
Dynamical Models in Biology – HW 17

Praneeth Vedantham — Pv226

1) Consider the one-dimensional differential equation

dx

dt
= −(x− 1)(x− 4)(x− 7)(x− 8).

Equilibria. Equilibria satisfy x′ = 0, so

−(x− 1)(x− 4)(x− 7)(x− 8) = 0.

Thus the equilibrium points are
x = 1, 4, 7, 8.

Stability via sign analysis. Let f(x) = −(x− 1)(x− 4)(x− 7)(x− 8). We check the
sign of f(x) on each interval separated by the roots.

• For x < 1 (e.g. x = 0): (0− 1)(0− 4)(0− 7)(0− 8) is the product of four negative
numbers, hence positive, so f(0) = −(+) < 0. Solutions move to the left.

• For 1 < x < 4 (e.g. x = 2): (2 − 1)(2 − 4)(2 − 7)(2 − 8) has three negative factors
and one positive factor, so the product is negative and f(2) = −(−) > 0. Solutions
move to the right.

• For 4 < x < 7 (e.g. x = 5): (5− 1)(5− 4)(5− 7)(5− 8) is a product of two positive
and two negative factors, so it is positive and f(5) = −(+) < 0. Solutions move to
the left.

• For 7 < x < 8 (e.g. x = 7.5): (7.5− 1)(7.5− 4)(7.5− 7)(7.5− 8) has three positive
factors and one negative factor, so it is negative and f(7.5) = −(−) > 0. Solutions
move to the right.

• For x > 8 (e.g. x = 9): (9 − 1)(9 − 4)(9 − 7)(9 − 8) is the product of four positive
factors, so it is positive and f(9) = −(+) < 0. Solutions move to the left.

Reading off stability from the direction of arrows:

• At x = 1: trajectories move left on the left side and right on the right side, so they
move away from x = 1 on both sides. Thus x = 1 is unstable.

• At x = 4: trajectories move right on the left side and left on the right side, so they
move toward x = 4. Thus x = 4 is asymptotically stable.
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• At x = 7: trajectories move left on the left side and right on the right side, so they
move away from x = 7. Thus x = 7 is unstable.

• At x = 8: trajectories move right on the left side and left on the right side, so they
move toward x = 8. Thus x = 8 is asymptotically stable.

So the stable equilibria are x = 4 and x = 8.

2) Consider the system 

dx

dt
= 1− 3x

1 + y + z
,

dy

dt
= 1− 3y

1 + x+ z
,

dz

dt
= 1− 3z

1 + x+ y
.

Equilibrium. Set each derivative equal to zero:

1− 3x

1 + y + z
= 0, 1− 3y

1 + x+ z
= 0, 1− 3z

1 + x+ y
= 0.

These give the linear equations

3x = 1 + y + z, 3y = 1 + x+ z, 3z = 1 + x+ y.

Rewriting,
3x− y − z = 1, −x+ 3y − z = 1, −x− y + 3z = 1.

By symmetry it is natural to look for x = y = z = s. Substituting into the first equation:

3s− s− s = 1 ⇒ s = 1.

Thus (1, 1, 1) is an equilibrium. The coefficient matrix is invertible, so this is the unique
equilibrium.

Jacobian. Let

f1 = 1− 3x

1 + y + z
, f2 = 1− 3y

1 + x+ z
, f3 = 1− 3z

1 + x+ y
.

Then

f1x = − 3

1 + y + z
, f1y = f1z =

3x

(1 + y + z)2
,

and by symmetry,

f2y = − 3

1 + x+ z
, f2x = f2z =

3y

(1 + x+ z)2
,

f3z = − 3

1 + x+ y
, f3x = f3y =

3z

(1 + x+ y)2
.
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At (1, 1, 1) we have 1 + x+ y = 1 + x+ z = 1 + y + z = 3, so x = y = z = 1. Therefore

J(1, 1, 1) =

−1 1/3 1/3
1/3 −1 1/3
1/3 1/3 −1

 .

This matrix has diagonal entries a = −1 and off-diagonal entries b = 1/3. For such a
3× 3 matrix, one eigenvector is (1, 1, 1)T with eigenvalue

λ1 = a+ 2b = −1 +
2

3
= −1

3
,

and any vector orthogonal to (1, 1, 1) lies in a two-dimensional eigenspace with eigenvalue

λ2 = a− b = −1− 1

3
= −4

3
,

of multiplicity 2.

All eigenvalues are negative, so the equilibrium (1, 1, 1) is an asymptotically stable node.

Thus (1, 1, 1) is the only equilibrium, and it is asymptotically stable.

3) Consider the system 

dx

dt
= 1− x

1 + y + z
,

dy

dt
= 1− y

1 + x+ z
,

dz

dt
= 1− z

1 + x+ y
.

Equilibrium. Set derivatives to zero:

1− x

1 + y + z
= 0, 1− y

1 + x+ z
= 0, 1− z

1 + x+ y
= 0,

which give
x = 1 + y + z, y = 1 + x+ z, z = 1 + x+ y.

Rewriting,
x− y − z = 1, −x+ y − z = 1, −x− y + z = 1.

Again try x = y = z = s. The first equation then gives

s− s− s = 1 ⇒ −s = 1 ⇒ s = −1.

Thus (−1,−1,−1) is an equilibrium, and it is in fact the unique equilibrium.

Jacobian. Let

f1 = 1− x

1 + y + z
, f2 = 1− y

1 + x+ z
, f3 = 1− z

1 + x+ y
.
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Then

f1x = − 1

1 + y + z
, f1y = f1z =

x

(1 + y + z)2
,

and analogously for f2, f3.

At (−1,−1,−1) we have 1 + x+ y = 1 + x+ z = 1 + y + z = −1, and x = y = z = −1.
Hence

f1x = f2y = f3z = − 1

−1
= 1, f1y = f1z = f2x = f2z = f3x = f3y =

−1

(−1)2
= −1.

Thus

J(−1,−1,−1) =

 1 −1 −1
−1 1 −1
−1 −1 1

 .

This matrix has diagonal entries a = 1 and off-diagonal entries b = −1. Therefore

λ1 = a+ 2b = 1− 2 = −1, λ2 = a− b = 1− (−1) = 2,

with λ2 having multiplicity 2.

Since the eigenvalues have mixed signs (−1 and 2), the equilibrium (−1,−1,−1) is a
saddle point and hence unstable.

Thus (−1,−1,−1) is the only equilibrium, and it is unstable, so this system has no stable
equilibria.

4) Consider the Chemostat model
dN

dt
=

(
2C

1 + C
− 1

)
N,

dC

dt
= − C

1 + C
N − C + 5,

with parameters a1 = 2 and a2 = 5.

Equilibria. At equilibrium,(
2C

1 + C
− 1

)
N = 0, − C

1 + C
N − C + 5 = 0.

From the first equation, either

N = 0 or
2C

1 + C
− 1 = 0.

Case 1: N = 0. Then the second equation reduces to

−C + 5 = 0 ⇒ C = 5.
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So one equilibrium is
(N,C) = (0, 5).

Case 2:
2C

1 + C
− 1 = 0. Solving,

2C

1 + C
= 1 ⇒ 2C = 1 + C ⇒ C = 1.

Substituting C = 1 into the second equation:

0 = − 1

1 + 1
N − 1 + 5 = −1

2
N + 4,

so

−1

2
N + 4 = 0 ⇒ 1

2
N = 4 ⇒ N = 8.

Thus the second equilibrium is
(N,C) = (8, 1).

Therefore the system has two equilibria:

(0, 5) and (8, 1).

Jacobian and stability. Let

F (N,C) =

(
2C

1 + C
− 1

)
N, G(N,C) = − C

1 + C
N − C + 5.

Then

FN =
2C

1 + C
− 1, FC = N · 2

(1 + C)2
,

GN = − C

1 + C
, GC = − N

(1 + C)2
− 1.

So

J(N,C) =


2C

1 + C
− 1

2N

(1 + C)2

− C

1 + C
− N

(1 + C)2
− 1

 .

At (N,C) = (0, 5) we have 1 + C = 6, (1 + C)2 = 36, and N = 0. Then

FN =
2 · 5
6

− 1 =
10

6
− 1 =

2

3
, FC = 0, GN = −5

6
, GC = −1.

Thus

J(0, 5) =

(
2/3 0

−5/6 −1

)
.
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Its eigenvalues are the diagonal entries,

λ1 =
2

3
> 0, λ2 = −1 < 0.

Since one eigenvalue is positive and one is negative, (0, 5) is a saddle point and therefore
unstable.

At (N,C) = (8, 1) we have 1 + C = 2, (1 + C)2 = 4, and N = 8. Then

FN =
2 · 1
2

− 1 = 1− 1 = 0, FC =
2 · 8
4

= 4,

GN = −1

2
, GC = −8

4
− 1 = −2− 1 = −3.

So

J(8, 1) =

(
0 4

−1/2 −3

)
.

The characteristic polynomial is

det(J − λI) = det

(
−λ 4

−1/2 −3− λ

)
= λ(3 + λ) + 2 = λ2 + 3λ+ 2.

Solving
λ2 + 3λ+ 2 = 0 ⇒ (λ+ 1)(λ+ 2) = 0,

we get
λ1 = −1, λ2 = −2,

which are both negative. Therefore (8, 1) is an asymptotically stable node.

Conclusion. The equilibria are (0, 5) and (8, 1). The point (0, 5) is a saddle (unstable),
while (8, 1) is asymptotically stable and is the only stable equilibrium.
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