Homework for Lecture 9 of Dr. Z.'s Dynamical Models in Biology class

Version of Oct. 5, 2025 (Correcting a typo, found by Rachel Adelmam, who won a dollar).

Email the answers (as a .pdf file) to

ShaloshBEkhad@gmail.com

by 8:00pm Monday, Oct. 6, 2025.

Subject: hw9

with an attachment hw9FirstLast.pdf

1. Solve the boundary value problem

$$a(n+2) = 5 a(n+1) - 6 a(n) = 0$$
; $a(n) = 1$, $a(L) = 2$.

- 2. (Use a calculator or Maple) In a gambler's ruin problem you currently have 700 dollars and the maximum amount is 1000.
- (i) What is the probability of exiting a winner if your prob. of winning a dollar is 0.5 (and losing a dollar is 0.5)
- (i') What is the expected number of rounds until you exit either a winner or loser?
- (ii) What is the prob. of exiting a winner if your prob. of winning a dollar is 0.49?
- (iii) What is the prob. of exiting a winner if your prob. of winning a dollar is 0.499?
- **3.** Derive, all by yourself, the formula for the prob. of exiting a winner in a gambler's ruin where the prob. of winning a dollar is p if the max. amount if L and you currently have n dollars.
- **4.** Prove that the expected duration of staying in a fair casino with max. amount if L and you currently have n dollars is n(L-n).

of the Main procedures type: Help10(1), for help with a specific procedure type: Help10(ProcedureName), for example Help10(RandomMC of the other procedures type: Help10(1), for help with a specific procedure type: Help10(ProcedureName), for example Help10(RandomMC 000, $\frac{1}{2}$))

10.700000000, 210000.

1000, 49

1. Solve the boundary value problem

$$a(n+2) = 5 a(n+1) - 6 a(n) = 0$$
; $a(n) = 1$; $a(L) = 2$.

$$\frac{2}{3^{2} \cdot 2^{2}} = C_{2}$$

$$-\frac{2}{3^{2} \cdot 2^{2}} = C_{1}$$

- 2. (Use a calculator or Maple) In a gambler's ruin problem you currently have 700 dollars and the
- (i) What is the probability of exiting a winner if your prob. of winning a dollar is 0.5 (and losing
- (i') What is the expected number of rounds until you exit either a winner or loser?
- (ii) What is the prob. of exiting a winner if your prob. of winning a dollar is 0.49?
- (iii) What is the prob. of exiting a winner if your prob. of winning a dollar is 0.499?

 - > evalf $\left(ExactPD \left(700, 1000, \frac{1}{2} \right) \right)$

[0.7000000000, 210000.]

> $evalf\left(ExactPD\left(700, 1000, \frac{49}{100}\right)\right)$

[6.134387118 × 10⁻⁶, 34999.69328]

> evalf (ExactPD (700, 1000, 499))

[0.2881559204, 205922.0398]

210000 rounds expected

3. Derive, all by yourself, the formula for the prob. of exiting a winner in a gambler's ruin where the prob. of winning a dollar is p if the max. amount if L and you currently have n dollars.

$$a(6) = 0$$
 $a(L) = 1$

$$(n) = pa(n+1) + qa(n-1)$$
 $a(n) = C_1 + C_2 \left(\frac{q}{p}\right)^n$
 $(n+1) = pa(n+2) + qa(n)$ $a(0) = 0 = C_1 + C_2$

$$a(n+1) = pa(n+2) + qa(n)$$

 $a(n+2) = \frac{1}{p}a(n+1) - \frac{q}{p}a(n)$

$$z^{2} - pz + \frac{1-p}{p} = 0$$
 $(z-1)(z-\frac{1-p}{p})$

$$\frac{1}{q} = C_2$$

C1 = -C2

4. Prove that the expected duration of staying in a fair casino with max. amount if L and you currently have n dollars is n(L-n).

$$b(n) = pb(n+1)+qb(n-1)+1$$

 $b(n) = ||z|b(n+1)+||z|b(n-1)+1$
 $b(n+1) = 2b(n)+b(n-1)=-2$

$$b(n+1) \rightarrow win$$

 $b(n-1) \rightarrow 10SC$
 $b(0) = b(L) = 0$

b(n+1)-2b(n)+b(n-1)=0

6(n+2)-26(n+1)+6(n)=0

$$z^{2} - zz + 1 = 0$$
 $(z-1)(z-1)$

nonhomog: b(n)=

$$b(n)=an^2$$

 $a(n+1)^2-2an^2+a(n-1)^2=-2$
 $an^2+2n+a+2an^2+an^2-2an+a=-2$
 $2a=-2$
 $a=-1$