# ============================================================================ # Investigation of Allen's SI/SIR Epidemic Model Conjectures # Focus: Equation (3) and Endemic Equilibrium Analysis # # Paper: Ladas & Allen (2001) "Open Problems and Conjectures: SI and SIR # Epidemic Models", J. Difference Equations and Applications, 7:5 # ============================================================================ # Step 1: Load DMB.txt library read "DMB.txt"; # Step 2: Load plots package and set parameters (R0 > 1) with(plots): a1 := 1.0: b1 := 1/3: c1 := 1/3: R0 := evalf(a1/(b1 + c1)); # Step 3: Define procedure to solve Equation (3) from the paper # Equation (3a): (b+c)*x* = y*(1 - exp(-a*x*)) # Equation (3b): y* = 1 - x*(1 + c/b) EndemicEq3 := proc(a, b, c) local eq1, xs, ys, sol: eq1 := (b + c)*xs = (1 - xs*(1 + c/b))*(1 - exp(-a*xs)): sol := fsolve(eq1, xs, 0.0001..0.9999): if sol = NULL then RETURN([0, 1]): fi: ys := 1 - sol*(1 + c/b): [evalf(sol), evalf(ys)]: end: # Step 4: Compute the endemic equilibrium from Equation (3) endemic_pt := EndemicEq3(a1, b1, c1); # Step 5: Verify Equation (3) is satisfied xs := endemic_pt[1]: ys := endemic_pt[2]: LHS := (b1 + c1)*xs; RHS := ys*(1 - exp(-a1*xs)); # Step 6: Define transformation and test SSg/SSSg from DMB.txt T := AllenSIR(a1, b1, c1, x, y); SSg(T, [x, y]); # Step 7: Test SSSg (also fails due to transcendental equation) SSSg(T, [x, y]); # Step 8: Compute orbits from different initial conditions (Conjecture 1 test) orb1 := ORB(T, [x, y], [0.1, 0.8], 0, 500): orb2 := ORB(T, [x, y], [0.3, 0.5], 0, 500): orb3 := ORB(T, [x, y], [0.05, 0.9], 0, 500): orb1[-1]; orb2[-1]; orb3[-1]; # Step 9: Create phase portrait showing convergence to endemic equilibrium p1 := pointplot(orb1, color = blue, symbol = point): p2 := pointplot(orb2, color = red, symbol = point): p3 := pointplot(orb3, color = green, symbol = point): p_end := pointplot([endemic_pt], symbol = solidcircle, symbolsize = 15, color = black): display(p1, p2, p3, p_end, title = "Convergence to Eq(3) Endemic Equilibrium"); # Step 10: Test SI model (c = 0 case - this is PROVEN in the paper) T_SI := AllenSIR(0.8, 0.3, 0, x, y); orb_SI := ORB(T_SI, [x, y], [0.1, 0.9], 0, 300): orb_SI[-1]; # Step 11: Jacobian analysis for stability (using JAC from DMB.txt) J := JAC(T, [x, y]); J_endemic := subs({x = endemic_pt[1], y = endemic_pt[2]}, J); Eigenvalues(Matrix(evalf(J_endemic))); # Step 12: Compute eigenvalue magnitude (STABILITY PROOF) # If |lambda| < 1, the endemic equilibrium is locally asymptotically stable abs(0.7438152229 + 0.1956596179*I); # ============================================================================ # RESULTS SUMMARY: # ============================================================================ # Endemic equilibrium from Eq(3): (0.1423746737, 0.7152506526) # Equation (3) verified: LHS = RHS = 0.09491644913 # All orbits converge to endemic equilibrium (Conjecture 1 evidence) # Eigenvalues: 0.7438 +/- 0.1957i (complex conjugates) # |lambda| = 0.7691 < 1 --> LOCALLY ASYMPTOTICALLY STABLE # CONJECTURE 1 appears TRUE based on numerical investigation # ============================================================================