Yan Dong

Homework for Lecture 7 of Dr. Z.'s Dynamical Models in Biology class

yd 372.

Version of Sept. 26 (thanks to Anna Janik, who won a dollar) Email the answers (as a .pdf file) to

ShaloshBEkhad@gmail.com

by 8:00pm Monday, Sept. 29, 2025.

Subject: hw7

with an attachment hw7FirstLast.pdf

- 1. For each of the following non-linear (quadratic) first-order-linear recurrences
- (i) Determine all steady-states
- (ii) decide which of them are stable
- (iii) test it empirically, by taking a number close to each steady state, using either a calculator of Maple, find its orbit of length 10 and verify that for stable steady-states, the orbit is attracted to it, but for the unstable ones it runs away.

a.
$$x(n+1) = \frac{5}{2} x(n) (1 - x(n))$$
.

b.
$$x(n+1) = \frac{29}{10} x(n) (1 - x(n))$$
.

c.
$$x(n+1) = \frac{31}{10} x(n) (1 - x(n))$$
.

- 2.: For each of the following non-linear (cubic) first-order-linear recurrences
- (i) Verify that the given points are steady-states
- (ii) decide which ones ones are stable
- (ii) decide which of them are stable
- (iii) test it empirically, by taking a number close to each steady state, using either a calculator of Maple, find its orbit of length 10 and verify that for stable steady-states, the orbit is attracted to it, but for the unstable ones it runs away.

a.
$$x(n+1) = \frac{1}{5}x^3 - \frac{6}{5}x^2 + \frac{16}{5}x - \frac{6}{5}$$

Set of steady-states: $\{1, 2, 3\}$

b.
$$x(n+1) = \frac{1}{8}x^3 - \frac{5}{4}x^2 + \frac{39}{8}x - \frac{15}{4}$$

Set of steady-states : $\{2, 3, 5\}$

$$x(n+1) = \frac{5}{2}x(n)(1-x(n))$$
.

(i) Determine all steady-states

no-linear
$$40$$
, set $x = \frac{5}{5}x(1-x)$
 $5x^2 - \frac{5}{5}x + x = 0$
 $5x^2 - \frac{3}{5}x = 0$
 $x(\frac{5}{5}x - \frac{3}{5}) = 0$
 $x = 0$ or $x = \frac{3}{5}$
thus, steady-states = 0 , $\frac{3}{5}$

(ii) decide which of them are stable

Let
$$f(x) = \frac{1}{2}x(-x) = \frac{1}{2}x - \frac{1}{2}x^2$$

 $f'(x) = \frac{1}{2} - 5x$

At
$$\chi = 0$$
, $f'(0) = \frac{5}{5} > 1$ unutable
At $\chi = \frac{2}{5}$, $f'(\frac{2}{5}) = \frac{5}{5} - 5 \times \frac{3}{5} = -\frac{1}{5}$ so. $|f'(\frac{3}{5})| = 0.5 < |$, stable

iii) Pick
$$z_0 = 0.61$$
 (near 0.6)

 $z_1 = 0.5 (0.61) \cdot (1-0.61) = 0.59475$
 $z_2 = 0.5 \cdot (0.59475) (1-0.59475) = 0.602$

so, it converges to 0.6.

Pick $z_0 = 0.01$ (near 0)

 $z_1 = 0.5 (0.01) (1-0.01) \approx 0.02475$
 $z_2 = 0.5 (0.02475) (1-0.02475) \approx 0.06028$

moves away from 0.

b.
$$x(n+1) = \frac{29}{10} x(n) (1-x(n))$$

i) $k = 0.9$
set $x = 2.9 x (1-x)$
 $\Rightarrow 0.9 x^3 - 1.9 x = 0$
 $x = 0.9 x - 1.9 x = 0$
 $x = 0.9 x - 1.9 = 0$.

(ii)
$$f(x) = 0.9 \times (1-x)$$

 $f'(x) = 0.9 - 0.8x$
At $x=0$, $f'(0) = 0.9 - 0 = 0.9 > 1$ unstable.
At $x = \frac{19}{29}$, $f'(19/9) = 0.9 - \frac{58}{10} \times \frac{19}{29} = 0.9 - 3.8 = -0.9$

iii) Take
$$20 = 0.66$$
 (near 0.65517)
 $21 = 0.9 (0.66) (1-0.66) = 0.65076$
 $22 = 0.9 (0.65076) (1-0.65076) = 0.65909$
... converges to $0.65577 (19/39)$

Sime |-0.9/2/, so, stable.

c.
$$x(n+1) = \frac{31}{10} x(n) (1 - x(n))$$

 $k = \frac{31}{10} = 3.$

i) Set
$$x = 3.|x|-x$$
)

$$\Rightarrow 3.|x^{2}-3.|x-0$$

$$x(3.|x-3.|)=0.$$

$$x = 0 \quad x = \frac{21}{31}$$

ii) Let
$$f(x) = 3.1 \times (1-x)$$

 $f'(x) = 3.1 - 6.2 \times (1-x)$
At $x = 0$, $f'(0) = 3.1 > 1$ constable.
At $x = \frac{1}{31}$, $f'(\frac{1}{31}) = 3.1 - 4.2 = -1.1$, $|-1.1| > 1$ constable

iii) doesn't converges to 2/31.

a. $x(n+1) = \frac{1}{5}x^3 - \frac{6}{5}x^2 + \frac{16}{5}x - \frac{6}{5}$ \quad \{1, \, 2, \, 3\}\}

\text{check } \(x = 1 \) : \(0.2 - 1.2 + 3.2 - 1.2 = 1 \) \quad y \text{ steady}

\(x = 2 \) : \(1.6 - 4.8 + 6.4 - 1.2 = 2 \) \quad y \text{ steady}

\(x = 3 \) : \(0.2(27) - 1.2(9) + 3.2(2) - 1.2 = 3 \) \quad y \text{ steady}

\(\text{let } f(x) = \frac{1}{5}x^3 - \frac{1}{5}x^2 + \frac{16}{5}x - \frac{1}{5} \)

\(\text{let } f(x) = \frac{3}{5}x^2 - \frac{1}{5}x + \frac{16}{5} \)

\(A + \text{ } x = 1 \) , \(f'(1) = \frac{3}{5} - \frac{12}{5} + \frac{14}{5} = \frac{7}{5} = 1 \) \text{ trustable}

\(A + \text{ } x = 2 \) , \(f'(2) = \frac{12}{5} - \frac{23}{5} + \frac{16}{5} = \frac{4}{5} = 1 \) \(x = 1 \)

\(A + \text{ } x = 3 \) , \(f'(3) = \frac{27}{5} - \frac{26}{5} + \frac{16}{5} = \frac{7}{5} = 1 \) \text{ trustable}

\(A + \text{ } x = 3 \) , \(f'(3) = \frac{7}{5} - \frac{36}{5} + \frac{16}{5} = \frac{7}{5} = 1 \) \text{ trustable}

\(\text{ test } \text{ near } 2 \) , \(\text{ trustable} \) \(2 \) .

\(\text{ test } \text{ near } 1 \) \(\text{ or } 3 \) \(\text{ trustable} \) \(\text{ test } \text{ near } 1 \) \(\text{ or } 3 \) \(\text{ trustable} \) \(\text{ test } \text{ near } 1 \) \(\text{ or } 3 \) \(\text{ trustable} \) \(\text{ test } \text{ near } 1 \) \(\text{ or } 3 \) \(\text{ trustable} \) \(\text{ test } \text{ near } 1 \) \(\text{ or } 3 \) \(\text{ trustable} \)

b. $x(n+1) = \frac{1}{8}x^3 - \frac{5}{4}x^2 + \frac{39}{8}x - \frac{15}{4}$ {1, 2, 5} thek x = 2, $1 - 5 + \frac{39}{4} - \frac{15}{4} = 2$ yes x = 3 $\frac{27}{8} - \frac{45}{4} + \frac{3\times39}{8} - \frac{17}{4} = 3$ yes x = 5 $\frac{125}{8} - \frac{1\times5}{4} + \frac{39\times5}{8} - \frac{15}{4} = 5$ yes Let $f(x) = \frac{1}{8}x^3 - \frac{7}{4}x^2 + \frac{39}{8}x - \frac{15}{4}$ $f'(x) = \frac{2}{8}x^2 - \frac{5}{4}x + \frac{39}{8}x - \frac{15}{4}$

At x=2, f'(2) = 1.5 - 5 + 4.875 = 1.375 > 1 anotable. At x=3 $f'(3) = \frac{27}{8} - \frac{15}{5} + \frac{39}{8} = 0.75 < 1$ stable At x=5 $f'(5) = \frac{75}{8} - \frac{25}{8} + \frac{39}{8} = 1.75 > 1$ anotable

test near 3, converges to 3, otherise, gues away.