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1 Vertex operator algebras, modules and intertwining

operators

1.1 Vertex operator algebras

For a Z-graded vector space V =
∐

n∈Z V(n), let V
′ =

∐
n∈Z V

∗
(n) its graded dual space and

V =
∏

n∈Z V(n) be its algebraic completion. For a C-graded vector space, we use the same
notations.

Definition 1.1. A grading-restricted vertex algebra is a Z-graded vector space V =
∐

n∈Z V(n),
equipped with a linear map

YV : V ⊗ V → V [[x, x−1]],

u⊗ v 7→ YV (u, x)v,

or equivalently, an analytic map

YV : C× → Hom(V ⊗ V, V ),

z 7→ YV (·, z)· : u⊗ v 7→ YV (u, z)v

called the vertex operator map and a vacuum 1 ∈ V(0) satisfying the following axioms:

1. Axioms for the grading: (a) Grading-restriction condition: When n is sufficiently neg-
ative, V(n) = 0 and dimV(n) < ∞ for n ∈ Z. (b) L(0)-commutator formula: Let
dV : V → V be defined by dV v = nv for v ∈ V(n). Then

[dV , YV (v, x)] = x
d

dx
YV (v, x) + YV (dV v, x)

for v ∈ V .

2. Axioms for the vacuum: (a) Identity property: Let 1V be the identity operator on V .
Then YV (1, x) = 1V . (b) Creation property: For u ∈ V , limx→0 YV (u, x)1 exists and is
equal to u.
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3. D-derivative property and D-commutator formula: Let D : V → V be the operator
given by

Dv = lim
x→0

d

dx
YV (v, x)1

for v ∈ V . Then for v ∈ V ,

d

dx
YV (v, x) = YV (Dv, x) = [D, YV (v, x)].

4. Duality: For u1, u2, v ∈ V and v′ ∈ V ′, the series

⟨v′, YV (u1, z1)YV (u2, z2)v⟩, (1.1)

⟨v′, YV (u2, z2)YV (u1, z1)v⟩, (1.2)

⟨v′, YV (YV (u1, z1 − z2)u2, z2)v⟩, (1.3)

are absolutely convergent in the regions |z1| > |z2| > 0, |z2| > |z1| > 0, |z2| > |z1−z2| >
0, respectively, to a common rational function in z1 and z2 with the only possible poles
at z1, z2 = 0 and z1 = z2.

We shall also use LV (0) and LV (−1) to denote dV and DV .

Remark 1.2. A rational function in z1 and z2 with the only possible poles at z1, z2 = 0 and
z1 = z2 must be of the form

g(z1, z2)

zm1 z
n
2 (z1 − z2)l

,

where g(z1, z2) is a polynomial in z1, z2 and m,n, l ∈ N.

Definition 1.3. A quasi-vertex operator algebra or a Möbius vertex algebra is a grading-
restricted vertex algebra (V, YV ,1) together with an operator LV (1) of weight 1 on V satis-
fying

[LV (−1), LV (1)] = −2LV (0),

[LV (1), YV (v, x)] = YV (LV (1)v, x) + 2xYV (LV (0)v, x) + x2YV (LV (−1)v, x)

for v ∈ V . (Note that here we have used LV (0) and LV (−1) to denote dV and DV .)

Note that in the definition above, we have used LV (0) and LV (−1) to denote dV and DV .

Definition 1.4. Let V1 and V2 be grading-restricted vertex algebras. A homomorphism from
V1 to V2 is a grading-preserving linear map g : V1 → V2 such that gYV1(u, x)v = YV2(gu, x)gv.
An isomorphism from V1 to V2 is an invertible homomorphism from V1 to V2. When V1 =
V2 = V , an isomorphism from V to V is called an automorphism of V .

Definition 1.5. Let (V, YV ,1) be a grading-restricted vertex algebra. A conformal element
of V is an element ω ∈ V satisfying the following axioms:
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1. DV = ResxYV (ω, x) and dV = ResxxYV (ω, x) (Resx being the operation of taking the
coefficient of x−1 of a Laurent series).

2. Let
LV (n) = Resxx

−n−1YV (ω, x)

for n ∈ Z. Then there exists c ∈ C such that

[LV (m), LV (n)] = (m− n)LV (m+ n) +
c

12
(m3 −m)δm+n,0

for m,n ∈ N.

A grading-restricted vertex algebra equipped with a conformal element is called a vertex
operator algebra (or grading-restricted conformal vertex algebra).

Remark 1.6. Condition 1 in Definition 1.5 can be replaced by the following condition:
There exists c ∈ C such that YV (ω, x)ω is equal to LV (−1)ωx−1 + 2ωx−2 + c

2
1x−4 plus a

V -valued power series in x.

We now briefly describe the examples of vertex (operator) algebras constructed from
affine Lie algebras. For details, see [FZ], [LL] and [H8].

Let g be a finite-dimensional Lie algebra with a symmetric invariant bilinear form (·, ·).
We define the affine Lie algebra ĝ by

ĝ = g⊗ C[t, t−1]⊕ Ck,

where k is central and

[a⊗ tm, b⊗ tn] = [a, b]⊗ tm+n + δm+n,0m(a, b)k.

We write ĝ = ĝ− ⊕ ĝ0 ⊕ ĝ+, where ĝ+ is the span of all a ⊗ tn with a ∈ g and n > 0, ĝ− is
the span of all a⊗ tn with a ∈ g and n < 0, and ĝ0 is the span of k and all a⊗ t0 with a ∈ g.

Fix ℓ ∈ C. Let Cℓ be a copy of C, with the structure of a module for ĝ0 ⊕ ĝ+ by defining
a(n)1 = 0 for all a ∈ g and n ≥ 0, and k1 = ℓ, where we use a(n) to denote the action of
a⊗ tn (and we shall use the same notation below). Now define

V (ℓ, 0) = U(ĝ)⊗U(ĝ0⊕ĝ+) Cℓ,

where U(·) is the universal enveloping algebra (see [Hum, Section 17]). In other words,
V (ℓ, 0) is the induced U(ĝ)-module constructed from the U(ĝ0 ⊕ ĝ+)-module Cℓ.

Let 1 := 1⊗ 1 ∈ V . Then k1 = ℓ1 and if n ≥ 0, a(n)1 = 0. Moreover, V (ℓ, 0) is spanned
by elements of the form a1(n1) · · · ak(nk)1 for a1, . . . , ak ∈ g and n1, . . . , nk ∈ Z. Using the
Poincare-Birkhoff-Witt (PBW) Theorem (see [Hum, Section 17]), we can show that V (ℓ, 0)
is canonically linearly isomorphic to U(ĝ−). In particular, V (ℓ, 0) is spannedby elements of
the form a1(−n1) · · · ak(−nk)1 for a1, . . . , ak ∈ g and n1, . . . , nk ∈ Z+.
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For n ∈ Z, we define V(n)(ℓ, 0) to be the span of a1(−n1) · · · ak(−nk)1 for n1, . . . , nk ∈ Z+

such that n = n1 + · · · + nl. Then V(n)(ℓ, 0) = 0 for n < 0, V(0)(ℓ, 0) = C1 and V(n)(ℓ, 0) is
finite dimensional for n ∈ Z. We also have

V (ℓ, 0) =
∐
n∈Z

V(n)(ℓ, 0).

For a ∈ g, let

a(x) =
∑
n∈Z

a(n)x−n−1 ∈ (End V (ℓ, 0))[[x, x−1]].

For z ∈ C×, we have a linear map

a(z) =
∑
n∈Z

a(n)z−n−1 : V (ℓ, 0) → V (ℓ, 0).

We can prove that for a1, . . . , ak ∈ g, v ∈ V (ℓ, 0) and v′ ∈ V (ℓ, 0)′, ⟨v′, a1(z1) · · · ak(zk)v⟩ is
absolutely convergent to a rational function R(⟨v′, a1(z1) · · · ak(zk)v⟩) with the only possible
poles at z1 = 0, z2 = 0 and z1 − z2 = 0.

We now define the vertex operator map. For v′ ∈ V (ℓ, 0)′, v ∈ V (ℓ, 0), a1, . . . , ak ∈ g,
n1, . . . , nk ∈ Z+, we define

YV (ℓ,0) : C× → Hom(V (ℓ, 0)⊗ V (ℓ, 0), V (ℓ, 0))

by

⟨v′, YV (ℓ,0)(a1(−n1) · · · ak(−nk)1, z)v⟩
= Resξ1=0 · · ·Resξk=0ξ

−n1
1 · · · ξ−nk

k R(⟨v′, a1(ξ1 + z) · · · ak(ξk + z)v⟩). (1.4)

Theorem 1.7 (see [FZ], [LL], [H8]). The triple (V (ℓ, 0), YV (ℓ,0),1) is a grading-restricted
vertex algebra.

Next we discuss the conformal element of V (ℓ, 0). We now assume that the invariant
bilinear form on ĝ is positive definite (for example, in the case that ĝ is semisimple and the
form is obtained from the Killing form). Let

Ω =

dim g∑
i=1

uiui ∈ U(g)

be the Casimir element of g, where {ui | 1 ≤ i ≤ dim g} is an orthonormal basis for g with
respect to the form (·, ·). We also assume that that Ω acts on g by a scalar 2h∨, where
h∨ ∈ C is called the dual Coxeter number of g. This assumption is satisfied if g is a simple
Lie algebra.

For ℓ ̸= −h∨, we define ωV (ℓ,0) ∈ V(2)(ℓ, 0) by

ωV (ℓ,0) =
1

2(ℓ+ h∨)

dim g∑
i=1

ui(−1)ui(−1)1 =
1

2(ℓ+ h∨)

dim g∑
i=1

ui(−1)21.
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Theorem 1.8 (see [FZ], [LL], [H8]). The quadruple (V (ℓ, 0), YV (ℓ,0),1, ωV (ℓ,0)) is a Vvertex

operator algebra of the central charge ℓdim g
ℓ+h∨ .

The vertex operator algebra V (ℓ, 0) is still not the vertex algebra for the Wess-Zumino-
Witten model. We need to take an irreducible quotient of V (ℓ, 0).

Consider all ĝ-submodules of V (ℓ, 0) that do not contain 1. Let I(ℓ, 0) to be the sum
of all such ĝ-submodules. Then I(ℓ, 0) is the maximal proper submodule of the ĝ-module
V (ℓ, 0). Let L(ℓ, 0) = V (ℓ, 0)/I(ℓ, 0). Then as a ĝ-module, L(ℓ, 0) is irreducible, that is,
there is no ĝ-submodule of L(ℓ, 0) that is not 0 or L(ℓ, 0) itself.

We take the vacuum of L(ℓ, 0) to be the coset containing the vacuum of V (ℓ, 0). We
define the vertex operator map YL(ℓ,0) : L(ℓ, 0)⊗ L(ℓ, 0) → L(ℓ, 0)((x)) by

YL(ℓ,0)(u+ I(ℓ, 0), x)(v + I(ℓ, 0)) = YV (ℓ,0)(u, x)v + I(ℓ, 0).

The vacuum 1L(ℓ,0) is defined to 1V (ℓ,0) + I(ℓ, 0) and in the case ℓ + h∨ ̸= 0, the conformal
element ωL(ℓ,0) is defined to be ωV (ℓ,0) + I(ℓ, 0).

Theorem 1.9 (see [FZ], [LL], [H8]). The triple (L(ℓ, 0), YL(ℓ,0),1L(ℓ,0) is a grading-restricted
vertex algebra. When ℓ+ h∨ ̸= 0, (L(ℓ, 0), YL(ℓ,0),1L(ℓ,0), ωL(ℓ,0)) is a vertex operator algebra.

The vertex operator algebra underlying the Wess-Zumino-Witten model associated to a
finite-dimensional simple Lie algebra g and a level ℓ ∈ Z+ is exactly L(ℓ, 0). In this case,
there is an explicit formula I(ℓ, 0) = U(ĝ)eθ(−1)ℓ+11, where θ is the highest root of g and
eθ is a root vector in gθ (see [K] and [LL]).

1.2 Modules

In this subsection, we introduce various notions of (generalized) V -modules for a grading-
restricted vertex algebra, a Möbius vertex algebra or a vertex operator algebra V .

Definition 1.10. Let V be a grading-restricted vertex superalgebra. A generalized V -module
is a C-graded vector space W =

∐
n∈CW[n] equipped with a vertex operator map

YW : V ⊗W → W ((x)),

u⊗ w 7→ YW (u, x)w

satisfying the following axioms:

1. Axioms for the gradings: There are operators dW (also denoted by LW (0)), (dW )S
(also denoted by LW (0)S) and (dW )N (also denoted by LW (0)N) on W such that
dW = (dW )S + (dW )N , (dW )Sv = nv for v ∈ W[n] , (dW )N is nilpotent (for w ∈ W ,
there exists K ∈ N such that ((dW )N)

Kw = 0), and

[dW , YW (v, x)] = x
d

dx
YW (v, x) + YW (dV v, x)

for v ∈ V .
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2. Identity property: Let 1W be the identity operator on W . Then YW (1, z) = 1W .

3. L(−1)-derivative property: There exists DW : W → W (also denoted by LW (−1)) such
that for u ∈ V ,

d

dz
YW (u, z) = YW (DV u, z) = [DW , YW (u, z)].

4. Duality: For u1, u2 ∈ V , w ∈ W and w′ ∈ W ′, the series

⟨w′, YW (u1, z1)YW (u2, z2)w⟩,
⟨w′, YW (u2, z2)YW (u1, z1)w⟩,

⟨w′, YW (YV (u1, z1 − z2)u2, z2)w⟩

are absolutely convergent in the regions |z1| > |z2| > 0, |z2| > |z1| > 0, |z2| > |z1−z2| >
0, respectively, to a common rational function in z1 and z2 with the only possible poles
at z1, z2 = 0 and z1 = z2.

A lower-bounded generalized V -module is a generalized V -module (W,YW , dW , DW ) such
that W[n] = 0 when ℜ(n) is sufficiently negative. A grading-restricted generalized V -
module is a lower-bounded generalized V -module (W,YW , dW , DW ) such that dimW[n] <∞.
An ordinary V -module or simply a V -module is a grading-restricted generalized V -module
(W,YW , dW , DW ) such that (DW )N = 0. When V is a Möbius vertex algebra, a generalized V -
module or a lower-bounded generalized V -module or grading-restricted generalized V -module
or an ordinary V -module is such a V -module when V is viewed as a grading-restricted vertex
algebra with an operator LW (1) of weight 1 on W such that

[LW (−1), LW (1)] = −2LW (0),

[LW (1), YW (v, x)] = YW (LV (1)v, x) + 2xYW (LV (0)v, x) + x2YW (LV (−1)v, x)

for v ∈ V . (Note that here we have used LV (0), LV (−1), LW (0) and LW (−1) to denote dV ,
DV , dW and DW .) When V is a vertex operator algebra, a generalized V -module or a lower-
bounded generalized V -module or grading-restricted generalized V -module or an ordinary V -
module is such a V -module when V is viewed as a grading-restricted vertex algebra such
that dW = ResxxYW (ω, x) and DW = ResxYW (ω, x).

For a finite-dimensional Lie algebra g with an invariant nondegenerate bilinear form (·, ·)
and complex number ℓ ̸= −h∨, we can construct lower-bounded generalized V (ℓ, 0)-modules
as follows:

LetM be a g-module. Defining a(0)m = am, a(n)m = 0 and km = ℓm for a ∈ g, m ∈M
and n > 0. Then M is a module for ĝ0 ⊕ ĝ+. We then consider the induced ĝ-module

V (ℓ,M) = U(ĝ)⊗U(ĝ0⊕ĝ+) M.

We will often omit the tensor product symbol when writing elements of V (ℓ,M). For ex-
ample, for m ∈ M , we write 1 ⊗ m as m. Using the PBW theorem, we see that V (ℓ,M)
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is linearly isomorphic to U(ĝ−) ⊗ M . Then V (ℓ,M) is spanned by elements of the form
a1(−n1) · · · ak(−nk)m for a1, . . . , ak ∈ g, n1, . . . , nk ∈ Z+ and m ∈M .

Let aV (ℓ,M)(x) : V (ℓ,M) → V (ℓ,M)((x)) for a ∈ g be defined by

aV (ℓ,M)(x)w :=
∑
n∈Z

a(n)wx−n−1

for w ∈ V (ℓ,M) where a(n) is action of a ⊗ tn ∈ ĝ on V (ℓ,M). For simplicity, we shall
denote aV (ℓ,M)(x) simply by a(z). We can prove that for a1, . . . , ak ∈ g, w ∈ V (ℓ,M)
and w′ ∈ V (ℓ,M)′, ⟨w′, a1(z1) · · · ak(zk)w⟩ is absolutely convergent to a rational function
R(⟨v′, a1(z1) · · · ak(zk)v⟩) with the only possible poles at z1 = 0, z2 = 0 and z1 − z2 = 0.

For w′ ∈ V (ℓ,M)′, w ∈ V (ℓ,M), a1, . . . , ak ∈ g, n1, . . . , nk ∈ Z+, we define

YW (ℓ,M) : C× → Hom(V (ℓ, 0)⊗W (ℓ,M),W (ℓ,M))

by

⟨w′, YV (ℓ,M)(a1(−n1) · · · ak(−nk)1, z)w⟩
= Resξ1=0 · · ·Resξk=0ξ

−n1
1 · · · ξ−nk

k R(⟨v′, a1(ξ1 + z) · · · ak(ξk + z)v⟩). (1.5)

Theorem 1.11 (see [FZ], [LL], [H8]). The pair (V (ℓ,M), YV (ℓ,M)) is a V (ℓ, 0)-module.

1.3 Intertwining operators

Definition 1.12. Let V be a grading-restricted vertex algebra andW1,W2,W3 lower-bounded
generalized V -modules (grading-restricted generalized V -modules and ordinary V -modules
are special cases). An intertwining operator of type

(
W3

W1W2

)
is a linear map

Y : W1 ⊗W2 → W3{x}[log x]
w1 ⊗ w2 7→ Y(w1, x)w2

(where W3{x}[log x] is the space of formal series of the form
∑K

k=0

∑
n∈C an,kx

n(log x)k for
an,k ∈ W3 and x and log x is formal variables such that d

dx
log x = x−1) satisfying the following

axioms:

1. L(0)-bracket formula: For w1 ∈ W1,

LW3(0)Y(w1, x)− Y(w1, x)LW2(0) = x
d

dx
Y(w1, x) + Y(LW1(0)w1, x).

2. L(−1)-derivative property: For w1 ∈ W1,

d

dx
Y(w1, x) = Y(LW1(−1)w1, x) = LW3(−1)Y(w1, x)− Y(w1, x)LW2(−1).
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3. Duality with vertex operators: For u ∈ V , w1 ∈ W1, and w2 ∈ W2, w
′
3 ∈ W ′

3, for any
single-valued branch l(z2) of the logarithm of z2 in the region z2 ̸= 0, 0 ≤ arg z2 ≤ 2π,
the series

⟨w′
3, YW3(u, z1)Y(w1, x2)w2⟩

∣∣∣∣
xn
2=enl(z2),log x2=l(z2)

=
∑
n∈C

⟨w′
3, YW3(u, z1)πnY(w1, x2)w2⟩

∣∣∣∣
xn
2=enl(z2),n∈C,log x2=l(z2)

, (1.6)

⟨w′
3,Y(w1, x2)YW2(u, z1)w2⟩

∣∣∣∣
xn
2=enl(z2),n∈C,log x2=l(z2)

=
∑
n∈C

⟨w′
3,Y(w1, x2)πnYW2(u, z1)w2⟩

∣∣∣∣
xn
2=enl(z2),n∈C,log x2=l(z2)

, (1.7)

⟨w′
3,Y(YW1(u, z1 − z2)w1, x2)w2⟩

∣∣∣∣
xn
2=enl(z2),n∈C,log x2=l(z2)

=
∑
n∈C

⟨w′
3,Y(πnYW1(u, z1 − z2)w1, x2)w2⟩

∣∣∣∣
xn
2=enl(z2),n∈C,log x2=l(z2)

(1.8)

(where πn for n ∈ C is the projection from a generalized V -module W to its homoge-
neous subspaceW[n] of weight n) are absolutely convergent in the regions |z1| > |z2| > 0,
|z2| > |z1| > 0, |z2| > |z1 − z2| > 0, respectively, and the sums can be analytically
extended to a common multivalued analytic functions with the only possible poles
z1 = 0, z1 = z2, z1 = ∞ and the only possible branch point z2 = 0, z2 = ∞..

Let

F (⟨w′
3, YW3(u, z1)Y(w1, z2)w2⟩),

F (⟨w′
3,Y(w1, z2)YW2(u, z1)w2⟩),

F (⟨w′
3,Y(YW1(u, z1 − z2)w1, z2)w2⟩)

be the multivalued function obtained by analytically extending the sums of the series (1.6),
(1.7) and (1.8). Then they are of the form

K∑
k=0

N∑
i=1

gi,k(z1, z2)

z
mi,k

1 (z1 − z2)ni,kz
pi,k
2

z
ri,k
2 (log z2)

k (1.9)

for polynomials gi,k(z1, z2) of z1 and z2, mi,k, ni,k, pi,k ∈ N, ri ∈ C satisfying 0 ≤ ℜ(ri) < 1
for i = 1, . . . , N . In the case that w1, w2 and w′

3 are homogeneous, N can be taken to be 1
and r1,k can be taken to be −wtw′

3 + wtw1 + wtw2.
It is clear from the definition that the set of all intertwining operators of type

(
W3

W1W2

)
is

a vector space and is denoted by VW3
W1W2

. The dimension of VW3
W1W2

is called fusion rules of

type
(

W3

W1W2

)
.
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2 Tensor categories

We review the basic concepts and properties in the theory of tensor categories in this section.
The main references for this section are [J], [M], [T] and [EGNO].

2.1 Basic concepts in category theory

Definition 2.1. A category consists of the following data:

1. A collection of objects.

2. For two objects A and B, a set Hom(A,B) of morphisms from A to B.

3. For an object A, an identity 1A ∈ Hom(A,A).

4. For three objects A,B,C, a map

◦ : Hom(B,C)× Hom(A,B) → Hom(A,C)

(f, g) 7→ f ◦ g

called composition or multiplication.

These data must satisfy the following axioms:

1. The composition is associative, that is, for objects A,B,C,D and f ∈ Hom(C,D),
g ∈ Hom(B,C), h ∈ Hom(A,B), we have f ◦ (g ◦ h) = (f ◦ g) ◦ h.

2. For an object A, the identity 1A is the identity for the composition of morphisms when
the morphisms involving A, that is, for an object B, f ∈ Hom(A,B), g ∈ Hom(B,A),
we have 1A ◦ g = g and f ◦ 1A = f .

We shall use C, D and so on to denote categories. For a category C, we use Ob C to
denote the collection of objects of C.

Definition 2.2. Let C be a category. For any A,B ∈ Ob C, an element f ∈ Hom(A,B)
is called an isomorphism if there exists f−1 ∈ Hom(B,A) such that f ◦ f−1 = 1B and
f−1 ◦ f = 1A.

Definition 2.3. Let C and D be categories. A covariant functor (or a contravariant functor)
from C to D consists of the following data:

1. A map F from the collection Ob C of objects of C to the collection Ob D of objects of
D.

2. Given objectsA andB of C, a map, still denoted by F , from Hom(A,B) to Hom(F(A),F(B))
(or from Hom(A,B) to Hom(F(B),F(A)) for a contravariant functor).

These data must satisfy the following axioms:
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1. For objects A,B,C of C and morphisms f ∈ Hom(B, c), g ∈ Hom(A,B), we have

F(f ◦ g) = F(f) ◦ F(g)

(or
F(f ◦ g) = F(g) ◦ F(f)

for a contravariant functor).

2. For an object A of C, F(1A) = 1F(A).

We shall denote the functor defined above by F .

Definition 2.4. Let F and G be functors from C to D. A natural transformation η from F
to G consists of an element ηA ∈ Hom(F(A),G(A)) for each object A ∈ Ob C such that the
following diagram is commutative for A,B ∈ Ob C and f, g ∈ Hom(A,B):

F(A)
ηA−−−→ G(A)

F(f)

y yF(g)

F(B) −−−→
ηB

G(B).

A natural isomorphism from C to D is a natural transformation η from C to D such that
ηA ∈ Hom(F(A),G(A)) for each object A ∈ Ob C is an isomorphism.

Definition 2.5. Let F be a functor from a category C to a category D and G a functor from
a category D to a category E . The composition G ◦ F of G and F is a functor from C to E
given by (G ◦F)(A) = G(F(A)) for A ∈ Ob C and (G ◦F)(f) = G(F(f)) for f ∈ Hom(A,B)
and A,B ∈ Ob C. Let C and D be categories. We say that C is isomorphic to D if there is
a functor F from C to D and a functor F−1 such that F ◦F−1 = 1D and F−1 ◦ F = 1C. We
say that C is equivalent to D if there is a functor F from C to D and a functor G such that
F ◦ G is naturally isomorphic to 1D and G ◦ F is naturally isomorphic to 1C.

Definition 2.6. Let Aj for j ∈ I be objects of a category C. A product of Aj for j ∈ I
is an object

∏
j∈I Aj together with morphisms pj :

∏
j∈I Aj → Aj satisfying the following

universal property: For any object A of C and any morphism fj : A → Ai, there exists a
unique morphism f : A→

∏
j∈I Aj such that such that fj = pj ◦ f for i ∈ I. A coproduct of

Aj for j ∈ J is an object
∐

j∈I Aj together with morphisms ij : Aj →
∏

j∈I Aj satisfying the
following universal property: For any object A of C and any morphism fj : Aj → A, there
exists a unique morphism f :

∏
j∈I Ai → A such that fj = f ◦ ij for i ∈ I.

Exercise 2.7. Prove that products and coproducts of objects Aj for j ∈ I in a category C
are unique up to isomorphisms.

Definition 2.8. An initial object in a category C is an object I in C such that for any object
X in C, Hom(I,X) has one and only one element. An terminal object in a category C is an
object T in C such that for any object X in C, Hom(X,T ) has one and only one element. A
zero object in a category C is both an initial object and a terminal object.
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Definition 2.9. Let C be a category containing a zero object 0. Let A and B be objects of
C and let f ∈ Hom(A,B). A kernel of f is an object K and a morphism k ∈ Hom(K,A)
satisfying f ◦ k = 0 and the following universal property: For any object K ′ and morphism
k′ ∈ Hom(K ′, A) satisfying f ◦ k′ = 0, there exists a unique g ∈ Hom(K ′, K) such that
k′ = k◦g. A cokernel of f is an object Q and a morphism q ∈ Hom(B,Q) satisfying q◦f = 0
and the following universal property: For any object Q′ and morphism q′ ∈ Hom(B,Q′)
satisfying q′ ◦ f = 0, there exists a unique u ∈ Hom(Q,Q′) such that q′ = u ◦ q.

Exercise 2.10. Prove that kernels and cokernels of of a morphism are unique up to isomor-
phisms.

Definition 2.11. Let C be a category containing a zero object 0. Let A1, . . . , An be objects
of C. A biproduct of A1, . . . , An is an object A1 ⊕ · · · ⊕An of C and pk : A1 ⊕ · · · ⊕An → Ak

and ik : Ak → A1⊕· · ·⊕An for k = 1, . . . , n such that pk◦ik = 1Ak
for k = 1, . . . , n, pl◦ik = 0

for l ̸= k, A1 ⊕ · · · ⊕ An equipped with pk for k = 1, . . . , n is a product of A1, . . . , An and
A1 ⊕ · · · ⊕ An equipped with ik for k = 1, . . . , n is a coproduct of A1, . . . , An.

Definition 2.12. Let C be a category. Let A and B be objects of C. A morphism f ∈
Hom(A,B) is said to be a monomorphism if for any object C and any g1, g2 ∈ Hom(C,A),
f ◦ g1 = f ◦ g2 implies g1 = g2. A morphism f ∈ Hom(A,B) is said to be aN epimorphism if
for any object C and any g1, g2 ∈ Hom(B,C), g1 ◦ f = g2 ◦ f implies g1 = g2.

Definition 2.13. An abelian category is a category C satisfying the following conditions:

1. For any objects A and B, Hom(A,B) is an abelian group and for any objects A, B and
C, the map from Hom(B,A)× Hom(C,B) to Hom(C,A) given by the composition of
morphisms is bilinear.

2. Every finite set of objects has a biproduct.

3. Every morphism has a kernel and cokernel.

4. Every monomorphism is a kernel of some morphism and every epimorphism is a cok-
ernel of some morphism.

2.2 Monoidal categories and tensor categories

Definition 2.14. An monoidal category consists of the following data:

1. A category C.

2. A bifunctor ⊗ : C × C → C called the tensor product bifunctor.

3. A natural isomorphism A from ⊗ ◦ (1C × ⊗) to ⊗ ◦ (⊗ × 1C) called the associativity
isomorphism.

4. An object 1 called the unit object.
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5. A natural isomorphism l from 1⊗· to 1C called the left unit isomorphism and a natural
isomorphism r from · ⊗ 1 to 1C called the right unit isomorphism.

These data satisfy the following axioms:

1. The following pentagon diagram is commutative for objects A1, A2, A3, A4:

((A1 ⊗ A2)⊗ A3)⊗ A4 (A1 ⊗ (A2 ⊗ A3))⊗ A4

(A1 ⊗ A2)⊗ (A3 ⊗ A4) A1 ⊗ ((A2 ⊗ A3)⊗ A4)

A1 ⊗ (A2 ⊗ (A3 ⊗ A4))

�
? ?

��������)

PPPPPPPPq

2. The following triangle diagram is commutative for objects A1, A2:

(A1 ⊗ 1)⊗ A2 −−−→ A1 ⊗ (1⊗ A2)y y
A1 ⊗ A2 −−−→

=
A1 ⊗ A2.

Definition 2.15. A tensor category is an abelian category equipped with a monoidal cate-
gory structure such that the abelain category structure and the monoidal category structure
are compatible in the sense that for objects A, B, C and D, the map ⊗ : Hom(A,B) ×
Hom(C,D) → Hom(A× C,B ⊗D) is bilinear.

Definition 2.16. Let C be a monoidal category. A graph diagram in C is a graph whose
vertices are functors obtained from the tensor product bifunctor and the unit objects and
the edges are natural isomorphisms obtained from the associativity isomorphisms, the left
and the right unit isomorphisms. A graph diagram is commutative if the compositions of the
isorphisms in any two paths with the same starting and ending vertices must be equal.

Theorem 2.17 (Mac Lane). Let C be a monoidal category. Any graph diagram in C is
commutative

We omit the proof here; see [M] and [EGNO].

Definition 2.18. A monoidal functor from a monoidal categoory C to a monoidal category
D is a triple (F , J, φ) where F is a functor from C to D, J a natural transformation from
the functor F(·)⊗D F(·) to the functor F(· ⊗C ·) and φ an isomorphism from 1D to F(1C)
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such that the diagram

(F(A1)⊗D F(A2))⊗D F(A3) −−−→ F(A1)⊗D (F(A2)⊗D F(A3))y y
(F(A1 ⊗C A2)⊗D F(A3) F(A1)⊗D F(A2 ⊗C A3)y y
(F((A1 ⊗C A2)⊗C A3) −−−→ F(A1 ⊗C (A2 ⊗C A3))

for objects A1, A2 and A3 in C and the diagram

1D ⊗D F(A) −−−→ F(A)y x
F(1C ⊗D F(A) −−−→ F(1C ⊗C A)

for an object A in C are commutative. A monoidal eqivalence from a monoidal categoory
C to a monoidal category D is a monoidal functor (F , J, φ) from C to D such that F is an
equivalence of categories and J is a natural isomorphism.

Definition 2.19. A monoidal category is strict if

⊗ ◦ (1C ×⊗) = ⊗ ◦ (⊗× 1C),

1⊗ · = 1C

· ⊗ 1 = 1C

and the associativity, the left and the right unit isomorphisms are identities.

Theorem 2.20 (Mac Lane). Any monoidal category is monoidal equivalent to a strict
monoidal category.

Exercise 2.21. Consider the category of bimodules for an associative algebra and the tensor
product bifunctor we defined in the section on associative algebras. Show that there exists
an associaitivity isomorphism such that the pentagon diagram is commutative.

2.3 Symmetries and braidings

Definition 2.22. Let C be a monoidal category. A symmetry of C is a natural isomorphism
C from ⊗ to ⊗ ◦ σ12 (σ12 being the functor from C × C to C × C induced from the nontrivial
element of S2) such that for objects A1, A2, the morphism

CA2,A1 ◦ CA1,A2 : A1 ⊗ A2 → A2 ⊗ A1 → A1 ⊗ A2

is equal to the identity 1A1⊗A2 and for objects A1, A2 and A2, the hexagon diagram
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(A1 ⊗A2)⊗A3

(A2 ⊗A1)⊗A3 A1 ⊗ (A2 ⊗A3)

A2 ⊗ (A1 ⊗A3) (A2 ⊗A3)⊗A1

A2 ⊗ (A3 ⊗A1)

? ?

@
@
@
@
@
@
@
@R

�
�

�
�

�
�

�
�	

�
�

�
�

�
�

�
�	

@
@

@
@
@

@
@
@R

is commutative. A symmetric monoidal category is a monoidal category with a symmetry.
A symmetric tensor category is a tensor category with a symmetry.

Definition 2.23. Let C be a monoidal category. A braiding of C is a natural isomorphism
R from ⊗ to ⊗ ◦ σ12 such that for objects A1, A2 and A2, the hexagon diagrams
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(A1 ⊠A2)⊠A3

(A2 ⊠A1)⊠A3 A1 ⊠ (A2 ⊠A3)

A2 ⊠ (A1 ⊠A3) (A2 ⊠A3)⊠A1

A2 ⊠ (A3 ⊠A1)

R±1 ⊠ 1A3

1A2 ⊠R±1

R±1

? ?

@
@
@
@
@
@
@
@R

�
�

�
�

�
�

�
�	

�
�

�
�

�
�

�
�	

@
@

@
@
@

@
@
@R

is commutative. A braided monoidal category is a monoidal category with a braiding. A
braided tensor category is a tensor category with a braiding.

2.4 Rigidity

Definition 2.24. Let C be a monoidal category. For an object A, a right dual of A is an
object A∗ and morphisms evA : A∗⊗A→ 1 and coevA : 1 → A⊗A∗ such that the morphism
obtained by composing the morphisms in

A→ 1⊗ A→ (A⊗ A∗)⊗ A→ A⊗ (A∗ ⊗ A) → A⊗ 1 → A

is equal to the identity 1A and the morphism obtained by composing the morphisms in

A∗ → A∗ ⊗ 1 → A∗ ⊗ (A⊗ A∗) → (A∗ ⊗ A)⊗ A∗ → 1⊗ A∗ → A∗

is equal to the identity 1A∗ . A left dual of A is an object ∗A and morphisms ev′A : A⊗∗A→ 1
and coev′A : 1 →∗ A⊗ A such that the morphism obtained by composing the morphisms in

A→ A⊗ 1 → A⊗ (∗A⊗ A) → (A⊗∗ A)⊗ A→ 1⊗ A→ A

is equal to the identity 1A and the morphism obtained by composing the morphisms in

∗A→ 1⊗∗ A→ (∗A⊗ A)⊗∗ A→∗ A⊗ (A⊗∗ A) →∗ A⊗ 1 →∗ A

is equal to the identity 1∗A.
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Definition 2.25. A monoidal category C is said to be rigid if there are contravariant functors
∗· : C → C and ·∗ : C → C such that for an object A, ∗A and A∗ are left and right duals of A.

Exercise 2.26. Show that the category of finite-dimensional representations for a finite
group and the category of finite-dimensional modules for a finite-dimensional Lie algebra are
rigid symmetric tensor categories.

2.5 Ribbon categories and modular tensor categories

Definition 2.27. Let C be a braided onoidal category. A twist of C is a natural isomorphism
θ : 1C → 1C such that for objects A1 and A2,

θA1⊗A2 = RA2,A1 ◦RA1,A2 ◦ (θA1 ⊗ θA2).

Definition 2.28. A ribbon category is a rigid braided monoidal category equipped with a
twist.

Lemma 2.29. In a ribbon category, the left dual and right dual can be taken to be the same.

We omit the proof of this lemma.
Let C be a ribbon category and let K = Hom(1,1). Then K is a monoid (a set with an

associative product and an identity).

Lemma 2.30. K is in fact commutative.

In a ribbon category, we can define the “trace” of a morphism and the “dimension” of
an object as follows:

Definition 2.31. Let f ∈ Hom(A,A) be a morphism in a ribbon category. The trace of f
is defined to be

Tr f = evA ◦RA,A∗ ◦ ((θA ◦ f)⊗ 1A∗) ◦ coevA ∈ K.

The dimension dimA of an object A is defined to be Tr 1A.

The trace of a morphism satisfies the properties that a trace should have.

Proposition 2.32. Let C be a ribbon category. Then we have:

1. For f ∈ Hom(A,B) and g ∈ Hom(B,A), Tr fg = Tr gf .

2. For f ∈ Hom(A1, A2) and g ∈ Hom(A3, A4), Tr (f ⊗ g) = (Tr f)(Tr g).

3. For k ∈ K, Tr k = k.

Example 2.33. The category of finite-dimensional representations of a finite group and
the category of finite-dimensional modules for a finite-dimensional Lie algebra are ribbon
categories whose braidings and twists are trivial.
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Example 2.34. Let G be an mulplicative abelian group (an abelian group whose operation
is written as a multiplication instead of an addition), K a commutative ring with identity
and c : G×G→ K∗ a bilinear form (K∗ being the set of invertible elements of K), that is,
for g, g′, h, h′ ∈ G, we have

c(gg′, h) = c(g, h)c(g′, h),

c(g, hh′) = c(g, h)c(g, h′).

We construct a ribbon category as follows: The objects of the category are elements of G.
For any g, h ∈ G, Hom(g, h) is K if g = h and 0 if g ̸= h. The composition of two morphisms
g → h →→ f is the product of the two elements of K is g = h = f and 0 otherwise. The
tensor product of two objects g, h ∈ G is their product gh. The tensor product gg′ → hh′

of two morphisms g → g′ and h → h′ is the product of the two elements in K if g = h
and g′ = h′ and is 0 otherwise. The unit object is the identity of G. The associativity and
left and right unit isomorphisms are the identity natural isomorphisms. For g, h ∈ G, the
briading gh → hg = gh is defined to be c(g, h). For g ∈ G, the twist g → g is defined to be
c(g, g). For g ∈ G, the (left and right) dual of g is g−1. The morphisms evg, coevg, ev

′
g and

coev′g are the indentity of K. Then we have a ribbon category.

Exercise 2.35. Verify that the example above is indeed a ribbon category.

We now consider ribbon tensor categories, that is, rigid braided tensor categories with
twists.

Let C be a ribbon tensor category. Then K = Hom(1,1) acts on Hom(A,B) for any
objects A and B by kf = lB ◦ (k⊗ f) ◦ l−1

A for k ∈ K and f ∈ Hom(A,B). This action gives
Hom(A,B) a K-module structure.

Definition 2.36. An object A of a ribbon tensor category is said to be irreducible if
Hom(A,A) is a free K-module of rank 1. A ribbon tensor category is said to be semisimple
if the following conditions are satisfied:

1. For any simple objects A and B, Hom(A,B) = 0 if A is not isomorphic to B.

2. Every object is a direct sum of finitely many irreducible objects.

Example 2.37. The unit object is an irreducible object.

Example 2.38. The ribbon tensor category of finite-dimensional representations over a
field of a finite group such that the characteristic of the field does not divide the order of the
group and the ribbon tensor category of finite-dimensional modules for a finite-dimensional
semisimple Lie algebra are semisimple.

Definition 2.39. A modular tensor category is a semisimple ribbon tensor category C, with
finitely many equivalence classes of irreducible objects satisfying the following nondegeneracy
property: Let {Ai}ni=1 be a set of representatives of the equivalence classes of irreducible
objects of C. Then the matrix (Sij) where

Sij = Tr RAj ,Ai
◦RAi,Aj

for i, j = 1, . . . , n is invertible.
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Let I be the set of equivalence classes of irreduible objects in a modular tensor category.
We shall use 0 to denote the equivalence class in I containing the unit object.

Proposition 2.40. The dual object of an irreducible object is also irreducible.

We omit the proof.
From this proposition, we see that there is a map ∗ : I → I such that for any i ∈ I, i∗ is

the equivalence class in I such that objects in i∗ are duals of objects in i.
We now choose one object Ai for each equivalence class i ∈ I. Then by definition, we

have
S0,i = Si,0 = dimAi

for i ∈ I.

Definition 2.41. Let C be a modular tensor category. Assuming that there exists D ∈ K
such that

D2 =
∑
i∈I

(dimAi)
2.

We call D the rank of C.

If there is no such D in K, we can always enlarge K and the sets of morphisms such that
in the new category, there exists such a D.

For i ∈ I, the twist θAi
as an element of Hom(Ai, Ai) must be proportional to 1Ai

, that
is, there exists Ai ∈ K such that θi = Ai1Ai

. Since θAi
is an isomorphism, Ai is invertible.

Let ∆ =
∑

i∈I v
−1
i (dimAi)

2, T = (δji vi) and J = (δji∗). Then we have

(D−1S)4 = I,

(D−1T−1S)3 = ∆D−1(D−1S)2.

Let

s =

(
0 −1
1 0

)
,

t =

(
1 1
0 1

)
.

Then s and t are the generators of the modular group

SL(2,Z) =
{(

a b
c d

)
| a, b, c, d ∈ Z, ad− bc = 1

}
satisfying the relations

s4 = I, (ts)3 = s2.

Thus we see that s 7→ D−1S and t 7→ T−1 give a projective matrix representation of SL(2,Z).
Since C is semisimple and I is the set of equivalence classes of irreducible objects in C,

we see that Ai⊗Aj for i, j ∈ I must be isomorphic to ⊕k∈IN
k
ijAk, where N

k
ij are nonnegative

integers giving the numbers of copies of Ak. These numbers Nk
ij afre called fusion rules.
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Theorem 2.42. For i, l,m ∈ I, we have∑
j,k∈I

S−1
mjN

k
ijSkl = (dimAm)

−1Silδlm.

In fact, if we let
Ni = (Nk

ij)

for i ∈ I, then the theorem above says that the matrix S diagonalizes Ni for i ∈ I simulta-
neously.

Corollary 2.43. For i, j, k ∈ I, we have

Nk
ij = D−2

∑
l∈I

(dimAl)
−1SilSjlSk∗l.

We omit the proofs of these results.

3 Tensor product modules and their construction

3.1 Definition of tensor product module

We have mentioned above that for two V -modules W1 and W2, W1 ⊗W2 is not a V -module.
But tensor products for V -modules are important. They describe interations of the quantum
objects whose state spaces are W1 and W2. Mathematically tensor products also give us new
V -modules. Using intertwining operators, we can introduce a notion of tensor product of two
V -modules. Such a tensor product does not always exist. In order to prove the existence, V
must satisfies certain conditions. In this subsection we give the definition of tensor product
V -module of two V -modules. But we will not discuss the existence of the tensor product
V -modules.

Our definition of tensor product V -module is given in terms of intertwining operators.
To motivate our definition of tensor product V -module, we first give a definition of tensor
product of two vector spaces using analogues of intertwining operators. Let W1, W2 and W3

be vector spaces. A bilinear map I : W1×W2 → W3 is called an intertwining operator of type(
W3

W1W2

)
. We call a pair W3, I) consisting of a vector space W3 and an intertwining operator I

of type
(

W3

W1W2

)
a product of W1 and W2. We define a tensor product vector space of W1 and

W2 to be a product (W1 ⊗W2,⊗) such that the following universal property holds: Given
any product (W3, I) of W1 and W2, there exists a unique linear map f : W1⊗W2 → W3 such
that I = f ◦ ⊗.

Here is a construction of a tensor product vector space: Let C(W1 × W2) be the free
vector space generated by the direct product W1 ×W2. Let W1 ⊗W2 be the quotient vector
space C(W1 × W2)/J , where J is the subspace of W1 × W2 spanned by elemenets of the
form (λw1, w2) − (w1, λw2), λ(w1, w2) − (λw1, w2), (w1 + w̃1, w2) − (w1, w2) − (w̃1, w2) and
(w1, w2 + w̃2)− (w1, w2)− (w1, w̃2) for w1, w̃1 ∈ W1, w2, w̃ ∈ W2 and λ ∈ C. We use w1 ⊗w2
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to denote the coset (w1, w2)+J . Let ⊗ : W1×W2 → W1⊗W2 be the projection map. Then
⊗ is an intertwining operator of type

(
W1⊗W2

W1W2

)
and (W1 ⊗W2,⊗) is a tensor product vector

space of W1 and W2.
We now give the definition of tensor product V -module of two V -modules. For simplicity,

we work with the category of lower bounded generalized V -modules. For other categories
of V -modules, the definition is the same except that we replace the words “lower bounded
generalized V -module” by the names for the types of V -modules in the other categories.

One crucial new feature for the tensor product V -module is that it involves z ∈ C×. For
such z ∈ C×, we use log z to denote the value log |z| + i arg z, where 0 ≤ arg z < 2π of the
logarithm of z. For an intertwining operator Y of type

(
W3

W1W2

)
, we use Y(w1, z)w2 to denote

Y(w1, x)w2

∣∣∣
xn=en log z ,n∈C,log x=log z

.

Definition 3.1. Let z ∈ C× and W1 and W2 lower-bounded generalized V -modules. A
P (z)-product of W1 and W2 is a pair (W3, I) consisiting of a lower-bounded generalized V -
module W3 and the value I = Y(·, z)· : W1 ⊗W2 → W 3 (called a P (z)-intertwining map of
type

(
W3

W1W2

)
) of an intertwining operator Y(·, x)· : W1⊗W2 → W3{x}[log x] at z (with xn for

n ∈ C and log x be substituted by en log z and log z, respectively). A P (z)-tensor product of
W1 and W2 is a P (z)-product (W1⊠P (z)W2,⊠P (z)) such that the following universal property
holds: Given any P (z)-product (W3, I) of W1 and W2, there exists a unique module map
f : W1 ⊠P (z) W2 → W3 such that I = f̄ ◦⊠P (z), where f̄ : W1 ⊠P (z) W2 → W 3 is the unique
extenstion of f to W1 ⊠P (z) W2 (note that f as a module map must preserve wegihts).

The value I of an intertwining operator Y(·, x)· at z is called a P (z)-intertwining map.
The first question about the P (z)-tensor product is its existence. For vector spaces,

the existence is trivial (see above). But for V -modules, it is not trivial in general. As
we mentioned above, in general the P (z)-tensor product might not exist. Under certain
conditions, the existence of P (z)-tensor product was proved in [HL4] and [H7].

The category of V -mdules form a braided tensor category under certain conditions on
V or a modular tensor category under stronger conditions. The two difficult part of the
construction is the construction of the associativity isomorphism and the proof of the rigidity.
These two difficult parts corresponding to the associativity of intertwining operators and the
modular invariance of intertwining operators, respectively. See [H1], [H3], [H4], [H6], [H7]
and [HLZ2].

3.2 A construction of tensor product modules

We now give a construction of the P (z)-tensor product W1 ⊠P (z) W2 in the category of
grading-restricted generalized V -modules. For a grading-restricted generalized V -module
W3, w

′
3 ∈ W ′

3 and an intertwining operator Y of type
(

W3

W1W2

)
, we have an element λzY(w

′
3) ∈

(W1 ⊗W2)
∗ given by

(λzY(w
′
3))(w1 ⊗ w2) = ⟨w′

3,Y(w1, z)w2⟩,
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where for simplicity we use Y(w1, z) to denote Y(w1, x)w2

∣∣∣
xn=en log z ,n∈C,log x=log z

∈ Hom(W2,W 3.

Then we obtain a linear map λzY : W ′
3 → (W1 ⊗W2)

∗. Let W1 P (z)W2 be the subspace of
(W1 ⊗W2)

∗ spanned by all elements of the form λzY(w
′
3) for a grading-restricted generalized

V -module W3, w
′
3 ∈ W ′

3 and an intertwining operator Y of type
(

W3

W1W2

)
. Then λzY is in fact

a linear map from W ′
3 to W1 P (z)W2.

We define a vertex operator map

YW1 P (z)W2
: V ⊗ (W1 P (z)W2) → (W1 P (z)W2)[[x, x

−1]]

v ⊗ λ 7→ YW1 P (z)W2
(v, x)λ

by
(YW1 P (z)W2

(v, x)λzY(w
′
3))(w1 ⊗ w2) = ⟨YW ′

3
(v, x)w′

3,Y(w1, z)w2⟩

for w1 ∈ W1, w2 ∈ W2, w
′
3 ∈ W ′

3 and v ∈ V .

Proposition 3.2. The space W1 P (z)W2 equipped with YW1 P (z)W2
is a generalized V -module

such that for a grading-restricted generalized V -module W3, w
′
3 ∈ W ′

3 and an intertwining
operator Y of type

(
W3

W1W2

)
, λzY is a V -module map from W ′

3 to W1 P (z)W2.

Exercise 3.3. Prove Proposition 3.2.

Let W3 be a grading-restricted generalized V -module and J : W ′
3 → W1 P (z)W2 a V -

module map. Let YJ(·, z)· : W1 ⊗W2 → W 3 be defined by

⟨w′
3,YJ(w1, z)w2⟩ = (J(w′

3))(w1 ⊗ w2).

Then we define

YJ(w1, x)w2 = xLW3
(0)z−LW3

(0)YJ(x
−LW1

(0)zLW1
(0)w1, z)x

−LW2
(0)zLW2

(0)w2.

In this way, we obtain a linear map

YJ : W1 ⊗W2 → W3{x}[log x].

Proposition 3.4. The linear map YJ is an intertwining operator of type
(

W3

W1W2

)
such that

Yλz
Y
= Y and λzYJ

= J .

Exercise 3.5. Prove Proposition 3.4.

One immediate consequence of this proposition is the following:

Corollary 3.6. The map given by Y 7→ λzY is a linear isomorphism from the space of
intertwining operators of type

(
W3

W1W2

)
to the space of V -module maps from W ′

3 to W1 P (z)W2.
The inverse of this map is the linear map given by J 7→ YJ .

We shall now make the following assumption:
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Assumption 3.7. For any grading-restricted generalized V -modules W1 and W2, W1 P (z)W2

is a grading-restricted generalized V -module.

Under this assumption, for grading-restricted generalized V -modules W1 and W2, the
graded dualW1⊠P (z)W2 = (W1 P (z)W2)

′ ofW1 P (z)W2 is also a grading-restricted generalized
V -module. Consider the identity operator 1W1 P (z)W2

on W1 P (z)W2. This is certainly a
V -module map from the graded dual W1 P (z)W2 of W1 ⊠P (z) W2 to W1 P (z)W2. Then by

Proposition 3.4, we have an intertwining operator Y1
W1 P (z)W2

of type
(
W1⊠P (z)W2

W1W2

)
. We denote

the evaluation Y1
W1 P (z)W2

(·, z) of Y1
W1 P (z)W2

at z by ⊠P (z). Let

W1 ⊠P (z) W2 = (W1 P (z)W2)
′.

Theorem 3.8. The pair (W1 ⊠P (z) W2,⊠P (z)) is a P (z)-tensor product of W1 and W2.

Proof. Let (W3, I) be a P (z)-tensor product. Then by the definition of P (z)-intertwining
map, we have an intertwining operator YI of type

(
W3

W1W2

)
such that I = YI(·, z)·. Then by

Propositions 3.2, we have a V -module map λzYI : W
′
3 → W1 P (z)W2 given by

⟨w′
3,YI(w1, z)w2⟩ = (λzYI (w

′
3))(w1 ⊗ w2).

The adjoint of λzY is a V -module map f : W1 ⊠P (z) W2 → W3. Then we have

⟨w′
3, I(w1 ⊗ w2)⟩ = ⟨w′

3,Y(w1, z)w2⟩
= (λzY(w

′
3))(w1 ⊗ w2)

= (1W1 P (z)W2
(λzY(w

′
3)))(w1 ⊗ w2)

= ⟨λzY(w′
3),Y1

W1 P (z)W2
(w1, z)w2⟩

= ⟨w′
3, (f̄ ◦⊠P (z))(w1 ⊗ w2)⟩

for w1 ∈ W1, w2 ∈ W2 and w′
3 ∈ W ′

3. Thus we obtain I = f̄ ◦ ⊠P (z). The uniqueness of f
follows from the uniqueness of YI and λIY .

Note that the tensor product elements of the tensor product of two vector spaces span
the tensor product space. We also have a tensor product element of w1 ∈ W1 and w2 ∈ W2

defined by
w1 ⊠P (z) w2 = ⊠P (z)(w1 ⊗ w2) = Y1

W1 P (z)W2
(w1, z)w2.

But note that w1 ⊠P (z) w2 is in W1 ⊠P (z) W2 instead of W1 ⊠P (z) W2.

Proposition 3.9. The homogeneous components πn(w1 ⊠P (z) w2) (πn is the projection from
W1 ⊠P (z) W2 to its homogeneous subspace of weight n) of w1 ⊠P (z) w2 for n ∈ C, w1 ∈ W1

and w2 ∈ W2 span W1 ⊠P (z) W2.
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Proof. Let W3 be the subspace of W1 ⊠P (z) W2 spanned by homogeneous components
πn(w1 ⊠P (z) w2) of w1 ⊠P (z) w2 for n ∈ C, w1 ∈ W1 and w2 ∈ W2. Then we have
w1 ⊠P (z) w2 ∈ W 3 for w1 ∈ W1 and w2 ∈ W2. Recall the intertwining operator Y1

W1 P (z)W2

of type
(
W1⊠P (z)W2

W1W2

)
such that w1 ⊠P (z) w2 = Y1

W1 P (z)W2
(w1, z)w2 for w1 ∈ W1 and w2 ∈ W2.

IfW3 is not equal toW1⊠P (z)W2, then there exists a nonzero subspaceW0 ofW1 P (z)W2 =
(W1 ⊠P (z) W2)

′ such that for λ ∈ W0, ⟨λ, πn(w1 ⊠P (z) w2)⟩ = 0 for all n ∈ C, w1 ∈ W1 and
w2 ∈ W2. Then for λ ∈ W0, ⟨λ,w1 ⊠P (z) w2⟩ = 0 for all w1 ∈ W1 and w2 ∈ W2. Since

⟨λ,w1 ⊠P (z) w2⟩ = ⟨λ,Y1
W1 P (z)W2

(w1, z)w2⟩ = λ(w1 ⊗ w2),

we obtain λ(w1 ⊗ w2) = 0 for all w1 ∈ W1 and w2 ∈ W2. So λ = 0 and thus W0 = 0.
Contradiction.

The construction above is based on Assumption 3.7. We have the the following results
on this assumption:

Theorem 3.10 ([HL2]). Assume that V satisfies the following condition:

1. There are only finitely many irreducible V -modules (up to equivalence).

2. Every grading-restricted generalized V -module is completely reducible (and is in par-
ticular a finite direct sum of irreducible V -modules).

3. All the fusion rules for V are finite (for triples of irreducible V -modules and hence
arbitrary V -modules).

Then W1 P (z)W2 is a (ordinary) V -module.

Proof. Elements of W1 P (z)W2 are spanned by elements of the form λzY(w
′
3) for a grading-

restricted generalized V -module W3, an intertwining operator Y of type
(

W3

W1W2

)
and w′

3 ∈
W ′

3. Then W1 P (z)W2 is a sum of grading-restricted generalized V -modules. Since every
grading-restricted generalized V -module is completely reducible,W1 P (z)W2 is a direct sum of
irreducible V -modules. Since there are only finitely many irreducible V -modules, W1 P (z)W2

is a direct sum of finitely or infinitely many copies of these finitely many irreducible V -
modules. To show thatW1 P (z)W2 is a grading-restricted generalized V -module, we still need
to show that there are only finitely many copies of these irreducible V -modules appearing
in the decomposition of W1 P (z)W2. If there are infinitely many copies of an irreducible
V -module W appearing in the decomposition of W1 P (z)W2, then for each copy of this
irreducible V -module in W1 P (z)W2 we have an embedding map from W to W1 P (z)W2.
This embedding map is clearly a V -module map. Also, these infinitely many embedding V -
module maps are linearly independent. But by Corollary 3.6, these infinitely many linearly
independent embedding V -module maps corresponds to infinitely many linearly independent
intertwining operators of the type

(
W ′

W1W2

)
. In particular, the dimension of the space of

intertwining operators of the type
(

W ′

W1W2

)
is infinite. But all the fusion rules are finitely.
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Contradiction. So W1 P (z)W2 is a direct sum of finitely many irreducible V -modules and
thus must be grading restricted.

A vertex operator algebra V is said to be of positive energy (or of CFT type) if V(n) = 0
for n < 0 and V(0) = C1. A vertex operator algebra is called C2-cofinite if dimV/C2(V ) <∞,
where C2(V ) is the subspace of V spanned by elements of the form Resxx

−2YV (u, x)v for
u, v ∈ V .

Theorem 3.11 ([H7]). Assume that V is of positive energy and C2-cofinite. ThenW1 P (z)W2

is a grading-restricted generalized V -module.

We omit the proof of this theorem here. See [H7] for a proof.

4 Associativity of intertwining operators and associa-

tivity isomorphisms

4.1 Associativity of intertwining operators

We formulate the associativity of intertwining operators in the category of grading-restricted
generalized V -modules as the main assumption in this section. We also state without proof
a result on the associativity of intertwining operators.

Assumption 4.1 (Associativity of intertwining operators in the category of grading-re-
stricted generalized V -modules). Let W1, W2, W3, W4, W5 be grading-restricted generalized
V -modules and Y1 and Y2 intertwining operators of types

(
W4

W1 W5

)
and

(
W5

W2 W3

)
, respectively.

1. For w1 ∈ W1, w2 ∈ W2, w3 ∈ W3 and w′
4 ∈ W ′

4, the series

⟨w′
4,Y1(w1, z1)Y2(w2, z2)w3⟩

is absolutely convergent in the region |z1| > |z2| > 0 and its sum can be analytically
continued to a multivalued analytic function

F (⟨w′
4,Y1(w1, z1)Y2(w2, z2)w3⟩)

on the region
M2 = {(z1, z2) ∈ C2 | z1, z2 ̸= 0, z1 − z2 ̸= 0} ⊂ C2

with the only possible singular points z1 = 0, z2 = 0 and z1 = z2 being regular singular
points.

2. There exist a grading-restricted generalized V -module W6 and intertwining operators
Y1 and Y2 of types

(
W4

W1 W5

)
and

(
W5

W2 W3

)
, respectively, such that for w1 ∈ W1, w2 ∈ W2,

w3 ∈ W3 and w′
4 ∈ W ′

4,

⟨w′
4,Y1(w1, z1)Y2(w2, z2)w3⟩ = ⟨w′

4,Y3(Y4(w1, z1 − z2)w2, z2)w3⟩
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in the region |z1| > |z2| > |z1 − z2| > 0. (The absolute convergence of

⟨w′
4,Y3(Y4(w1, z1 − z2)w2, z2)w3⟩

in the region |z2| > |z1 − z2| > 0 is a consequence of Part 1 above. See Proposition 4.2
below.)

Proposition 4.2. Let W1, W2, W3, W4, W6 be grading-restricted generalized V -modules and
Y3 and Y4 intertwining operators of types

(
W4

W6W3

)
and

(
W6

W1W2

)
, respectively.

1. Suppose that Part 1 of Assumption 4.1 holds. Then for w1 ∈ W1, w2 ∈ W2, w3 ∈ W3

and w′
4 ∈ W ′

4, the series

⟨w′
4,Y3(Y4(w1, z1 − z2)w2, z2)w3⟩

is absolutely convergent in the region |z2| > |z1−z2| > 0 and its sum can be analytically
extended to a multivalued analytic function

F (⟨w′
4,Y3(Y4(w1, z1 − z2)w2, z2)w3⟩)

on the region M2 with the only possible singular points z1 = 0, z2 = 0 and z1 = z2
being regular singular points.

2. Suppose that Assumption 4.1 holds. Then there exist a grading-restricted generalized
V -module W5 and intertwining operators Y1 and Y2 of the types

(
W4

W6 W3

)
and

(
W6

W1 W2

)
,

respectively, such that for w1 ∈ W1, w2 ∈ W2, w3 ∈ W3 and w′
4 ∈ W ′

4,

⟨w′
4,Y3(Y4(w1, z1 − z2)w2, z2)w3⟩ = ⟨w′

4,Y1(w1, z1)Y2(w2, z2)w3⟩

in the region |z1| > |z2| > |z1 − z2| > 0.

We need skew-symmetry isomorphism for intertwining operators to prove this result. The
skew-symmetry isomorphism will be discussed in Section 4. We shall prove this result in that
section.

The associativity of intertwining operators holds only when the vertex operator algebra
satisfies certain conditions. Here is a result proved in [H7]:

Theorem 4.3 ([H7]). Assume that V is of positive energy and C2-cofinite. Then associativity
of intertwining operators in the category of grading-restricted generalized V -modules hold.

We omit the proof of this theorem here. See [H7] for a proof.
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4.2 Associativity isomorphisms

Assuming that the associativity of intertwining operators hold, we construct associativity
isomorphisms for the vertex tensor category structure and the braided tensor category struc-
ture.

Recall the tensor product element w1 ⊠P (z) w2 of W1 ⊠P (z) W2. To construct and study
associativity isomorphisms , we need tensor products of three elements of three grading-
restricted generalized V -modules. Let W1, W2 and W3 be grading-restricted generalized
V -modules and z1, z2 ∈ C satisfying |z1| > |z2| > |z1 − z2| > 0. By Assumption 4.1,

⟨w′
4, w1 ⊠P (z1) (w2 ⊠P (z2) w3)⟩ = ⟨w′

4,Y1
W1 P (z1)

(W2⊠P (z2)
W3)

(w1, z1)Y1W2⊠P (z2)
W3

(w2, z2)w3⟩

is absolutely convergent for w′
4 ∈ (W1 ⊠P (z1) (W2 ⊠P (z2) W3))

′, w1 ∈ W1, w2 ∈ W2 and
w3 ∈ W3. Thus we have a well-defined element

w1 ⊠P (z1) (w2 ⊠P (z2) w3) ∈ W1 ⊠P (z1) (W2 ⊠P (z2) W3).

Similarly, we have a well-defined element

(w1 ⊠P (z1−z2) w2)⊠P (z2) w3 ∈ (W1 ⊠P (z1−z2) W2)⊠P (z2) W3.

We now construct the associativity isomorphsim. We have the foloowing theorem:

Theorem 4.4. Let z1, z2 ∈ C satisfying |z1| > |z2| > |z1−z2| > 0. Suppose that Assumptions
3.7 and 4.1 hold. Then there exist a unique natural isomorphism

AP (z2),P (z1−z2)
P (z1),P (z2)

: ⊠P (z1) ◦ (1W1 ×⊠P (z2)) → ⊠P (z2) ◦ (⊠P (z2) × 1W3),

called associativity isomorphism, such that for grading-restricted generalized V -modules W1,

W2 and W3, the extension AP (z2),P (z1−z2)
P (z1),P (z2)

of the module map

AP (z2),P (z1−z2)
P (z1),P (z2)

: W1 ⊠P (z1) (W2 ⊠P (z2) W3) → (W1 ⊠P (z1−z2) W2)⊠P (z2) W3

to the algebraic extension W1 ⊠P (z1) (W2 ⊠P (z2) W3) of W1 ⊠P (z1) (W2 ⊠P (z2) W3) satisfies

AP (z2),P (z1−z2)
P (z1),P (z2)

(w1 ⊠P (z1) (w2 ⊠P (z2) w3)) = (w1 ⊠P (z1−z2) w2)⊠P (z2) w3 (4.1)

for w1 ∈ W1, w2 ∈ W2 and w3 ∈ W3.

Proof. For simplicity, we denote (W1⊠P (z1−z2)W2)⊠P (z2)W3 andW1⊠P (z1−z2)W2 byW4 and
W6. We also denote the intertwining operators Y1

(W1⊠P (z1−z2)
W2) P (z2)

W3
and Y1W1⊠P (z1−z2)

W3

by Y3 and Y4. For w′
4 ∈ W ′

4, w1 ∈ W1, w2 ∈ W2 and w3 ∈ W3, by Proposition 4.2, there
exist grading-restricted generalized V -module W5 and intertwining operators Y1 and Y2 of
type

(
W4

W1W5

)
and

(
W5

W2W3

)
, respectively, such that

⟨w′
4, (w1 ⊠P (z1−z2) w2)⊠P (z2) w3⟩ = ⟨w′

4,Y3(Y4(w1, z1 − z2)w2, z2)w3⟩
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= ⟨w′
4,Y1(w1, z1)Y2(w2, z2)w3⟩.

Let I2 = Y2(·, z2)·. Then I2 is a P (z2)-intertwining map. So we have a P (z2)-product
(W5, I2). By the universal property of the tensor product (W2⊠P (z2)W3,⊠P (z2)), there exists
a unique V -module map f : W2 ⊠P (z2) W3 → W5 such that I2 = f̄ ◦ ⊠P (z2). We use Y2 to
denote that intertwining operator Y1

W2 P (z2)
W3

. Then we have w2 ⊠P (z2) w3 = Y2(w2, z2)w3

and Y2(w2, z2)w3 = f̄(Y2(w2, z2)w3).
Let I1 = Y1(·, z1)f(·). Since Y1◦(1W1⊗f(·)) is an intertwining operator of type

(
W4

W1W5

)
, I1

is a P (z1)-intertwining map of type
(

W4

W1(W2⊠P (z2)
W3)

)
. In particular, we have a P (z1)-product

(W4, I1) of W1 and W2 ⊠P (z2) W3. By the universal property of the tensor product

(W1 ⊠P (z1) (W2 ⊠P (z2) W3),⊠P (z1)).

there exists a V -module map

AP (z2),P (z1−z2)
P (z1),P (z2)

: W1 ⊠P (z1) (W2 ⊠P (z2) W3) → (W1 ⊠P (z1−z2) W2)⊠P (z2) W3(= W4)

such that I1 = AP (z2),P (z1−z2)
P (z1),P (z2)

◦ ⊠P (z1). We use Y1 to denote the intertwining operator
Y1

W1 P (z1)
(W2⊠P (z2)

W3)
. Then

AP (z2),P (z1−z2)
P (z1),P (z2)

(w1 ⊠P (z1) w) = I1(w1 ⊗ w) = Y1(w1, z1)f(w)

for w1 ∈ W1 and w ∈ W2 ⊠P (z2) W3.
Using all the calculations above, we obtain

⟨w′
4,A

P (z2),P (z1−z2)
P (z1),P (z2)

(w1 ⊠P (z1) (w2 ⊠P (z2) w3))⟩

=
∑
n∈C

⟨w′
4,A

P (z2),P (z1−z2)
P (z1),P (z2)

(w1 ⊠P (z1) (πn(w2 ⊠P (z2) w3)))⟩

=
∑
n∈C

⟨w′
4,Y1(w1, z1)f(πn(w2 ⊠P (z2) w3))⟩

= ⟨w′
4,Y1(w1, z1)f̄(w2 ⊠P (z2) w3)⟩

= ⟨w′
4,Y1(w1, z1)f̄(Y2(w2, z2)w3)⟩

= ⟨w′
4,Y1(w1, z1)Y2(w2, z2)w3⟩

= ⟨w′
4, (w1 ⊠P (z1−z2) w2)⊠P (z2) w3⟩

for w′
4 ∈ W ′

4, w1 ∈ W1, w2 ∈ W2 and w3 ∈ W3. Thus we obatin (4.1).
The same construction also gives a V -module map from (W1 ⊠P (z1−z2) W2)⊠P (z2) W3 to

W1⊠P (z1) (W2⊠P (z2)W3) such that its extension to the algebraic completion of (W1⊠P (z1−z2)

W2)⊠P (z2)W3 maps (w1⊠P (z1−z2)w2)⊠P (z2)w3 to w1⊠P (z1) (w2⊠P (z2)w3). The last property

of this V -module map shows that this V -module map must be the inverse of AP (z2),P (z1−z2)
P (z1),P (z2)

.

So AP (z2),P (z1−z2)
P (z1),P (z2)

is an isomorphism.
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Now we choose the tensor product ⊠P (1) to be the tensor product bifunctor of the cat-
egory of grading-restricted generalized V -modules. We need to construct the associativity
isomorphism for this tensor product bifunctor.

We construct this associativity isomorphism using the associativity isomorphismAP (z2),P (z1−z2)
P (z1),P (z2)

constructed above. But we first have to introduce and construct what we call parallel trans-
port isomorphisms.

Let z1, z2 ∈ C× and γ a path in C× from z1 to z2. We denote the homotopy class of γ
by [γ]. The following theorem and its proof gives a construction of the parallel transport
isomorphism:

Theorem 4.5. Let z1, z2 ∈ C× and γ a path in C× from z1 to z2. Then there exists a unique
natural isomorphism

T[γ] : ⊠P (z1) → ⊠P (z2),

called the parallel transport isomorphism associated to [γ], such that for grading-rsetricted
generalized V -modules W1 and W2, the extension T[γ] of the V -module map

T[γ] : W1 ⊠P (z1) W2 → W1 ⊠P (z2) W2

to the algebraic extension W1 ⊠P (z1) W2 of W1 ⊠P (z1) W2 satisfies the following property:
For w1 ∈ W1 and w2 ∈ W2, the image T[γ](w1 ⊠P (z1) w2) of the tensor product element

w1⊠P (z1)w2 under T[γ] is the element Y(w1, x)w2

∣∣∣
xn=enlp(z1),log x=lp(z1)

of W1 ⊠P (z2) W2, where

Y is the intertwining operator of type
(W1⊠P (z2)

W2

W1W2

)
and lp(z1) = log |z1| + i arg z1 + i2πp is

the value of logarithm of z1 obtained by analytically extending the value log z2 along the path
γ.

Proof. Let I = Y(w1, x)w2

∣∣∣
xn=enlp(z1),log x=lp(z1)

. Then I is a P (z1)-intertwining map of type(W1⊠P (z2)
W2

W1W2

)
and we have a P (z2)-product (W1⊠P (z2)W2, I) of W1 and W2. By the universal

property of the P (z1)-tensor product W1 ⊠P (z1) W2, there exists a unique V -module map

T[γ] : W1 ⊠P (z1) W2 → W1 ⊠P (z2) W2

such that T[γ] ◦ ⊠P (z1) = I. The property follows immediately. The V -module map T[γ] is
invertible since the same construction also gives V -module map

T[γ−1] : W1 ⊠P (z2) W2 → W1 ⊠P (z1) W2

which is clearly the inverse of T[γ]. Thus the natural transformation T[γ] is a natural isomor-
phism.

We have constructed the associativity isomorphisms AP (z4),P (z3)
P (z1),P (z2)

for z1, z2 ∈ C× satisfying

|z1| > |z2| > |z1−z2| > 0, z3 = z1−z2 and z4 = z2. LetW1, W2 andW3 be grading-restricted
generalized V -modules. We now constructe associativity isomorphisms

AP (z4),P (z3)
P (z1),P (z2)

: W1 ⊠P (z1) (W2 ⊠P (z2) W3) → (W1 ⊠P (z4) W2)⊠P (z3) W3
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for general z1, z2, z3, z4 ∈ C×.
Let ζ1 and ζ2 be nonzero complex numbers satisfying |ζ1| > |ζ2| > |ζ1 − ζ2| > 0. Let

γ1 and γ2, be paths from z1 and z2 to ζ1 and ζ2, respectively, in the complex plane with a
cut along the positive real line, and let γ3 and γ4 be paths from ζ2 and ζ1 − ζ2 to z3 and
z4, respectively, also in the complex plane with a cut along the positive real line. Then we
define

AP (z4),P (z3)
P (z1),P (z2)

= Tγ3 ◦ (Tγ4 ⊠P (ζ2) 1W3) ◦ A
P (ζ1−ζ2),P (ζ2)
P (ζ1),P (ζ2)

◦ (1W1 ⊠P (ζ1) Tγ2) ◦ Tγ1 ,

that is, AP (z4),P (z3)
P (z1),P (z2)

is given by the commutative diagram

W1 ⊠P (ζ1) (W2 ⊠P (ζ2) W3)
AP (ζ1−z2),P (ζ2)

P (ζ1),P (ζ2)−−−−−−−−−→ (W1 ⊠P (ζ1−ζ2) W2)⊠P (ζ2) W3

(1W1
⊠P (ζ1)

Tγ2 )◦Tγ1

x yTγ3◦(Tγ4⊠P (ζ2)
1W3

)

W1 ⊠P (z1) (W2 ⊠P (z2) W3)
AP (z4),P (z3)

P (z1),P (z2)−−−−−−−→ (W1 ⊠P (z4) W2)⊠P (z3) W3

The inverse of AP (z4),P (z3)
P (z1),P (z2)

is denoted α
P (z4),P (z3)
P (z1),P (z2)

. It is clear that AP (z4),P (z3)
P (z1),P (z2)

is independent
of ζ1, ζ2 and γ1, γ2, γ3, γ4.

In particular, when z1 = z2 = z3 = z4 = 1, we have the corresponding natural associativ-
ity isomorphism

AP (1),P (1)
P (1),P (1) : W1 ⊠ (W2 ⊠W3) → (W1 ⊠W2)⊠W3.

We shall simply denote this associativity isomorphism by A.
In the case |z1| > |z2| > |z1 − z2| > 0, the associativity isomorphism AP (z2),P (z1−z2)

P (z1),P (z2)

satisfies (4.1). In fact, (4.1) also holds when |z1| = |z2| = |z1 − z2| > 0.

Proposition 4.6. For any z1, z2 ∈ C× such that z1 ̸= z2 but |z1| = |z2| = |z1 − z2|, we have

AP (z1−z2),P (z2)
P (z1),P (z2)

(w1 ⊠P (z1) (w2 ⊠P (z2) w3)) = (w1 ⊠P (z1−z2) w2)⊠P (z2) w3 (4.2)

for w1 ∈ W1, w2 ∈ W2 and w3 ∈ W3, where

AP (z1−z2),P (z2)
P (z1),P (z2)

: W1 ⊠P (z1) (W2 ⊠P (z2) W3) → (W1 ⊠P (z1−z2) W2)⊠P (z2) W3

is the natural extension of AP (z1−z2),P (z2)
P (z1),P (z2)

.

Proof. To prove (4.2), we choose ϵ1 ∈ C such that |z1+ϵ1| > |z2| > |(z1+ϵ1)−z2| > 0. Then

we know that (4.2) holds when z1 is replaced by z1 + ϵ1. But AP (z1−z2),P (z2)
P (z1),P (z2)

is defined to be

the composition of AP ((z1+ϵ1)−z2),P (z2)
P (z1+ϵ1),P (z2)

and the parallel transport isomorphism Tγ associated
to a path γ from z1 + ϵ1 to z1 in the complex plane with a cut along the nonnegative real
line. We further choose ϵ1 and the path γ such that |z1 + ϵ1| > |ϵ1| and the path γ− z2 from
(z1 + ϵ1) − z2 to z1 − z2 is also in the complex plane with a cut along the nonnegative real
line.
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Let Y1 and Y2 be intertwining operators of types(
W1 ⊠P (z1) (W2 ⊠P (z2) W3)

W1 W2 ⊠P (z2) W3

)
and (

W2 ⊠P (z2) W3

W2 W3

)
,

respectively, corresponding to the intertwining maps ⊠P (z1) and ⊠P (z2), respectively. Then
the series

⟨w′,Y1(w1, z1 + ϵ1)Y2(w2, z2)w3⟩

is absolutely convergent for w1 ∈ W1, w2 ∈ W2, w3 ∈ W3 and

w′ ∈ (W1 ⊠P (z1) (W2 ⊠P (z2) W3))
′.

The sums of these series define elements

Y1(w1, z1 + ϵ1)Y2(w2, z2)w3 ∈ W1 ⊠P (z1) (W2 ⊠P (z2) W3).

By the definition of the parallel transport isomorphism, for any path γ from z1 + ϵ1 to
z1 in the complex plane with a cut along the nonnegative real line, we have

Tγ(w1 ⊠P (z1+ϵ1) (w2 ⊠P (z2) w3)) = Y1(w1, z1 + ϵ1)Y2(w2, z2)w3. (4.3)

By definition, we know that
T −1
γ = Tγ−1 ,

so that (4.3) can be written as

Tγ−1
1
(Y1(w1, z1 + ϵ1)Y2(w2, z2)w3) = w1 ⊠P (z1+ϵ1) (w2 ⊠P (z2) w3). (4.4)

Since |z1 + ϵ1| > |z2| > |(z1 + ϵ1)− z2| > 0, we have

AP ((z1+ϵ1)−z1),P (z2)
P (z1+ϵ1),P (z2)

(w1 ⊠P (z1+ϵ1) (w2 ⊠P (z2) w3)) = (w1 ⊠P ((z1+ϵ1)−z2) w2)⊠P (z2) w3. (4.5)

Let Y3 and Y4 be intertwining operators of types(
(W1 ⊠P (z1−z2) W2)⊠P (z2) W3

(W1 ⊠P (z1−z2) W2) W3

)
and (

W1 ⊠P (z1−z2) W2

W1 W2

)
,

respectively, corresponding to the intertwining maps ⊠P (z2) and ⊠P (z1−z2), respectively. Then
the series

⟨w̃′,Y3(Y4(w1, (z1 + ϵ1)− z2)w2, z2)w3⟩
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is absolutely convergent for m,n ∈ R and

w̃′ ∈ ((W1 ⊠P (z1−z2) W2)⊠P (z2) W3)
′,

and the sums of these series define elements

Y3(Y4(w1, (z1 + ϵ1)− z2)w2), z2)w3 ∈ (W1 ⊠P (z1−z2) W2)⊠P (z2) W3.

Since the path γ − z2 from (z1 + ϵ1) − z2 to z1 − z2 is also in the complex plane with a
cut along the nonnegative real line, by the definition of the parallel transport isomorphism,
we have

Tγ−z2((w1 ⊠P ((z1+ϵ1)−z2) w2)⊠P (z2) w3) = Y3(Y4(w1, (z1 + ϵ1)− z2)w2, z2)w3. (4.6)

Combining (4.4)–(4.6) and using the definition of the associativity isomorphismAP (z1−z2),P (z2)
P (z1),P (z2)

,
we obtain

AP (z1−z2),P (z2)
P (z1),P (z2)

(Y1(w1, z1 + ϵ1)Y2(w2, z2)w3) = Y3(Y4(w1, (z1 + ϵ1)− z2)w2), z2)w3.

In particular, for w1 ∈ W1, w2 ∈ W2, w3 ∈ W3 and m ∈ C,

AP (z1−z2),P (z2)
P (z1),P (z2)

(Y1(πm(e
−ϵ1L(−1)w1), z1 + ϵ1)Y2(w2, z2)w3)

= Y3(Y4(πm(e
−ϵ1L(−1)w1), (z1 + ϵ1)− z2)w2), z2)w3. (4.7)

For w1 ∈ W1, w2 ∈ W2 and w3 ∈ W3, since |z1 + ϵ1| > |ϵ1| > 0, both the series∑
m∈R

e
−ϵ1

∂
∂z1 ⟨w′,Y1(πm(w1), z1 + ϵ1)Y2(w2, z2)w3⟩

= e
−ϵ1

∂
∂z1 ⟨w′,Y1(w1, z1 + ϵ1)Y2(w2, z2)w3⟩

and ∑
m∈R

⟨w̃′,Y3(Y4(πm(e
−ϵ1L(−1)w1), (z1 + ϵ1)− z2)w2, z2)w3⟩

= ⟨w̃′,Y3(Y4(e
−ϵ1L(−1)w1, (z1 + ϵ1)− z2)w2, z2)w3⟩

are absolutely convergent for

w′ ∈ (W1 ⊠P (z1) (W2 ⊠P (z2) W3))
′

and
w̃′ ∈ ((W1 ⊠P (z1−z2) W2)⊠P (z2) W3)

′.

We know that
⟨w̃′,Y1(w1, z1 + ϵ1)Y2(w2, z2)w3⟩
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and
⟨w̃′,Y3(Y4(w1, (z1 + ϵ1)− z2)w2, z2)w3⟩

are the values on a neighborhood of the point (ζ1, ζ2) = (z1 + ϵ1, z2) containing the point
(ζ1, ζ2) = (z1, z2) of single-valued branches F (w′, w1, w2, w3; ζ1, ζ2) andG(w̃

′, w1, w2, w3; ζ1, ζ2),
respectively, of some multivalued functions of ζ1 and ζ2. Then by the definition of the tensor
product elements w1 ⊠P (z1) (w2 ⊠P (z2) w3) and (w1 ⊠P (z1−z2) w2)⊠P (z2) w3, we have

⟨w′, w1 ⊠P (z1) (w2 ⊠P (z2) w3)⟩ = F (w′, w1, w2, w3; z1, z2) (4.8)

and
⟨w̃′, (w1 ⊠P (z1−z2) w2)⊠P (z2) w3⟩ = G(w̃′, w1, w2, w3; z1, z2). (4.9)

On the other hand, since F (w′, w1, w2, w3; ζ1, ζ2) and G(w̃′, w1, w2, w3; ζ1, ζ2) are analytic
extensions of matrix elements of products and iterates of intertwining maps, properties of
these products and iterates also hold for these functions if they still make sense. In particular,
they satisfy the L(−1)-derivative property:

∂

∂ζ1
F (w′, w1, w2, w3; ζ1, ζ2) = F (w′, L(−1)w1, w2, w3; ζ1, ζ2), (4.10)

∂

∂ζ1
G(w̃′, w1, w2, w3; ζ1, ζ2) = G(w̃′, L(−1)w1, w2, w3; ζ1, ζ2), (4.11)

From the Taylor theorem (which applies since |z1 + ϵ1| > |ϵ1|) and (4.10)–(4.11), we have

F (w′, w1, w2, w3; z1, z2) =
∑
m∈R

F (w′, πm(e
−ϵ1L(−1))w1, w2, w3; z1 + ϵ1, z2), (4.12)

G(w̃′, w1, w2, w3; z1, z2) =
∑
m∈R

G(w̃′, πm(e
−ϵ1L(−1))w1, w2, w3; z1 + ϵ1, z2). (4.13)

Thus by the definitions of

F (w′, πm(e
−ϵ1L(−1))w1, w2, w3; z1 + ϵ1, z2),

G(w̃′, πm(e
−ϵ1L(−1))w1, w2, w3; z1 + ϵ1, z2),

and by (4.12), (4.13), (4.8) and (4.9), we obtain∑
m∈R

⟨w′,Y1(πm(e
−ϵ1L(−1)w1), z1 + ϵ1)Y2(w2, z2)w3⟩

= ⟨w′, w1 ⊠P (z1) (w2 ⊠P (z2) w3)⟩ (4.14)

and ∑
m∈R

⟨w̃′,Y3(Y4(πm(e
−ϵ1L(−1)w1), (z1 + ϵ1)− z2)w2, z2)w3⟩

= ⟨w̃′, (w1 ⊠P (z1−z2) w2)⊠P (z2) w3⟩. (4.15)
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Since w′ and w̃′ are arbitrary, (4.14) and (4.15) gives∑
m∈R

Y1(πm(e
−ϵ1L(−1)w1), z1 + ϵ1)Y2(w2, z2)w3

= w1 ⊠P (z1) (w2 ⊠P (z2) w3) (4.16)

and ∑
m∈R

Y3(Y4(πm(e
−ϵ1L(−1)w1), (z1 + ϵ1)− z2)w2, z2)w3

= (w1 ⊠P (z1−z2) w2)⊠P (z2) w3. (4.17)

Taking the sum
∑

m∈R on both sides of (4.7) and then using (4.16) and (4.17), we obtain
(4.2).

5 Skew-symmetry and commutativity of intertwining

operators and braiding isomorphisms

5.1 Skew-symmetry and commutativity of intertwining operators

For an intertwining operator Y of type
(

W3

W1W2

)
and an integer p, we introduce a linear map

Ωp(Y) : W2 ⊗W1 → W3{x}[log x]
w2 ⊗ w1 7→ Ωp(Y)(w2, x)w1

defined by

Ω(Y)p(w, x)w1 = e
xLW2⊠P (−z)W1

(−1)Y(w1, y)w2

∣∣∣∣
yn=en(πi+2pπ)xn, log y=log x+πi+2pπi

.

We have a commutativity isomorphism. Let z ∈ C×. For grading-restricted generalized
V -modules W1 and W2, let Y be the intertwining operator associated to the P (z)-tensor
product W2 ⊠P (−z) W1. The we have an intertwining operator Ω(Y) of type

(
W2⊠P (−z)W1

W2W1

)
,

where Ω(Y) is defined by

Ω(Y)(w2, x)w1 = e
xLW2⊠P (−z)W1

(−1)Y(w1, y)w2

∣∣∣∣
yn=enπixn, log y=log x+πi

.

5.2 Commutativity and braiding isomorphisms

The pair (W2 ⊠P (−z) W1,Ω(Y)(·, z)·) is a P (z)-product of W1 and W2. By the universal
property of the tensor product W1 ⊠P (z) W2, there exists a unique V -module map

RP (z) : W1 ⊠P (z) W2 → W2 ⊠P (−z) W1
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such that
Ω(Y)(·, z)· = RP (z) ◦⊠P (z),

where RP (z) is the natrual extension of RP (z) and ⊠P (z) is the value at z of the intertwining
operator associated to the tensor product W1 ⊠P (z) W2.

Let γ be a path from −1 to 1 in the closed upper half plane with 0 deleted. Let W1

and W2 be grading-restricted generalized V -modules. We define the brading isomorphsim
R : W1 ⊠W2 → W2 ⊠W1 by

R = Tγ ◦ RP (1).

Proposition 5.1. Let z1, z2 be nonzero complex numbers such that z1 ̸= z2 but |z1| = |z2| =
|z1− z2|. Let γ be a path from z2 to z1 in the complex plane with a cut along the nonnegative
real line. Then we have

Tγ ◦ (RP (z1−z2) ⊠P (z2) 1W3)((w1 ⊠P (z1−z2) w2)⊠P (z2) w3) = (w2 ⊠P (z2−z1) w1)⊠P (z1) w3 (5.1)

for w1 ∈ W1, w2 ∈ W2 and w3 ∈ W3.

Proof. To pove (5.1), we choose ϵ such that |z2| > |ϵ|, |z2 + ϵ| > |z1 − z2| > 0. Let
Y1 = Y⊠P (z2)

,0, Ỹ1 = Y⊠P (z2)
,0 and Y2 = Y⊠P (z1)

,0 be the intertwining operator of types(
(W1 ⊠P (z1−z2) W2)⊠P (z2) W3

(W1 ⊠P (z1−z2) W2) W3

)
,

(
(W2 ⊠P (z2−z1) W1)⊠P (z2) W3

(W2 ⊠P (z2−z1) W1) W3

)
,

and (
(W2 ⊠P (z2−z1) W1)⊠P (z1) W3

(W2 ⊠P (z2−z1) W1) W3

)
,

respectively, corresponding to the intertwining maps ⊠P (z2), ⊠P (z2) and ⊠P (z1), respectively.
Using the definition of RP (z1−z2), we obtain

(RP (z1−z2) ⊠P (z2) 1W3)(Y1(w1 ⊠P (z1−z2) w2, z2 + ϵ)w3)

= Ỹ1(e
(z1−z2)L(−1)(w2 ⊠P (z2−z1) w1), z2 + ϵ)w3. (5.2)

On the other hand, by the definition of the parallel isomorphism, we obtain

Tγ(Ỹ1(e
(z1−z2)L(−1)(w2 ⊠P (z2−z1) w1), z2 + ϵ)w3)

= Y3((w2 ⊠P (z2−z1) w1), z1 + ϵ)w3. (5.3)

From (5.2) and (5.3), we obtain

Tγ ◦ (RP (z1−z2) ⊠P (z2) 1W3)(Y1(w1 ⊠P (z1−z2) w2, z2 + ϵ)w3)

= Y3((w2 ⊠P (z2−z1) w1), z1 + ϵ)w3.
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Taking the limit ϵ→ 0, we obtain

Tγ ◦ (RP (z1−z2) ⊠P (z2) 1W3)(Y1(w1 ⊠P (z1−z2) w2, z2)w3)

= Y3((w2 ⊠P (z2−z1) w1), z1)w3,

which is the same as (5.1).

Proposition 5.2. Let z1, z2 be nonzero complex numbers such that z1 ̸= z2 but |z1| = |z2| =
|z1 − z2|. Let γ be a path from z2 to z2 − z1 in the complex plane with a cut along the
nonnegative real line. Then we have

Tγ ◦ (1W2 ⊠P (z2) RP (z1))(w2 ⊠P (z2) (w1 ⊠P (z1) w3))

= ez1L(−1)(w2 ⊠P (z2−z1) (w3 ⊠P (−z1) w1)) (5.4)

for w1 ∈ W1, w2 ∈ W2 and w3 ∈ W3.

Proof. To prove (5.4), we choose ϵ ∈ C such that |z2| > |ϵ|, |z2 + ϵ|, |z2 − z1 + ϵ| > |z1| > 0.
Let Y1 = Y⊠P (z2)

,0, Ỹ1 = Y⊠P (z2)
,0 and Y2 = Y⊠P (z2−z1)

,0 be intertwining operators of types(
W2 ⊠P (z2) (W1 ⊠P (z1) W3)

W2 (W1 ⊠P (z1) W3)

)
,

(
W2 ⊠P (z2) (W3 ⊠P (−z1) W1)

W2 (W3 ⊠P (−z1) W1)

)
and (

W2 ⊠P (z2−z1) (W1 ⊠P (−z1) W3)

W2 W1 ⊠(−z1) W3

)
,

respectively, corresponding to the intertwining maps ⊠P (z2), ⊠P (z2) and ⊠P (z2−z1), respec-
tively.

Using the definition of RP (z1) and and the L(−1)-conjugation property, we obtain

(1W2 ⊠P (z2) RP (z1))(Y1(w2, z2 + ϵ)(w1 ⊠P (z1) w3))

= Ỹ1(w2, z2 − z1 + ϵ)(ez1L(−1)(w3 ⊠P (−z1) w1))

= ez1L(−1)Ỹ1(w2, z2 − z1 + ϵ)(w3 ⊠P (−z1) w1). (5.5)

Using the definition of the parallel transport isomorphism, we obtain

Tγ(e
z1L(−1)Y1(w2, z2 − z1 + ϵ)(w3 ⊠P (−z1) w1))

= ez1L(−1)Y3(w2, z2 − z1 + ϵ)(w3 ⊠P (−z1) w1). (5.6)

From (5.5) and (5.6), we obtain

Tγ ◦ (1W2 ⊠P (z2) RP (z1))(Y1(w2, z2 + ϵ)(w1 ⊠P (z1) w3))
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= ez1L(−1)Y3(w2, z2 − z1 + ϵ)(w3 ⊠P (−z1) w1). (5.7)

Taking the limit ϵ→ 0, we obtain from (5.8)

Tγ ◦ (1W2 ⊠P (z2) RP (z1))(Y1(w2, z2)(w1 ⊠P (z1) w3))

= ez1L(−1)Y3(w2, z2 − z1)(w3 ⊠P (−z1) w1), (5.8)

which is the same as (5.4).

6 Vertex tensor categories and braided tensor cate-

gories

6.1 Vertex tensor categories

We need the left and right unit isomorphisms. Given a grading-restricted generalized V -
module W , let Y be the intertwining operator of type

(
V ⊠P (z)W

VW

)
given in the construction

of the tensor product V ⊠P (z)W . Then V⊠P (z) is spanned by the homogeneous components
of Y(v, z)w for v ∈ V and w ∈ W . Using v = Resxx

−1YW (v, x)1 and the associator formula
for the intertwining operator Y , we see that homogeneous components of Y(v, z)w for v ∈ V
and w ∈ W are in fact spanned by elements of the form Y(1, z)w for w ∈ W . But by
the L(−1)-derivative property, Y(1, z)w is independent of z and by the L(0)-commutator
formulas, it is homogeneous of wieght wtw if w is homogeneous. In particular, it is a well
defined element of V ⊠P (z) W . Then Y(1, z) is a linear map from W to V ⊠P (z) W . We
denote this map by ψ. For v ∈ V and w ∈ W , using the commutator formula for Y and
YV (v, x)1 ∈ V [[x0]], we obtain

YV ⊠P (z)W (v, x)ψ(w) = YV ⊠P (z)W (v, x)Y(1, z)w

= Y(1, z)YW (v, x)w +Resxx
−1δ

(
z + x

x

)
Y(YV (v, x)1, z)w

= Y(1, z)YW (v, x)w

= ψ(YW (v, x)w).

So ψ is a V -module map. Since YW is an intertwining operator of type
(

W
VW

)
, (W,YW (·, z)·) is

a P (z)-product (W,YW (·, z)·) of V and W . By the universal property of the tensor product
(V ⊠P (z) W,Y(·, z)·), there exists a unique V -module map ϕ : V ⊠P (z) W → W such that

YW (v, z)w = ϕ(Y(v, z)w) for v ∈ V and w ∈ W . In particular,

w = YW (1, z)w = ϕ(Y(1, z)w) = ϕ(ψ(w)).

So ϕ and ψ are inverse to each other and thus are equivalences. We define the left P (z)-unit
isomorphism lW ;z : V ⊠P (z) W → W to be ϕ.

We can also define the right P (z)-unit isomorphism rW ;z : W ⊠P (z) V → W similarly. We
omit the details here.
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Before we prove that our category equipped with these data is a vertex tensor category,
we need to add another assumption on the covengence of products of intertwining operators.

Assumption 6.1 (Convergence of products of intertwining operators). LetW0,W1, . . .Wn+1,

W̃1, . . . , W̃n−1 be grading-restricted generalized V -modules and Y1, . . . ,Yi, . . . ,Yn intertwin-

ing operators of types
( W0

W1 W̃1

)
, . . . ,

( W̃i−1

Wi W̃i

)
, . . . ,

(
W̃n−1

Wn Wn+1

)
, respectively. For w1 ∈ W1, . . . , wn+1 ∈

Wn+1 and w′
0 ∈ W ′

0, the series

⟨w′
0,Y1(w1, z1) · · · Yn(wn, zn)wn+1⟩ (6.1)

is absolutely convergent in the region |z1| > · · · > |zn| > 0 and its sum can be analytically
continued to a multivalued analytic function

F (⟨u′1,Y1(w1, z1) · · · Yn(wn, zn)un+1⟩)

on the region
{(z1, . . . , zn) | zi ̸= 0, zi − zj ̸= 0 for i ̸= j} ⊂ Cn

with the only possible singular points zi = 0,∞ and zi = zj being regular singular points.

This assumption holds when all the grading-restricted generalized V -modules involved
are C1-cofinite.

Theorem 6.2. In the setting of Assumption 6.1, if W0,W1, . . .Wn+1 are C1-cofinite, then
(6.1) is absolutely convergent in the region |z1| > · · · > |zn| > 0 and its sum can be ana-
lytically continued to a multivalued analytic function with the only possible singular points
zi = 0,∞ and zi = zj being regular singular points.

See [H3] for a proof of this result.
We need tensor product elements of four elements in four grading-restricted general-

ized V -modules. Let W1,W2,W3 and W4 be grading-restricted generalized V -modules. For
z1, z2, z3 ∈ C satisfying |z1| > |z2| > |z3| > 0, we have the tensor product V -modules
W3⊠P (z3)W4,W2⊠P (z2)(W3⊠P (z3)W4) andW1⊠P (z1)(W2⊠P (z2)(W3⊠P (z3)W4)). let Y1,Y2,Y3

be the intertwining operators of the corresponding types such that ⊠P (z1) = Y1(·, z1)·,
⊠P (z2) = Y2(·, z2)· and ⊠P (z3) = Y3(·, z3)·. Then by Assumption 6.1, for w1 ∈ W1, w2 ∈ W2,
w3 ∈ W3 and w4 ∈ W4,

Y1(w1, z1)Y2(w2, z2)Y3(w3, z3)w4

is absolutely convergent to an element of ((W1 ⊠P (z12) W2)⊠P (z23) W3)⊠P (z3) W4. We de-
fine the tensor product element w1 ⊠P (z1) (w2 ⊠P (z2) (w3 ⊠P (z3) w4)) to be this element of

W1 ⊠P (z1) (W2 ⊠P (z2) (W3 ⊠P (z3) W4)). Similarly, we have other tensor product elements

(w1 ⊠P (z1−z2) w2)⊠P (z2) (w3 ⊠P (z3) w4) ∈ (W1 ⊠P (z1−z2) W2)⊠P (z2) (W3 ⊠P (z3) W4),

w1 ⊠P (z1) ((w2 ⊠P (z2−z3) w3)⊠P (z3) w4) ∈ W1 ⊠P (z1) ((W2 ⊠P (z2−z3) W3)⊠P (z3) W4),

(w1 ⊠P (z1−z3) (w2 ⊠P (z2−z3) w3))⊠P (z3) w4 ∈ (W1 ⊠P (z1−z3) (W2 ⊠P (z2−z3) W3))⊠P (z3) W4,

38



((w1 ⊠P (z1−z2) w2)⊠P (z2−z3) w3)⊠P (z3) w4 ∈ ((W1 ⊠P (z1−z2) W2)⊠P (z2−z3) W3)⊠P (z3) W4

for suitable z1, z2 ∈ C×. The natural extensions of the associativity isomorphisms to the
algebriac completions of the corresponding modules in our category send such an element to
another such element. Also the homogeneous components of these elements span the tensor
product modules.

6.2 Braided tensor categories

Theorem 6.3. Under Assumptions 3.7, 4.1 and 6.1, the category of grading-restricted gen-
eralized V -modules equipped with the tensor product bifunctor ⊠ = ⊠P (1), the associativity
isomorphism A, the braiding isomorpism R, the unit object V and the left and right unit
isomorphisms l = l1 and r = r1 is a braided tensor category.

Proof. We first prove the commtativity of pentagon diagrams for AP (z2),P (z1−z2)
P (z1),P (z2)

and A.
We first prove the commutativity of the pentagon diagram involving these z’s. This

is in fact the prntagon diagram for vertex tensor categories. Let W1, W2, W3 and W4 be
V -modules and let z1, z2, z3 ∈ C satisfying

|z1| > |z2| > |z3| > |z1 − z3| > |z2 − z3| > |z1 − z2| > 0,

|z1| > |z2 − z3|+ |z3|,
|z2| > |z1 − z2|+ |z3|,

|z2| > |z1 − z2|+ |z2 − z3|.

For example, we can take z1 = 7, z2 = 6 and z3 = 4. We want to prove the commutativity
of the diagram:

((W1 ⊠P (z12) W2)⊠P (z23) W3)⊠P (z3) W4 (W1 ⊠P (z13) (W2 ⊠P (z23) W3))⊠P (z3) W4

(W1 ⊠P (z12) W2)⊠P (z2) (W3 ⊠P (z3) W4) W1 ⊠P (z1) ((W2 ⊠P (z23) W3)⊠P (z3) W4))

W1 ⊠P (z1) (W2 ⊠P (z2) (W3 ⊠P (z3) W4))

�
? ?

��������)

PPPPPPPPq

(6.2)

where z12 = z1 − z2 and z23 = z2 − z3. For w1 ∈ W1, w2 ∈ W2, w3 ∈ W3 and w4 ∈ W4, we
consider

w1 ⊠P (z1) (w2 ⊠P (z2) (w3 ⊠P (z3) w4)) ∈ W1 ⊠P (z1) (W2 ⊠P (z2) (W3 ⊠P (z3) W4)).

Since the natural extensions of the associativity isomorphisms send tensor products of ele-
ments to tensor products of elements, we see that the compositions of the natural extensions
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of the V -module maps in the two routes in (6.2) applying to this element both give

((w1 ⊠P (z12) w2)⊠P (z23) w3)⊠P (z3) w4 ∈ ((W1 ⊠P (z12) W2)⊠P (z23) W3)⊠P (z3) W4.

Since the homogeneous components of

w1 ⊠P (z1) (w2 ⊠P (z2) (w3 ⊠P (z3) w4))

for w1 ∈ W1, w2 ∈ W2, w3 ∈ W3 and w4 ∈ W4 span

W1 ⊠P (z1) (W2 ⊠P (z2) (W3 ⊠P (z3) W4)),

the diagram (6.2) above is commutative.
By the definition of A, the diagrams

W1 ⊠P (z1) (W2 ⊠P (z2) (W3 ⊠P (z3) W4)) (W1 ⊠P (z12) W2)⊠P (z2) (W3 ⊠P (z3) W4)

W1 ⊠ (W2 ⊠ (W3 ⊠W4)) (W1 ⊠W2)⊠ (W3 ⊠W4)-

-

? ?

(6.3)

(W1 ⊠P (z12) W2)⊠P (z2) (W3 ⊠P (z3) W4) ((W1 ⊠P (z12) W2)⊠P (z23) W3)⊠P (z3) W4

(W1 ⊠W2)⊠ (W3 ⊠W4) ((W1 ⊠W2)⊠W3)⊠W4
-

-

? ?

(6.4)

W1 ⊠P (z1) (W2 ⊠P (z2) (W3 ⊠P (z3) W4)) W1 ⊠P (z1) ((W2 ⊠P (z23) W3)⊠P (z3) W4))

W1 ⊠ (W2 ⊠ (W3 ⊠W4)) W1 ⊠ ((W2 ⊠W3)⊠W4)-

-

? ?

(6.5)

W1 ⊠P (z1) ((W2 ⊠P (z23) W3)⊠P (z3) W4)) (W1 ⊠P (z13) (W2 ⊠P (z23) W3))⊠P (z3) W4

W1 ⊠ ((W2 ⊠W3)⊠W4) (W1 ⊠ (W2 ⊠W3))⊠W4
-

-

? ?

(6.6)
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(W1 ⊠P (z13) (W2 ⊠P (z23) W3))⊠P (z3) W4 ((W1 ⊠P (z12) W2)⊠P (z23) W3)⊠P (z3) W4

(W1 ⊠ (W2 ⊠W3))⊠W4 ((W1 ⊠W2)⊠W3)⊠W4
-

-

? ?

(6.7)

are all commutative. Combining all the diagrams (6.2)–(6.7) above, we see that the pentagon
diagram

((W1 ⊠W2)⊠W3)⊠W4 (W1 ⊠ (W2 ⊠W3))⊠W4

(W1 ⊠W2)⊠ (W3 ⊠W4) W1 ⊠ ((W2 ⊠W3)⊠W4)

W1 ⊠ (W2 ⊠ (W3 ⊠W4))

�
? ?

��������)

PPPPPPPPq

is also commutative.
Next we prove the commutativity of the hexagon diagrams for the braiding isomorphisms.

We prove only the commutativity of the hexagon diagram involving R; the proof of the
commutativity of the other hexagon diagram is the same. Let W1, W2 and W3 be objects of
C and let z1, z2 ∈ C× satisfying |z1| = |z2| = |z1 − z2| and let z12 = z1 − z2. We first prove
the commutativity of the following diagram:

(W1 ⊠P (z12) W2)⊠P (z2) W3

(W2 ⊠P (−z12) W1)⊠P (z2) W3 W1 ⊠P (z1) (W2 ⊠P (z2) W3)

(W2 ⊠P (−z12) W1)⊠P (z1) W3

W2 ⊠P (z2) (W1 ⊠P (z1) W3) (W2 ⊠P (z2) W3)⊠P (−z1) W1

W2 ⊠P (z2) (W3 ⊠P (−z1) W1)

W2 ⊠P (−z12) (W3 ⊠P (−z1) W1))

RP (z12) ⊠P (z2) 1W3

(
AP (z12),P (z2)

P (z1),P (z2)

)−1

(
AP (−z12),P (z1)

P (z2),P (z1)

)−1

(
AP (z2),P (−z1)

P (−z12),P (−z1)

)−1

1W2
⊠P (z2) RP (z1)

RP (z1)

Tγ1

Tγ2

?

??

@
@
@R

@
@
@R

�
�

�
�

�
�

�
�	

�
�

�
�

�
�

�
�	

@
@

@
@
@

@
@
@R
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(6.8)

where γ1 and γ2 are paths from z2 to z1 and from z2 to −z12, respectively, in C with a cut
along the nonnegative real line.

Let w1 ∈ W1, w2 ∈ W2 and w3 ∈ W3. By (4.2), (5.1), (5.1) and the definition of RP (z1),
the images of the element

(w1 ⊠P (z12) w2)⊠P (z2) w3

under the natural extension to

(W1 ⊠P (z12) W2)⊠P (z2) W3

of the compositions of the maps in both the left and right routes in (6.8) from

(W1 ⊠P (z12) W2)⊠P (z2) W3

to
W2 ⊠P (−z12) (W3 ⊠P (−z1) W1)

are
ez1L(−1)(w2 ⊠P (−z12) (w3 ⊠P (−z1) w1)).

Since the homogeneous components of

(w1 ⊠P (z12) w2)⊠P (z2) w3

for w1 ∈ W1, w2 ∈ W2 and w3 ∈ W3 span

(W1 ⊠P (z12) W2)⊠P (z2) W3,

the diagram (6.8) commutes.
Now we consider the following diagrams:

(W1 ⊠P (z12) W2)⊠P (z2) W3 −−−→ (W1 ⊠W2)⊠W3y y
(W2 ⊠P (−z12) W1)⊠P (z2) W3 −−−→ (W2 ⊠W1)⊠W3

(6.9)

(W2 ⊠P (−z12) W1)⊠P (z2) W3 −−−→ (W2 ⊠W1)⊠W3y y
(W2 ⊠P (−z12) W1)⊠P (z1) W3 −−−→ (W2 ⊠W1)⊠W3

(6.10)
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(W2 ⊠P (−z12) W1)⊠P (z1) W3 −−−→ (W2 ⊠W1)⊠W3y y
W2 ⊠P (z2) (W1 ⊠P (z1) W3) −−−→ W2 ⊠ (W1 ⊠W3)

(6.11)

W2 ⊠P (z2) (W1 ⊠P (z1) W3) −−−→ W2 ⊠ (W1 ⊠W3)y y
W2 ⊠P (z2) (W3 ⊠P (−z1) W1) −−−→ W2 ⊠ (W3 ⊠W1)

(6.12)

(W1 ⊠P (z12) W2)⊠P (z2) W3 −−−→ (W1 ⊠W2)⊠W3y y
W1 ⊠P (z1) (W2 ⊠P (z2) W3) −−−→ W1 ⊠ (W1 ⊠W3)

(6.13)

W1 ⊠P (z1) (W2 ⊠P (z2) W3) −−−→ W1 ⊠ (W1 ⊠W3)y y
(W2 ⊠P (z2) W3)⊠P (−z1) W1 −−−→ (W2 ⊠W3)⊠W1

(6.14)

(W2 ⊠P (z2) W3)⊠P (−z1) W1 −−−→ (W2 ⊠W3)⊠W1y y
W2 ⊠P (−z12) (W3 ⊠P (−z1) W1) −−−→ W2 ⊠ (W3 ⊠W1)

(6.15)

W2 ⊠P (−z12) (W3 ⊠P (−z1) W1) −−−→ W2 ⊠ (W3 ⊠W1)y y
W2 ⊠P (z2) (W3 ⊠P (−z1) W1) −−−→ W2 ⊠ (W3 ⊠W1)

(6.16)

The commutativity of the diagrams (6.9), (6.12) and (6.14) follows from the definition of the
commutativity isomorphism for the braided tensor category structure and the naturality of
the parallel transport isomorphisms. The commutativity of (6.11), (6.13) and (6.15) follows
from the definition of the associativity isomorphism for the braided tensor product structure.
The commutativity of (6.10) and (6.16) follows from the facts that compositions of parallel
transport isomorphisms are equal to the parallel transport isomorphisms associated to the
products of the paths and that parallel transport isomorphisms associated to homotopically
equivalent paths are equal. The commutativity of the hexagon diagram (6.17) follows from
(6.8)–(6.16).
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(W1 ⊠W2)⊠W3

(W2 ⊠W1)⊠W3 W1 ⊠ (W2 ⊠W3)

W2 ⊠ (W1 ⊠W3) (W2 ⊠W3)⊠W1

W2 ⊠ (W3 ⊠W1)

R⊠ 1W3
A−1

A−1

A−11W2 ⊠R

R

? ?

@
@
@
@
@
@
@
@R

�
�

�
�

�
�

�
�	

�
�

�
�

�
�

�
�	

@
@

@
@
@

@
@
@R

(6.17)

We now prove the commutativity of the triangle diagram for the unit isomorphisms. Let
z1 and z2 be complex numbers such that |z1| > |z2| > |z1 − z2| > 0 and let z12 = z1 − z2.
Also let γ be a path from z2 to z1 in C with a cut along the nonnegative real line. We first
prove the commutativity of the following diagram:

(W1 ⊠P (z12) V )⊠P (z2) W2

(AP (z12),P (z2)

P (z1),P (z2)
)−1

−−−−−−−−−−→ W1 ⊠P (z1) (V ⊠P (z2) W2)

rz12;W1
⊠P (z2)

1W2

y y1W1
⊠P (z1)

lW2

W1 ⊠P (z2) W2 −−−→
Tγ

W1 ⊠P (z1) W2.

(6.18)

Let w1 ∈ W1 and w2 ∈ W2. Then we have

(1W1 ⊠P (z1) lz2;W2) ◦ (A
P (z1−z2),P (z2)
P (z1),P (z2)

)−1((w1 ⊠P (z12) 1)⊠P (z2) w2)

= (1W1 ⊠P (z1) lz2;W2)(w1 ⊠P (z1) (1⊠P (z2) w2)

= w1 ⊠P (z1) w2. (6.19)

But

rz12;W1 ⊠P (z2) 1W2((w1 ⊠P (z12) 1)⊠P (z2) w2)

= (ez12L(−1)w1)⊠P (z2) w2. (6.20)
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Let Y = Y⊠P (z1)
,0 be the intertwining operator of type

(W1⊠P (z1)
W2

W1 W2

)
corresponding to the

P (z1)-intertwining map ⊠P (z1). Then by the definition of the parallel transport isomorphism
and the L(−1)-derivative property for intertwining operators, we have

Tγ((e
z12L(−1)w1)⊠P (z2) w2) = Y(ez12L(−1)w1, z2)w2

= Y(w1, z1)w2

= w1 ⊠P (z1) w2. (6.21)

Since the elements (w1 ⊠P (z12) 1) ⊠P (z2) w3 for w1 ∈ W1 and w2 ∈ W2 span (W1 ⊠P (z12)

V )⊠P (z2) W3, (6.19)–(6.21) give the commutativity of (6.18).
Let γ1 be a path from z1 to 1 in C with a cut along the nonnegative real line. Let γ2 be

the product of γ and γ1. In particular, γ2 is a path from z2 to 1 in C with a cut along the
nonnegative real line. Also let γ12 be a path from z12 = z1 − z2 to 1 in C with a cut along
the nonnegative real line. Then we have the following commutative diagrams:

(W1 ⊠ V )⊠W2
A−1

−−−→ W1 ⊠ (V ⊠W2)

T −1
γ2

◦(T −1
γ12

⊠P (z2)
1W2

)

y yT −1
γ1

◦(1W1
⊠P (z1)

T −1
γ2

)

(W1 ⊠P (z12) V )⊠P (z2) W2 −−−−−−−−−−→
(AP (z12),P (z2)

P (z1),P (z2)
)−1

W1 ⊠P (z1) (V ⊠P (z2) W2).

(6.22)

(W1 ⊠ V )⊠W2

T −1
γ2

◦(T −1
γ12

⊠1W2
)

−−−−−−−−−−→ (W1 ⊠P (z12) V )⊠P (z2) W2

rW1
⊠1W2

y yrW1
⊠P (z2)

1W2

W1 ⊠W2 −−−→
T −1
γ2

W1 ⊠P (z2) W2.

(6.23)

W1 ⊠P (z1) (W2 ⊠P (z2) W2)
Tγ1◦(1W1

⊠P (z1)
Tγ2 )−−−−−−−−−−−−→ W1 ⊠ (V ⊠W2)

1W1
⊠P (z1)

lW2

y y1W1
⊠lW2

W1 ⊠P (z1) W2 −−−→
Tγ1

W1 ⊠W2.

(6.24)

W1 ⊠P (z2) W2
Tγ−−−→ W1 ⊠P (z1) W2

Tγ2

y yTγ1

W1 ⊠W2 = W1 ⊠W2.

(6.25)

The commutativity of (6.22) follows from the definition of A. The commutativity of (6.23)
and (6.24) follows from the definition of the left and right unit isomorphisms and the parallel
transport isomorphisms. The commutativity of (6.25) follows from the fact that γ2 is the
product of γ and γ1. Combining (6.18) and (6.22)–(6.25), we obtain the commutativity of
the triangle diagram for the unit isomorphisms.

Finally, it is clear from the definition that lV = rV .
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Thus we have proved that the category C equipped with the data in the theorem is a
braided monoidal category.

7 Modular invariance of intertwining operators and

the Verlide formula

In this section, we assume that every grading-restricted generalized V -module is completely
reducible. In particular, every grading-restricted generalized V -module is an ordinary V -
module (grading-restricted and L(0)-semisimple).

7.1 Modular invariance of intertwining operators

We first recall geometrically-modified intertwining operators from [H4] (see also [H8]). Given
an intertwining operator Y of type

(
W3

W1 W2

)
and w1 ∈ W1, we have an operator (actually

a series with linear maps from W2 to W3 as coefficients) Y1(w1, z). The corresponding
geometrically-modified operator is

Y1(U(qz)w1, qz),

where qz = e2πiz, U(qz) = (2πiqz)
L(0)e−L+(A) and Aj ∈ C for j ∈ Z+ are defined by

1

2πi
log(1 + 2πiy) =

exp

∑
j∈Z+

Ajy
j+1 ∂

∂y

 y.

See [H4] for details.
We assume the convergence and extension property of q-traces of products of geometrically-

modified intertwining operators and the modular invariance of the spaces of the analytic
extensions of such q-traces:

Assumption 7.1. Let W1, . . . ,Wn be irreducible ordinary V -modules.

1. Let W̃1, . . . , W̃n be ordinary V -modules and Y1, . . . ,Yn intertwining operators of types( W̃0

W1W̃1

)
, . . . ,

( W̃n−1

WnW̃n

)
, respectively, where we use the convention W̃0 = W̃n. For w1 ∈

W1, . . . , wn ∈ Wn,

TrW̃n
Y1(U(qz1)w1, qz1) · · · Yn(U(qzn)wn, qzn)q

L(0)− c
24

τ

is absolutely convergent in the region 1 > |qz1| > . . . > |qzn| > |qτ | > 0 and can be
extended to a multivalued analytic function

FY1,...,Yn(w1, . . . , wn; z1, . . . , zn; τ).

in the region ℑ(τ) > 0, zi ̸= zj + l +mτ for i ̸= j, l,m ∈ Z.
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2. For w1 ∈ W1, . . . , wn ∈ Wn, let Fw1,...,wn be the vector space spanned by functions of
the form

F
ϕ

Y1,...,Yn
(w1, . . . , wn; z1, . . . , zn; τ)

for all ordinary V -modules W̃1, . . . , W̃n, all intertwining operators Y1, . . . ,Yn of types( W̃0

W1W̃1

)
, . . . ,

( W̃n−1

WnW̃n

)
, respectively. Then for(

α β
γ δ

)
∈ SL(2,Z),

FY1,...,Yn

((
1

γτ + δ

)L(0)

w1, . . . ,

(
1

γτ + δ

)L(0)

wn;
z1

γτ + δ
, . . . ,

zn
γτ + δ

;
ατ + β

γτ + δ

)
is in Fw1,...,wn.

Theorem 7.2 (H. 2003[H4]). Assume that V is of positive energy, C2-cofinite and assume
in addition that every grading-restricted generalized V -module is completely reducible. Let
W1, . . . ,Wn be a complete set of representatives of irreducible V -modules. Then Assumption
7.1 holds.

7.2 Verlinde formula

To prove the rigidity and nondegeracy property in the next section, we need the Verlinde
formula, or more precisely, some formulas obtained in [MS1] and [MS2] and proved in [H5].
In this subsection, we give a proofs of these formulas under suitable assumptions.

We assume that every low-bounded generalized V -module is a direct sum of irreducible
(grading-restricted) V -mdoules. Then one can prove that there are only finitely many irre-
ducible ordinary V -mdoules. Let {W a}a∈A be a complete set of representatives of equivalence
classes of irreducible (grading-restricted) V -modules. Then A is a finite set. We also assume
that V is irreducible. Then there exists e ∈ A such that W e is equivalent to V . We shall
take W e to be V .

We assume in addition that V ′ as a V -module is equivalent to V . This assmption is
equivalent to the existence of a nondegenerate invariant bilinear form (see [FHL]).

Since the contragredient module of an irreducible V -module is also irreducible, we have
a map ′ : A→ A, a 7→ a′ such that for a ∈ A, (W a)′ is equivalent to W a′ .

For a1, a2, a3 ∈ A, let Va3
a1a2

be the space of intertwining operators of type
(

Wa3

Wa1Wa2

)
. For

a1, a2, a3 ∈ A, we have isomorphisms Ω−r : Va3
a1a2

→ Va3
a2a1

and A−r : Va3
a1a2

→ Va′2
a1a′3

for r ∈ Z.
Using these isomorphisms, we define a left action of the symmetric group S3 on

V =
∐

a1,a2,a3∈A

Va3
a1a2

as follows: For a1, a2, a3 ∈ A, Y ∈ Va3
a1a2

, we define

σ12(Y) = eπi∆(Y)Ω−1(Y)
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= e−πi∆(Y)Ω0(Y),

σ23(Y) = eπiha1A−1(Y)

= e−πiha1A0(Y).

Proposition 7.3. The actions σ12 and σ23 of (12) and (23) on V defined above generate an
action of S3 on V.

We also assume that the fusion rules among irreducible V -modules are finite. In partic-
ular, for a1, a2, a3 ∈ A, we can find a finite basis of the space Va3

a1a2
of intertwining operators

of type
(

Wa3

Wa1Wa2

)
. For a1, a2, a3 ̸= e, we choose an arbitrary basis {Ya3

a1a2;k
}k=1N

a3
a1a2

, where
Na3

a1a2
= dimVa3

a1a2
is the fusion rule. For a ∈ A, we choose Ya

ea;1 to be the the vertex oper-
ator YWa defining the module structure on W a and we choose Ya

ae;1 to be the intertwining
operator defined using the action of σ12, or equivalently the skew-symmetry in this case,

Ya
ae;1(wa, x)u = σ12(Ya

ea;1)(wa, x)u

= exL(−1)Ya
ea;1(u,−x)wa

= exL(−1)YWa(u,−x)wa

for u ∈ V and wa ∈ W a. Since V ′ as a V -module is isomorphic to V , we have e′ = e. From
[FHL], we know that there is a nondegerate invariant bilinear form (·, ·) on V such that
(1,1) = 1. We choose Ye

aa′;1 = Ye′

aa′;1 to be the intertwining operator defined using the action
of σ23 by

Ye′

aa′;1 = σ23(Ya
ae;1),

that is,
(u,Ye′

aa′;1(wa, x)wa′) = eπiha⟨Ya
ae;1(e

xL(1)(e−πix−2)L(0)wa, x
−1)u,wa′⟩

for u ∈ V , wa ∈ W a and wa′ ∈ W a′ . Since the actions of σ12 and σ23 generate the action of
S3 on V , we have

Ye
a′a;1 = σ12(Ye

aa′;1)

for any a ∈ A.

8 Rigidity, twists and modularity

In this section, we give proofs of the rigidity, the twists and the proof of nondegeneracy
property.
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8.1 Rigidity

8.2 Twisted

8.3 Nondegeneracy property
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