

## Homework for Lecture 17 of Dr. Z.'s Dynamical Models in Biology class

Email the answers (as a .pdf file) to

ShaloshBEkhad@gmail.com

by 8:00pm Monday, Nov. 3, 2025.

Subject: hw17

with an attachment hw17FirstLast.pdf

**1.** Find all the equilibrium points and stable equilibrium points of the following one-dimensional dynamical system

$$\frac{dx}{dt} = -(x-1)(x-4)(x-7)(x-8) .$$

**2.** (You can use Maple for the eigenvalues, but not for the Jacobian)

Find all stable equilibria of the 3-dimensinal dynamical system:

$$\begin{aligned}\frac{dx}{dt} &= 1 - \frac{3x}{1+y+z} , \\ \frac{dy}{dt} &= 1 - \frac{3y}{1+x+z} , \\ \frac{dz}{dt} &= 1 - \frac{3z}{1+x+y} .\end{aligned}$$

**3.** Find all the the equilibria and stable equilibria of the 3-dimensinal dynamical system:

$$\begin{aligned}\frac{dx}{dt} &= 1 - \frac{x}{1+y+z} , \\ \frac{dy}{dt} &= 1 - \frac{y}{1+x+z} , \\ \frac{dz}{dt} &= 1 - \frac{z}{1+x+y} .\end{aligned}$$

**4.** What are the equilibria, and stable equilibria of the Chemostat model with parameters  $a_1 = 2$  and  $a_2 = 5$ ?

1.  $\frac{dx}{dt} = -(x-1)(x-4)(x-7)(x-8)$  clear zeroes at  $x=1, 4, 7, 8$ : these are equilibria  
 using the generalized product rule:  $\frac{df}{dx} = -1 \left[ (x-1)(x-4)(x-7) + (x-1)(x-4)(x-8) + (x-1)(x-7)(x-8) + (x-4)(x-7)(x-8) \right]$

Using negative or positive:  $x=1$ : positive, unstable.  $x=4$ : negative, stable.  $x=7$ : positive, unstable.  $x=8$ : negative, stable

2.  $\frac{dx}{dt} = 1 - \frac{3x}{1+y+z}$   $\frac{dy}{dt} = 1 - \frac{3y}{1+x+z}$   $\frac{dz}{dt} = 1 - \frac{3z}{1+x+y}$

the only eq. point is when  $\frac{3x}{1+y+z} = \frac{3y}{1+x+z} = \frac{3z}{1+x+y} = 1$ , which happens for  $x=y=z=1$ .

$$J \Rightarrow \frac{df_1}{dx} = \frac{3}{1+y+z} \quad \frac{df_1}{dy} = \frac{3x}{(1+y+z)^2} \quad \frac{df_1}{dz} = \frac{3x}{(1+y+z)^2}$$

same process for others:

$$J = \begin{bmatrix} -\frac{3}{1+y+z} & \frac{3x}{(1+y+z)^2} & \frac{3x}{(1+y+z)^2} \\ \frac{3y}{(1+x+z)^2} & -\frac{3}{1+x+z} & \frac{3y}{(1+x+z)^2} \\ \frac{3z}{(1+x+y)^2} & \frac{3z}{(1+x+y)^2} & -\frac{3}{1+x+y} \end{bmatrix} \quad J(1,1,1) = \begin{bmatrix} -1 & \frac{1}{3} & \frac{1}{3} \\ \frac{1}{3} & -1 & \frac{1}{3} \\ \frac{1}{3} & \frac{1}{3} & -1 \end{bmatrix}$$

$\lambda = -\frac{1}{3}, -\frac{4}{3}$  : all negative.  
 $(1,1,1)$  is stable

3.  $\frac{dx}{dt} = 1 - \frac{x}{1+y+z}$   $\frac{dy}{dt} = 1 - \frac{y}{1+x+z}$   $\frac{dz}{dt} = \frac{z}{1+x+y}$

We need all fractions = 1, as before. We are forced to have  $x=y=z="a"$ . Let  $\frac{a}{1+2a} = 1$ .  
 $a = 1+2a \rightarrow a = -1$ . Test:  $1 - \frac{(-1)}{1-2} = 0$  ✓ so  $(-1, -1, -1)$  is the only eq. point

$$J \Rightarrow \frac{df_1}{dx} = \frac{1}{1+y+z} \quad \frac{df_1}{dy} = \frac{x}{(1+y+z)^2} \quad \frac{df_1}{dz} = \frac{x}{(1+y+z)^2}$$

same process for the rest

$$J = \begin{bmatrix} -\frac{1}{1+y+z} & \frac{x}{(1+y+z)^2} & \frac{x}{(1+y+z)^2} \\ \frac{y}{(1+x+z)^2} & -\frac{1}{1+x+z} & \frac{y}{(1+x+z)^2} \\ \frac{z}{(1+x+y)^2} & \frac{z}{(1+x+y)^2} & -\frac{1}{1+x+y} \end{bmatrix} \quad J(-1, -1, -1) : \begin{bmatrix} 1 & -1 & -1 \\ -1 & 1 & -1 \\ -1 & -1 & 1 \end{bmatrix} \quad \lambda = -1, 2, \text{ so } (-1, -1, -1) \text{ is not stable.}$$

4. chemostat where  $q_1 = 2$ ,  $q_2 = 5$ :

$$\frac{dN}{dt} = 2 \frac{CN}{C+1} - N \quad \frac{dC}{dt} = -\frac{CN}{C+1} - C + 5 \quad \text{has eq points } (0, 5) \text{ and}$$

$(0, 5)$  is not stable according to the notes.

$$\left( \frac{2(10-5-1)}{2-1}, \frac{1}{2-1} \right) = (8, 1)$$

$$J = \begin{bmatrix} \frac{2C}{C+1} - 1 & \frac{2N}{(C+1)^2} \\ -\frac{C}{C+1} & -\frac{N}{(C+1)^2} \end{bmatrix} \rightarrow J(8, 1) = \begin{bmatrix} 0 & 4 \\ -\frac{1}{2} & -3 \end{bmatrix} \quad \lambda = -1, -2 \quad \text{stable at } (8, 1)$$