

Homework for Lecture 21 of Dr. Z.'s Dynamical Models in Biology class

Email the answers (either as .pdf file and/or .txt file) to

ShaloshBEkhad@gmail.com

by 8:00pm Monday, Dec. 1, 2025.

Subject: hw21

with an attachment hw21FirstLast.pdf and/or hw21FirstLast.txt

1. By hand solve the system

$$\frac{dx}{dt} = x - y \quad , \quad \frac{dy}{dt} = y - x \quad , \quad x(0) = 1 \quad , \quad y(0) = 1 \quad .$$

Plot, by hand, the phase-plane diagram.

2. Now use Maple with the command

```
S:=dsolve({diff(x(t),t)=x(t)-y(t),diff(y(t),t)=y(t)-x(t),x(0)=1,y(0)=0},{x(t),y(t)});  
plot([subs(S,x(t)),subs(S,y(t)),t=0..10]);
```

did you get the same thing?

3. Use Maple to solve and then plot the phase-plane diagram for the system

$$\frac{dx}{dt} = a_{11}x + a_{12}y \quad , \quad \frac{dy}{dt} = a_{21}x + a_{22}y \quad , \quad x(0) = 1 \quad , \quad y(0) = 1 \quad ,$$

for three randomly chosen matrices

$$\begin{bmatrix} a_{11} & a_{12} \\ a_{21} & a_{22} \end{bmatrix} \quad .$$

4. Carefully read, and understand, the Maple code for the following procedures (type Help(ProcedureName); for instructions)

`Lotka`, `Volterra`, `VolterraM`

in the Maple package

<https://sites.math.rutgers.edu/~zeilberg/Bio25/DMB.txt> ,

For **each of them**, experiment with **three** random choices of parameters, and random initial conditions, using `Dis` (with $h = 0.01$), of *each* of the quantities in question.

Send me these nice plots.

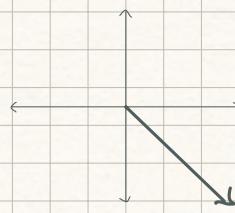
Confirm the numerics by using **SEquP**.

1. By hand solve the system

$$\frac{dx}{dt} = x - y, \quad \frac{dy}{dt} = y - x, \quad x(0) = 1, \quad y(0) = 1.$$

Plot, by hand, the phase-plane diagram.

$$0 = x - y \\ x = y$$


$$0 = y - x$$

$$J = \begin{bmatrix} 1 & -1 \\ -1 & 1 \end{bmatrix}$$

$$J(0,0) = \begin{bmatrix} 1 & -1 \\ -1 & 1 \end{bmatrix}$$

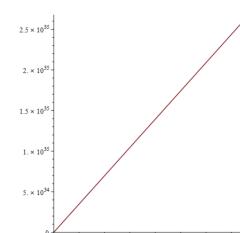
$$(1-\lambda)(1-\lambda) - 1 = 0 \\ 1 - 2\lambda + \lambda^2 - 1 = 0 \\ \lambda^2 - 2\lambda = 0 \\ \lambda(\lambda - 2) = 0 \\ \lambda = 0, 2$$


$(0,0)$ is eq. point

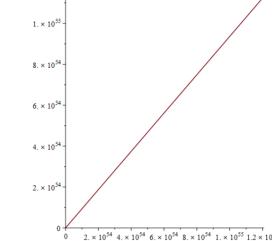
2. Now use Maple with the command

```
S:=dsolve({diff(x(t),t)=x(t)-y(t),diff(y(t),t)=y(t)-x(t),x(0)=1,y(0)=0},{x(t),y(t)});  
plot([subs(S,x(t)),subs(S,y(t)),t=0..10]);
```

did you get the same thing?


3. Use Maple to solve and then plot the phase-plane diagram for the system

$$\frac{dx}{dt} = a_{11}x + a_{12}y, \quad \frac{dy}{dt} = a_{21}x + a_{22}y, \quad x(0) = 1, \quad y(0) = 1,$$


for three randomly chosen matrices

$$\begin{bmatrix} a_{11} & a_{12} \\ a_{21} & a_{22} \end{bmatrix}$$

```
a := RandomMatrix(2,10)  
> A := dsolve({diff(x(t),t) = a[1,1]*x(t) + a[1,2]*y(t), diff(y(t),t) = a[2,1]*x(t) + a[2,2]*y(t), x(0) = 1, y(0) = 1}, {x(t),y(t)});  
a := [1.191, 18.21]  
A := x(t) = (1/2 + 5/108)*e^(18+207/11)*(-1+4/207)*t + (1/2 - 5/108)*e^(18+207/11)*(-1-4/207)*t + (1/2 + 5/108)*e^(18+207/11)*20 - (1/2 - 5/108)*e^(-18+207/11)*20  
+ (1/2 + 5/108)*e^(18+207/11)*(-1+4/207)*t + (1/2 - 5/108)*e^(18+207/11)*(-1-4/207)*t  
> plot([subs(A,x(t)),subs(A,y(t)),t=0..10]);
```



```
a := RandomMatrix(2,10)  
> A := dsolve({diff(x(t),t) = a[1,1]*x(t) + a[1,2]*y(t), diff(y(t),t) = a[2,1]*x(t) + a[2,2]*y(t), x(0) = 1, y(0) = 1}, {x(t),y(t)});  
a := [4.6, 15.1]  
A := x(t) = (1/2 + 5/139)*e^(15+207/11)*(-1+4/207)*t + (1/2 - 5/139)*e^(15+207/11)*(-1-4/207)*t + (1/2 + 5/139)*e^(15+207/11)*12 - (1/2 - 5/139)*e^(-15+207/11)*12  
+ (1/2 + 5/139)*e^(15+207/11)*(-1+4/207)*t + (1/2 - 5/139)*e^(15+207/11)*(-1-4/207)*t  
> plot([subs(A,x(t)),subs(A,y(t)),t=0..10]);
```