## Homework for Lecture 11 of Dr. Z.'s Dynamical Models in Biology class

Email the answers (as a .pdf file) to

ShaloshBEkhad@gmail.com

by 8:00pm Monday, Oct. 13, 2025.

Subject: hw11

with an attachment hw11FirstLast.pdf

1. Read and understand, and be able to reproduce in an exam, the first part of

http://sites.math.rutgers.edu/~zeilberg/Bio25/L11.pdf

about period-doubling and advancement to chaos.

2. Find the potential steady-states of the third-order recurrence

$$a(n+3) = \frac{1+2a(n+2)+3a(n+1)+4a(n)}{2+3a(n+2)+4a(n+1)+5a(n)}$$

3. Convert the third-order recurrence

$$a(n+3) = \frac{1+2a(n+2)+3a(n+1)+4a(n)}{2+3a(n+2)+4a(n+1)+5a(n)}$$

to a first-order vector recurrence for an appropriate  $\mathbf{x}(n)$  (you first have to define it).

4. By using SS in the Maple file

http://sites.math.rutgers.edu/~zeilberg/Bio25/DMB8.pdf

find the two steady-states, in terms of the parameter r of the non-linear recurrence

$$a(n+1) = \frac{(1 - 2a(n))(1 - 3a(n))}{r}$$

By using SSS and experimenting with different r (playing high-low), estimate the cut-off  $r_0$  such for  $r < r_0$  there is no stable steady-state, but for  $r > r_0$  one them is a stable steady-state.

- 4'. Optional challenge (5 dollars): Find the **exact** value of this cut-off  $r_0$ .
- 5. (i) By playing 'high-low' estimate the number  $r_1$  such that for  $r < r_1$  the orbit tends to period 2 ultimate orbit until it starts having period 4.

- (ii) By playing 'high-low' estimate the number  $r_2$  such that for  $r < r_2$  the orbit tends to period 4 ultimate orbit until it starts having period 8.
- (iii) By playing 'high-low' estimate the number  $r_3$  such that for  $r < r_3$  the orbit tends to period 8 ultimate orbit until it starts having period 16.

2. Find the potential steady-states of the third-order recurrence

$$a(n+3) = \frac{1 + 2a(n+2) + 3a(n+1) + 4a(n)}{2 + 3a(n+2) + 4a(n+1) + 5a(n)}$$

Z= 7± (49-4(12)[-1)

7 = 7 = 74

3. Convert the third-order recurrence

$$a(n+3) = \frac{1 + 2a(n+2) + 3a(n+1) + 4a(n)}{2 + 3a(n+2) + 4a(n+1) + 5a(n)}$$

to a first-order vector recurrence for an appropriate  $\mathbf{x}(n)$  (you first have to define it).

$$X(n) = [a(n+z), a(n+1), a(n)]$$

$$x(n+1) = F(x(n))$$

4. By using SS in the Maple file

http://sites.math.rutgers.edu/~zeilberg/Bio25/DMB8.pdf

find the two steady-states, in terms of the parameter  $\boldsymbol{r}$  of the non-linear recurrence

$$a(n+1) = \frac{(1 - 2a(n))(1 - 3a(n))}{r}$$

By using SSS and experimenting with different r (playing high-low), estimate the cut-off  $r_0$  such for  $r < r_0$  there is no stable steady-state, but for  $r > r_0$  one them is a stable steady-state.

$$\left[\frac{r}{12} + \frac{5}{12} + \frac{\sqrt{r^2 + 10r + 1}}{12}, \frac{r}{12} + \frac{5}{12} - \frac{\sqrt{r^2 + 10r + 1}}{12}\right]$$

> 
$$fI := \frac{((1-2\cdot x)\cdot (1-3\cdot x))}{3}$$

$$fi := \frac{(1-2x)(1-3x)}{(1-x)}$$

> SSS(f1, x)

>  $fl := \frac{((1-2\cdot x)\cdot (1-3\cdot x))}{4}$ 

$$fl := \frac{(1-2x)(1-3x)}{4}$$

> SSS(fl, x)

$$\left[\frac{3}{4} - \frac{\sqrt{57}}{12}\right]$$

4'. Optional challenge (5 dollars): Find the exact value of this cut-off  $r_0$ .

$$f := \frac{((1 - 2 \cdot x) \cdot (1 - 3 \cdot x))}{3.430501}$$

> SSS(f1, x)

[0.1307915914286220477031677803555480104046585372699992185518465754182228167383893464447532459764528769]

>  $fl := \frac{((1-2\cdot x)\cdot (1-3\cdot x))}{3.43050}$ 

fi := 0.2915026963999416994607200116601078559976679784288004664043142399067191371520186561725695962687654861 (1 - 2x) (1 - 3x)

> SSS(f1, x)

ro=3.4305

