

Homework for Lecture 16 of Dr. Z.'s Dynamical Models in Biology class

Email the answers (as a .pdf file) to

ShaloshBEkhad@gmail.com

by 8:00pm Monday, Nov. 3, 2025.

Subject: hw16

with an attachment hw16FirstLast.pdf

1. For the generalized Hardy-Weinberg model given by $HWg(u, v, M)$ where M is a 3 by 3 preference matrix

Type

```
M:=RandMat(3,30); T:=HWg(u,v,M); SSSgN(T,[u,v]);
```

40 times and record in how many cases only one of the alleles AA, Aa, aa will survive (i.e. the output is close to [0,1], [1,0], or [0,0]) and in how many of them they will also survive.

2. for each of $b=c=0.1, 0.15, 0.2, 0.25, 0.3, 0.35, 0.4$

Using

```
SSSgN(AllenSIR(a,b,c,x,y),[x,y]);
```

for $a=(b+c)/2$, $a=(b+c)$, $a=1.5*(b+c)$, $a=2*(b+c)$, $a=10*(b+c)$, $a=100*(b+c)$

Confirm, in each case, that in the Linda Allen model, for $a = (b + c)/2$ in the long run there are no infected individuals, but after $a = (b + c)$, they will start showing up. Also confirm that even for large a , they will not all be infected but x_n and y_n tend to some number.

1. Out of 40 generalized HW trials,

AA was the only one to survive 12 times
 Aa was the only one to survive 0 times
 aa was the only one to survive 9 times

A mixture of genotypes survived 19 times

21 out of 40 trials,
 one genotype dominated.

2. For values of $b \& c$:

	0.1	0.15	0.2	0.25	0.3	0.35	0.4
for different a :							
$(b+c)/2$	essentially (0, 1)	(0, 1)	(0, 1)	(0, 1)	(0, 1)	(0, 1)	error in function ("not rational")
$(b+c)$	(0.002, 0.995)	(0.002, 0.996)	(0.001, 0.998)	(0.001, 0.998)	(0.001, 0.999)	(0.001, 0.999)	maple does not
$1.5(b+c)$	(0.16, 0.68)	(0.155, 0.69)	(0.151, 0.69)	(0.148, 0.701)	(0.145, 0.71)	(0.141, 0.717)	like 0.4 for $b \& c$
$2(b+c)$	(0.238, 0.524)	(0.232, 0.536)	(0.227, 0.55)	(0.221, 0.557)	(0.216, 0.568)	(0.211, 0.578)	
$10(b+c)$	(0.43, 0.15)	(0.413, 0.171)	(0.399, 0.200)	(0.387, 0.228)	(0.374, 0.25)	(0.362, 0.275)	
$100(b+c)$	(0.45, 0.09)	(0.435, 0.130)	(0.417, 0.167)	(0.4, 0.2)	(0.3816, 0.28)	(0.37, 0.26)	

The data above shows:

① for all $a = \frac{b+c}{2}$ cases, in the long run, no one is infected

② for all $a = b+c$ (and larger a), some will be infected but it will stabilize to some proportion, not everyone.

③ As a increases, the amount of infected people in the long run increases

④ As b and c increase, the amount of infected people in the long run decreases

This is all in line with expectations.