Yan Dong (yd372)

1. Compute the first six terms of the sequence satisfying the recurrence equation

$$x_n = x_{n-1} + 2x_{n-2} - x_{n-3}$$
 , $n \ge 3$

subject to the initial conditions

$$x_0 = 1, x_1 = 2, x_2 = -1$$
.

Solution:
$$\chi_3 = \chi_2 + 2\chi_1 - \chi_0$$

= -1 + 2(2) - 1
= -1 + 4 - 1
= 2
 $\chi_4 = \chi_3 + 2\chi_2 - \chi_1$
= 2 + 2(-1) - 2
= 2 - 2 - 2
= -2
 $\chi_5 = \chi_4 + 2\chi_3 - \chi_5$
= -2 + 2(2) - (-1)
= -2 + 4 + 1
= 3

So, the first six term is
$$20=1$$
, $21=2$, $21=-1$, $21=2$, $21=2$, $21=2$, $21=2$, $21=2$, $21=2$

2. Solve explicitly the recurrence equation

$$x_n = 5x_{n-1} - 6x_{n-2}$$
 ,

with initial conditions

$$x_0 = 0, x_1 = 1$$
.

Sol.
$$X_{n} = 5X_{n+} - 6X_{n-2}$$
, $n \ge 2$
 $X_{0} = 0$, $X_{n} = 1$
Assume $X_{n} = \Gamma^{n}$, $\Gamma \ne 0$
 S^{0} , $\Gamma^{n} = 5\Gamma^{n+1} - 6\Gamma^{n-2}$
 $\Rightarrow \Gamma^{2} = 3\Gamma - 6$
 $\Rightarrow \Gamma^{3} - 5\Gamma + 6 = 0$
 $(\Gamma - 2)(\Gamma - 3) = 0$
 $\Gamma = 2$ or $\Gamma = 3$
So, general solution is $X_{n} = A \cdot 2^{n} + B \cdot 3^{n}$
initial condition $X_{0} = 0$, $X_{1} = 1$
 $\Rightarrow X_{0} = A \cdot 2^{0} + B \cdot 3^{0} = 0$
 $X_{1} = A \cdot 2^{1} + B \cdot 3^{1} = 1$
 $X_{1} = A \cdot 2^{1} + B \cdot 3^{1} = 1$
 $X_{2} = A \cdot 2^{1} + B \cdot 3^{2} = 1$
 $X_{3} = A \cdot 2^{3} + B \cdot 3^{3} = 1$
 $X_{4} = A \cdot 2^{1} + B \cdot 3^{2} = 1$
 $X_{5} = A \cdot 2^{2} + B \cdot 3^{2} = 1$
 $X_{5} = A \cdot 2^{2} + B \cdot 3^{2} = 1$
 $X_{5} = A \cdot 2^{2} + B \cdot 3^{2} = 1$
 $X_{5} = A \cdot 2^{2} + B \cdot 3^{2} = 1$
 $X_{5} = A \cdot 2^{2} + B \cdot 3^{2} = 1$

Thus, the solution is $Xn = -2^n + 3^n$

3. (Corrected Sept. 6, 2025, thanks to Caroline Hill [who won a dollar].)

In a certain species of animals, only one-year-old, two-year-old are fertile.

The probabilities of a one-year-old, two-year-old, female to give birth to a new female are p_1 , p_2 , respectively.

Assuming that there were c_0 females born at n = 0, c_1 females born at n = 1 Set up a recurrence that will enable you to find the **expected** number of females born at time n.

In terms of c_0, c_1, p_1, p_2 , how many females were born at n = 4?

Sol: one-year-old gives birth to a new female with probability p,
two-year-old gives birth to a new female with probability p2,

Initial: Co females born at n=0, Co females born at n=1.

Let In be the expected number of females born at time n

Al fine n,

Three born at n-1 (one-year-old):

expected number is f_{n-1} , expected offspring is p_1f_{n-1} Three born at n-2 (two-year-old):

expected number is f_{n-2} , expected offspring is p_2f_{n-2} Therefore, $f_n = p_1f_{n-1} + p_2f_{n-2}$ $n \ge 2$

with initical analition $f_0 = C_0$, $f_1 = C_1$ want to find f_4 where n = 4. $f_3 = p_1 f_1 + p_2 f_0 = p_1 C_1 + p_2 C_0$ $\int_{3}^{2} = p_{1} f_{2} + p_{2} f_{1} = p_{1} (p_{1}C_{1} + p_{2}C_{0}) + p_{2} C_{1}$ $= p_{1}^{2} C_{1} + p_{1} p_{2} C_{0} + p_{2} C_{1}$

14 = p, f3 + p2f2

= p, (p,2c, + p, ps Co + ps C,) + ps (p, c, + ps Co)

= $p_1^3 C_1 + p_1^2 p_2 C_0 + p_1 p_2 C_1 + p_1 p_2 C_1 + p_2^3 C_0$

= pi3 Ci + pi2p2 Co + 2pip2 Ci + p2 Co B