

Homework for Lecture 21 of Dr. Z.'s Dynamical Models in Biology class

Email the answers (either as .pdf file and/or .txt file) to

ShaloshBEkhad@gmail.com

by 8:00pm Monday, Dec. 1, 2025.

Subject: hw21

with an attachment hw21FirstLast.pdf and/or hw21FirstLast.txt

1. By hand solve the system

$$\frac{dx}{dt} = x - y, \frac{dy}{dt} = y - x, \quad x(0) = 1, \quad y(0) = 1.$$

Plot, by hand, the phase-plane diagram.

2. Now use Maple with the command

```
S:=dsolve({diff(x(t),t)=x(t)-y(t),diff(y(t),t)=y(t)-x(t),x(0)=1,y(0)=0},{x(t),y(t)});  
plot([subs(S,x(t)),subs(S,y(t)),t=0..10]);
```

did you get the same thing?

3. Use Maple to solve and then plot the phase-plane diagram for the system

$$\frac{dx}{dt} = a_{11}x + a_{12}y, \quad \frac{dy}{dt} = a_{21}x + a_{22}y, \quad x(0) = 1, \quad y(0) = 1,$$

for three randomly chosen matrices

$$\begin{bmatrix} a_{11} & a_{12} \\ a_{21} & a_{22} \end{bmatrix}.$$

4. Carefully read, and understand, the Maple code for the following procedures (type Help(ProcedureName); for instructions)

`Lotka`, `Volterra`, `VolterraM`

in the Maple package

<https://sites.math.rutgers.edu/~zeilberg/Bio25/DMB.txt>,

For **each of them**, experiment with **three** random choices of parameters, and random initial conditions, using `Dis` (with $h = 0.01$), of *each* of the quantities in question.

Send me these nice plots.

Confirm the numerics by using **SEquP**.

1. By hand solve the system

$$\frac{dx}{dt} = x - y, \frac{dy}{dt} = y - x, \quad x(0) = 1, \quad y(0) = 1.$$

Plot, by hand, the phase-plane diagram.

$$\begin{bmatrix} 1 & -1 \\ -1 & 1 \end{bmatrix}$$

$$A \cdot \lambda I = (-\lambda)(1-\lambda) - 1$$

$$\lambda^2 - 2\lambda$$

$$\lambda(\lambda-2) = 0$$

$$\lambda=0 \quad \lambda=2$$

$$A = \begin{bmatrix} 1 & -1 \\ -1 & 1 \end{bmatrix}$$

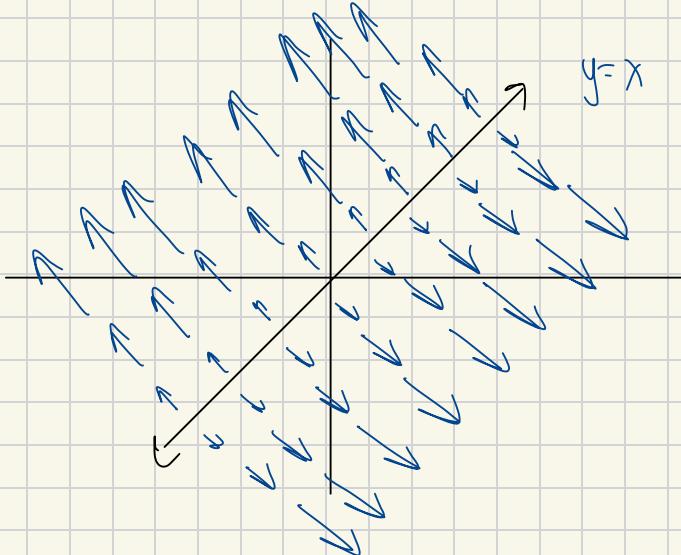
$$A - 2I = \begin{bmatrix} -1 & -1 \\ -1 & -1 \end{bmatrix}$$

$$\vec{v}_1 = \begin{bmatrix} 1 \\ 1 \end{bmatrix}$$

$$\vec{v}_2 = \begin{bmatrix} -1 \\ 1 \end{bmatrix}$$

$$x(t) = y(t) = C_1 \begin{bmatrix} 1 \\ 1 \end{bmatrix} e^{0t} + C_2 \begin{bmatrix} -1 \\ 1 \end{bmatrix} e^{2t}$$

$$x(0) = C_1 - C_2 = 1 \quad C_1 = 1 + C_2$$


$$y(0) = C_1 + C_2 = 1 \quad 1 - C_2 = C_1$$

$$1 - C_2 = 1 + C_2$$

$$0 = C_2$$

$$C_1 = 1$$

$$x(t) = y(t) = 1$$

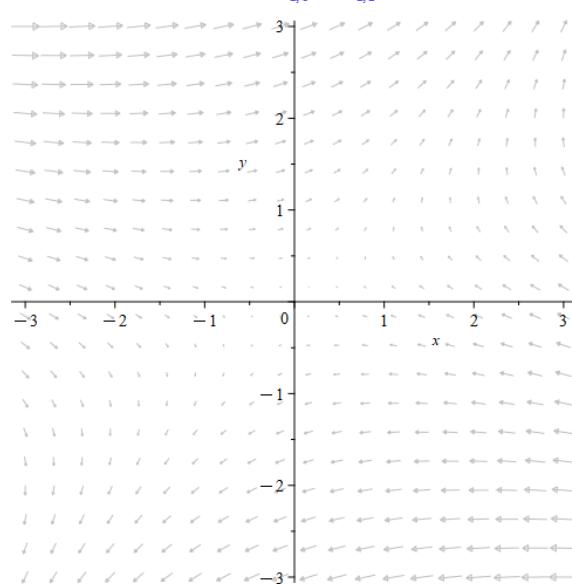
2. Now use Maple with the command

```
S:=dsolve({diff(x(t),t)=x(t)-y(t),diff(y(t),t)=y(t)-x(t),x(0)=1,y(0)=0},{x(t),y(t)});  
plot([subs(S,x(t)),subs(S,y(t)),t=0..10]);
```

did you get the same thing?

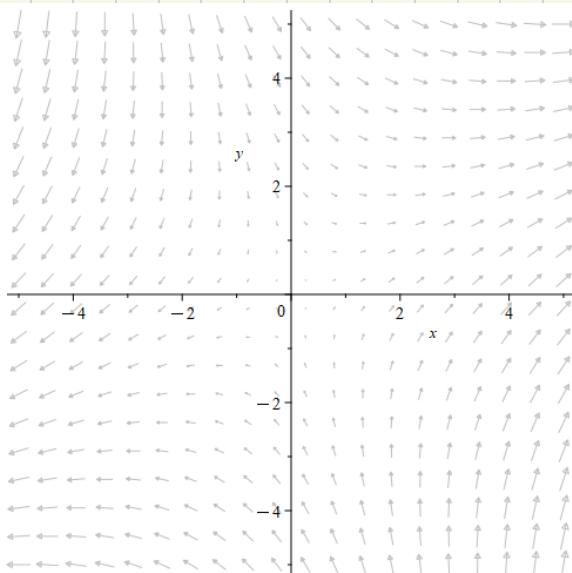
```
> read("DMB.txt");  
For a list of the Main procedures type: Help(); for help with a specific procedure type: Help(ProcedureName); for example Help(Feig);  
For a list of the Continuous Dynamical Models procedures type: HelpC(); for help with a specific procedure type: Help(ProcedureName); for example Help(Feig);  
(1)  
> S := dsolve({diff(x(t),t)=x(t)-y(t),diff(y(t),t)=y(t)-x(t),x(0)=1,y(0)=0},{x(t),y(t)});  
plot([subs(S,x(t)),subs(S,y(t)),t=0..10]);
```

$$S := \left\{ x(t) = \frac{1}{2} + \frac{e^{2t}}{2}, y(t) = -\frac{e^{2t}}{2} + \frac{1}{2} \right\}$$


3. Use Maple to solve and then plot the phase-plane diagram for the system

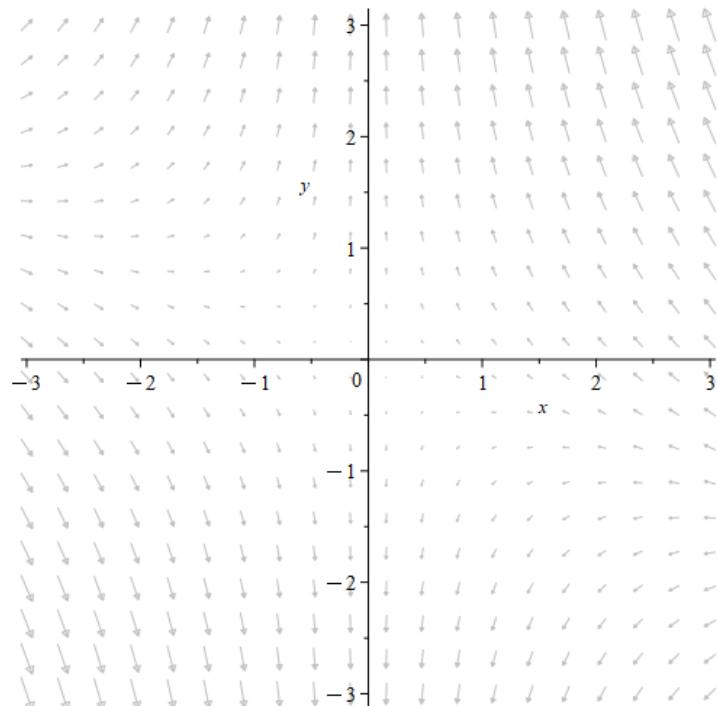
$$\frac{dx}{dt} = a_{11}x + a_{12}y \quad , \quad \frac{dy}{dt} = a_{21}x + a_{22}y \quad , \quad x(0) = 1 \quad , \quad y(0) = 1 \quad ,$$

for three randomly chosen matrices


$$\begin{bmatrix} a_{11} & a_{12} \\ a_{21} & a_{22} \end{bmatrix}$$

$$\begin{aligned} "A" = & \begin{bmatrix} -2 & 3 \\ 1 & 1 \end{bmatrix} \\ x(t) = & \left(\frac{1}{2} + \frac{5\sqrt{21}}{42} \right) e^{\frac{(-1+\sqrt{21})t}{2}} \sqrt{21} - \left(\frac{1}{2} - \frac{5\sqrt{21}}{42} \right) e^{\frac{(1+\sqrt{21})t}{2}} \sqrt{21} - 3 \left(\frac{1}{2} + \frac{5\sqrt{21}}{42} \right) e^{\frac{(-1+\sqrt{21})t}{2}} - 3 \left(\frac{1}{2} - \frac{5\sqrt{21}}{42} \right) e^{\frac{(1+\sqrt{21})t}{2}} \\ & + \frac{5\sqrt{21}}{42} e^{\frac{(-1+\sqrt{21})t}{2}} + \left(\frac{1}{2} - \frac{5\sqrt{21}}{42} \right) e^{\frac{(1+\sqrt{21})t}{2}} \end{aligned}$$

$$"A" = \begin{bmatrix} 3 & 2 \\ 3 & -3 \end{bmatrix}$$

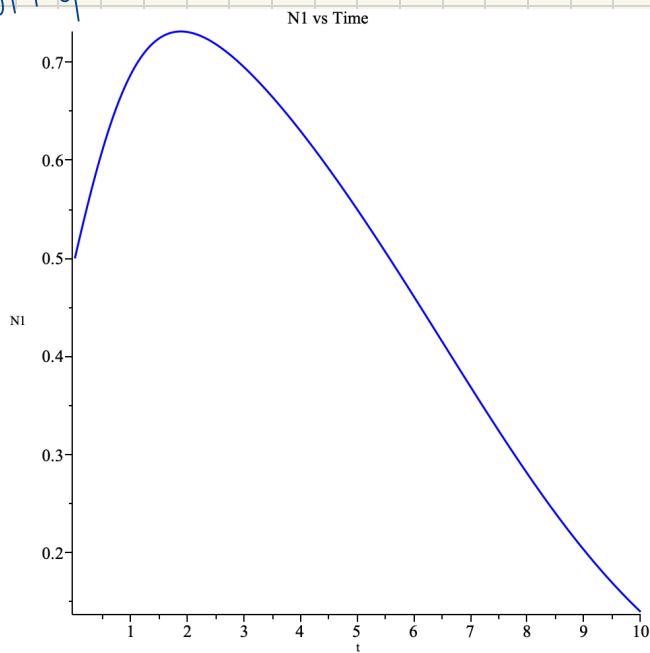

$$\left\{ x(t) = \frac{\sqrt{15}}{6} e^{\sqrt{15}t} - \frac{\sqrt{15}}{6} e^{-\sqrt{15}t} + \frac{e^{\sqrt{15}t}}{2} + \frac{e^{-\sqrt{15}t}}{2}, y(t) = \frac{e^{\sqrt{15}t}}{2} + \frac{e^{-\sqrt{15}t}}{2} \right\}$$

not a valid dsolve/numeric solution

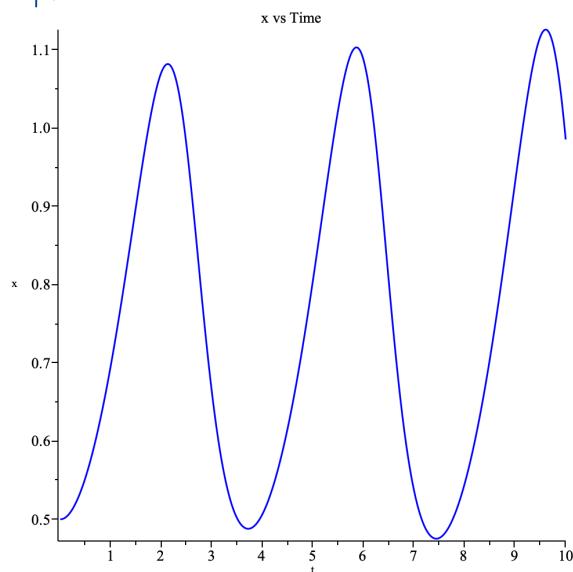
$$"A = " \begin{bmatrix} -1 & 0 \\ 1 & 2 \end{bmatrix}$$

$$\left\{ x(t) = e^{-t}, y(t) = -\frac{e^{-t}}{3} + \frac{4e^{2t}}{3} \right\}$$

4. Carefully read, and understand, the Maple code for the following procedures (type `Help(ProcedureName);` for instructions)


`Lotka`, `Volterra`, `VolterraM`

in the Maple package


<https://sites.math.rutgers.edu/~zeilberg/Bio25/DMB.txt> ,

For **each of them**, experiment with **three** random choices of parameters, and random initial conditions, using `Dis` (with $h = 0.01$), of *each* of the quantities in question.

Lotka

Volterra

VosterraM

