cell for that value of "3". If you entered that
command above with a semicolon at the end, MATLAB would have suppressed the
output but still entered the new value for x.

MATLAB contains many built-in functions such as sine and cosine:

>>x =sin(pi/2)

You should see the resulting value of 1. Notice that "pi" is available as a constant.
Like many computing environments, trig functions here assume radian measure and
not degree measure. You can also display the value of a variable by entering its name
alone:

>> X

» Upper and Lower Case

An important point to remember with names in MATLAB (and many other
computational programs) is that MATLAB is case-sensitive. This means that a
variable called x is not the same variable as one called X. The same case-sensitivity
applies to the function names that we will be using below.

¢ Numerical Formats

MATLAB can store numbers as integers, real numbers, or complex numbers. If
you enter a real number without a decimal, it will be stored as an exact integer.
Numbers entered with a decimal will be displayed in a long or short format. Try the
statements:

>> format short
>>x=1.23456

X =
1.2346
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>> format long
>> X

x=1.234560000000000

Notice how the number of digits displayed depends on the format that you

specified.
Here are the basic math operations that can be entered:

Addition +
Subtraction -
Multiplication ~ *
Division /
Exponentiation *
Negation -

Note that the "-" symbol is used to indicate subtraction but also for indicating
negative numbers. The exponentiation symbol is used for cases like:

X =23 meaning x = 2°

* Operator Precedence or Priority

Math operations in computers generally follow this priority:

)

A, - (negation)
*

+, -

Why is this important? Suppose you see in a textbook:
2x+3

We can enter this in a computer as 2 * x + 3 and get the expected answer because
multiplication has a higher priority than addition. But in this case:

24+x
y

you cannot enter 2 + x/y because division has a higher priority than addition. You
would need to use parentheses because they have a still higher priority and will force
the addition to be done first before the division: (2 + x)/y.

» The Help System

You can access help in MATLAB through a variety of mechanisms. The little
"question mark" icon near the top of the main window will start an online help
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session. But you can also obtain help for specific commands or functions from the
Command Window:

>>help sin
sin Sine of argument in radians.
sin(X) is the sine of the elements of X.

See also asin, sind.

Reference page in Help browser
doc sin

As the output shown above suggests, you can get more extensive documentation
by typing "doc sin". You can also get help for a specific function like "sin" by putting
the command window cursor in the text "sin" and pressing the F1 key.

3. Arrays in MATLAB

One of the strengths of MATLAB is the ease in which it can work with arrays of
numbers. One can think of an array as a table of numbers in rows and columns
If you enter

X =2

a single value will be stored in the variable. But we can also store a whole set of
values and MATLAB will treat variables as either scalar (single-valued) or as an
array:

>>x=[1,2,3,4];

>>y=1[0,1,2,3];

Try entering these with the semicolon so that output will be suppressed. Now
enter just the variable names to see what has been stored:

>> X

These variables are sometimes thought of as "row vectors" because they can be
represented as a single row of values.
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Try entering:

>>r = [1;2;3;4]
r =

1

2

3

4

In this case, you have created a "column vector".
To see how MATLAB can work transparently with arrays, enter:

>>X+Yy
ans =
1357

Notice how all the elements of those two variables have been summed to give the
results. Also notice that when you enter an operation like addition without specifying
a variable in which to store the result (as in saying "r = x + y"), MATLAB will
display the result and store the answer in a temporary variable named "ans".

Arrays can be two-dimensional, like a table with rows and columns:

>>x=1[1,2,3;3,2,1]

123
321

>>y=1[0,1,2;1,0,2]
y:

012
102

Now you have created two 2D arrays for the variables x and y.
Now try adding x and y:

>>X+Yy

You should see that MATLAB has added the two arrays element-by-element.
You can try other operations like subtraction. But try multiplying x and y:

>>xX*y
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You will get an error message that may only make sense if you have learned some
matrix algebra in a math course. By the rules of matrix algebra, when you multiply
two matrices their matrix dimensions (numbers of rows and columns) must satisfy
certain requirements. In this case, in order to be able to multiply x * y, the array x
must have the same number of columns as the number of rows in array y. We can
"transpose" the array y to show how this might work. Transposing is like flipping the
rows and columns and the single quote symbol after the variable name applies this
transpose operation. So try:

>>vy!

and you will see the rows and columns of y flipped. Now you can try:
s> x *y!

and get a two-by-two array for the answer. We are leaving out the actual pro-
cedures for matrix multiplication as a topic for another math course.

* FElement-wise Array Operations

Now for the above case with the original arrays x and y, you can multiply them
element-wise (each array element multiplied by the corresponding element in the
same row and column) by using a special symbol with a decimal in front of the
multiplication symbol:

Try:
>>X . *y
ans =

026
302

Look back at the original arrays and see that this result makes sense.

4. Files in MATLAB — Creating and Using Scripts and Functions

* Scripts

All of the command window statements that you have been entering could be
stored in a simple text file called a "script". In this way you could re-execute all these
commands without having to retype them in the command window.

Place your mouse cursor in the "Current folder" window and right-click. Now
move your mouse pointer over "New File" and look through the sub-menu and select
"Script". A file will be created in that current folder with a default name that you
would normally change to something meaningful. Do this to create a script file called
"Script.m". The filename extension of "m" is associated with MATLAB and such
files are often called "m-files".
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Next double-click on this new file and an editor window will pop-up with a blank
set of lines. Enter some commands, like:

% This is my new script
format long
x = sin(pi/4)

Push the "Save" button on the toolbar above. Now go back to the Command
window and just type "Script". You should see the results of this script just as if they
were entered in the command window. But now you could go back and edit the script
and re-execute whatever commands it contained without having to retype the actual
commands. This ability could be quite useful if you have scripts with many, many
lines. You can also execute the script by selecting the "Run" button in the toolbar at
the top of the editor window.

Note that lines that start with "%" are comment lines that are not processed by
MATLAB.

¢ Functions

Another type of file that you can create is useful for creating "functions" in
MATLAB. A MATLAB function is related to a function in the mathematical
sense — a series of operations and so typically a MATLAB function is a set of
operations. You "call" that function, passing it some data, and then the function
returns some data. Try the following example of using functions:

Suppose we want to use a function that carries out:

y=2x"+1

Let's create a function called "Quad"

Go back to that "Current folder" window; right-click, but this time under "New
File" select "Function". MATLAB will create a file. Rename the file "Quad.m".
Common practice is to name the file the same as the name of the function within
the file.

Double-click on the filename. This time there will be some default text present in
the editor. The function is defined between the words "function" and "end" in the file.
First, you will want to check that the function name is correct (after the equal sign in
the first row).

Functions are usually supplied some data in the form of "input arguments" and
return calculated results as "output arguments". In this case, we want to create a
function for the equation above that expresses the variable y as a function of the
variable x. So change the default "input_args" and the default "output_args" so that
the function looks like this:

function [ y ] = Quad( x )
3QUAD Summary of this function goes here
Detailed explanation goes here
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Now add the actual function definition is the space before the "end" of the
function. Your final file text should look like this:

function [ y ] = Quad( x )
$QUAD Summary of this function goes here
Detailed explanation goes here

y =2 * x"2 + 1;

end
Note that in general, the spaces added within the line starting with "y ="
optional and sometimes only added for readability.

Save the m-file that you just created. Now we can use that new function.
Incidentally, one of the reasons that we might create a function within an m-file
instead of directly in the command window is that those files can be saved and
exchanged with other users. Also, they are simple text files that can be printed or
viewed from outside of MATLAB.

Now return to the command window and enter:

are

>> Quad (2)

Here you have called your function, passed it the value of 2 and it should return
the value 9 (2 times 2 squared plus 1).

Earlier, I said that MATLAB can work transparently with arrays as well as scalar
variables:

Enter these values for x:

>>x=[1,2,3,4,5];

Now try using our Quad function to calculate the function values for all of these
elements at once:

>> Quad (x)

Most likely this did not work and you received an error message. What's the
problem? Go back and look at the file Quad.m in the editor. The function that you
entered is trying to square the variable x. Works fine if x is a scalar quantity, but not
an array. For array variables, squaring is similar to multiplying two arrays; they must
have the proper dimensions. In this case the array must have the same number of
rows as the number of columns. What you really want is an element-by-element
multiplication. So edit your function, changing the line:

y=2*x"2+1;
to:

y=2*x."2+1;
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where you are using the element wise form .» instead of just A. This is a case where
the period has to be right next to the » without an extra space. Save the function and
call it again from the command window:

>> Quad (x)

and now you should get those original five values applied to the function. It will
still work with scalar forms of variables.

5. Drawing Graphs

There are several functions that can be used to draw 2D or 3D graphs. First, enter
some data to be graphed:

>>x=1[0,1,2,3,4];
>>y=1[1,3,4,2,5];

Now create the plot with:
>>plot (x,y)

You should see a graph window pop-up.

There are many graph editing features that can be accessed from this graph
window. Click on the "Tools" menu item at the top and select "Edit plot". Double
click in the middle of the graph and the window will change to show a set of editing
possibilities at the bottom. Try these out until you see how to:

* Add or change the labels on the x or y axis.

* Change the scaling of the x or y axes (uncheck or check the Auto box).

* Change the fonts used for labels

* Add a Title to the graph

* Change the line used in the graph: Double click on the actual line in the figure,
now you can change the line style, thickness, or color. You can also add symbols
of various sizes for each data point with the "Marker" settings

Using the "Insert" menu at the top of the window (or under "View" enabling the
Plot edit toolbar), you can add many other objects to the figure including text and
various types of lines or arrows.

Lastly, take a look under the "File" menu at the top. You can save the figure
(by default given a .fig extension to the name). You can also print the figure.

If you still have that earlier function called "Quad" showing in the Current folder
list, try this command to draw the function:

>> ezplot (@Quad) or you can use this form: >> ezplot ('Quad')

You can also draw a similar plot without creating the function. Try this:

>> ezplot ('2*x"2+1")
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6. Using Built-in Functions to Solve ODEs

MATLAB has several built-in functions that can be used to solve an ODE or
system of ODEs by numerical methods that are expressed as an IVP (Initial Value
Problem). In general, these equations are of the form:

% =f(ty) y(t)=yo

Solving this ODE or system of ODEs numerically means to determine numerical
values of y for any future time . The following examples utilize the MATLAB
function "ode45".

Typically, there are two steps in this process:

(a) Create a MATLAB function in an m-file which contains the ODE.
(b) Enter the command statements to set up data, call the ode45 function, and then
plot the results.

Example 1 The simple exponential growth model
This population model is described by:

dN
E =rN

First, create a function in an m-file with the file name "expODE.m". Edit the
function so that it looks like this:

function [ dndt ] = expODE( t,n )

$expODE Simple exponential growth model
Detailed explanation goes here

r = 0.5;

dndt = r * n;

end

Here are a few important points about this function file:

* You can pick other names for the function (here named “expODE”) and variables
as long as you are consistent. This means that if you want to use something other
than "dndt" you have to be consistent in both places that the variable appears.

* You could also pick different names for the variables t and n, although in this case
we do not use the t as part of the ODE definition because the ODE is autonomous
and the right-hand side does not depend on t.

* Ordinarily, the name of the function and the name of the m-file should be
the same.
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» Also, MATLAB is case-sensitive, so these names should match with respect to
upper and lower case letters. In general, you have to be consistent with names
regarding upper and lower case.

» The statements following the "%" are comments that are not executed.

Now enter the following statements in the MATLAB command window:

>> tspan = [0 5] ;

>>nzero = 2;

>> [t n] = ode45 (@expODE, tspan, nzero) ;
>>plot (t,n)

The variable "tspan" now contains the start and final times for which we want a
solution of the ODE.

The variable "nzero" contains the initial value for the population size at time zero.

The ode45 function is called and we pass it the function handle for our model
function, the time range, and the initial value. The function could also be specified
like this:

>> [t n] = ode45 ('expODE', tspan, nzero) ;

You should see a plot like this:

B Figure1 o | @ ][=
File Edit View Inset Tools Desktop Window Help ¥
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Notice that the curve drawn in the figure looks fairly smooth. This is because the
MATLAB ode45 function has chosen small enough time steps to maintain an
accurate solution and also allow us to see a smooth curve.

You are strongly advised to play with some of the plot editing tools described in
Part 1 of the tutorial at the bottom of page 9.

Next, let's examine the actual solution. Back at the MATLAB command window;
display a table of solution values by typing:

>> [t n]

You will see numbers like this (with some rows left out in the middle):

02.0000
.1005
.2010
.3014
.4019
.5269
.6519

.1030
.2114
.3253
.4451
.6028
L7707

O O O O o o
NNNDNDDNDDN

.901923.1988
.9264 23.4850
.9510 23.7747
.9755 24.0681
.0000 24 .3650

[E I TN NN

Notice how the time steps at the beginning near time zero (left column) are further
apart in time than the time steps at the end of the table. Looking at the graph, the
solution curve is steeper at the later time values. The ODE solver (ode45) is an
"adaptive" solver that picks smaller step sizes where the solution is changing more
rapidly.

If you want to specify exactly the values of time where your solution will be
provided, you can use one of these statements for the variable tspan:

>>tspan=[012345];
>> tspan = linspace (0,5,11) ;

The first alternate choice will provide for solutions at the six time steps shown.
The second alternate choice will provide for solutions at 11 points ranging from 0 to
5. In either case, the ODE solver will still use an adaptive time step process but the
resulting numerical data that are returned will include only the requested time steps.

Example 2 Competition model of two species.

The MATLAB functions for solving ODEs, like the ode45 function shown
above, can also solve systems of equations. In considering this example, remember
that variables in MATLAB can be scalar quantities, but also vector or array
quantities.
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Suppose that we have two groups of organisms (called Ny and N,) that are
competing for resources. Our model of competition could be written as:

dN,

I =aN| — NN,
dN,
W—}’Nz 5N1N2

Solve this model by setting up an m-file with the following function:

function [ nprime ] = Competition( t, n )
$COMPETITION Summary of this function goes here
% Detailed explanation goes here

alpha = 0.11;

beta = 0.01;

gamma = 0.1;
delta = 0.01;
nprime = [alpha*n(l) - beta*n(l)*n(2);
gamma*n (2) - delta*n(1l)*n(2)];
end
Note that "..." at the end of a line is a "continuation" which extends a function

line beyond the single line and can be used to make the text more readable.

Recall that the model is a pair of ODEs. The variable n is a column vector with
population sizes for Ny and N,, and so the function above must specify which row in
n (which population) is being used in a calculation. Similarly, the variable "nprime"
which is returned by the function is a column vector containing dN,/dt in the first
row and dN,/dt in the second row.

An alternate approach for the above function could use (substituting for the line
"nprime = ..."):

nprime (1,1) = alpha*n(l) - beta*n (1) *n(2) ;
nprime (2,1) = gamma*n(2) - delta*n(1l)*n(2) ;

Another alternate approach could use (again, substituting for the line
"nprime = ..."):

nprime = zeros(2,1) ;
nprime (1) = alpha*n(1l) - beta*n (1) *n(2
(2 (

)i
nprime (2) = gamma*n(2) - delta*n(1l)*n(2) ;

As noted above, "nprime" must be a column vector and so these alternates must
either directly specify the column number (as in the first alternate) or first setup
"nprime" as a vector with two rows and one column by use of the "zeros" function,
which just fills an array with zeros.

Solve the model with the following command window statements:

>> tspan = [0 30];
>>nzero = [5; 5];
>> [t n] = ode45 (@Competition, tspan, nzero) ;
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Next, display a graph of the two populations as a function of time:

>>plot (t,n)

Remember that "n" is an array which contains the sizes of both populations in the
first and second columns of that array, and so the above statement will draw both
curves in the plot.

Lastly, you can display the solution as a phase-plane diagram showing N, versus
N2:

>>plot(n(:,1), n(:,2))

Here, the " : " symbol effectively means "all rows" in a particular column of the
array.

Your plots should look like those shown below (Figs. A.4.1 and A.4.2), except
that in this case some additions were made using the MATLAB plot editing tools.
You can also use the following statements after the plot function:

>> xlabel (‘Population size’)
>>ylabel (‘Time’)
>>legend (‘N _1’, N _2’)

20

Population size

4 1 1 1 1 1
0 5 10 15 20 25 30

Time

Fig. A.4.1 Plot showing the sizes of the two populations versus time
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Population N

4
15 20

Population Ny

Fig. A.4.2 Plot showing the two population sizes in a phase-plane diagram



Appendix 5: Introduction to Python
Programming

Python programming has been growing in popularity and our intention here is to
provide a brief introduction to this system. The chapters in the text will show
examples of using Python for particular models. Our emphasis here is to show
how Python can be used for some of the numerical methods used in solving our
models. The Python programming language is a full language in the sense that, like
the C language, it provides features for the general writing of programs such as
declaring variables, inputting and outputting data, and program flow with similar
statements such as “for” loops and conditional execution of statements with the “if”
construct. Our purpose in this introduction to the language is to focus more on the
numerical method functions that are provided with Python add-ins such as the
“numpy”’ and “scipy”’ components.

Python is a freely available programming environment. There are several complete
texts that introduce this language, such as Programming for Computations — Python by
Svein Linge and Hans Petter Langtangen, that would be useful for a more complete
introduction. As suggested in the text above, we recommend installing the necessary
software using a free Python distribution produced by Continuum Analytics, called
Anaconda and available from http://continuum.io/downloads in versions for MS
Windows, Apple Mac, and Linux-based computers. This package includes the basic
Python components plus about 200 Python add-ins. Also included is a program called
Spyder, which provides an integrated development environment that we find very
useful for writing and executing Python programs. Python programs can also be
written with a simple text editor and then run from a terminal window.

Assuming you have installed Python using the Anaconda distribution, a simple
“Hello” program can be written by entering this text in the editor window in Spyder:

Print ("Hello!")

Then select Run from the Run menu (or click on the triangular run symbol on the
toolbar). The program output (just the word Hello) will appear in the console
window at the lower right.
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A slightly more involved program might be entered as:
print ("Hello!™")

# Save some data
a=2.0
b=4.2

# Add the values
y=a+b

# Print the result
print ("The sumis",y)

Note that text after the # character is a comment ignored by Python but useful for
us as readers.

A view of the Spyder window at this point is shown here:

£ Spyder (Python 3.7)

Fie Edt Sewch Source Run Debug Comsoles Propects Tooks Wew Help

Dee-Ee(rBEn¢Mu=cr BB X[, ¢ o= =t 4

Editor - C:\iserslchulte Python programspaelo.py 8 X Varishie explorer - X3
ionpy [ | Pomattedbrntpy ] | Atméressrepy HelopyED [4)r]|ox & = 2 & o
1| Hame Tyoe | see | Value ]
print { 11o!") a float 1 2.9
" b float 1 4.2
S y float 1 6.2
6b = 4.2
= b Warisble explorer | Fle egiorer | Hel
iy = a +
!I.y [Python console: - X3
1 01 corsen B | rE

12 print ("The sum is",y) =

In [5]: runfile('C:
wdirs'C: fUsers/schulte
Hello!

The sum is 6.2

In [6]:

|

Python conscie | Hetoey bog |

Permissons: B [End-ofdnes: CRLT  [Encodng: ASCIT Line: 3 Cobmn: 1 Memory: 20 &

&

The editor window is on the left, the program output is available (along with
messages about errors that might be found in the program) at the lower right. The
upper right can show a list of program variables, the files in the current directory, or
the help system depending on the tab selected below this view.

As noted earlier, our goal in introducing and using the Python programming
language relates to solving the models that are presented in our text. For a fuller
introduction to Python as a programming language, the reader may wish to consult a
text such as A Primer on Scientific Programming with Python (Hans Petter
Langtangen) or numerous tutorials available online. One of our goals in this text
will be to introduce a number of models based on an ordinary differential equation
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(ODE) or system of ODEs. Here is an example of a Python program that uses the
function solve_ivp from the Python scipy package to provide a numerical solution to
the logistic growth ODE model (see Eq. 7.1, Chap. 7). The line numbers at the left
are not typed when entering the program, they are shown here for reference.

1 # Logistic growth model

2 import numpy as np

3 import matplotlib.pyplot as plt

4 from scipy.integrate import solve_ ivp
5

6 #n - population size

7 def LogisticModel (t, n) :

8r=1.1

9k =100

10 return r*n* (1-n/k)
11

12n0=2.0

13t0=0

14 t£f =10

15 steps = 10*tf

16 sol = solve_ivp(LogisticModel, [t0, tf], [n0], method='RK45"',
17 rtol=1le-6, atol=1e-9, dense output=True)

18 t =np.linspace(t0,tf, steps+1)
19n=sol.sol(t)

20

21 # Display data

22 #print (np.transpose([t,n[0]]))

23

24 # plot results

25 plt.plot (t, n[0])

26 plt.xlabel ('Time"')

27 plt.ylabel ('Population size"')

28 plt.savefig('Logistic.svg')

29 plt.show ()

30 # Save results to afile

31 f =open('Logistic.txt', "w")

32 for i in range (0, steps+1, 1):

33 print ("%5.1£f, $6.2f" % (t[i], n([0] [1]), file=f)
34 f.close()

The statements in lines 2—4 are for including needed components such as numpy
for numerical functions, scipy for numerical methods, and matplotlib for drawing
graphs. Again, note that statements starting with # are comments that are included
only for the reader of the program and are not acted upon.

The model to be solved in this case is the logistic growth ODE:
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Fig. A.5.1 Plot of the python solution for the logistic population model

This equation is incorporated into the program function “LogisticModel” in lines
7-10. The model variables to be passed to the function are shown as t and n. Next,
the values for parameters r and k are set in lines 8 and 9. The right-hand side of the
ODE is entered in line 10.

Next the program sets an initial value for the dependent variable n at time zero,
here called n0O. For our solution to this model, we want values of n at a series of time
points set in line 17, using the linspace function (part of numpy). We specify a set of
101 values linearly spaced between 0 and 10.

The actual numerical solver for this ODE, solve_ivp, is called in line 16 and
passed the model, the range of time values desired for the solution, the initial value of
n, the ODE solver method selected, and a setting asking for a continuous solution.

Line 18 sets a range of time values that we want for the solution and the number
of steps for those time values. Line 19 extracts the values of n from the solution
(saved as sol). The remainder of the program (lines 25-28) plots the solution as
values of t and n and also saves a scalable vector graphics (svg) form of the plot.
Lines 31-34 save the data to a text file that could be used as an input into another
graphics program.

The graphical results should look like the plot shown in Fig. A.5.1. Note that one
can set the font used in the figure (Times New Roman in Fig. A.5.1) with this
statement to be entered before the plt.plot statement in the program:

plt.rcParams['font.family']='Times New Roman'
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