

Homework for Lecture 16 of Dr. Z.'s Dynamical Models in Biology class

Email the answers (as a .pdf file) to

ShaloshBEkhad@gmail.com

by 8:00pm Monday, Nov. 3, 2025.

Subject: hw16

with an attachment hw16FirstLast.pdf

1. For the generalized Hardy-Weinberg model given by $HWg(u, v, M)$ where M is a 3 by 3 preference matrix

Type

dominating alleles	AA	Aa	aa
II	II	II	II
7	12	1	21

$M := \text{RandMat}(3, 30); T := HWg(u, v, M); \text{SSSgN}(T, [u, v]);$

40 times and record in how many cases only one of the alleles AA, Aa, aa will survive (i.e. the output is close to [0,1], [1,0], or [0,0]) and in how many of them they will also survive.

2. for each of $b=c=0.1, 0.15, 0.2, 0.25, 0.3, 0.35, 0.4$

Using

$\text{SSSgN}(\text{AllenSIR}(a, b, c, x, y), [x, y]);$

for $a = (b+c)/2, a = (b+c), a = 1.5(b+c), a = 2(b+c), a = 10(b+c), a = 100(b+c)$

Confirm, in each case, that in the Linda Allen model, for $a = (b+c)/2$ in the long run there are no infected individuals, but after $a = (b+c)$, they will start showing up. Also confirm that even for large a , they will not all be infected but x_n and y_n tend to some number.

$a = \frac{b+c}{2}$ no infected

$a = b+c$ infected persist

$a = 1.5(b+c)$ infected persist

$a = 2(b+c)$ infected persist

$a = 10(b+c)$ infected persist

$a = 100(b+c)$ infected persist but not everyone

when $a = \frac{b+c}{2}$ there are no infected individuals in the long run but once $a \geq b+c$ infected individuals persist, even for large a values, not everyone will be infected; both x_n, y_n approach finite values.