
> > 

> > 

> > 
> > 

> > 

> > 

> > 

> > 

> > 

(1)(1)

> > 

> > 

> > 

#Ok to post Homework
#Jeton Hida, Assignment 24, November 29, 2021

#Question 1

#For the attendance quiz I made silly mistakes, the first one I 
mistakenly tried to treat it all as if velocity was x(t) instead of
x'(t), I knew accelaration is the derivative of velocity, so I 
treated that as x'(t) instead. Basically, it sums up to me being 
one derivative off for the whole problem, and that in turn caused 
me to get it wrong. For number 2 on the attendance quiz, I was 
unsure where to go with the info given, specifically the part where
we equate ma = -mg -> m(x''(t)) = -mg and we cancel m's. This was 
the only issue, I see it now, every other step here was easy to do,
if I only got that first step I would've solved this easily, but 
unfortunately I didn't.

#Question 2

#rate of change of the rate of change of acceleration, acceleration
is x''(t) rate of change of that is x'''(t) rate of change of that 
which is x''''(t). We are given the rate of change of this one, 
(5th derivative), so x'''''(t)=120m/s^3 (homework says sec^3, but i
believe it should be to the 5th power so, sec^5) We are going to 
perform a series of integrations, with solving for C at each step 
from given initial conditions. At the end once we find x(t) we will
plug in t=2 to the equation.

#x'''''(t) = 120, x(0) = 0; x'(0) = 0; x''(0) = 0; x'''(0) = 0; 
x''''(0) = 0
#x''''(t) = 120t + C -> 0 = 120(0) + C, C=0, x''''(t) = 120t
#x'''(t) =60t^2 + C -> 0 = 60(0^2) + C, C=0, x'''(t) = 60t^2
#x''(t) = 20t^3 + C -> 0 = 20(0^3) + C, C=0, x''(t) = 20t^3
#x'(t) = 5t^4 + C -> 0 = 5(0^4) + C, C=0, x'(t) = 5t^4
#x(t) = t^5 + C -> 0 = (0^5) + C, C=0, x(t) = t^5

#x(2) = 2^5 = 32, Hence the particle is at a distance 32 meters 
from the starting point after 2 seconds!

#Question 3 i.

#ma = -mg, m(x''(t))=-mg, m cancels out x''(t) = -g, g=10. x'(0)=0,
x(0)=100m Now do a series of integration and solving for C based on
initial conditions!
#x''(t) = -10
#x'(t) = -10t + C -> 0 = -10(0) + C, C=0, x'(t) = -10t
#x(t) = -5t^2 + C -> 100 = -5(0^2) + C, C=100, x(t)=-5t^2+100
#Ball is on the ground when x(t) = 0, so let's solve for t to find 
how many seconds it will take to reach ground
#-5t^2 + 100 = 0, -5t^2 = -100, t^2 = 20, t = + sqrt(20), a 
negative value for time makes no sense so the ball reaches the 
ground when the time is t=sqrt(20)

evalf(sqrt(20))
4.472135954

#The ball hits the ground at t=4.472135954 seconds

#ii.



> > 

> > 

(2)(2)

> > 

> > 

> > 

> > 

> > 

> > 

(3)(3)

> > 

> > 

> > 

> > 

> > 

#Ball is dropped from height of 100 meters, x(0) = 100, air-
resistance is equal to 2mv where v is velocity, velocity is also 
equal to x'(t) here. Acceleration is x''(t) = -10 where 10 = g in 
units of m/s^2. Setting up an equation we have this.

#mx''(t) = -10m - 2m(x'(t)), the value 2m(x'(t)) is negative here 
as the air resistance value is related to the velocity. Velocity of
this ball will also be negative for the same reason the 
acceleration is negative, because of the direction the ball is 
moving. All the m's will cancel out. With that said we are left 
with the following equation,

#x''(t) = -10 - 2x'(t)

dsolve({D(D(x))(t)=-10-2*D(x)(t),x(0) = 100,D(x)(0)=0},x(t))

x t =
5 e 2 t

2
5 t

205
2

evalf(solve((-5/2)*exp(-2*t)-5*t+(205/2)=0,t))
20.50000000, 1.90112928

#The ball will reach the ground at 20.5 seconds

#Question 4

#(a)
#x(n) = x(n-1), this is the format for a discrete time system 
specifically a first-order discrete system. The general format is
#x(n) = f(x(n-1),x(n-2),...,x(n-k)) for a k-th order discrete 
dynamical system. Where we say the value of our quantity (x) at a 
time step n is equal to a function containing the value of our 
quantity (x) at previous time step(s).

#(b)
#The orbit of a discrete time dynamical system with one quantity 
starting at x(n) = x0 up to n = K. 
#What we mean by this is that with our discrete time dynamical 
system which we have said the value x(n) is equal to a function of 
previous time steps f(x(n-1),x(n-2),...,x(n-k)). We start an 
initial value we call x0. To find out where we are at the next 
timestep we plug this point x0 into our function of our quantity. 
This next point we land at we call x1. An orbit pertains to the 
idea that after several iterations, up to n = K, where does our 
quantity end up at? An orbit means we are actually "orbitiing" 
around several points. In this case, after K timesteps we notice 
that our quantity only seems to take on several values and nothing 
else. At timestep K-3 we take on a value of A, we'll call it. Then 
at K-2 we take on a value of B, and then at K-1 we go back to A, 
etc. We continue to repeat this "orbit" around these two values A 
and B. 

#(c)
#An equilibrium solution for a discrete time dynamical system 
refers to a point that we start at, and never leave. If our 
quantity x(n) has an equilibrium solution we'll call x*, then if we
start at x* we will never leave x*. The point in the next timestep,
will be x* and the point in K timesteps will always be x*. A good 
way to think about this is for discrete time systems that model 
population growth between generations. An easy equilibrium point to
understand is 0. If we start with our population equalling to 0, we



> > 

> > 

> > 

> > 

> > 

> > 

> > 

> > 

> > 
> > 

(4)(4)

> > 

> > 

> > 

will never grow from 0, how can we have more members of a 
population being born when we have none to begin with, we have no 
members able to give birth to new life. The system will remain at 
the equilibrium point 0. 

#(d)
#A stable equilibrium solution is an equilibrium solution to a 
discrete time dynamical system with one other quality to it. It is 
true like before that if we start at this value, we remain at this 
value even going forward K timesteps. The difference here is that a
stable equilibrium solution does not require you to start at it to 
eventually reach it. If you start at a point near the stable 
equilibrium, your value of x(n) will eventually reach a value close
to the stable equilibrium and then stay at it indefinitely. Say we 
have a stable equilibrium value of .5, and we begin at .25, after K
timesteps (maybe less depending on the function) we will end up 
near this stable equilibrium value of .5 and stay at it.

#Question 5

#(a)
#To find the stable equilibria (stable fixed point) using orbits, 
of a discrete time dynamical system we can use the Maple procedure 
by Dr. Z Orb. Which really takes a function f(x(n-1),...,x(n-k)) 
and using our initial conditions say x(0)=x0. Iterates it K 
timesteps ahead. The idea is that after many iterations we will 
notice a pattern of what the value of x(n) is. If we start at x0 
and stay at x0 after several timesteps then we know that x0 is a 
fixed point. If we start near x0, but not exactly at it and we 
still end up at x0 after K timesteps, we know x0 is a stable fixed 
point. If we do not end up at x0 after starting near it, then we 
can say x0 is an unstable fixed point. 

#(b)
#To algebraically find a set of fixed points for a function of a 
discrete time dynamical system we have a few steps. We take a x(n)=
f(x(n-1)) and rewrite the underlying function of f(x(n-1) to f(x). 
To find fixed points we now equate x to f(x) so x=f(x) and find all
values of x that satisfy this. These values of x are in our set of 
fixed points for the specific discrete time dynamical system. 

#(c)
#To find out if these fixed points we found are indeed stable, we 
now use calculus. We take our function f(x) and derive it once. We 
are now left with f'(x). We now substitute our fixed point values 
one at a time for x and from there we see the value of our f' at 
this equilibrium point. The absolute value of f' at this 
equilibrium point tells us whether or not this point is stable. If 
the absolute value of f' at the point is < 1 then we can say our 
equilibrium point is stable, if infact our equilibrium point at f' 
is > 1 then it is infact unstable. If in the case it is = 1 then we
cannot conclude whether it is stable or unstable just from this 
calculus method alone, may need to infact use our Orb procedure and
figure it out numerically.

#(d)
read "/Users/jeton/Desktop/Math 336/DMB.txt"

First Written: Nov. 2021 



> > 

> > 

(6)(6)
> > 

> > 

(4)(4)

(5)(5)

This is DMB.txt, A Maple package to explore Dynamical models in Biology (both discrete and 
continuous)

accompanying the class Dynamical Models in Biology, Rutgers University. Taught by Dr. Z. 
(Doron Zeilbeger) 

The most current version is available on WWW at:
 http://sites.math.rutgers.edu/~zeilberg/tokhniot/DMB.txt .
Please report all bugs to: DoronZeil at gmail dot com .

For general help, and a list of the MAIN functions,
 type "Help();". For specific help type "Help(procedure_name);" 

------------------------------
For a list of the supporting functions type: Help1();

For help with any of them type: Help(ProcedureName);

------------------------------
For a list of the functions that give examples of Discrete-time dynamical systems (some famous), 

type: HelpDDM();
For help with any of them type: Help(ProcedureName);

------------------------------
For a list of the functions continuous-time dynamical systems (some famous) type: HelpCDM();

For help with any of them type: Help(ProcedureName);

------------------------------
Help(Orb)

Orb(F,x,x0,K1,K2): Inputs a transformation F in the list of variables x with initial point pt, 
outputs the trajectory of

of the discrete dynamical system (i.e. solutions of the difference equation): x(n)=F(x(n-1)) with x
(0)=x0 from n=K1 to n=K2. 

For the full trajectory (from n=0 to n=K2), use K1=0. Try:
Orb(5/2*x*(1-x),[x], [0.5], 1000,1010);

Orb([(1 x y)/(2 x y),(6 x y)/(2 4*x 5*y),[x,y], [2.,3.], 1000,1010);
Orb([(x+1)/(x+2)],[x],[1.0],1000,1010)
0.6180339888 , 0.6180339888 , 0.6180339888 , 0.6180339888 , 0.6180339888 ,

0.6180339888 , 0.6180339888 , 0.6180339888 , 0.6180339888 , 0.6180339888 ,



> > 

(7)(7)

> > 

> > 

(6)(6)

> > 

(19)(19)

> > 

> > 

> > 

(15)(15)

> > 

> > 

> > 

(11)(11)

> > 

> > 

(8)(8)

(18)(18)

(10)(10)

(16)(16)

(13)(13)

> > 

> > 

> > 

(17)(17)

(14)(14)

> > 

> > 

(4)(4)

> > 

> > 

> > 

(9)(9)

(12)(12)

> > 

0.6180339888 , 0.6180339888
A:=evalf(solve(x=(x+1)/(x+2),x))[1]

A 0.6180339880
B:=evalf(solve(x=(x+1)/(x+2),x))[2]

B 1.618033988
C:=diff((x+1)/(x+2),x)

C
1

x 2
x 1
x 2 2

subs(x=A,C)
0.1458980339

#This value is < 1 so .6180339880 is a stable equilibrium point, 
which agrees with our Orb procedure.

subs(x=B,C)
6.854101940

#This value is > 1 so -1.618033988 is an unstable equilibrium 
point.

#ii.
Orb([5/2*x*(1-x)],[x],[.5],1000,1010)
0.6000000000 , 0.6000000000 , 0.6000000000 , 0.6000000000 , 0.6000000000 ,

0.6000000000 , 0.6000000000 , 0.6000000000 , 0.6000000000 , 0.6000000000 ,
0.6000000000 , 0.6000000000

evalf(solve(x=5/2*x*(1-x),x))
0., 0.6000000000

diff(5/2*x*(1-x),x)
5
2

5 x

subs(x=0,%)
5
2

#This value is > 1 so 0 is an unstable equilibrium point.

subs(x=.6,5/2-5*x)
0.500000000

#The absolute value of this is < 1 so .6 is a stable equilibrium 
point, and agrees with Orb

#iii.
Orb([7/2*x*(1-x)],[x],[.5],1000,1010)
0.5008842111 , 0.8749972637 , 0.3828196827 , 0.8269407062 , 0.5008842111 ,

0.8749972637 , 0.3828196827 , 0.8269407062 , 0.5008842111 , 0.8749972637 ,
0.3828196827 , 0.8269407062

evalf(solve(x=7/2*x*(1-x),x))
0., 0.7142857143

diff(7/2*x*(1-x),x)



> > 

(6)(6)

> > 

> > 

(19)(19)

(4)(4)

> > 

(20)(20)

> > 

(21)(21)
> > 

7
2

7 x

subs(x=0,7/2-7*x)
7
2

#This value is > 1 so 0 is an unstable equilibrium point. 

subs(x=.7142857143,7/2-7*x)
1.500000000

#This absolute value is also > 1 so .7142857143 is also an unstable
equilibrium point. These both agree with Orb as there is an orbit 
of period 3 for this function f(x). 


