
MATH435: GEOMETRY NOTES ON THE PARALLEL POSTULATE

We now examine the issue whether Euclid’s Postulate V can actually be deduced from the
rest of his Postulates. If this could be done, there would be no need to make Postulate V
an axiom: in a geometry which upholds the first four Postulates, all the propositions given
in the “Elements” would be true. It was the attempts to understand this postulate that led
to the invention(discovery?) of non-Euclidean geometry, which then stimulated a lot study
on the foundation of Euclidean geometry.

In one line of attempts to prove Euclid’s Postulate V, some authors tried to build up
properties (of triangles, etc), using only Euclid’s first four Postulates and their consequences,
which, they hope, would lead to a proof of Postulate V. A geometry is called a neutral
geometry, if in it all of Euclid’s Postulates except Postulate V is assumed (i.e., neither
Euclid’s Postulate V or any of its equivalent versions nor their negations are assuemd). This
is a tentative definition for now, as we saw, even to have a satisfactory theory to prove Euclid’s
first 28 propositions, more axioms (than Euclid’s Postulates I–IV) need to be assumed. A
complete remedy was first proposed by D. Hilbert, a prominent mathematician around the
turn of the 20th century. But we will not have time to go through his theory in detail.

A great number of Euclidean geometry theorems are valid in a neutral geometry. For, as
long as a proof of an Euclidean theorem does not depend on Postulate V or its equivalent
version in either way, but depends only on the rest of the axioms, that theorem should be
valid in a neutral geometry. For instance, the first 28 propositions in Euclid are valid in
neutral geometry. In particular, Prop. I.27, I.28 and I.31 hold in neutral geometry.

In the following we will describe a few more properties in neutral geometry involving Lam-
bert quadrilaterals and the Saccheri-Legendre Theorem; and properties of Saccheri
quadrilaterals as in the last set of homework). Then we will study what would happen if
we impose some additional properties in neutral geometry, see Propositions N1 and N2.
Finally we will study properties of a geometry in which the negation of Euclid’s Postulate
V holds, namely, hyberbolic geometry. Our approach is synthetic. Chapter 6 of the text
by Brannan et al contains an analytic approach to hyperbolic geometry. In particular, it
establishes an interpretation and a model for hyberbolic geometry (so that it is not just a
possible existence in our mental exercise). Chapter 6 also gives more detailed properties of
hyperbolic geometry.

A parallelogram is a quadrilateral such that the opposite sides are parallel. It is easy
to show in neutral geometry that parallelograms exist. But many familiar properties of
parallelograms (as in Prop. 33, 34) depend on the Euclidean parallel postulate. For instance,
starting with a straight line segment AB, construct line segments AC ⊥ AB, and BD ⊥ AB,
and C, D stay on the same side of AB such that AC ⊥ CD. All these steps can be justified
by I.11. Such a quadrilateral is called a Lambert quadrilateral, because Lambert tried to
prove Postulate V by studying properties of such a parallelogram. Note that ABDC is a
parallelogram by I.27. But it can not be proved in neutral geometry that ∠D is a right
angle, or |AC| = |BD|. It can be proved, however, that ∠D is not an obtuse angle. This is
based on the following peculiar theorem in neutral geometry:

Theorem (Saccheri-Legendre). The sum of the three interior angles of a triangle in a
neutral geometry is not more than two right angles.

This is how much we can say if we only assume the axioms in neutral geometry.
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If we identify two right angels as having measure π, then we can define the defect of any
triangle (in a neutral geometry) to be π minus the angle sum. It is very easy to convince
yourself that for any point D between A and B of a triangle ∆ABC, defect(∆ABC) =
defect(∆ADC) + defect(∆DBC).

Exercise 1. Prove the above statement.

With this property, we can easily prove

Fact 1. If the angle sum of a triangle is π, then any triangle contained in this triangle has
angle sum equal to π too.

In fact, a stronger result holds.
Proposition N1. In a neutral geometry, if the angle sum of a triangle is π, then the angle
sum of any triangle is equal to π.

Note that Fact 1 and Proposition N1, and the following Proposition, are properties of a
neutral geometry, when some additional information (such as information on a particular
triangle or on a particular line) is assumed. We postpone the proof of Proposition N1 and
first state

Proposition N2. In a neutral geometry, if there is one triangle with angle sum equal to π,
then Playfair’s parallel axiom holds in this neutral geometry.
Proof. Let l be a straight line and P a point not on l. By I.12 we can drop perpendicular
PQ to l with Q being the foot. Construct line m through P parallel to l by I.31. Let n
be any other line through P . We need to prove that n meets l. Let X be a point on n
on the same side of m as Q. Then ∠QPX is less than π

2
. If we can prove the existence

of a point S on l which is on the same side of PQ as X and ∠QPS > ∠QPX, then X
is contained in the interior of ∠QPS and n has to meet l, if produced along PX. Here
is how one proves the existence of such an S: Pick a point S0 on l on the same side of
PQ as X. Extend QS0 along l so that S0S1 = S0P . Then triangle PS0S1 is isosceles, and
by I.5, ∠S0S1P = ∠S0PS1. Under our assumption (that there is one triangle with angle
sum equal to π), it follows from Proposition N1 that the angle sum of triangle PS0S1 is
π, thus ∠QS0P = ∠QS1P + ∠S0PS1 = 2∠QS1P , and ∠QS1P = 1

2
∠QS0P . Repeating

this procedure, if necessary, we arrive at a point Sk on l such that ∠QSkP = 1
2k
∠QS0P .

However, using Proposition N1 again, ∠QSkP + ∠QPSk = π
2
. If k is large enough to make

1
2k
∠QS0P < π

2
−∠QPX, then ∠QPSk > ∠QPX, making X in the interior of triangle PQSk,

therefore, n, along the extension of PX, will have to meet that part of l between Q and Sk
somewhere.

We now come to discuss some details of a proof of Proposition N1. It can be best under-
stood as consisting of several steps.
Lemma 1. In a neutral geometry, if there is a triangle with angle sum equal to π, then
there is a right triangle with angle sum equal to π.
Lemma 2. In a neutral geometry, if there is a right triangle with angle sum equal to π,
then there is a rectangle (a quadirlateral with all its interior angles equal to right angles).
Lemma 3. In a neutral geometry, if there is a rectangle, then any triangle can be contained
in a rectangle.
Lemma 4. In a neutral geometry, if a triangle is contained in a rectangle, then its angle
sum is π.
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Proof of Lemma 1. Let ABC be a triangle in a neutral geometry with angle sum equal to
π. By Saccheri-Legendre theorem, at least two of the angles, ∠A,∠B,∠C are acute angles,
say, ∠A and ∠B are acute. Drop a perpendicular to AB from C, with D being the foot.
Then D has to be between A and B, for otherwise, either CAD or CBD would be a right
triangle with ∠A or ∠C as an exterior angle. But by I.16, that would make ∠A or ∠B an
angle greater than a right angle, which contradicts our assumption on ∠A and ∠B. Now
that D is between A and B, it follows from Exercise 1 and Saccheri-Legendre theorem that
both defect(∆ADC) and defect(∆DBC) have to be zero, making either of the right triangles
∆ADC and ∆DBC have angle sum equal to π.
Proof of Lemma 2. Let ∆ADC be a right triangle in a neutral geometry with angle sum
equal to π and with ∠D being a right angle. Construct AB perpendicular to AD with B on
the same side of AD as C and with AB = DC. Join BC and consider ∆ADC and ∆CBA.
∠ACD + ∠CAD = π

2
, and ∠CAD + ∠CAB = π

2
. Thus ∠ACD = ∠CAB. By construction

AB = DC. Now AC is a shared side. So by I.4, ∆ADC and ∆CBA are congruent, making
∠B = ∠D = right angle, and ∠BCA = ∠DAC, so that ∠BCD = ∠BCA + ∠DCA =
∠DAC + ∠BAC = right angle. Therefore ABCD is a rectangle.
Proof of Lemma 3. Let ABCD be a rectangle. Extend AB to E so that BE = AB.
Extend DC to F so that CF = DC. Join EF . Then ∆CBA and ∆CBE are congruent by
I.4, making CA = CE, ∠CEA = ∠CAB, and ∠BCA = ∠BCE. Since ∠BCA+ ∠DCA =
π
2

= ∠BCE + ∠FCE, so ∠DCA = ∠FCE. Now ∆DCA and ∆FCE are congruent by I.4.
Therefore, ∠F = ∠D = π

2
, and ∠FEC = ∠DAC, making ∠FEB = ∠FEC + ∠CEB =

∠DAC + ∠CBA = ∠DBA = π
2
. We have now produced a rectangle AEFD which has

doubled the side AB and CD. The same argument can be used to show that a rectangle
can be doubled in the other direction too. Applying this procedure a finite number of times,
any given triangle will be contained in a rectangle.

The proof of Lemma 4 will be left as an exercise.
Up to the beginning of the nineteenth century, the prevailing attitude of mathematicians

and philosophers was that Euclidean geometry was the only possible geometry that was
conceivable to describe our physical world and logically consistent. The numerous attempts
to prove Euclid’s fifth Postulate on parallel lines were not because there were doubts on the
validity of Euclidean geometry, but rather were efforts to clarify the the relations between
this Postulate and other Postulates in Euclidean geometry.

Before the work of J. Bolyai, C. Gauss, and N. Lobachevsky, there were approaches which
assumed the negation of Euclid’s fifth Postulate, and tried to arrive at a contradiction. G.
Saccheri and J. Lambert’s work in this direction was very noteworthy.

Assuming a version of the negation of Euclid’s fifth Postulate, Saccheri was able to derive
many results which seemed strange, but not a logical contradiction. However, his aim was
to try to deduce a contradiction from his argument. Although not being able to deduce
any contradictions, at some point, he exclaimed in frustration: “The hypothesis of the acute
angle is absolutely false, because [it is]repugnant to the nature of the straight line!” In other
words, he had essentially discovered some theorems of non-Euclidean geometry, but unable
to believe what he discovered, he announced them to be impossible.

The new steps that J. Bolyai, C. Gauss, and N. Lobachevsky took were that they boldly
came to the conclusion that another geometry, in which Euclid’s fifth Postulate does not
hold, is possible! This geometry is now called hyperbolic geometry. It assumes all the axioms
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of Euclidean geometry except the fifth Postulate. Instead, that Populate is replaced by the
following hyperbolic axiom:

There exist a line l and a point P not on l such that at least two distinct lines
parallel to l pass through P .

This is a negation of Playfair’s Postulate (which is equivalent to Euclid’s fifth Postulate):

For every line l and every point P not on l, there exists a unique line parallel
to l which passes through P .

Another possible negation of this Postulate is that there exist a line l and a point P not
on l such that no line through P is parallel to l. Although the round sphere satisfies this
property, but it does not satisfy Euclid’s Postulate 1. There is a geometry, called elliptic
geometry, in which the above negation and Euclid’s first four Postulates hold.

In hyperbolic geometry, as proposed by J. Bolyai, C. Gauss, and N. Lobachevsky, a lot of
geometric statements countering our conventional thinking hold true. But we can not claim
them to be impossible, or logical contradictions, because the point of an axiomatic[deductive]
geometric system is to investigate what possible conclusions can be drawn from the initial
Postulates, and the initial Postulates in Euclid’s Elements could not limit or specify that
“points” and “lines” as defined have to behave what our conventional thinking perceives
them to be.

We next discuss how some of the “strange” new theorems of hyperbolic geometry are
derived from its basic Postulates. First, we have the following

Theorem H1. In hyperbolic geometry, all triangles have angle sum less than π.

This is related to the contra-positive of Proposition N2—in hyperbolic geometry, Playfair’s
axiom is violated, so no triangle can have angle sum equal to π; then, as a consequence of
the Saccheri-Legendre Theorem, all triangles must have angle sum less than π. But to learn
the ideas of proof, it is worthwhile to outline the steps one more time.

Proof. By Proposition N1, it suffices to prove the existence of one triangle with angle sum
less than π. This, we indicate through several steps.

(1) Under the hyperbolic axiom, there exists a line l and a point P not on l such that at
least two parallel to l passing P exist.

(2) By two facts we stated at the beginning (for neutral geometry), we can drop the
perpendicular PQ to l(Q is the foot on l) and take m to be the perpendicular to PQ
at P . Them m is a parallel to l.

(3) By Step 1, there exists at least another line, say n parallel to l through P .
(4) There exist point X on n and Y on m such that X is in the interior of ∠QPY .
(5) For any point R on l on the same side of PQ as X and Y , R lies in the interior of

∠QPX. Otherwise, X would be lying in the interior of ∠QPR, therefore n would
have to intersect l somewhere between Q and R, contradicting our choice of n.

(6) Now pick any R as in Step 5 as R1. Extend QR1 to R2 such that PR1
∼= R1R2. Then

4R2PR2 is isosceles, and hence ∠R1PR2
∼= ∠PR2R1. As a corollary of Saccheri-

Legendre Theorem that (The sum of the degree measures of the three angles in any
triangle is less than or equal to π.) ∠R1PR2+∠PR2R1 ≤ ∠QR1P . Thus ∠PR2R1 =
∠PR2Q ≤ 1

2
∠PR1Q. Repeating this procedure enough times, we can reach an Rk
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such that ∠PRkQ < ∠XPY . Now ∠PRkQ + ∠QPRk < ∠XPY + ∠QPRk <
π
2
,

thus the angle sum of 4PQRk is less than π.

Theorem H2 (Universal Hyperbolic Theorem). In hyperbolic geometry, for every line l and
every point P not on l there pass through P at least two distinct parallels to l.

Proof. Drop perpendicular PQ to l, here Q is the foot on l. Let m be the perpendicular to
PQ through P . Then m is a parallel to l. Pick another point R on l and draw perpendicular
t to l through R. Finally drop perpendicular PS to t from P .

Claim. the line through PS is distinct from m.

Otherwise, PS would be perpendicular to PQ, and all interior angles of the quadrilateral
PQRS are π

2
. Then using argument similar to the proof in Lemma 1 or Lemma 4, it is easy

to see that the angle sum of 4PQR would have to π. This contradicts Theorem H1.

The next theorem is very different from the corresponding one in Euclidean geometry.

Theorem H3. In hyperbolic geometry, if the triangles ABC and A′B′C ′ are similar, then
they are congruent.

The next conclusion may look more strange to you.

Theorem H4. In hyperbolic geometry if l and l′ are two distinct parallel lines, then there
can’t be more than two points on l which are equidistant to l′.

Exercises.

1. Suppose that AC is perpendicular to CD, BD is perpendicular to CD, A and B are on
the same side of CD, and AC is equal to BD. Such a quadrilateral ABCD is called a Sac-
cheri quadrilateral. This construction can be done in Euclidean geometry (namely assuming
Postulates I–V), but can also be done without using Postulate V, as the construction uses
only I.2 and I.11. Here you are asked to work without using Post. V, I.29, I. 32, or any of
its known equivalent versions (such as Playfair’s axiom).

(a) Prove that ∠CAB = ∠DBA and AD = BC;
(b) Take E, F to be the midpoints of AB, CD, respectively, prove that EF is perpen-

dicular to both AB and CD, thus proving AB is parallel to CD (using I. 28) without
using Post. V, I.29, or I.32 (Hint: try to prove ∆CFE is congurent to ∆DFE and
∆AEF is congurent to ∆BEF by proving CE = DE and AF = BF using (a) );

(c) Assume that all points from AB are equidistant from CD, in particular, EF = AC =
BD, prove that ∠CAE = ∠FEA = ∠FEB = ∠DBE = right angle (Hint: try to
apply (a) to ACFE and EFDB).

2. Based on Theorem H1, the sum of interior angles of any triangle in hyperbolic triangle is
less than π, prove that the sum of interior angles of any quadrilaterals in hyperbolic geometry
is less than 2π.

3. Let ∆ABC be a triangle in hyperbolic geometry. Let B′ be a point on AB and C ′ be
a point on AC. Prove that it is impossible for ∠AB′C ′ = ∠B and ∠AC ′B′ = ∠C to hold
simultaneously. (Hint: Use Problem 2. )

4. True or false question (also give your reasons or examples)

(1) In hyperbolic geometry if l ‖ m and m ‖ n, then l ‖ n.
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(2) In hyperbolic geometry some triangles have angle sum less than π and some triangles
have angle sum equal to π.

(3) In hyperbolic geometry if m ‖ l, then points on m are equidistant to l.
(4) In hyperbolic geometry opposite sides of any parallelogram are congruent to each

other.

Implications of Non-Euclidean geometry.
The first implication of the creation of non-Euclidean geometry was the realization that it is

impossible to prove Euclid’s fifth Postulate based on the rest of his Postulates. However this
is based on the assumption, that the new axiomatic system adopted in hyperbolic geometry
is consistent, i.e., no contradictions will ever be derived from this axiomatic system. This
question was considered by some of the creators of this new geometry, but was not firmly
established. In fact, consideration of questions of this type led to a series of efforts to firmly
establish the foundation of, not just geometry, but the whole mathematics—the relation
between mathematics and reality, the deep investigation of logic and set theory, etc. You
may find relevant discussion in chapters 7 and 8 of M. Greenberg’s book. If time permits,
we will discuss the question of the possibility of conceiving hyperbolic geometry in the visual
sense.

The following are a few guided extra exercises to help you get more familiar with properties
of hyperbolic geometry. First we explain some properties of the so called Saccheri quadrilat-
erals(in a neutral geometry), that is, a quadrilateral ABCD, such that ∠A = ∠B = π

2
and

AD = BC. It is a routine exercise in neutral geometry to show that a). AD ‖ BC(Prop.
I.27 or 28), b). ∆ABC ≡ ∆BAD (SAS), c). AC = BD, d). ∆ADC ≡ ∆BCD (SSS), and
e). ∠C = ∠D. We would run into difficulty to try to prove the familiar Euclidean property
∠C = ∠D = π

2
, without assuming Euclid’s fifth postulate or one of its equivalent forms.

Although we know AD ‖ BC, we can not deduce that ∠C + ∠D = π, or ∠ADB = ∠CBD
without quoting Postulate V or one of its equivalent forms. In fact, as we saw that without
assuming Euclid’s fifth postulate or one of its equivalent forms, it is impossible to prove that
∠C = ∠D = π

2
.

Using these elementary properties of Saccheri quadrilaterals, you can easily fill in the
details for a proof of Theorem H4.

EX1. Complete a proof of Theorem H4. (Hint: Let l and l′ be two distinct lines in hyperbolic
geometry. Suppose that there are three distinct points A, B, and C on l such that their
distances to l′, AA′, BB′, and CC ′ are equal. Then ABB′A′, BCC ′B′, and ACC ′A′ are all
Saccheri quadrilaterals. Thus ∠A = ∠ABB′, ∠C = ∠CBB′, and ∠A = ∠C. Using these,
prove that the sum of interior angles of ACC ′A′ is 2π, which is a contradiction in hyperbolic
geometry.

Next we discuss further properties concerning parallel lines in hyperbolic geometry.

Question: Do all parallel lines in hyperbolic geometry share a common perpendicular segment
as above?

EX2. Let l and m be two parallel lines in hyperbolic geometry, such that there are two
points A and B on l which are equidistant from m. Let A′ be the foot of the perpendicular
segment from A to m, and B′ be the foot of the perpendicular segment from B to m. Let
M be the midpoint of AB on l, and M ′ the midpoint of A′B′ on l′. Then MM ′ is a common
perpendicular segment to l and m (and the only one, by our homework from last week).
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(Hint: First show ∆AA′M ∼= ∆BB′M , using ∠A = ∠B from last time. Then show that
∆A′M ′M ∼= ∆B′M ′M . )

This problem shows that when there are two points on one of a pair of parallel lines
which are equidistant to the other line, then these two parallel lines share a unique common
perpendicular segment. Furthermore

EX3. Let l and m be two parallel lines in hyperbolic geometry with a common perpendicular
segment MM ′. Let B and C be two points on l such that B is between M and C. Let
B′ and C ′ be the feet of perpendicular segments from B, C to m, respectively. Show
that MM ′ < BB′ < CC ′. This is very different from the Euclidean notion that given a
pair of parallel lines, then as a point moves on one of them, its distance from the other
line stays constant. (Hint: I will provide a proof for the first inequality. If, on the
contrary, MM ′ ≥ BB′, then either MM ′ = BB′ or MM ′ > BB′. In the first case, since
∠M ′ = ∠B′ = π

2
by construction, and MM ′ = BB′ by assumption, it would imply that

MM ′B′B would be a Saccheri quadrilateral. As a consequence, ∠M = ∠B. But ∠M = π
2

by construction. Thus we have ∠M = ∠B = ∠B′ = ∠M ′ = π
2
, which is impossible in

hyperbolid geometry. Thus MM ′ = BB′ can not occur, and we are left with ruling out
the possibility that MM ′ > BB′. If MM ′ > BB′, then we can extend B′B to B′B′′ such
that B′B′′ = M ′M . Join MB′′. Then MB′′B′M ′ is a Saccheri quadrilateral. Therefore
∠MB′′B′ = ∠B′′MM ′. But ∠B′′MM ′ > ∠BMM ′ = π

2
. This makes, ∠B′′MM ′, ∠MB′′B′,

the two top angles of Saccheri quadrilateral MB′′B′M ′ obtuse angles, which is impossible in
hyperbolic geometry. Model on this proof to complete the second inequality).

This problem shows that, in hyperbolic geometry, if two lines share a common perpen-
dicular segment, then as a point recedes on one line away from the foot of the common
perpendicular segment, its distance to the other line increases (It can be shown that this
distance actually diverges to infinity).

But not all parallel lines in hyperbolic geometry share a common perpendicular segment.
Given, in hyperbolic geometry, a line l and a point P not on l. From a perpendicular segment
PQ to l. Next construct a line m through P and perpendicular to PQ. Then m ‖ l, as
mentioned at the beginning of this note. Since we are in hyperbolic geometry, there must
be at least another line n passing through P and parallel to l. Pick a point X on m which
is in the region between l and m. One can draw infinitely many lines through P which are
between PQ and PX. By a continuity argument, it can be proved that there is a limiting ray
PZ such that any ray between PQ and PZ will intersect l and any ray between PZ and the
part of m which is on the same side of PQ as X will be parallel to l. This limiting parallel
ray PZ will have the property that it does not share a common perpendicular segment with
l.

One can go on to deduce a rich collection of results in hyperbolic geometry. But so far
we can only say that such a geometry is logical possibility. How do we assure ourselves that
the set of axioms in hyperbolic geometry would never give rise to any contradictions? Once
questions of this nature are raised, one could equally well ask: how do we assure ourselves
that the set of axioms in Euclidean geometry would never give rise to any contradictions?
These kind of questions are non trivial, and are ultimately questions in theory of logic. We
would be happy to be convinced that hyperbolic geometry is as consistent as Euclidean
geometry. By this, I mean, if Euclidean geometry is known to be consistent, then hyperbolic
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geometry would also be consistent. In axiomatic method, this is called relative consistency.
The question of the above mentioned relative consistency will be settled by exhibiting a model
of hyperbolic geometry using Euclidean objects, i.e., an appropriate interpretation of certain
Euclidean objects as points, lines, etc, and an appropriate interpretation of congruence of
lines, angles, etc, so that all the axioms of hyperbolic geometry hold under this interpretation.


