Homework for Lecture 13 of Dr. Z.'s Dynamical Models in Biology class

Email the answers (as a .pdf file) to

ShaloshBEkhad@gmail.com

by 8:00pm Monday, Oct. 20, 2025.

Subject: hw13

with an attachment hw13FirstLast.pdf

$$\chi = \frac{\varkappa}{3+y} \Rightarrow \varkappa(2+y) = 0 \rightarrow \varkappa = 0, \ y = -2$$

$$y = \frac{y}{2+x} \Rightarrow y(1+x) = 0 \rightarrow y = 0, \ \varkappa = -1$$

1. a Find all the steady-states of the system

system
$$(0,0) (-1,-2)$$

$$a_1(n+1) = \frac{a_1(n)}{3+a_2(n)}$$

$$J = \begin{pmatrix} \frac{1}{3+y} & -\frac{2}{(3+y)^2} \\ -\frac{y}{(2+x)^2} & \frac{1}{2+x} \end{pmatrix}$$

$$a_2(n+1) = \frac{a_2(n)}{2+a_1(n)} \qquad \qquad \Im(o,o) = \left(\begin{smallmatrix} 1/3 & G \\ O & 1/2 \end{smallmatrix} \right) \to \text{Stable}$$

$$\Im(-1,2) = \left(\begin{smallmatrix} 1 & 1 \\ 2 & 1 \end{smallmatrix} \right) \to \text{unstable}$$

Which of them is a stable steady-state?

2. a Find all the steady-states of the system

the system
$$a_{1}(n+1) = \frac{a_{1}(n)}{3a_{1}(n) + 5a_{2}(n)} \xrightarrow{\chi_{1} = 0} \frac{\chi_{2} + 5\chi_{3} + \chi_{3} + \chi$$

Which of them is a stable steady-state?

$$\int (\frac{1}{3}, 0) = \begin{pmatrix} 0 & -\frac{5}{3} \\ 0 & \frac{3}{2} \end{pmatrix}$$

$$\mathbb{J}(\frac{1}{3},0) = \begin{pmatrix} 0 & -5/3 \\ 0 & 3/2 \end{pmatrix} \qquad \mathbb{J}(\frac{2}{11},\frac{1}{11}) = \begin{pmatrix} 5/1 & -19/1 \\ -2/1 & 0 \end{pmatrix}$$

$$\mathbb{J}(\frac{2}{11},\frac{1}{11}) = \begin{pmatrix} 5/1 & -19/1 \\ -2/1 & 4/11 \end{pmatrix}$$

unstable

unstable

Stable