Homework for Lecture 1 of Dr. Z.'s Dynamical Models in Biology class

Email the answers to

ShaloshBEkhad@gmail.com

by 8:00pm Monday, Sept. 8, 2025.

Subject: HW

with an attachment LastFirstHw1.pdf

1. Compute the first six terms of the sequence satisfying the recurrence equation

$$x_n = x_{n-1} + 2x_{n-2} - x_{n-3}$$
 , $n \ge 3$

subject to the initial conditions

$$x_0 = 1, x_1 = 2, x_2 = -1$$
.

2. Solve explicitly the recurrence equation

$$x_n = 5x_{n-1} - 6x_{n-2} \quad ,$$

with initial conditions

$$x_0 = 0, x_1 = 1$$
.

3. In a certain species of animals, only one-year-old, two-year-old, and three-year-old females are fertile.

The probabilities of a one-year-old, two-year-old, and three-year-old female to give birth to a new female are p_1 , p_2 , p_3 respectively.

Assuming that there were c_0 females born at n = 0, c_1 females born at n = 1, and c_2 females born at n = 2. Set up a recurrence that will enable you to find the **expected** number of females born at time n.

In terms of $c_0, c_1, c_2, p_0, p_1, p_2$, how many females were born at n = 4?

1. Compute the first six terms of the sequence satisfying the recurrence equation

Idk if you wanted xo-xo or x5-x8 so idid more
$$x_n=x_{n-1}+2x_{n-2}-x_{n-3}$$
 , $n\geq 3$ just in case subject to the initial conditions

$$x_0 = 1, x_1 = 2, x_2 = -1 \quad .$$

X3= X2+ Zx, - X0	X5 = X4 + 2(X3) - X2	X7= X6 + 2(X5) - X4
= -1+4-1	= -2 + 2(2)+1	= -3+2(3) +2
- 2	= 3	= 5
X4 = X3 + ZXz - X1	X6 = X5 + Z(X4) - X3	X8 = X7+2(X6)-X5
= 2 + 2(-1) - 2	= 3+2(-2)-2	= 5+2(-3)-3
= -2	= -3	= -4

2. Solve explicitly the recurrence equation

$$x_n = 5x_{n-1} - 6x_{n-2} \quad ,$$

with initial conditions

$$x_0 = 0, x_1 = 1$$
.

$$z^{2} = 5z' - 6z^{0}$$
 $x_{n} = C_{1}(3)^{n} + C_{2}(2)^{n}$ $x_{n} = 3^{n} - 2^{n}$
 $z^{2} - 5z + 6 = 0$
 $(z - 3)(z - 2) = 0$ $x_{0} = 0 = C_{1} + C_{2}$
 $z = 3_{1}z$
 $x_{1} = 1 = 3C_{1} + zC_{2}$
 $x_{1} = 3C_{2} + zC_{2}$
 $x_{1} = 1 = 3C_{2} + zC_{2}$
 $x_{2} = -1$

3. In a certain species of animals, only one-year-old, two-year-old, and three-year-old females are fertile

The probabilities of a one-year-old, two-year-old, and three-year-old female to give birth to a new female are p_1 , p_2 , p_3 respectively.

Assuming that there were c_0 females born at n = 0, c_1 females born at n = 1, and c_2 females born at n = 2. Set up a recurrence that will enable you to find the **expected** number of females born at time n.

In terms of $c_0, c_1, c_2, \frac{\rho_1, \rho_2, \rho_3}{\rho_0, \rho_1, \rho_2}$, how many females were born at n=4?

$$Cn = Cn - 1P1 + Cn - 2P2 + Cn - 3P3 \qquad n \ge 3$$

$$C3 = C2P1 + C1P2 + C0P3$$

$$C4 = C3P1 + C2P2 + C1P3$$

$$= (C2P1 + C1P2 + C0P3)P1 + C2P2 + C1P3$$