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OK to post
Julian Herman, 29th November 2021, Assignment 24

#1)
For the first problem, I didn't integrate the last time and therefore ended up with 3t^2 as my answer. This 
was due to a simple mistake of rushing and not being careful with my notation.
I did not have the time to do the second problem.

#3)
#ii)
# Keeping to convention, define the up direction as positive and down direction as negative

# Let gravitational acceleration be -10.0
meters

s2

# Net Force = Force due to air resistance  Force due to gravity (negative) = (2 m (-x'(t))) m 10
= m 2 x ' t 10

# Net Force = Mass Acceleration
# m 2 x ' t 10  = m x '' t
# -2 x' t 10 = x '' t
#` `x '' t 2 x ' t 10 = 0
# x(0)=100; x'(0)=0
# when the ball hits the ground: x(t)=0.
dsolve diff diff x t , t , t 2 diff x t , t 10 = 0, x 0 = 100, x ' 0 = 0 , x t

x t =
5 e 2 t

2
5 t

205
2

evalf subs t = 0, %
x 0 = 100.0000000

evalf solve
5 e 2 t

2
5 t

205
2

= 0, t

20.50000000, 1.90112928
# The ball hits the ground after 20.5 seconds! This makes sense because with air resistance, it will take 

longer for the ball to hit the ground than without air resistance (which we calculated in the previous 
part of the question (#3i) to be 4.47 seconds).

 

#4)
#a)
A discrete time dynamical system with one variable / quantity is a relationship between the current value of
the variable and previous value(s) of the variable. It represents the evolution of the variable over discrete 
steps of time via a difference equation.
Format:
# x n = F x n 1 , x n 2 , x n 3 ,..., x n k  where 1 k  n



For a first order:  x n = F x n 1

#b)
The orbit of a discrete-time dynamical system with one-quantity / variable starting at x(n=0)=x0 up to n = 
K means plugging in the value x0 into the transformation F, as described above, in order to determine x(1)
and then plugging x(1) into F  in order to determine x(2) and so on...performing this composition 
operation K times (meaning once x(K) is determined, you stop). The orbit is the list of all these values: 
[x0, x(1), x(2), ..., x(K)] which, again, is calculated by: [x0, F(x0), F(F(x0)),F(F(F(x0))),...]

#c)
An equilibrium solution is a constant x(n)=c of a particular recurrence / difference equation that when 
plugged into the transformation F , yields the same constant c. Therefore, it is a solution to the difference 
equation that is constant; it repeats itself once it is reached in the recurrence. More formally: x(n)=c is an 
equilibrium solution if the underlying transformation F(c)=c.

#d)
A stable equilibrium solution is a solution to a particular recurrence / difference equation (as described 
above) that when you start the recurrence from a point / value x(0) within a local neighborhood / basin of 
attraction very close to the solution and run its orbit (as described above) it eventually (in the long term) 
converges to the same solution. More formally: if x(n)=c is an equilibrium solution, then it is a stable 
equilibrium solution if the limit as n goes to infinity of x(n) = c when the recurrence starts at some initial 
value c' not equal to c where: c delta  c '  c delta 

c delta, c delta being the so called "local neighborhood."

#5)
#a)
In order to numerically locate the stable fixed points (aka stable discrete-equilibria) using orbits, you must 
run Orb() for many iterations (say K1=1000 and K2=1010) with initial conditions very close to the fixed 
point to be tested and check if the last few values of the orbit are constant and equal to the fixed point being
tested. In general: if they are equal and constant, then it is stable; if not, it is unstable.

#b)
If the underlying function is f(x), in order to find the fixed points using algebra you must set f(x)=x and 
solve for x. This will provide the values of x where the transformation spits out x again and thus x is a 
fixed point.
 
#c)
If the underlying function is f(x), to find the subset of the above set of stable fixed points you must take 
the derivative of f(x): f ' x .  Then for each fixed point you must check if: f ' x = a fixed point 1. If 
this condition is true, the fixed point is stable (this has to do with the linearizaiton / taylor series 
approximation). If the condition is not true, the fixed point is unstable (or semi-stable possibly if the LHS 
evaluates to be exactly 1).

#d)
read `/Users/julianherman/Documents/Rutgers/Fall 2021/Dynamical Models In Biology/HW/DMB.txt` :



(4)(4)

First Written: Nov. 2021 

This is DMB.txt, A Maple package to explore Dynamical models in Biology (both discrete and 
continuous)

accompanying the class Dynamical Models in Biology, Rutgers University. Taught by Dr. Z. (Doron 
Zeilbeger) 

The most current version is available on WWW at:

 http://sites.math.rutgers.edu/~zeilberg/tokhniot/DMB.txt .

Please report all bugs to: DoronZeil at gmail dot com .

For general help, and a list of the MAIN functions,

 type "Help();". For specific help type "Help(procedure_name);" 

------------------------------

For a list of the supporting functions type: Help1();

For help with any of them type: Help(ProcedureName);

------------------------------

For a list of the functions that give examples of Discrete-time dynamical systems (some famous), type: 
HelpDDM();

For help with any of them type: Help(ProcedureName);

------------------------------

For a list of the functions continuous-time dynamical systems (some famous) type: HelpCDM();

For help with any of them type: Help(ProcedureName);

------------------------------
#i)
Help Orb
Orb(F,x,x0,K1,K2): Inputs a transformation F in the list of variables x with initial point pt, outputs the

trajectory of

of the discrete dynamical system (i.e. solutions of the difference equation): x(n)=F(x(n-1)) with x(0)=
x0 from n=K1 to n=K2. 

For the full trajectory (from n=0 to n=K2), use K1=0. Try:



(8)(8)
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(10)(10)

(6)(6)
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(9)(9)

Orb([5/2*x*(1-x)],[x], [0.5], 1000,1010);

Orb([(1 x y)/(2 x y),(6 x y)/(2 4*x 5*y),[x,y], [2.,3.], 1000,1010);
Using (b) to obtain the fixed points:

L evalf solve x =
x 1
x 2

, x

L 0.6180339880, 1.618033988
 
Using (c) to obtain the stabled fixed points:

f x
x 1
x 2

:

 for i in L do: print evalb subs x = i, f ' x  1 od:

true

false
The above tells us that the first fixed point: x=0.6180339880 is stable; and the second fixed point: x=

1.618033988  is unstable.

Using (a) to confirm numerically which of the fixed points are stable:

op Orb
x 1
x 2

, x , 0.518 , 1000, 1010

0.6180339888
The above shows that x=0.6180339880 is a stable fixed point because starting the orbit at x=0.518 still 
brings us back to 0.6180339880.
 

op Orb
x 1
x 2

, x , 1.518 , 1000, 1010

0.6180339888
The above shows that x= 1.618033988 is unstable because starting the orbit near it at -1.518 does NOT 
bring us back to 1.618033988.

#ii)
Using (b) to obtain the fixed points:

L evalf solve x =
5
2

x 1 x , x

L 0., 0.6000000000
 
Using (c) to obtain the stabled fixed points:

f x
5
2

x 1 x :

 for i in L do: print evalb subs x = i, f ' x  1 od:

false



(17)(17)

(14)(14)

(11)(11)

(16)(16)

(13)(13)

(12)(12)

(15)(15)

true
The above tells us that the first fixed point: x=0.0 is unstable; and the second fixed point: x=0.600 is 
stable.

Using (a) to confirm numerically which of the fixed points are stable:

op Orb
5
2

x 1 x , x , 0.01 , 1000, 1010

0.6000000000
The above shows that x=0.0 
 

op Orb
5
2

x 1 x , x , 0.7 , 1000, 1010

0.6000000000
The above shows that x=0.600 

#iii)
Using (b) to obtain the fixed points:

L evalf solve x =
7
2

x 1 x , x

L 0., 0.7142857143
 
Using (c) to obtain the stabled fixed points:

f x
7
2

x 1 x :

 for i in L do: print evalb subs x = i, f ' x  1 od:

false

false
The above tells us that both of the fixed points are unstable.

Using (a) to confirm numerically that neither of the fixed points are stable:

op Orb
7
2

x 1 x , x , 0.01 , 1000, 1010

0.3828196827 , 0.5008842111 , 0.8269407062 , 0.8749972637
The above shows that x=0.0 is unstable because starting the orbit near it at 0.01 brings us to a cyclical 
orbit of period 4 and not back to the fixed point 0.0.

op Orb
7
2

x 1 x , x , 0.8 , 1000, 1010

0.3828196827 , 0.5008842111 , 0.8269407062 , 0.8749972637
The above shows that x=0.7142857143 is unstable because starting the orbit near it at 0.8 brings us to a 
cyclical orbit of period 4 and not back to the fixed point 0.7142857143.
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2.) let : ✗It)= position
✗ ' (f) = velocity
✗
" (E) = acceleration

Then : ✗
" ' " ( t) = 120

✗
" " (t) = 1120 dt

✗
" " (t) = 120T + C ,

✗
" " (01--12010)+4=0 ⇒

✗
" ' (f) = flzotdt
✗
" ' (t) = 60th t ca

✗
" ' G) = 601012+4=0 ⇒c

✗
" (f)=/ Got' It

✗
" (f) = Lot

>
+ ↳

✗
" ( O) = 2010)

>
+ C> = 0 ⇒c!



✗
' (f) = f20t> dt

✗
' It)= 51-4 + Cy

✗
' (O) = 51014+4=0 ⇒C

✗ ( t)=/ 5t4dt

✗ (f) = -15 + G-

✗ 107=05+4--0 ⇒C
✗lt
After 2 seconds : ✗ (2) = 25 __32meters-hepartideis3-rsfomthestrtrnypoiht.fm
3.) i) acceleration : ✗

" (t) = -10 Is ( approximately)
✗( O ) = 100m

, ✗
' lo) = omg ( initial r=o=s )

✗
' (f) = f- to dt = - lot + C , ✗

' (a) = -10101+4=0

✗(f) = f- lot dt = -51-2 + Cz

✗ ( o) = -5/012+12=100 ⇒Cz=⑤



xltk-51-2t.IO#
when it hits the ground : ✗(f) = 0m .

✗ (f) = - 51-2+100=0

5th = 100

+2 = 20

t=To=2F~~4.47seconÉ


