Dynamical Models in Biology — HW 17

Praneeth Vedantham — Pv226

1) Consider the one-dimensional differential equation

dx
= == - -T)(z-83).

Equilibria. Equilibria satisfy 2’ = 0, so

—(z—=1)(x —4)(x — 7)(z —8) =0.

Thus the equilibrium points are

rx=1 417 8.

Stability via sign analysis. Let f(z) = —(z — 1)(z — 4)(x — 7)(x — 8). We check the
sign of f(x) on each interval separated by the roots.

For z <1 (e.g. 2 =10): (0—1)(0—4)(0—"7)(0—8) is the product of four negative
numbers, hence positive, so f(0) = —(+) < 0. Solutions move to the left.

Forl <z <4 (eg z=2): (2—1)(2—-4)(2—T7)(2— 8) has three negative factors
and one positive factor, so the product is negative and f(2) = —(—) > 0. Solutions
move to the right.

Ford <z <7 (eg x=5): (5—1)(b—4)(5b—"7)(5—8) is a product of two positive

and two negative factors, so it is positive and f(5) = —(4) < 0. Solutions move to
the left.

For 7 <z <8 (e.g. ¢ =7.5): (7.5 —1)(7.5—4)(7.5—7)(7.5 — 8) has three positive
factors and one negative factor, so it is negative and f(7.5) = —(—) > 0. Solutions

move to the right.

For x > 8 (e.g. 2 =19): (9—1)(9—4)(9 —7)(9 — 8) is the product of four positive
factors, so it is positive and f(9) = —(+) < 0. Solutions move to the left.

Reading off stability from the direction of arrows:

At x = 1: trajectories move left on the left side and right on the right side, so they
move away from x = 1 on both sides. Thus x = 1 is unstable.

At x = 4: trajectories move right on the left side and left on the right side, so they
move toward x = 4. Thus x = 4 is asymptotically stable.



e At x = T: trajectories move left on the left side and right on the right side, so they
move away from x = 7. Thus x = 7 is unstable.

e At x = 8: trajectories move right on the left side and left on the right side, so they
move toward x = 8. Thus z = 8 is asymptotically stable.

So the stable equilibria are x = 4 and x = 8.

2) Consider the system

’d:t_ B 3x
dt l+y+2’
dy_l_ 3y
dat 1+2+2
dz_1 3z
L dt 1+x+y

Equilibrium. Set each derivative equal to zero:

3x 3y 1 3z

1— =Y - =Y - =0
1+y+z 1+z+2 1+z+y

These give the linear equations
dr=14+y+z2 3dy=1l+az+z2 3z=1+z+y.

Rewriting,
3r—y—z=1, —2x+4+3y—z=1, —cr—-y+32=1.

By symmetry it is natural to look for x = y = 2z = s. Substituting into the first equation:
3s—s—s=1= s=1

Thus (1,1,1) is an equilibrium. The coefficient matrix is invertible, so this is the unique
equilibrium.

Jacobian. Let

3x 3y 3z
Hh=1- , fo=1- s 3 - :
1+y+z 1+z+=2 l+x+y
Then 5 5
T
flx__1+y+z> fly flz_(1+y+z)27
and by symmetry,
3 3y
f2y__1—|—$—|—27 f2x_f2z (1+$+Z>27
3 3z
f3z _1+x—|—y’ f3:]c f3y— (1—|—l’+y)2



3)

At (1,1,1) wehave l+ 2z +y=14+2x+2z=1+y+2=3,s0x =y =z = 1. Therefore

-1 1/3 1/3
J(1,1,1)=11/3 -1 1/3
1/3 1/3 -1
This matrix has diagonal entries @ = —1 and off-diagonal entries b = 1/3. For such a

3 X 3 matrix, one eigenvector is (1,1,1)" with eigenvalue

2 1
M=a+2b=—-14+-=——
! 3 3
and any vector orthogonal to (1, 1,1) lies in a two-dimensional eigenspace with eigenvalue

1 4
No=a—b=—1—-=—,
3 3

of multiplicity 2.
All eigenvalues are negative, so the equilibrium (1, 1, 1) is an asymptotically stable node.

Thus (1,1,1) is the only equilibrium, and it is asymptotically stable.

Consider the system

’d:t_ _ x
at l+y+2’
dy Yy

AR [ —
dt l+x+=2
dz z

R I —
L dt l+z+vy

Equilibrium. Set derivatives to zero:

x _ Yy _ < _
l+y+z ’ l4+z+z2 l+z+y
which give
r=14+y+z y=l4+az+z z=14+2+y.
Rewriting,

r—y—z=1, —-oz+y—z2z=1, —z—-—y+z=1
Again try x = y = z = s. The first equation then gives
s=s5—s5=1= —s=1= s=—1.

Thus (—1,—1,—1) is an equilibrium, and it is in fact the unique equilibrium.
Jacobian. Let

fi=1

x Yy z
i u— :1 _— :1
l+y+2 f2 fs
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Then )
x
fio = —7——— fly_flz_mv

14yt
and analogously for fs, f5.
At (-1,-1,-1)wehave l+z+y=142+z2=14+y+z=—-l,ander=y=2=—1.
Hence

1 -1
fl:c :f2y :fSZ =T 1= L fly = flz :fQJ: :fZZ :fo :f3y = m =-1
Thus
1 -1 -1
J-1,-1,-1)=1-1 1 -1
-1 -1 1
This matrix has diagonal entries a = 1 and off-diagonal entries b = —1. Therefore

M=a+2b=1-2=—1, J=a—-b=1—(-1)=2,

with Ay having multiplicity 2.

Since the eigenvalues have mixed signs (—1 and 2), the equilibrium (—1,—1,—1) is a
saddle point and hence unstable.

Thus (—1,—1, —1) is the only equilibrium, and it is unstable, so this system has no stable
equilibria.

Consider the Chemostat model
dN 2C
— =|———-1)|N
dt 1+C ) ’
dC C
— = ——N — 5
dt 1+C C+5,

with parameters a; = 2 and ay = 5.

Equilibria. At equilibrium,

20 C
—— _ _1|N= - _N-— =0.
(1+C ) 0 o Tetre=0

From the first equation, either

9
N0 o 2 _1_,
1+

Case 1: N = 0. Then the second equation reduces to

—-(C+5=0 = C=5.



So one equilibrium is

(N, C) = (0,5)
Case 2: 1i_—oo—lz(). Solving,
2C
T C = 2C +C = C

Substituting C' = 1 into the second equation:

1 1
0=———N—-145=—-N+14
1+1 + 2 T

SO
1 1
—5N+4=0= -N=4= N=8

Thus the second equilibrium is
(N,C) = (8,1).

Therefore the system has two equilibria:

(0,5) and (8,1).

Jacobian and stability. Let

20 C
F(N,C)=(—-—-1|N NC)=——_N-— ,
(N,0) (1+C ) ,  G(N,0) VO
Then o0 5
Fy=-—"-1 F, . -
NTiyc o v “ 1+C)2
C N
___v — — 1.
Ov=—13¢ Co (1+C)?
So
2¢ 2N
1+C 1+C)2
Jv,0) = | 1T (1%0)

. - 1
1+C (1+0C)?
At (N,C) = (0,5) we have 1 + C' =6, (1 4+ C)* = 36, and N = 0. Then
. 2
Fy==Z—-1=7—-1=3 Fo=0, Gy=—2, Ge=-L

Thus



Its eigenvalues are the diagonal entries,

2
)\1:§>0, A= —1<0.

Since one eigenvalue is positive and one is negative, (0,5) is a saddle point and therefore
unstable.

At (N,C) = (8,1) we have 1 + C' =2, (14+ C)* =4, and N = 8. Then

2-1 2.8
Fy=—-1=1-1= Fo=—=4
N 9 07 C 4 )

1 8
Gy 5 Ge 1 3

So

0 4
w2,

The characteristic polynomial is

-\ 4
det(J — M) = det = A3+ AN +2=N+3\+2.
et( ) e<_1/2 _3_)\> (B+A)+ +3X +
Solving
M43A+2=0 = A+1)(A+2)=0,
we get

M=-1 h=-2
which are both negative. Therefore (8,1) is an asymptotically stable node.

Conclusion. The equilibria are (0,5) and (8,1). The point (0,5) is a saddle (unstable),
while (8, 1) is asymptotically stable and is the only stable equilibrium.



