> #Deven Singh #Assignment 24 # Do not post **>** #01 > # For Question 1, I incorrectly read "the rate of change of the acceleration" as the acceleration and solved the problem with Calculus 1 methods. #For Question 2, I made an algebra error when solving for the constant in the position equation $\begin{bmatrix}$ **>**& #Q2**>** $& \#x'''''(t) = 120 \end{bmatrix}$ > #x(0) = 0, x'(0) = 0, x''(0) = 0, x'''(0) = 0, x'''(0) = 0, x'''(0) = 0#Integrating $x''''(t) = 120 - x'''(t) = 120 \cdot t + c$ > > # x''''(0) = 0 + c -> c = 0> #Integrating $x''''(t) = 120 \cdot t$ > $\#x'''(t) = 60 \cdot t^2 + c \rightarrow c = 0$ after plugging in initial value > $\#x'''(t) = 20 \cdot t^3 + c \rightarrow c = 0$ after plugging in initial value > $\#x''(t) = 5 \cdot t^4 + c \rightarrow c = 0$ after plugging in initial value > $\#x'(t) = t^5 + c \rightarrow c = 0$ after plugging in initial value > $\# \frac{x(t) = (t^6 \cdot 1)}{6} \rightarrow c = 0$ after plugging in initial value x = 10.7 meters**>** #Q3 **>** #Part i $\Rightarrow \# x(0) = 100$ > #x'(t) = -10> $\# x(t) = -10 \cdot t + c$ > $\# x(0) = -10 \cdot 0 + c$ = c> $\#x(t) = -10 \cdot t + 100$ $= -10 \cdot t + 100$ > # It will take 10 seconds for the ball to hit the ground **>** # Part ii [> # Assuming the ball's mass is 1 kg - > k = 1 > $\# x''(t) = -g + k \cdot x'(t)$ > help(dsolve);> ode := diff(y(x), x, x) = -10 + diff(y(x), x) $ode := \frac{d^2}{dx^2} y(x) = -10 + \frac{d}{dx} y(x)$ (1) > ics := y(0) = 100, D(y)(0) = 0ics := y(0) = 100, D(y)(0) = 0(2)

> dsolve({ics, ode});

$$y(x) = -10 e^{x} + 10 x + 110$$
(3)

	> $evalf(solve(-10 e^{x} + 10 x + 110 = 0, x));$	
l	-10.99998330, 2.61086864	(4)
	> #The ball will hit the ground 2.61 seconds after being dropped	
	> #Q4	
	> # (a) A difference or recurrence equation with one variable, e.g., $x(n) = x(n-1) \cdot (1-x(n-1))$	
	\rightarrow # (b) The output of the recurrence equation up to the kth iteration with an initial value of x0	
	# (c) An input value of the recurrence equation that outputs the same value	
Γ	\rightarrow # (d) An equilibrium point at which all initial values in its neighborhood converge toward in the	
	long-run	
	> #Q5	
	# (a) Use Orb to input a first-order dynamical system and its initial value to calculate the orbit up until the kth term to numerically find the fixed point	
	 # (b) Convert the first-order dynamical system into a function of x. Set the function to equal x and solve to find the fixed points 	
	# (c) Find the value of the derivative when the function is at the fixed point. If its absolute value is less than 1, it is a stable fixed point	
	> # (d)	
	> # (i)	
Γ	> read `/Users/Deven/Desktop/Fall 2021/Dynamic Models of Biology/DMB.txt`	
	First Written: Nov. 2021	
	<i>This is DMB.txt, A Maple package to explore Dynamical models in Biology (both discrete and continuous)</i>	
	accompanying the class Dynamical Models in Biology, Rutgers University. Taught by Dr. Z. (Doron	
	Zeilbeger)	
	The most current version is available on WWW at:	
	http://sites.math.rutgers.edu/~zeilberg/tokhniot/DMB.txt .	
	Please report all bugs to: DoronZeil at gmail dot com .	

For general help, and a list of the MAIN functions, type "Help();". For specific help type "Help(procedure_name);"

For a list of the supporting functions type: Help1(); For help with any of them type: Help(ProcedureName);

For a list of the functions that give examples of Discrete-time dynamical systems (some famous), type: HelpDDM();

>
$$SFP\left(\left[\frac{5}{2} \cdot x \cdot (1-x)\right], [x]\right);$$

> $SFP\left(\left[\frac{7}{2} \cdot x \cdot (1-x)\right], [x]\right);$

Ø

(15)