Homework for Lecture 9 of Dr. Z.'s Dynamical Models in Biology class

Version of Oct. 5, 2025 (Correcting a typo, found by Rachel Adelmam, who won a dollar).

Email the answers (as a .pdf file) to

ShaloshBEkhad@gmail.com

by 8:00pm Monday, Oct. 6, 2025.

Subject: hw9

with an attachment hw9FirstLast.pdf

$$C^{2}-5c+6=0$$

$$(c-2)(c-3) \rightarrow c=2, c=3$$

$$\alpha_{0} = A2^{n} + 63^{n} = 1$$

$$\alpha_{1} = A2^{n} + 63^{n} = 2$$

$$A = \frac{2^{n}-3^{n}}{2^{n}-3^{n}} = 2$$

$$A = \frac{2^{n}-3^{n}}{2^{n}-3^{n}} = 2$$

$$A = \frac{2^{n}-2}{2^{n}-3^{n}} = 2$$

$$A = \frac{2^{n}-2}{2^{n}-3^{n}} = 2$$

$$A = \frac{2^{n}-2}{2^{n}-3^{n}} = 2$$

$$a(n+2) = 5 a(n+1) - 6 a(n) = 0$$
; $a(n) = 1$, $a(L) = 2$

- 2. (Use a calculator or Maple) In a gambler's ruin problem you currently have 700 dollars and the maximum amount is 1000.
- (i') What is the expected number of rounds until you exit either a winner or loser? n(L-n)=700(200)=210000
- (ii) What is the prob. of exiting a winner if your prob. of winning a dollar is 0.49? $\frac{1-(9\rho)^n}{1-(9\rho)^k} \approx 6.134 \cdot 10^{-6}$
- (iii) What is the prob. of exiting a winner if your prob. of winning a dollar is 0.499 ? $\frac{1-(9p)^n}{1-(9p)^n} \approx .288$
- **3.** Derive, all by yourself, the formula for the prob. of exiting a winner in a gambler's ruin where the prob. of winning a dollar is p if the max. amount if L and you currently have n dollars.
- **4.** Prove that the expected duration of staying in a fair casino with max. amount if L and you currently have n dollars is n(L-n).

3)
$$Q(n) = \rho \alpha(n+1) + q \alpha(n+1)$$

$$\rho z^{2} - z + q = 0$$

$$(z-1)(\rho z + p-1)$$

$$Z_{1} = 1 \quad z_{2} = \sqrt[3]{\rho}$$

$$Q(n) = A_{1} + A_{2}(\sqrt[3]{\rho})^{n}$$

$$A_{1} + A_{2} = 0 \Rightarrow A_{2} = -A_{1}$$

$$A_{1} + A_{2}(\sqrt[3]{\rho})^{1} = 1$$

$$A_{2} = \frac{1}{1 - (\sqrt[3]{\rho})^{2}}$$

$$Q_{n} = \frac{1 - (\sqrt[3]{\rho})^{n}}{1 - (\sqrt[3]{\rho})^{2}}$$