

Homework for Lecture 14 of Dr. Z.'s Dynamical Models in Biology class

Email the answers (as .pdf file) to

ShaloshBEkhad@gmail.com

by 8:00pm Monday, Oct. 27, 2025.

Subject: hw14

with an attachment hw14FirstLast.pdf and/or hw14FirstLast.txt (preferred)

Using

<http://sites.math.rutgers.edu/~zeilberg/Bio25/DMB14.txt>

1. Copy-and-paste the following line into your worksheet (once you have downloaded and read **DMB14.txt**):

```
T:=RT([x],10);SSSg(T,[x]); SSg(T,[x],z);ORB(T,[x],[6.],1000,1010)[-1];
```

Run it **twenty** times. Out of these twenty times, how many times did the first and third numbers agree?

2. Copy-and-paste the following line into your worksheet (once you have downloaded and read **DMB14.txt**):

```
T:=RT([x,y],10);SSg(T,[x,y]); SSSg(T,[x,y]);ORB(T,[x,y],[6.,8.],1000,1010)[-1];
```

Run it **twenty** times. Out of these twenty times, how many times did the first and third numbers agree?

3. Copy-and-paste the following line into your worksheet (once you have downloaded and read **DMB14.txt**):

```
T:=RT([x,y,z],10);SSg(T,[x,y,z]); SSSg(T,[x,y,z]);
```

```
ORB(T,[x,y,z],[6.,8.,11.],1000,1010)[-1];
```

Run it **twenty** times. Out of these twenty times, how many times did the first and third numbers agree?

4. Copy-and-paste the following line into your worksheet (once you have downloaded and read **DMB14.txt**):

```
f:=RR([z[1],z[2]],10); T:=RecToTs(2,z,f);SSg(T,[z[1],z[2]]); SSSg(T,[z[1],z[2]]);
```

```
Orbk(2,z,f,[5.,8.],2000,2010)[-1];
```

5. Copy-and-paste the following line into your worksheet (once you have downloaded and read DMB14.txt):

```
f:=BP([z[1],z[2],z[3],10]); T:=RecToTs(3,z,f); SSG(T,[z[1],z[2],z[3]]);
```

```
SSG(T,[z[1],z[2],z[3]]); Orbk(3,z,f,[5.,8.,11.],2000,2010)[-1];
```

Run it **twenty** times. Out of these twenty times, how many times did the last coordinate of the first point and the third numbers agree?

6. Copy-and-paste the following line into your worksheet (once you have downloaded and read DMB14.txt):

```
L:=rand(1..3)(); a:=rand(1..50)()/20.; c:=rand(1..50)()/20.; T:=NicholsonBailey(L,a,c,N,P)  
;SSG(T,[N,P]);SSG(T,[N,P]);
```

Run it **twenty** times. Out of these twenty times, how many times did you get a non-empty set of stable steady-states? (ignore those that have an error message)

7. Copy-and-paste the following line into your worksheet (once you have downloaded and read DMB14.txt):

```
a:=rand(1..10)()/10.; r:=rand(1..10)()/10.; K:=rand(1..10)();  
T:=NicholsonBaileyM(a,r,K,14,N,P); SSG(T,[N,P]);
```

Run it **100** times. Out of these fifty times, how many times did you get a non-empty set of stable steady-states? (ignore those that have an error message)

Orbk(2,z,f,[5.,8.],2000,2010)[-1];

60/100

1. Copy-and-paste the following line into your worksheet (once you have downloaded and read DMB14.txt):

```
T:=RT([x],10);SSSg(T,[x]); SSG(T,[x],z);ORB(T,[x],[6.],1000,1010)[-1];
```

Run it **twenty** times. Out of these twenty times, how many times did the first and third numbers agree?

```
> T:=RT([x],10);SSSg(T,[x]); SSG(T,[x],z);ORB(T,[x],[6.],1000,1010)[-1];
T:= [ 7 + 10x
      6 + 2x
      {[[-1.121320343], [3.121320343]]}
      {[[-1.121320343], [3.121320342]]}

> T:=RT([x],10);SSSg(T,[x]); SSG(T,[x],z);ORB(T,[x],[6.],1000,1010)[-1];
T:= [ 4 + 6x
      3 + 2x
      {[[-1.561552813], [2.591552813]]}
      {[[-1.561552813], [2.591552813]]}

> T:=RT([x],10);SSSg(T,[x]); SSG(T,[x],z);ORB(T,[x],[6.],1000,1010)[-1];
T:= [ 8 + 5x
      10 + 2x
      {[[-1.108495283], [1.108495283]]}
      {[[-1.108495283], [1.108495283]]}

> T:=RT([x],10);SSSg(T,[x]); SSG(T,[x],z);ORB(T,[x],[6.],1000,1010)[-1];
T:= [ 2 + 4x
      8 + 3x
      {[[-0.3874258863], [0.3874258863]]}
      {[[-0.3874258863], [0.3874258867]]}

> T:=RT([x],10);SSSg(T,[x]); SSG(T,[x],z);ORB(T,[x],[6.],1000,1010)[-1];
T:= [ 9 + 10x
      6 + 3x
      {[[-1.672603940], [1.672603940]]}
      {[[-1.672603940], [1.672603940]]}

> T:=RT([x],10);SSSg(T,[x]); SSG(T,[x],z);ORB(T,[x],[6.],1000,1010)[-1];
T:= [ 10 + 2x
      1 + 6x
      {[[-0.786299648], [2.119632982]]}
      {[[-0.786299648], [2.119632982]]}

> T:=RT([x],10);SSSg(T,[x]); SSG(T,[x],z);ORB(T,[x],[6.],1000,1010)[-1];
T:= [ 7 + 7x
      3 + 3x
      {[[-2.333333333], [2.333333333]]}
      {[[-2.333333333], [2.333333333]]}

> T:=RT([x],10);SSSg(T,[x]); SSG(T,[x],z);ORB(T,[x],[6.],1000,1010)[-1];
T:= [ 5 + 3x
      8 + 10x
      {[[-0.5000000000], [0.5000000000]]}
      {[[-1.1, [0.5000000000]], [0.5000000000]]}

> T:=RT([x],10);SSSg(T,[x]); SSG(T,[x],z);ORB(T,[x],[6.],1000,1010)[-1];
T:= [ 3 + x
      1 + 3x
      {[[-1.1], [1.1]], [1.0000000000]}

> T:=RT([x],10);SSSg(T,[x]); SSG(T,[x],z);ORB(T,[x],[6.],1000,1010)[-1];
T:= [ 5 + 5x
      10 + 10x
      {[[-0.5000000000], [0.5000000000]]}
      {[[-0.5000000000], [0.5000000000]]}

> T:=RT([x],10);SSSg(T,[x]); SSG(T,[x],z);ORB(T,[x],[6.],1000,1010)[-1];
T:= [ 10 + 2x
      1 + 4x
      {[([-1.1], [1.1]), [1.0000000000]]}

> T:=RT([x],10);SSSg(T,[x]); SSG(T,[x],z);ORB(T,[x],[6.],1000,1010)[-1];
T:= [ 2 + 9x
      5 + 9x
      {[[-0.7433795288], [0.7433795288]]}
      {[[-0.2989350844], [0.7433795288]]}

> T:=RT([x],10);SSSg(T,[x]); SSG(T,[x],z);ORB(T,[x],[6.],1000,1010)[-1];
T:= [ 7 + 4x
      3 + 10x
      {[[-0.8881527305], [0.8881527305]]}
      {[[-0.7881527305], [0.8881527305]]}

> T:=RT([x],10);SSSg(T,[x]); SSG(T,[x],z);ORB(T,[x],[6.],1000,1010)[-1];
T:= [ 9 + 10x
      4 + 9x
      {[[-1.387425886], [1.387425886]]}
      {[[-0.7207592197], [1.387425886]]}

> T:=RT([x],10);SSSg(T,[x]); SSG(T,[x],z);ORB(T,[x],[6.],1000,1010)[-1];
T:= [ 7 + 8x
      9 + x
      {[[-3.192582404], [2.192582404]]}
      {[[-3.192582404], [2.192582404]]}

> T:=RT([x],10);SSSg(T,[x]); SSG(T,[x],z);ORB(T,[x],[6.],1000,1010)[-1];
T:= [ 10 + 2x
      4 + 7x
      {[[-1.346592824], [1.060878539]]}
      {[[-1.346592824], [1.060878539]]}

> T:=RT([x],10);SSSg(T,[x]); SSG(T,[x],z);ORB(T,[x],[6.],1000,1010)[-1];
T:= [ 8 + x
      6 + 4x
      {[[-0.9211646100], [0.9211646100]]}
      {[[-0.2171164610], [0.9211646100]]}

> T:=RT([x],10);SSSg(T,[x]); SSG(T,[x],z);ORB(T,[x],[6.],1000,1010)[-1];
T:= [ 1 + 7x
      2 + 9x
      {[[-0.7116805376], [0.7116805376]]}
      {[[-0.1561249820], [0.7116805376]]}

> T:=RT([x],10);SSSg(T,[x]); SSG(T,[x],z);ORB(T,[x],[6.],1000,1010)[-1];
T:= [ 5 + 9x
      9 + 4x
      {[[-1.118033988], [1.118033988]]}
      {[[-1.118033988], [1.118033988]]}

> T:=RT([x],10);SSSg(T,[x]); SSG(T,[x],z);ORB(T,[x],[6.],1000,1010)[-1];
T:= [ 3 + 4x
      6 + 4x
      {[[-0.6513878188], [0.6513878188]]}
      {[[-1.151387819], [0.6513878189]]}
```

They agree
20/20 times

2. Copy-and-paste the following line into your worksheet (once you have downloaded and read DMB14.txt):

```
T:=RT([x,y],10);SSg(T,[x,y]);SSSg(T,[x,y]);ORB(T,[x,y],[6.,8.],1000,1010)[-1];
```

Run it **twenty** times. Out of these twenty times, how many times did the first and third numbers agree?

```
> T:=RT([x,y],10);SSg(T,[x,y]);SSSg(T,[x,y]);ORB(T,[x,y],[6.,8.],1000,1010)[-1];
T:= [ 4 + 10x + 8y, 5 + 3x + 5y
      [ 2 + 7x + 3y, 7 + 3x + 4y
      [ [1.745632788, 0.7464565888]
      [ [1.745632788, 0.7464565888]
      [ 1.745632788, 0.7464565887]

> T:=RT([x,y],10);SSg(T,[x,y]);SSSg(T,[x,y]);ORB(T,[x,y],[6.,8.],1000,1010)[-1];
T:= [ 8 + 10x + 2y, 8 + 7x + 9y
      [ 6 + 8x + 4y, 4 + 10x + 3y
      [ [1.651537188, 1.5231543571]
      [ [1.651537188, 1.5231543571]
      [ 1.651537189, 1.523154359]

> T:=RT([x,y],10);SSg(T,[x,y]);SSSg(T,[x,y]);ORB(T,[x,y],[6.,8.],1000,1010)[-1];
T:= [ 2 + 9x + y, 4 + 4x + y
      [ 1 + 5x + 2y, 6 + 3x + y
      [ [ -0.309865067, 0.5920753815]
      [ [ -0.309865067, 0.5920753815]
      [ 1.587572199, 0.9648326767

> T:=RT([x,y],10);SSg(T,[x,y]);SSSg(T,[x,y]);ORB(T,[x,y],[6.,8.],1000,1010)[-1];
T:= [ 7 + 2x + y, 10 + 4x + 6y
      [ 5 + 10x + 3y, 8 + 8x + 7y
      [ [0.647227339, 0.9230130065]
      [ [0.647227339, 0.9230130065]
      [ 0.647227335, 0.9230130065

> T:=RT([x,y],10);SSg(T,[x,y]);SSSg(T,[x,y]);ORB(T,[x,y],[6.,8.],1000,1010)[-1];
T:= [ 2 + 6x + y, 3 + 3x + 5y
      [ 2 + 9x + 3y, 3 + 9x + 8y
      [ [1.127014906, 0.4480178765]
      [ [1.127014906, 0.4480178765]
      [ 1.127014906, 0.4480178766

> T:=RT([x,y],10);SSg(T,[x,y]);SSSg(T,[x,y]);ORB(T,[x,y],[6.,8.],1000,1010)[-1];
T:= [ 5 + 4x + 3y, 8 + 7x + 9y
      [ 3 + 9x + 3y, 10 + 4x + 5y
      [ [ -0.9035331901, 0.5692717868]
      [ [ -0.9035331901, 0.5692717868]
      [ 0.8510988810, 1.495902933]

> T:=RT([x,y],10);SSg(T,[x,y]);SSSg(T,[x,y]);ORB(T,[x,y],[6.,8.],1000,1010)[-1];
T:= [ 9 + x + y, 9 + 4x + 9y
      [ 3 + 9x + 9y, 2 + 5x + 5y
      [ [1. - 3., 0.4543504473, 2.017830805]
      [ [1. - 3., 0.4543504473, 2.017830805]
      [ 0.4543504470, 2.017830804

> T:=RT([x,y],10);SSg(T,[x,y]);SSSg(T,[x,y]);ORB(T,[x,y],[6.,8.],1000,1010)[-1];
T:= [ 8 - x + 2y, 2 + x + 9y
      [ 9 - 5x + 8y, 7 + x + 9y
      [ [0.82171280, 0.6201667838]
      [ [0.82171280, 0.6201667838]
      [ 0.821712805, 0.6201667838

> T:=RT([x,y],10);SSg(T,[x,y]);SSSg(T,[x,y]);ORB(T,[x,y],[6.,8.],1000,1010)[-1];
T:= [ 5 + x + 4y, 5 + 10x + 5y
      [ 8 + 5x + y, 5 + 5x + 10y
      [ [0.2021960617, -0.8900436637]
      [ [0.2021960617, -0.8900436637]
      [ 0.7508491588, 0.9463446147

> T:=RT([x,y],10);SSg(T,[x,y]);SSSg(T,[x,y]);ORB(T,[x,y],[6.,8.],1000,1010)[-1];
T:= [ 3 + 6x + 6y, 2 + 8x + 2y
      [ 7 + x + 4y, 2 + 4x + y
      [ [1.432383688, 1.78990349]
      [ [1.432383688, 1.78990349]
      [ 1.432383688, 1.789903579

> T:=RT([x,y],10);SSg(T,[x,y]);SSSg(T,[x,y]);ORB(T,[x,y],[6.,8.],1000,1010)[-1];
T:= [ 2 + 5x + 4y, 1 + 2x + 8y
      [ 10 + 5x + 5y, 10 + 2x + 5y
      [ [1.4687750581, 0.3945777786]
      [ [1.4687750581, 0.3945777786]
      [ 1.4687750584, 0.3945777787

> T:=RT([x,y],10);SSg(T,[x,y]);SSSg(T,[x,y]);ORB(T,[x,y],[6.,8.],1000,1010)[-1];
T:= [ 1 + 3x + 9y, 5 + 4x + 4y
      [ 2 + 2x + 3y, 5 + 8x + 7y
      [ [1.615015944, 0.6261292450]
      [ [1.615015944, 0.6261292450]
      [ 1.615015945, 0.6261292449

> T:=RT([x,y],10);SSg(T,[x,y]);SSSg(T,[x,y]);ORB(T,[x,y],[6.,8.],1000,1010)[-1];
T:= [ 1 + 2x + 4y, 2 + 6x + 4y
      [ 2 + 2x + 3y, 10 + 4x + 4y
      [ [0.9340938070, 0.6220680673]
      [ [0.9340938070, 0.6220680673]
      [ 0.9340938073, 0.6220680677

> T:=RT([x,y],10);SSg(T,[x,y]);SSSg(T,[x,y]);ORB(T,[x,y],[6.,8.],1000,1010)[-1];
T:= [ 7 + 3x + y, 8 + 9x + 9y
      [ 5 + 6x + 3y, 5 + 3x + 3y
      [ [ -1.21817898, 0.4090373769]
      [ [ -1.21817898, 0.4090373769]
      [ 0.649052153, 4.891076637

> T:=RT([x,y],10);SSg(T,[x,y]);SSSg(T,[x,y]);ORB(T,[x,y],[6.,8.],1000,1010)[-1];
T:= [ 9 + 8x + 10y, 3 + 8x + 4y
      [ 7 + 3x + 7y, 1 + 7x + y
      [ [ -3.588859253, 0.9460901279]
      [ [ -3.588859253, 0.9460901279]
      [ 1.650395683, 1.596487762

> T:=RT([x,y],10);SSg(T,[x,y]);SSSg(T,[x,y]);ORB(T,[x,y],[6.,8.],1000,1010)[-1];
T:= [ 6 + 8x + 4y, 10 + 3x + 2y
      [ 1 + 4x + 10y, 6 + 10x + y
      [ [0.307199482, -8.375921430]
      [ [0.307199482, -8.375921430]
      [ 1.440808853, 0.747682075

> T:=RT([x,y],10);SSg(T,[x,y]);SSSg(T,[x,y]);ORB(T,[x,y],[6.,8.],1000,1010)[-1];
T:= [ 6 + 7x + y, 10 + x + 10y
      [ 2 + 9x + 8y, 7 + 7x + 5y
      [ [0.6455732285, 1.315132700]
      [ [0.6455732285, 1.315132700]
      [ 0.6455732285, 1.315132699

> T:=RT([x,y],10);SSg(T,[x,y]);SSSg(T,[x,y]);ORB(T,[x,y],[6.,8.],1000,1010)[-1];
T:= [ 10 + 3x + 5y, 9 - 5x + 7y
      [ 5 - 3x + 4y, 5 + 7x + 6y
      [ [4.417902121, 1.496781074]
      [ [4.417902121, 1.496781074]
      [ 4.417902121, 1.496781074

> T:=RT([x,y],10);SSg(T,[x,y]);SSSg(T,[x,y]);ORB(T,[x,y],[6.,8.],1000,1010)[-1];
T:= [ 10 + 9x + y, 3 + 5x + 9y
      [ 3 + 5x + 10y, 5 + 3x + 3y
      [ [0.6587766085, 1.08664959]
      [ [0.6587766085, 1.08664959]
      [ 0.6587766093, 2.108664959

> T:=RT([x,y],10);SSg(T,[x,y]);SSSg(T,[x,y]);ORB(T,[x,y],[6.,8.],1000,1010)[-1];
T:= [ 2 + 8x + 6y, 9 + x + 2y
      [ 2 + 8x + 4y, 10 + 4x + 9y
      [ [1.035772768, 0.448195179]
      [ [1.035772768, 0.448195179]
      [ 1.03577768, 0.4481951808]
```

they agree
13 | 20 times.

3. Copy-and-paste the following line into your worksheet (once you have downloaded and read DMB14.txt):

```
T:=RT([x,y,z],10);SSg(T,[x,y,z]);SSSg(T,[x,y,z]);
```

```
ORB(T,[x,y,z],[6.,8.,11.],1000,1010)[-1];
```

Run it **twenty** times. Out of these twenty times, how many times did the first and third numbers agree?

they agree

4/20 times

```
> T:=RT([x,y,z],10);SSg(T,[x,y,z]);SSSg(T,[x,y,z]);  
ORB(T,[x,y,z],[6.,8.,11.],1000,1010)[-1];
```

$$T := \left[\begin{array}{l} \frac{9+2x+9y+4z}{2+8x+4y+3z}, \frac{9+4x+9y+5z}{1+2x+9y+9z}, \frac{4+2x+6y+7z}{4+4x+4y+9z} \\ \{[0.6410287956, -0.965904358, 0.242567879]\} \\ \emptyset \end{array} \right]$$

(5)

```
> T:=RT([x,y,z],10);SSg(T,[x,y,z]);SSSg(T,[x,y,z]);  
ORB(T,[x,y,z],[6.,8.,11.],1000,1010)[-1];
```

$$T := \left[\begin{array}{l} \frac{2+9x+5y+10z}{7+9x+2y+7z}, \frac{1+4x+4y+6z}{1+8x+8y+5z}, \frac{6+3x+3y+6z}{5+7x+9y+z} \\ \{[0.9835233408, 0.6870012014, 0.8522912596]\} \\ \{[0.9835233408, 0.6870012014, 0.8522912596]\} \\ \{[0.9835233392, 0.6870012010, 0.8522912593]\} \end{array} \right]$$

(6)

```
> T:=RT([x,y,z],10);SSg(T,[x,y,z]);SSSg(T,[x,y,z]);  
ORB(T,[x,y,z],[6.,8.,11.],1000,1010)[-1];
```

$$T := \left[\begin{array}{l} \frac{9+3x+8y+5z}{2+5x+10y+z}, \frac{9+10x+8y+8z}{2+4x+3y+10z}, \frac{4+6x+9y+4z}{2+10x+2y+3z} \\ \{[0.3927438884, 0.12173545, -1.97889587]\} \\ \emptyset \end{array} \right]$$

(7)

```
> T:=RT([x,y,z],10);SSg(T,[x,y,z]);SSSg(T,[x,y,z]);  
ORB(T,[x,y,z],[6.,8.,11.],1000,1010)[-1];
```

$$T := \left[\begin{array}{l} \frac{3+4x+4y+6z}{7+5x+2y+10z}, \frac{5+2x+10y+3z}{6+5x+9y+z}, \frac{4+10x+3y+4z}{7+7x+y+7z} \\ \{[0.3568517562, -0.82424832, 0.58235887]\} \\ \emptyset \end{array} \right]$$

(8)

```
> T:=RT([x,y,z],10);SSg(T,[x,y,z]);SSSg(T,[x,y,z]);  
ORB(T,[x,y,z],[6.,8.,11.],1000,1010)[-1];
```

$$T := \left[\begin{array}{l} \frac{1+2x+y+4z}{7+9x+8y+9z}, \frac{6+7x+8y+3z}{3+2x+2y+z}, \frac{3+5x+4y+3z}{10+x+8y+3z} \\ \{[0.1669136937, 3.36995429, 0.48654787]\} \\ \{[0.1669136937, 3.36995429, 0.48654787]\} \\ \{[0.1669136938, 3.369954285, 0.4865478672]\} \end{array} \right]$$

(9)

```
> T:=RT([x,y,z],10);SSg(T,[x,y,z]);SSSg(T,[x,y,z]);  
ORB(T,[x,y,z],[6.,8.,11.],1000,1010)[-1];
```

$$T := \left[\begin{array}{l} \frac{8+8x+7y+5z}{6+7x+y+5z}, \frac{6+6x+6y+4z}{10+10x+5y+9z}, \frac{9+5x+10y+9z}{5+5x+2y+4z} \\ \{[1.269845917, 0.578281662, 1.901658766]\} \\ \{[1.269845917, 0.578281662, 1.901658766]\} \\ \{[1.269845917, 0.5782816595, 1.901658773]\} \end{array} \right]$$

(10)

```
> T:=RT([x,y,z],10);SSg(T,[x,y,z]);SSSg(T,[x,y,z]);  
ORB(T,[x,y,z],[6.,8.,11.],1000,1010)[-1];
```

$$T := \left[\begin{array}{l} \frac{9+10x+3y+7z}{1+4x+9y+5z}, \frac{9+10x+7y+9z}{6+x+5y+2z}, \frac{1+3x+3y+10z}{9+9x+2y+2z} \\ \{[1.111444348, 2.158621547, 0.7312695410]\} \\ \{[1.111444348, 2.158621547, 0.7312695410]\} \\ \{[1.111444347, 2.158621541, 0.7312695401]\} \end{array} \right]$$

(11)

```
> T:=RT([x,y,z],10);SSg(T,[x,y,z]);SSSg(T,[x,y,z]);  
ORB(T,[x,y,z],[6.,8.,11.],1000,1010)[-1];
```

$$T := \left[\begin{array}{l} \frac{3+10x+5y+3z}{8+2x+3y+z}, \frac{10+7x+6y+6z}{8+10x+4y+5z}, \frac{3+8x+y+10z}{6+8x+10y+9z} \\ \{[0.9856701781, 8.90701596, -10.53709701]\} \\ \emptyset \end{array} \right]$$

(12)

```
> T:=RT([x,y,z],10);SSg(T,[x,y,z]);SSSg(T,[x,y,z]);  
ORB(T,[x,y,z],[6.,8.,11.],1000,1010)[-1];
```

$$T := \left[\begin{array}{l} \frac{7+8x+2y+10z}{3+7x+4y+7z}, \frac{7+5x+2y+5z}{6+4x+y+7z}, \frac{10+5x+y+4z}{10+7x+8y+2z} \\ \{[-2.379671330, 3.650157528, 0.09352608318]\} \\ \emptyset \end{array} \right]$$

(13)

```
> T:=RT([x,y,z],10);SSg(T,[x,y,z]);SSSg(T,[x,y,z]);  
ORB(T,[x,y,z],[6.,8.,11.],1000,1010)[-1];
```

$$T := \left[\begin{array}{l} \frac{2+7x+9y+9z}{6+x+4y+8z}, \frac{10+8x+5y+6z}{1+2x+7y+6z}, \frac{10+7x+5y+4z}{6+4x+4y+3z} \\ \{[0.2069369080, -7.932927744, 8.532334823]\} \\ \emptyset \end{array} \right]$$

(14)

> $T := RT([x, y, z], 10); SSg(T, [x, y, z]); SSSg(T, [x, y, z]);$
 $ORB(T, [x, y, z], [6, 8, 11], 1000, 1010)[-1];$

$$T := \left[\frac{7+6x+6y+7z}{2+x+5y+8z}, \frac{7+4x+3y+2z}{8+8x+3y+4z}, \frac{9+2x+2y+2z}{3+2x+9y+9z} \right]$$

$$[[0.7721046707, -4.419290744, -0.045317532]]$$

$$\emptyset$$

(15)

> $T := RT([x, y, z], 10); SSg(T, [x, y, z]); SSSg(T, [x, y, z]);$
 $ORB(T, [x, y, z], [6, 8, 11], 1000, 1010)[-1];$

$$T := \left[\frac{1+3x+10y+2z}{9+x+2y+8z}, \frac{7+x+y+9z}{2+2x+5y+3z}, \frac{1+4x+y+6z}{4+9x+10y+4z} \right]$$

$$[[0.239072995, 0.05905157107, -0.8086224432]]$$

$$\emptyset$$

(16)

> $T := RT([x, y, z], 10); SSg(T, [x, y, z]); SSSg(T, [x, y, z]);$
 $ORB(T, [x, y, z], [6, 8, 11], 1000, 1010)[-1];$

$$T := \left[\frac{8+5x+4y+6z}{4+8x+9y+9z}, \frac{7+3x+5y+3z}{9+2x+3y+3z}, \frac{4+9x+6y+7z}{6+x+7y+5z} \right]$$

$$[[0.1426317665, 1.040372633, -2.291166327]]$$

$$\emptyset$$

(17)

> $T := RT([x, y, z], 10); SSg(T, [x, y, z]); SSSg(T, [x, y, z]);$
 $ORB(T, [x, y, z], [6, 8, 11], 1000, 1010)[-1];$

$$T := \left[\frac{4+5x+5y+2z}{10+2x+7y+5z}, \frac{2+4x+y+3z}{6+9x+2y+9z}, \frac{5+x+5y+7z}{9+7x+y+8z} \right]$$

$$[[0.1839797317, -0.60361586, -0.71446680]]$$

$$\emptyset$$

(18)

> $T := RT([x, y, z], 10); SSg(T, [x, y, z]); SSSg(T, [x, y, z]);$
 $ORB(T, [x, y, z], [6, 8, 11], 1000, 1010)[-1];$

$$T := \left[\frac{3+8x+10y+2z}{3+6x+4y+4z}, \frac{3+8x+y+4z}{10+3x+10y+7z}, \frac{9+x+5y+8z}{9+6x+10y+3z} \right]$$

$$[[1.305341002, 0.6627518081, 0.766837864]]$$

$$[[1.305341002, 0.6627518081, 0.766837864]]$$

$$[1.305341000, 0.6627518084, 0.766837864]$$

(19)

> $T := RT([x, y, z], 10); SSg(T, [x, y, z]); SSSg(T, [x, y, z]);$
 $ORB(T, [x, y, z], [6, 8, 11], 1000, 1010)[-1];$

$$T := \left[\frac{1+4x+3y+3z}{9+x+y+6z}, \frac{4+5x+4y+3z}{9+7x+4y+5z}, \frac{9+3x+2y+2z}{10+7x+9y+6z} \right]$$

$$[[0.4741279627, 0.596203224, 0.57658189]]$$

$$[[0.4741279627, 0.596203224, 0.57658189]]$$

$$[0.4741279626, 0.5962032225, 0.5765818966]$$

(20)

> $T := RT([x, y, z], 10); SSg(T, [x, y, z]); SSSg(T, [x, y, z]);$
 $ORB(T, [x, y, z], [6, 8, 11], 1000, 1010)[-1];$

$$T := \left[\frac{7+3x+6y+2z}{7+3x+4y+8z}, \frac{1+10x+6y+10z}{1+10x+2y+9z}, \frac{1+9x+4y+6z}{2+8x+6y+3z} \right]$$

$$[[0.02688631069, -1.283131530, 0.3756539739]]$$

$$\emptyset$$

(21)

> $T := RT([x, y, z], 10); SSg(T, [x, y, z]); SSSg(T, [x, y, z]);$
 $ORB(T, [x, y, z], [6, 8, 11], 1000, 1010)[-1];$

$$T := \left[\frac{5+8x+10y+z}{1+7x+7y+8z}, \frac{5+4x+8y+z}{5+6x+7y+4z}, \frac{5+4x+9y+9z}{1+2x+9y+4z} \right]$$

$$[[-2.536423176, 0.4651268569, 2.107870421]]$$

$$\emptyset$$

(22)

> $T := RT([x, y, z], 10); SSg(T, [x, y, z]); SSSg(T, [x, y, z]);$
 $ORB(T, [x, y, z], [6, 8, 11], 1000, 1010)[-1];$

$$T := \left[\frac{8+4x+6y+6z}{8+7x+10y+3z}, \frac{10+6x+y+3z}{1+x+7y+3z}, \frac{8+5x+9y+5z}{10+3x+6y+2z} \right]$$

$$[[-1.824399896, 0.1705134395, 0.3370914600]]$$

$$\emptyset$$

(23)

> $T := RT([x, y, z], 10); SSg(T, [x, y, z]); SSSg(T, [x, y, z]);$
 $ORB(T, [x, y, z], [6, 8, 11], 1000, 1010)[-1];$

$$T := \left[\frac{4+5x+3y+2z}{6+6x+6y+10z}, \frac{6+6x+8y+8z}{10+x+7y+3z}, \frac{4+2x+4y+2z}{1+8x+8y+3z} \right]$$

$$[[-0.1793924622, -0.105391689, 0.04027339613]]$$

$$\emptyset$$

(24)

4. Copy-and-paste the following line into your worksheet (once you have downloaded and read DMB14.txt):

```
f:=RR([z[1],z[2]],10); T:=RecToTs(2,z,f);SSg(T,[z[1],z[2]]); SSSg(T,[z[1],z[2]]);  
Orbk(2,z,f,[5.,8.],2000,2010)[-1];
```

they agree 20/20 times

```
> f:=RR([z[1],z[2]],10); T:=RecToTs(2,z,f);SSg(T,[z[1],z[2]]); SSSg(T,[z[1],z[2]]);  
Orbk(2,z,f,[5.,8.],2000,2010)[-1];
```

$$f := \frac{6 + 8z_1 + 4z_2}{8 + 4z_1 + 5z_2}$$

$$T := \left[\frac{6 + 8z_1 + 4z_2}{8 + 4z_1 + 5z_2}, z_1, [z_1, z_2] \right]$$

[[1.068419234, 1.068419234]]
[[1.068419234, 1.068419234]]
1.068419234

```
> f:=RR([z[1],z[2]],10); T:=RecToTs(2,z,f);SSg(T,[z[1],z[2]]); SSSg(T,[z[1],z[2]]);  
Orbk(2,z,f,[5.,8.],2000,2010)[-1];
```

$$f := \frac{3 + 5z_1 + 3z_2}{10 + 9z_1 + 6z_2}$$

$$T := \left[\frac{3 + 5z_1 + 3z_2}{10 + 9z_1 + 6z_2}, z_1, [z_1, z_2] \right]$$

[[0.3854886655, 0.3854886655]]
[[0.3854886655, 0.3854886655]]
0.3854886657

```
> f:=RR([z[1],z[2]],10); T:=RecToTs(2,z,f);SSg(T,[z[1],z[2]]); SSSg(T,[z[1],z[2]]);  
Orbk(2,z,f,[5.,8.],2000,2010)[-1];
```

$$f := \frac{1 + 9z_1 + 3z_2}{7 + 4z_1 + 3z_2}$$

$$T := \left[\frac{1 + 9z_1 + 3z_2}{7 + 4z_1 + 3z_2}, z_1, [z_1, z_2] \right]$$

[[0.8771507064, 0.8771507064]]
[[0.8771507064, 0.8771507064]]
0.8771507070

```
Orbk(2,z,f,[5.,8.],2000,2010)[-1];
```

$$f := \frac{9 + 5z_1 + 7z_2}{6 + 2z_1 + 5z_2}$$

$$T := \left[\frac{9 + 5z_1 + 7z_2}{6 + 2z_1 + 5z_2}, z_1, [z_1, z_2] \right]$$

[[1.640754482, 1.640754482]]
[[1.640754482, 1.640754482]]
1.640754482

```
> f:=RR([z[1],z[2]],10); T:=RecToTs(2,z,f);SSg(T,[z[1],z[2]]); SSSg(T,[z[1],z[2]]);  
Orbk(2,z,f,[5.,8.],2000,2010)[-1];
```

$$f := \frac{4 + z_1 + 4z_2}{1 + 3z_1 + 9z_2}$$

$$T := \left[\frac{4 + z_1 + 4z_2}{1 + 3z_1 + 9z_2}, z_1, [z_1, z_2] \right]$$

[[0.7675918792, 0.7675918792]]
[[0.7675918792, 0.7675918792]]
0.7675918794

```
> f:=RR([z[1],z[2]],10); T:=RecToTs(2,z,f);SSg(T,[z[1],z[2]]); SSSg(T,[z[1],z[2]]);  
Orbk(2,z,f,[5.,8.],2000,2010)[-1];
```

$$f := \frac{1 + 4z_1 + 7z_2}{2 + 7z_1 + 3z_2}$$

$$T := \left[\frac{1 + 4z_1 + 7z_2}{2 + 7z_1 + 3z_2}, z_1, [z_1, z_2] \right]$$

[[0.8482423622, 0.8482423622]]
[[0.8482423622, 0.8482423622]]
0.8482423624

```
> f:=RR([z[1],z[2]],10); T:=RecToTs(2,z,f);SSg(T,[z[1],z[2]]); SSSg(T,[z[1],z[2]]);  
Orbk(2,z,f,[5.,8.],2000,2010)[-1];
```

$$f := \frac{8 + 2z_1 + 5z_2}{10 + 6z_1 + 6z_2}$$

$$T := \left[\frac{8 + 2z_1 + 5z_2}{10 + 6z_1 + 6z_2}, z_1, [z_1, z_2] \right]$$

[[0.7010094834, 0.7010094834]]
[[0.7010094834, 0.7010094834]]
0.7010094832

```
> f:=RR([z[1],z[2]],10); T:=RecToTs(2,z,f);SSg(T,[z[1],z[2]]); SSSg(T,[z[1],z[2]]);  
Orbk(2,z,f,[5.,8.],2000,2010)[-1];
```

$$f := \frac{1 + 4z_1 + 4z_2}{1 + z_1 + 6z_2}$$

$$T := \left[\frac{1 + 4z_1 + 4z_2}{1 + z_1 + 6z_2}, z_1, [z_1, z_2] \right]$$

[[1.126783171, 1.126783171]]
[[1.126783171, 1.126783171]]
1.126783170

```
> f:=RR([z[1],z[2]],10); T:=RecToTs(2,z,f);SSg(T,[z[1],z[2]]); SSSg(T,[z[1],z[2]]);  
Orbk(2,z,f,[5.,8.],2000,2010)[-1];
```

$$f := \frac{6 + 2z_1 + 7z_2}{8 + 9z_1 + 10z_2}$$

$$T := \left[\frac{6 + 2z_1 + 7z_2}{8 + 9z_1 + 10z_2}, z_1, [z_1, z_2] \right]$$

[[0.5888831139, 0.5888831139]]
[[0.5888831139, 0.5888831139]]
0.5888831142

```
> f:=RR([z[1],z[2]],10); T:=RecToTs(2,z,f);SSg(T,[z[1],z[2]]); SSSg(T,[z[1],z[2]]);  
Orbk(2,z,f,[5.,8.],2000,2010)[-1];
```

$$f := \frac{6 + 6z_1 + 2z_2}{6 + 6z_1 + 3z_2}$$

$$T := \left[\frac{6 + 6z_1 + 2z_2}{6 + 6z_1 + 3z_2}, z_1, [z_1, z_2] \right]$$

[[0.9351331652, 0.9351331652]]
[[0.9351331652, 0.9351331652]]
0.9351331656

```
> f:=RR([z[1],z[2]],10); T:=RecToTs(2,z,f);SSg(T,[z[1],z[2]]); SSSg(T,[z[1],z[2]]);  
Orbk(2,z,f,[5.,8.],2000,2010)[-1];
```

$$f := \frac{8 + 2z_1 + 5z_2}{4 + 6z_1 + 10z_2}$$

$$T := \left[\frac{8 + 2z_1 + 5z_2}{4 + 6z_1 + 10z_2}, z_1, [z_1, z_2] \right]$$

[[0.8070445132, 0.8070445132]]
[[0.8070445132, 0.8070445132]]
0.8070445131

> $f := RR([z[1], z[2]], 10); T := RecToTs(2, z, f); SSg(T, [z[1], z[2]]); SSSg(T, [z[1], z[2]]);$

$Orb\bar{k}(2, z, f, [5, 8], 2000, 2010)[-1];$

$$f := \frac{2 + 8z_1 + 8z_2}{6 + 2z_1 + 7z_2}$$

$$T := \left[\frac{2 + 8z_1 + 8z_2}{6 + 2z_1 + 7z_2}, z_1 \right] \cdot [z_1, z_2]$$

$\{[1.284159836, 1.284159836]\}$

$\{[1.284159836, 1.284159836]\}$

1.284159836

(16)

> $f := RR([z[1], z[2]], 10); T := RecToTs(2, z, f); SSg(T, [z[1], z[2]]); SSSg(T, [z[1], z[2]]);$

$Orb\bar{k}(2, z, f, [5, 8], 2000, 2010)[-1];$

$$f := \frac{8 + 6z_1 + 3z_2}{8 + 2z_1 + 8z_2}$$

$$T := \left[\frac{8 + 6z_1 + 3z_2}{8 + 2z_1 + 8z_2}, z_1 \right] \cdot [z_1, z_2]$$

$\{[0.9458236434, 0.9458236434]\}$

$\{[0.9458236434, 0.9458236434]\}$

0.9458236435

(17)

> $f := RR([z[1], z[2]], 10); T := RecToTs(2, z, f); SSg(T, [z[1], z[2]]); SSSg(T, [z[1], z[2]]);$

$Orb\bar{k}(2, z, f, [5, 8], 2000, 2010)[-1];$

$$f := \frac{5 + 5z_1 + 6z_2}{5 + 9z_1 + 8z_2}$$

$$T := \left[\frac{5 + 5z_1 + 6z_2}{5 + 9z_1 + 8z_2}, z_1 \right] \cdot [z_1, z_2]$$

$\{[0.7467858656, 0.7467858656]\}$

$\{[0.7467858656, 0.7467858656]\}$

0.7467858653

(18)

> $f := RR([z[1], z[2]], 10); T := RecToTs(2, z, f); SSg(T, [z[1], z[2]]); SSSg(T, [z[1], z[2]]);$

$Orb\bar{k}(2, z, f, [5, 8], 2000, 2010)[-1];$

$$f := \frac{4 + 8z_1 + 3z_2}{3 + z_1 + 9z_2}$$

$$T := \left[\frac{4 + 8z_1 + 3z_2}{3 + z_1 + 9z_2}, z_1 \right] \cdot [z_1, z_2]$$

$\{[1.148331477, 1.148331477]\}$

$\{[1.148331477, 1.148331477]\}$

1.148331478

1.148331478

(19)

> $f := RR([z[1], z[2]], 10); T := RecToTs(2, z, f); SSg(T, [z[1], z[2]]); SSSg(T, [z[1], z[2]]);$

$Orb\bar{k}(2, z, f, [5, 8], 2000, 2010)[-1];$

$$f := \frac{9 + z_1 + 8z_2}{8 + 3z_1 + 6z_2}$$

$$T := \left[\frac{9 + z_1 + 8z_2}{8 + 3z_1 + 6z_2}, z_1 \right] \cdot [z_1, z_2]$$

$\{[1.057097577, 1.057097577]\}$

$\{[1.057097577, 1.057097577]\}$

1.057097577

(20)

> $f := RR([z[1], z[2]], 10); T := RecToTs(2, z, f); SSg(T, [z[1], z[2]]); SSSg(T, [z[1], z[2]]);$

$Orb\bar{k}(2, z, f, [5, 8], 2000, 2010)[-1];$

$$f := \frac{2 + 5z_1 + 6z_2}{10 + 5z_1 + 6z_2}$$

$$T := \left[\frac{2 + 5z_1 + 6z_2}{10 + 5z_1 + 6z_2}, z_1 \right] \cdot [z_1, z_2]$$

$\{[0.4742718696, 0.4742718696]\}$

$\{[0.4742718696, 0.4742718696]\}$

0.4742718693

(21)

> $f := RR([z[1], z[2]], 10); T := RecToTs(2, z, f); SSg(T, [z[1], z[2]]); SSSg(T, [z[1], z[2]]);$

$Orb\bar{k}(2, z, f, [5, 8], 2000, 2010)[-1];$

$$f := \frac{5 + 8z_1 + 10z_2}{3 + 2z_1 + z_2}$$

$$T := \left[\frac{5 + 8z_1 + 10z_2}{3 + 2z_1 + z_2}, z_1 \right] \cdot [z_1, z_2]$$

$\{[5.313657169, 5.313657169]\}$

$\{[5.313657169, 5.313657169]\}$

5.313657166

(22)

> $f := RR([z[1], z[2]], 10); T := RecToTs(2, z, f); SSg(T, [z[1], z[2]]); SSSg(T, [z[1], z[2]]);$

$Orb\bar{k}(2, z, f, [5, 8], 2000, 2010)[-1];$

$$f := \frac{4 + 4z_1 + 4z_2}{8 + 7z_1 + 4z_2}$$

$$T := \left[\frac{4 + 4z_1 + 4z_2}{8 + 7z_1 + 4z_2}, z_1 \right] \cdot [z_1, z_2]$$

$\{[0.6030226892, 0.6030226892]\}$

$\{[0.6030226892, 0.6030226892]\}$

0.6030226892

0.6030226892

(23)

> $f := RR([z[1], z[2]], 10); T := RecToTs(2, z, f); SSg(T, [z[1], z[2]]); SSSg(T, [z[1], z[2]]);$

$Orb\bar{k}(2, z, f, [5, 8], 2000, 2010)[-1];$

$$f := \frac{8 + 8z_1 + 9z_2}{3 + 8z_1 + 2z_2}$$

$$T := \left[\frac{8 + 8z_1 + 9z_2}{3 + 8z_1 + 2z_2}, z_1 \right] \cdot [z_1, z_2]$$

$\{[1.835781669, 1.835781669]\}$

$\{[1.835781669, 1.835781669]\}$

1.835781670

(24)

5. Copy-and-paste the following line into your worksheet (once you have downloaded and read DMB14.txt):

```
> f:=RR([z[1],z[2],z[3]],10); T:=RecToTs(3,z,f);SSg(T,[z[1],z[2],z[3]]);  
SSSg(T,[z[1],z[2],z[3]]); Orb3(z,f,[5.,8.,11.],2000,2010)[-1];
```

Run it **twenty** times. Out of these twenty times, how many times did the last coordinate of the first point and the third numbers agree?

thru agree
15/20 times

```
> f:=RR([z[1],z[2],z[3]],10); T:=RecToTs(3,z,f);SSg(T,[z[1],z[2],z[3]]);  
SSSg(T,[z[1],z[2],z[3]]); Orb3(z,f,[5.,8.,11.],2000,2010)[-1];
```

$$f := \frac{4+z_1+5z_2+3z_3}{2+z_1+5z_2+z_3}$$

$$T := \left[\frac{4+z_1+5z_2+3z_3}{2+z_1+5z_2+z_3}, z_1, z_2, z_3 \right] \begin{bmatrix} z_1, z_2, z_3 \end{bmatrix}$$

[[1.406326967, 1.406326967, 1.406326967]]

[[1.406326967, 1.406326967, 1.406326967]]

1.406326967

```
> f:=RR([z[1],z[2],z[3]],10); T:=RecToTs(3,z,f);SSg(T,[z[1],z[2],z[3]]);  
SSSg(T,[z[1],z[2],z[3]]); Orb3(z,f,[5.,8.,11.],2000,2010)[-1];
```

$$f := \frac{7+8z_1+3z_2+10z_3}{10+7z_1+6z_2+10z_3}$$

$$T := \left[\frac{7+8z_1+3z_2+10z_3}{10+7z_1+6z_2+10z_3}, z_1, z_2, z_3 \right] \begin{bmatrix} z_1, z_2, z_3 \end{bmatrix}$$

[[0.8404050733, 0.8404050733, 0.8404050733]]

[[0.8404050733, 0.8404050733, 0.8404050733]]

0.8404050733

```
> f:=RR([z[1],z[2],z[3]],10); T:=RecToTs(3,z,f);SSg(T,[z[1],z[2],z[3]]);  
SSSg(T,[z[1],z[2],z[3]]); Orb3(z,f,[5.,8.,11.],2000,2010)[-1];
```

$$f := \frac{2+6z_1+10z_2+2z_3}{7+8z_1+2z_2+z_3}$$

$$T := \left[\frac{2+6z_1+10z_2+2z_3}{7+8z_1+2z_2+z_3}, z_1, z_2, z_3 \right] \begin{bmatrix} z_1, z_2, z_3 \end{bmatrix}$$

[[1.157128741, 1.157128741, 1.157128741]]

[[1.157128741, 1.157128741, 1.157128741]]

1.157128741

```
> f:=RR([z[1],z[2],z[3]],10); T:=RecToTs(3,z,f);SSg(T,[z[1],z[2],z[3]]);  
SSSg(T,[z[1],z[2],z[3]]); Orb3(z,f,[5.,8.,11.],2000,2010)[-1];
```

$$f := \frac{2+5z_1+5z_2+7z_3}{4+2z_1+8z_2+7z_3}$$

$$T := \left[\frac{2+5z_1+5z_2+7z_3}{4+2z_1+8z_2+7z_3}, z_1, z_2, z_3 \right] \begin{bmatrix} z_1, z_2, z_3 \end{bmatrix}$$

[[0.8960073293, 0.8960073293, 0.8960073293]]

[[0.8960073293, 0.8960073293, 0.8960073293]]

0.8960073293

```
> f:=RR([z[1],z[2],z[3]],10); T:=RecToTs(3,z,f);SSg(T,[z[1],z[2],z[3]]);  
SSSg(T,[z[1],z[2],z[3]]); Orb3(z,f,[5.,8.,11.],2000,2010)[-1];
```

$$f := \frac{5+6z_1+6z_2+4z_3}{3+7z_1+10z_2+9z_3}$$

$$T := \left[\frac{5+6z_1+6z_2+4z_3}{3+7z_1+10z_2+9z_3}, z_1, z_2, z_3 \right] \begin{bmatrix} z_1, z_2, z_3 \end{bmatrix}$$

[[0.6984226500, 0.6984226500, 0.6984226500]]

[[0.6984226500, 0.6984226500, 0.6984226500]]

0.6984226500

```
> f:=RR([z[1],z[2],z[3]],10); T:=RecToTs(3,z,f);SSg(T,[z[1],z[2],z[3]]);  
SSSg(T,[z[1],z[2],z[3]]); Orb3(z,f,[5.,8.,11.],2000,2010)[-1];
```

$$f := \frac{8+9z_1+8z_2+3z_3}{10+4z_1+3z_2+6z_3}$$

$$T := \left[\frac{8+9z_1+8z_2+3z_3}{10+4z_1+3z_2+6z_3}, z_1, z_2, z_3 \right] \begin{bmatrix} z_1, z_2, z_3 \end{bmatrix}$$

[[1.040504561, 1.040504561, 1.040504561]]

[[1.040504561, 1.040504561, 1.040504561]]

1.040504561

```
> f:=RR([z[1],z[2],z[3]],10); T:=RecToTs(3,z,f);SSg(T,[z[1],z[2],z[3]]);  
SSSg(T,[z[1],z[2],z[3]]); Orb3(z,f,[5.,8.,11.],2000,2010)[-1];
```

$$f := \frac{3+6z_1+2z_2+2z_3}{5+2z_1+4z_2+5z_3}$$

$$T := \left[\frac{3+6z_1+2z_2+2z_3}{5+2z_1+4z_2+5z_3}, z_1, z_2, z_3 \right] \begin{bmatrix} z_1, z_2, z_3 \end{bmatrix}$$

[[0.7830951895, 0.7830951895, 0.7830951895]]

[[0.7830951895, 0.7830951895, 0.7830951895]]

0.7830951894

```
> f:=RR([z[1],z[2],z[3]],10); T:=RecToTs(3,z,f);SSg(T,[z[1],z[2],z[3]]);  
SSSg(T,[z[1],z[2],z[3]]); Orb3(z,f,[5.,8.,11.],2000,2010)[-1];
```

$$f := \frac{3+10z_1+10z_2+3z_3}{7+7z_1+5z_2+10z_3}$$

$$T := \left[\frac{3+10z_1+10z_2+3z_3}{7+7z_1+5z_2+10z_3}, z_1, z_2, z_3 \right] \begin{bmatrix} z_1, z_2, z_3 \end{bmatrix}$$

[[0.8818979205, 0.8818979205, 0.8818979205]]

[[0.8818979205, 0.8818979205, 0.8818979205]]

0.8818979201

```
> f:=RR([z[1],z[2],z[3]],10); T:=RecToTs(3,z,f);SSg(T,[z[1],z[2],z[3]]);  
SSSg(T,[z[1],z[2],z[3]]); Orb3(z,f,[5.,8.,11.],2000,2010)[-1];
```

$$f := \frac{1+2z_1+9z_2+7z_3}{7+7z_1+10z_2+2z_3}$$

$$T := \left[\frac{1+2z_1+9z_2+7z_3}{7+7z_1+10z_2+2z_3}, z_1, z_2, z_3 \right] \begin{bmatrix} z_1, z_2, z_3 \end{bmatrix}$$

[[0.6588333907, 0.6588333907, 0.6588333907]]

[[0.6588333907, 0.6588333907, 0.6588333907]]

0.6588333908

```
> f:=RR([z[1],z[2],z[3]],10); T:=RecToTs(3,z,f);SSg(T,[z[1],z[2],z[3]]);  
SSSg(T,[z[1],z[2],z[3]]); Orb3(z,f,[5.,8.,11.],2000,2010)[-1];
```

$$f := \frac{1+4z_1+9z_2+7z_3}{10+z_1+2z_2+4z_3}$$

$$T := \left[\frac{1+4z_1+9z_2+7z_3}{10+z_1+2z_2+4z_3}, z_1, z_2, z_3 \right] \begin{bmatrix} z_1, z_2, z_3 \end{bmatrix}$$

[[1.522407750, 1.522407750, 1.522407750]]

[[1.522407750, 1.522407750, 1.522407750]]

1.522407751

```
> f:=RR([z[1],z[2],z[3]],10); T:=RecToTs(3,z,f);SSg(T,[z[1],z[2],z[3]]);  
SSSg(T,[z[1],z[2],z[3]]); Orb3(z,f,[5.,8.,11.],2000,2010)[-1];
```

$$f := \frac{1+z_1+9z_2+7z_3}{3+10z_1+3z_2+5z_3}$$

$$T := \left[\frac{1+z_1+9z_2+7z_3}{3+10z_1+3z_2+5z_3}, z_1, z_2, z_3 \right] \begin{bmatrix} z_1, z_2, z_3 \end{bmatrix}$$

[[0.8436307095, 0.8436307095, 0.8436307095]]

[[0.8436307095, 0.8436307095, 0.8436307095]]

0.8436307100

```
> f:=RR([z[1],z[2],z[3]],10); T:=RecToTs(3,z,f);SSg(T,[z[1],z[2],z[3]]);  
SSSg(T,[z[1],z[2],z[3]]); Orb3(z,f,[5.,8.,11.],2000,2010)[-1];
```

$$f := \frac{6+10z_1+6z_2+2z_3}{4+5z_1+9z_2+5z_3}$$

$$T := \left[\frac{6+10z_1+6z_2+2z_3}{4+5z_1+9z_2+5z_3}, z_1, z_2, z_3 \right] \begin{bmatrix} z_1, z_2, z_3 \end{bmatrix}$$

[[1.252655075, 1.252655075, 1.252655075]]

[[1.252655075, 1.252655075, 1.252655075]]

1.252655075

(5)

(6)

(7)

(9)

(10)

(11)

(12)

(13)

(14)

(15)

(16)

> $f := RR([z|1], z|2], z|3]), 10); T := RecToTz(3, z, f); SSg(T, [z|1], z|2], z|3]);$
 $SSg(T, [z|1], z|2], z|3)); Orb(3, z, f, [5, 8, 11], 2000, 2010)[-1];$

$$f = \frac{8 + 10z_1 + 7z_2 + 4z_3}{2 + 7z_1 + 2z_2 + 6z_3}$$

$$T := \left[\frac{8 + 10z_1 + 7z_2 + 4z_3}{2 + 7z_1 + 2z_2 + 6z_3}, z_1, z_2, z_3 \right]$$

$$([-0.53333333333, -0.33333333333, -0.33333333333], [1.600000000, 1.600000000, 1.600000000])$$

$$([1.600000000, 1.600000000, 1.600000000])$$

(17)

> $f := RR([z|1], z|2], z|3]), 10); T := RecToTz(3, z, f); SSg(T, [z|1], z|2], z|3]);$
 $SSg(T, [z|1], z|2], z|3)); Orb(3, z, f, [5, 8, 11], 2000, 2010)[-1];$

$$f = \frac{10 + 8z_1 + 10z_2 + 10z_3}{10 + 3z_1 + 6z_2 + 2z_3}$$

$$T := \left[\frac{10 + 8z_1 + 10z_2 + 10z_3}{10 + 3z_1 + 6z_2 + 2z_3}, z_1, z_2, z_3 \right]$$

$$([2.074570451, 2.074570451, 2.074570451])$$

$$([2.074570451, 2.074570451, 2.074570451])$$

$$[2.074570451]$$

(18)

> $f := RR([z|1], z|2], z|3]), 10); T := RecToTz(3, z, f); SSg(T, [z|1], z|2], z|3]);$
 $SSg(T, [z|1], z|2], z|3)); Orb(3, z, f, [5, 8, 11], 2000, 2010)[-1];$

$$f = \frac{8 + 6z_1 + 9z_2 + z_3}{2 + 3z_1 + 8z_2 + 4z_3}$$

$$T := \left[\frac{8 + 6z_1 + 9z_2 + z_3}{2 + 3z_1 + 8z_2 + 4z_3}, z_1, z_2, z_3 \right]$$

$$([-0.400000000, -0.400000000, -0.400000000], [1.333333333, 1.333333333, 1.333333333])$$

$$([1.333333333, 1.333333333, 1.333333333])$$

(19)

> $f := RR([z|1], z|2], z|3]), 10); T := RecToTz(3, z, f); SSg(T, [z|1], z|2], z|3]);$
 $SSg(T, [z|1], z|2], z|3)); Orb(3, z, f, [5, 8, 11], 2000, 2010)[-1];$

$$f = \frac{6 + 8z_1 + z_2 + 10z_3}{9 + z_1 + 7z_2 + 3z_3}$$

$$T := \left[\frac{6 + 8z_1 + z_2 + 10z_3}{9 + z_1 + 7z_2 + 3z_3}, z_1, z_2, z_3 \right]$$

$$([1.321762910, 1.321762910, 1.321762910])$$

$$([1.321762910, 1.321762910, 1.321762910])$$

$$1.321762910$$

(20)

> $f := RR([z|1], z|2], z|3]), 10); T := RecToTz(3, z, f); SSg(T, [z|1], z|2], z|3]);$
 $SSg(T, [z|1], z|2], z|3)); Orb(3, z, f, [5, 8, 11], 2000, 2010)[-1];$

$$f = \frac{10 + z_1 + 2z_2 + 2z_3}{1 + 7z_1 + 8z_2 + 5z_3}$$

$$T := \left[\frac{10 + z_1 + 2z_2 + 2z_3}{1 + 7z_1 + 8z_2 + 5z_3}, z_1, z_2, z_3 \right]$$

$$([0.8141428429, 0.8141428429, 0.8141428429])$$

$$([0.8141428429, 0.8141428429, 0.8141428429])$$

$$0.8141428430$$

(21)

> $f := RR([z|1], z|2], z|3]), 10); T := RecToTz(3, z, f); SSg(T, [z|1], z|2], z|3]);$
 $SSg(T, [z|1], z|2], z|3)); Orb(3, z, f, [5, 8, 11], 2000, 2010)[-1];$

$$f = \frac{1 + 3z_1 + 8z_2 + 10z_3}{4 + 10z_1 + 4z_2 + 6z_3}$$

$$T := \left[\frac{1 + 3z_1 + 8z_2 + 10z_3}{4 + 10z_1 + 4z_2 + 6z_3}, z_1, z_2, z_3 \right]$$

$$([0.9052343178, 0.9052343178, 0.9052343178])$$

$$([0.9052343178, 0.9052343178, 0.9052343178])$$

$$0.9052343179$$

(22)

> $f := RR([z|1], z|2], z|3]), 10); T := RecToTz(3, z, f); SSg(T, [z|1], z|2], z|3]);$
 $SSg(T, [z|1], z|2], z|3)); Orb(3, z, f, [5, 8, 11], 2000, 2010)[-1];$

$$f = \frac{9 + 10z_1 + 4z_2 + 5z_3}{1 + 2z_1 + 10z_2 + 5z_3}$$

$$T := \left[\frac{9 + 10z_1 + 4z_2 + 5z_3}{1 + 2z_1 + 10z_2 + 5z_3}, z_1, z_2, z_3 \right]$$

$$([1.429238738, 1.429238738, 1.429238738])$$

$$([1.429238738, 1.429238738, 1.429238738])$$

$$1.429238738$$

(23)

> $f := RR([z|1], z|2], z|3]), 10); T := RecToTz(3, z, f); SSg(T, [z|1], z|2], z|3]);$
 $SSg(T, [z|1], z|2], z|3)); Orb(3, z, f, [5, 8, 11], 2000, 2010)[-1];$

$$f = \frac{9 + 5z_1 + z_2 + 8z_3}{4 + 2z_1 + 3z_2 + 2z_3}$$

$$T := \left[\frac{9 + 5z_1 + z_2 + 8z_3}{4 + 2z_1 + 3z_2 + 2z_3}, z_1, z_2, z_3 \right]$$

$$([2.054404503, 2.054404503, 2.054404503])$$

$$([2.054404503, 2.054404503, 2.054404503])$$

$$2.054404503$$

(24)

6. Copy-and-paste the following line into your worksheet (once you have downloaded and read DMB14.txt):

```
L:=rand(1..3)(); a:=rand(1..50)()/20.; c:=rand(1..50)()/20.; T:=NicholsonBailey(L,a,c,N,P)
;SSg(T,[N,P]);SSSg(T,[N,P]);
```

Run it **twenty** times. Out of these twenty times, how many times did you get a non-empty set of stable steady-states? (ignore those that have an error message)

0/20 Were
NonEmpty

```
> L:=rand(1..3)(); a:=rand(1..50)()/20.; c:=rand(1..50)()/20.; T:=NicholsonBailey(L,a,c,N,P)
;SSg(T,[N,P]);SSSg(T,[N,P]);
```

$L := 3$
 $a := 2.450000000$
 $c := 1.100000000$
 $T := [3 Ne^{-2.450000000 P}, 1.100000000 N(1 - e^{-2.450000000 P})]$
 $[[0, 0], [0.6114725169, 0.4484131790]]$

```
> L:=rand(1..3)(); a:=rand(1..50)()/20.; c:=rand(1..50)()/20.; T:=NicholsonBailey(L,a,c,N,P)
;SSg(T,[N,P]);SSSg(T,[N,P]);
```

$L := 1$
 $a := 0.750000000$
 $c := 2.250000000$
 $T := [Ne^{-0.750000000 P}, 2.250000000 N(1 - e^{-0.750000000 P})]$
 $[[N, 0]]$

```
Error, (in SSSg) cannot determine if this expression is true or false: max(1..1.697500000*abs(N)) < 1 [DMB14.txt:489]
```

```
> L:=rand(1..3)(); a:=rand(1..50)(); c:=rand(1..50)(); T:=NicholsonBailey(L,a,c,N,P)
;SSg(T,[N,P]);SSSg(T,[N,P]);
```

$L := 1$
 $a := 1.900000000$
 $c := 1.500000000$
 $T := [Ne^{-1.900000000 P}, 1.500000000 N(1 - e^{-1.900000000 P})]$
 $[[N, 0]]$

```
Error, (in SSSg) cannot determine if this expression is true or false: max(1..2.850000000*abs(N)) < 1 [DMB14.txt:489]
```

```
> L:=rand(1..3)(); a:=rand(1..50)(); c:=rand(1..50)(); T:=NicholsonBailey(L,a,c,N,P)
;SSg(T,[N,P]);SSSg(T,[N,P]);
```

$L := 3$
 $a := 2.400000000$
 $c := 2.100000000$
 $T := [3 Ne^{-2.400000000 P}, 2.100000000 N(1 - e^{-2.400000000 P})]$
 $[[0, 0], [0.3269679431, 0.4577551203]]$

```
> L:=rand(1..3)(); a:=rand(1..50)(); c:=rand(1..50)(); T:=NicholsonBailey(L,a,c,N,P)
;SSg(T,[N,P]);SSSg(T,[N,P]);
```

$L := 2$
 $a := 2.200000000$
 $c := 0.500000000$
 $T := [2 Ne^{-2.200000000 P}, 0.5500000000 N(1 - e^{-2.200000000 P})]$
 $[[0, 0], [1.145697819, 0.3150669003]]$

```
> L:=rand(1..3)(); a:=rand(1..50)(); c:=rand(1..50)(); T:=NicholsonBailey(L,a,c,N,P)
;SSg(T,[N,P]);SSSg(T,[N,P]);
```

$L := 1$
 $a := 1.900000000$
 $c := 1.950000000$
 $T := [Ne^{-1.900000000 P}, 1.950000000 N(1 - e^{-1.900000000 P})]$
 $[[N, 0]]$

```
Error, (in SSSg) cannot determine if this expression is true or false: max(1..3.705000000*abs(N)) < 1 [DMB14.txt:489]
```

```
> L:=rand(1..3)(); a:=rand(1..50)(); c:=rand(1..50)(); T:=NicholsonBailey(L,a,c,N,P)
;SSg(T,[N,P]);SSSg(T,[N,P]);
```

$L := 2$
 $a := 1.750000000$
 $c := 0.150000000$
 $T := [2 Ne^{-1.750000000 P}, 0.1500000000 N(1 - e^{-1.750000000 P})]$
 $[[0, 0], [5.281121376, 0.3960841032]]$

```
> L:=rand(1..3)(); a:=rand(1..50)(); c:=rand(1..50)(); T:=NicholsonBailey(L,a,c,N,P)
;SSg(T,[N,P]);SSSg(T,[N,P]);
```

$L := 3$
 $a := 2.050000000$
 $c := 1.950000000$
 $T := [3 Ne^{-2.050000000 P}, 1.950000000 N(1 - e^{-2.050000000 P})]$
 $[[0, 0], [0.4122372565, 0.5359084335]]$

```
> L:=rand(1..3)(); a:=rand(1..50)(); c:=rand(1..50)(); T:=NicholsonBailey(L,a,c,N,P)
;SSg(T,[N,P]);SSSg(T,[N,P]);
```

$L := 3$
 $a := 2.350000000$
 $c := 0.350000000$
 $T := [3 Ne^{-2.350000000 P}, 0.3500000000 N(1 - e^{-2.350000000 P})]$
 $[[0, 0], [2.003548247, 0.4674945909]]$

```
> L:=rand(1..3)(); a:=rand(1..50)(); c:=rand(1..50)(); T:=NicholsonBailey(L,a,c,N,P)
;SSg(T,[N,P]);SSSg(T,[N,P]);
```

$L := 2$
 $a := 1.200000000$
 $c := 1.650000000$
 $T := [2 Ne^{-1.200000000 P}, 1.650000000 N(1 - e^{-1.200000000 P})]$
 $[[0, 0], [0.7001486672, 0.5776226505]]$

(7)

(6)

(5)

(8)

(9)

(10)

(11)

> $L := \text{rand}(1..3)(); a := \text{rand}(1..50)()/20; c := \text{rand}(1..50)()/20; T := \text{NicholsonBailey}(L, a, c, N, P)$

; $\text{SSg}(T, [N, P]); \text{SSSg}(T, [N, P])$

$L := 1$

$a := 1.100000000$

$c := 2.200000000$

$T := [N e^{-1.100000000} \cdot 2.200000000 N(1 - e^{-1.100000000})]$

$[[N, 0]]$

Error, (in SSSg) cannot determine if this expression is true or false: $\max(1, 2.420000000 \cdot \text{abs}(N)) < 1$ [DMB14.txt:489]

> $L := \text{rand}(1..3)(); a := \text{rand}(1..50)()/20; c := \text{rand}(1..50)()/20; T := \text{NicholsonBailey}(L, a, c, N, P)$

; $\text{SSg}(T, [N, P]); \text{SSSg}(T, [N, P])$

$L := 2$

$a := 1.600000000$

$c := 0.800000000$

$T := [2 N e^{-1.600000000} \cdot 0.800000000 N(1 - e^{-1.600000000})]$

$[[0, 0], [1.083042470, 0.4332169878]]$

σ

(12)

> $L := \text{rand}(1..3)(); a := \text{rand}(1..50)()/20; c := \text{rand}(1..50)()/20; T := \text{NicholsonBailey}(L, a, c, N, P)$

; $\text{SSg}(T, [N, P]); \text{SSSg}(T, [N, P])$

$L := 3$

$a := 2.250000000$

$c := 1.450000000$

$T := [3 N e^{-2.250000000} \cdot 1.450000000 N(1 - e^{-2.250000000})]$

$[[0, 0], [0.5051090982, 0.4882721283]]$

σ

(13)

> $L := \text{rand}(1..3)(); a := \text{rand}(1..50)()/20; c := \text{rand}(1..50)()/20; T := \text{NicholsonBailey}(L, a, c, N, P)$

; $\text{SSg}(T, [N, P]); \text{SSSg}(T, [N, P])$

$L := 2$

$a := 2.300000000$

$c := 0.0500000000$

$T := [2 N e^{-2.300000000} \cdot 0.0500000000 N(1 - e^{-2.300000000})]$

σ

(14)

> $L := \text{rand}(1..3)(); a := \text{rand}(1..50)()/20; c := \text{rand}(1..50)()/20; T := \text{NicholsonBailey}(L, a, c, N, P)$

; $\text{SSg}(T, [N, P]); \text{SSSg}(T, [N, P])$

$L := 2$

$a := 1.550000000$

$c := 1.850000000$

$T := [2 N e^{-1.550000000} \cdot 1.850000000 N(1 - e^{-1.550000000})]$

$[[0, 0], [0.4834505183, 0.4471917294]]$

σ

(15)

> $L := \text{rand}(1..3)(); a := \text{rand}(1..50)()/20; c := \text{rand}(1..50)()/20; T := \text{NicholsonBailey}(L, a, c, N, P)$

; $\text{SSg}(T, [N, P]); \text{SSSg}(T, [N, P])$

$L := 1$

$a := 2.150000000$

$c := 0.0500000000$

$T := [N e^{-2.150000000} \cdot 0.0500000000 N(1 - e^{-2.150000000})]$

$[[N, 0]]$

Error, (in SSSg) cannot determine if this expression is true or false: $\max(1, 0.1075000000 \cdot \text{abs}(N)) < 1$ [DMB14.txt:489]

> $L := \text{rand}(1..3)(); a := \text{rand}(1..50)()/20; c := \text{rand}(1..50)()/20; T := \text{NicholsonBailey}(L, a, c, N, P)$

; $\text{SSg}(T, [N, P]); \text{SSSg}(T, [N, P])$

$L := 1$

$a := 1.900000000$

$c := 2.200000000$

$T := [N e^{-1.900000000} \cdot 2.200000000 N(1 - e^{-1.900000000})]$

$[[N, 0]]$

Error, (in SSSg) cannot determine if this expression is true or false: $\max(1, 0.1075000000 \cdot \text{abs}(N)) < 1$ [DMB14.txt:489]

> $L := \text{rand}(1..3)(); a := \text{rand}(1..50)()/20; c := \text{rand}(1..50)()/20; T := \text{NicholsonBailey}(L, a, c, N, P)$

; $\text{SSg}(T, [N, P]); \text{SSSg}(T, [N, P])$

$L := 2$

$a := 0.1500000000$

$c := 1.250000000$

$T := [2 N e^{-0.150000000} \cdot 1.250000000 N(1 - e^{-0.150000000})]$

$[[0, 0], [7.393569926, 4.620981204]]$

σ

(16)

> $L := \text{rand}(1..3)(); a := \text{rand}(1..50)()/20; c := \text{rand}(1..50)()/20; T := \text{NicholsonBailey}(L, a, c, N, P)$

; $\text{SSg}(T, [N, P]); \text{SSSg}(T, [N, P])$

$L := 3$

$a := 2.400000000$

$c := 0.8000000000$

$T := [3 N e^{-2.400000000} \cdot 0.8000000000 N(1 - e^{-2.400000000})]$

$[[0, 0], [0.8582908505, 0.4577551203]]$

σ

(17)

> $L := \text{rand}(1..3)(); a := \text{rand}(1..50)()/20; c := \text{rand}(1..50)()/20; T := \text{NicholsonBailey}(L, a, c, N, P)$

; $\text{SSg}(T, [N, P]); \text{SSSg}(T, [N, P])$

$L := 2$

$a := 1.400000000$

$c := 1.300000000$

$T := [2 N e^{-1.400000000} \cdot 1.300000000 N(1 - e^{-1.400000000})]$

$[[0, 0], [0.7617001984, 0.4951051290]]$

σ

(18)

7. Copy-and-paste the following line into your worksheet (once you have downloaded and read DMB14.txt):

```
a:=rand(1..10)/10.: r:=rand(1..10)/10.: K:=rand(1..10)():

T:=NicholsonBaileyM(a,r,K,14,N,P); SSSg(T,[N,P]);
```

if got
a non-empty
set
50/100
times

Run it **100** times. Out of these fifty times, how many times did you get a non-empty set of stable steady-states? (ignore those that have an error message)

```
> a:=rand(1..10)/10.: r:=rand(1..10)/10.: K:=rand(1..10)():

T:=NicholsonBaileyM(a,r,K,14,N,P); SSSg(T,[N,P]);
```

(5)

```
> a:=rand(1..10)/10.: r:=rand(1..10)/10.: K:=rand(1..10)():

T:=NicholsonBaileyM(a,r,K,14,N,P); SSSg(T,[N,P]);
```

(6)

```
> a:=rand(1..10)/10.: r:=rand(1..10)/10.: K:=rand(1..10)():

T:=NicholsonBaileyM(a,r,K,14,N,P); SSSg(T,[N,P]);
```

(7)

```
> a:=rand(1..10)/10.: r:=rand(1..10)/10.: K:=rand(1..10)():

T:=NicholsonBaileyM(a,r,K,14,N,P); SSSg(T,[N,P]);
```

(8)

```
> a:=rand(1..10)/10.: r:=rand(1..10)/10.: K:=rand(1..10)():

T:=NicholsonBaileyM(a,r,K,14,N,P); SSSg(T,[N,P]);
```

(9)

```
> a:=rand(1..10)/10.: r:=rand(1..10)/10.: K:=rand(1..10)():

T:=NicholsonBaileyM(a,r,K,14,N,P); SSSg(T,[N,P]);
```

(10)

```
> a:=rand(1..10)/10.: r:=rand(1..10)/10.: K:=rand(1..10)():

T:=NicholsonBaileyM(a,r,K,14,N,P); SSSg(T,[N,P]);
```

(11)

```
> a:=rand(1..10)/10.: r:=rand(1..10)/10.: K:=rand(1..10)():

T:=NicholsonBaileyM(a,r,K,14,N,P); SSSg(T,[N,P]);
```

(12)

```
> a:=rand(1..10)/10.: r:=rand(1..10)/10.: K:=rand(1..10)():

T:=NicholsonBaileyM(a,r,K,14,N,P); SSSg(T,[N,P]);
```

(13)

```
> a:=rand(1..10)/10.: r:=rand(1..10)/10.: K:=rand(1..10)():

T:=NicholsonBaileyM(a,r,K,14,N,P); SSSg(T,[N,P]);
```

(14)

```
> a:=rand(1..10)/10.: r:=rand(1..10)/10.: K:=rand(1..10)():

T:=NicholsonBaileyM(a,r,K,14,N,P); SSSg(T,[N,P]);
```

(15)

```
> a:=rand(1..10)/10.: r:=rand(1..10)/10.: K:=rand(1..10)():

T:=NicholsonBaileyM(a,r,K,14,N,P); SSSg(T,[N,P]);
```

(16)

```
> a:=rand(1..10)/10.: r:=rand(1..10)/10.: K:=rand(1..10)():

T:=NicholsonBaileyM(a,r,K,14,N,P); SSSg(T,[N,P]);
```

(17)

```
> a:=rand(1..10)/10.: r:=rand(1..10)/10.: K:=rand(1..10)():

T:=NicholsonBaileyM(a,r,K,14,N,P); SSSg(T,[N,P]);
```

(18)

```
> a:=rand(1..10)/10.: r:=rand(1..10)/10.: K:=rand(1..10)():

T:=NicholsonBaileyM(a,r,K,14,N,P); SSSg(T,[N,P]);
```

(19)

```
> a:=rand(1..10)/10.: r:=rand(1..10)/10.: K:=rand(1..10)():

T:=NicholsonBaileyM(a,r,K,14,N,P); SSSg(T,[N,P]);
```

(20)

```
> a:=rand(1..10)/10.: r:=rand(1..10)/10.: K:=rand(1..10)():

T:=NicholsonBaileyM(a,r,K,14,N,P); SSSg(T,[N,P]);
```

(21)

```
> a:=rand(1..10)/10.: r:=rand(1..10)/10.: K:=rand(1..10)():

T:=NicholsonBaileyM(a,r,K,14,N,P); SSSg(T,[N,P]);
```

(22)

```
> a:=rand(1..10)/10.: r:=rand(1..10)/10.: K:=rand(1..10)():

T:=NicholsonBaileyM(a,r,K,14,N,P); SSSg(T,[N,P]);
```

(23)

```
> a:=rand(1..10)/10.: r:=rand(1..10)/10.: K:=rand(1..10)():

T:=NicholsonBaileyM(a,r,K,14,N,P); SSSg(T,[N,P]);
```

(24)

```
> a:=rand(1..10)/10.: r:=rand(1..10)/10.: K:=rand(1..10)():

T:=NicholsonBaileyM(a,r,K,14,N,P); SSSg(T,[N,P]);
```

(25)

```
> a:=rand(1..10)/10.: r:=rand(1..10)/10.: K:=rand(1..10)():

T:=NicholsonBaileyM(a,r,K,14,N,P); SSSg(T,[N,P]);
```

(26)

