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1 Vertex operator algebras, modules and intertwining
operators

1.1 Vertex operator algebras

For a Z-graded vector space V' =[], ., Vi), let V' =[],y V(’;) its graded dual space and

V= [1.cz Viny be its algebraic completion. For a C-graded vector space, we use the same
notations.

Definition 1.1. A grading-restricted vertex algebrais a Z-graded vector space V' = [, o, Viny,
equipped with a linear map

Vv : VeV = Vzz ],
u® v Yy(u,x)v,

or equivalently, an analytic map

Yy : C* — Hom(V @ V, V),
2= Yy(h2) ru®@u = Yy (u, 2)v

called the vertex operator map and a vacuum 1 € V) satisfying the following axioms:

1. Axioms for the grading: (a) Grading-restriction condition: When n is sufficiently neg-
ative, V() = 0 and dimVj,,) < oo for n € Z. (b) L(0)-commutator formula: Let
dy : V — V be defined by dyv = nv for v € V(;,). Then

d
[dy, Yy (v, x)] = x%YV(v, z) + Yy (dyv,x)

forveV.

2. Axioms for the vacuum: (a) Identity property: Let 1y be the identity operator on V.
Then Yy (1,2) = 1y. (b) Creation property: For u € V', lim,_,o Yy (u, )1 exists and is
equal to u.



3. D-derivative property and D-commutator formula: Let D : V' — V be the operator
given by

Dv = lim diYV(v, z)1

z—0 adx

for v € V. Then for v € V,

%YV(U,Q;) — Yy (Dv,z) = [D, Yy (v,2)].

4. Duality: For uy,us,v € V and v € V’, the series

(W', Yy (ug, 21) Yy (ug, 22)0),
<U/, YV(Uz, 22)YV(U17 21)U>7
<U,>YV(YV(U17Z'1 - 22)U272’2)U>a (1-3

are absolutely convergent in the regions |z1| > |2z2] > 0, |20| > [21] > 0, |22] > |21 —22] >
0, respectively, to a common rational function in z; and 2z, with the only possible poles
at 21,20 = 0 and z; = 2.

We shall also use Ly (0) and Ly (—1) to denote dy and Dy.

Remark 1.2. A rational function in z; and 2z, with the only possible poles at 2z, zo = 0 and
21 = z9 must be of the form
g(z1, 22)
42y (z — 2)

where ¢(z1, z2) is a polynomial in zy, zo and m,n,l € N.

Definition 1.3. A quasi-vertex operator algebra or a Mdbius vertex algebra is a grading-
restricted vertex algebra (V, Yy, 1) together with an operator Ly (1) of weight 1 on V' satis-

fying

[Lv(=1), Ly(1)] = —2Ly(0),
[Ly(1), Yy (v,2)] = Yy(Ly(1)v, )+ 22Yy (Ly (0)v, z) + Yy (Ly (—1)v, 1)

for v € V. (Note that here we have used Ly (0) and Ly (—1) to denote dy and Dy.)
Note that in the definition above, we have used Ly (0) and Ly (—1) to denote dy and Dy .

Definition 1.4. Let V; and V5 be grading-restricted vertex algebras. A homomorphism from
V1 to V4 is a grading-preserving linear map g : V; — V5 such that gYy, (u, x)v = Yy, (gu, x)gv.
An isomorphism from V; to V5 is an invertible homomorphism from V; to V5. When V; =
Vo =V, an isomorphism from V to V is called an automorphism of V.

Definition 1.5. Let (V, Yy, 1) be a grading-restricted vertex algebra. A conformal element
of V is an element w € V satisfying the following axioms:
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1. Dy = Res, Yy (w,z) and dy = Res,zYy (w,x) (Res, being the operation of taking the
coefficient of 27! of a Laurent series).

2. Let
Ly(n) = Res,z " 'Yy (w, )

for n € Z. Then there exists ¢ € C such that

(L (m), Ly ()] = (m = n) Ly (m 4+ ) 4 75(m* = m)dnsng

for m,n € N.

A grading-restricted vertex algebra equipped with a conformal element is called a vertex
operator algebra (or grading-restricted conformal vertex algebra).

Remark 1.6. Condition 1 in Definition [1.5| can be replaced by the following condition:
There exists ¢ € C such that Yy (w,z)w is equal to Ly (—1)wz™" + 2wz~ + £1z7* plus a
V-valued power series in x.

We now briefly describe the examples of vertex (operator) algebras constructed from
affine Lie algebras. For details, see [FZ], [LL] and [HS].

Let g be a finite-dimensional Lie algebra with a symmetric invariant bilinear form (-, -).
We define the affine Lie algebra g by

g=g®C[tt o Ck,
where k is central and
[a@t™ b@t"] = [a,b] @ t"" + 6 ynom(a,b)k.

We write g = g_ D go © g, where g, is the span of all a ® t" with a € g and n > 0, g_ is
the span of all a ®t" with a € g and n < 0, and gg is the span of k and all a ® t° with a € g.

Fix ¢ € C. Let C; be a copy of C, with the structure of a module for gy & g, by defining
a(n)l =0 for all @ € g and n > 0, and k1 = ¢, where we use a(n) to denote the action of
a®t" (and we shall use the same notation below). Now define

V(£7 O) = U(g) ®U(@0€Bﬁ+) Céa

where U(-) is the universal enveloping algebra (see [Huml Section 17]). In other words,
V(£,0) is the induced U(g)-module constructed from the U(gy & g4 )-module C,.

Let 1:=1®1 € V. Then k1 = ¢1 and if n > 0, a(n)1 = 0. Moreover, V'(¢,0) is spanned
by elements of the form a;(ny)---ax(ng)l for ay,...,ar € g and nq,...,n; € Z. Using the
Poincare-Birkhoff-Witt (PBW) Theorem (see [Huml, Section 17]), we can show that V' (¢,0)
is canonically linearly isomorphic to U(g-). In particular, V(¢,0) is spannedby elements of
the form ay(—nq) - - ap(—ng)l for a1,...,a, € g and ny, ..., ng € Z;.



For n € Z, we define V(,,)(¢,0) to be the span of a;(—ny) - - - ap(—ng)1 for ny, ..., ny € Zy
such that n = ny +--- +ng. Then V(,,)(¢,0) = 0 for n < 0, V()(¢,0) = C1 and V[,,(¢,0) is
finite dimensional for n € Z. We also have

V(£,0) = [ Vin (£, 0).

neL

For a € g, let
a(z) =Y a(n)z """ € (End V(£,0))([z,2~"]).

ne”

For z € C*, we have a linear map

a(z) = Za(n)z‘"‘l :V(£,0) = V(¢,0).

neZ

We can prove that for ay,...,ar € g,v € V(£,0) and v' € V(£,0), (v, a1(21) - - - ar(2zx)v) is
absolutely convergent to a rational function R({v',a1(21) - - ar(zx)v)) with the only possible
poles at z; =0, 2o =0 and 2z; — 25 = 0.

We now define the vertex operator map. For o' € V(£,0), v € V(¢,0), a1,...,a; € g,
ni,...,ng € Z,, we define

YV(Z,O) :C* — HOIH(V(E, O) ® V(g, 0), V(ﬁ, 0))
by

(', Yy o (ai(—n1) - - ar(—ni)1, 2)v)
— Rese—o--Reseyoofi™ - & R(W, ar(6 +2) - ax(+ 2)o)). (1)

Theorem 1.7 (see [FZ], [LL], [HS]). The triple (V(£,0),Yy@0),1) is a grading-restricted
vertex algebra.

Next we discuss the conformal element of V(¢,0). We now assume that the invariant
bilinear form on g is positive definite (for example, in the case that g is semisimple and the
form is obtained from the Killing form). Let

dimg

0= Z:uluZ € Ul(g)
i=1

be the Casimir element of g, where {u’ | 1 <4 < dimg} is an orthonormal basis for g with
respect to the form (-,-). We also assume that that  acts on g by a scalar 2hY, where
hY € C is called the dual Coxeter number of g. This assumption is satisfied if g is a simple
Lie algebra.

For £ # —h", we define wy g0y € V(2)(¢,0) by

dim g
1

Wy (e,0) = m Z ui(_l)ui(—l)l = m Z ui(_1)21.

i=1



Theorem 1.8 (see [FZ], [LL], [HS8]). The quadruple (V(€,0), Yy 0,1, wy@0) is a Vvertex
{dim g
+h -

operator algebra of the central charge

The vertex operator algebra V' (¢,0) is still not the vertex algebra for the Wess-Zumino-
Witten model. We need to take an irreducible quotient of V'(¢,0).

Consider all g-submodules of V(¢,0) that do not contain 1. Let I(¢,0) to be the sum
of all such g-submodules. Then I(¢,0) is the maximal proper submodule of the g-module
V(¢,0). Let L(¢,0) = V(£,0)/1(¢,0). Then as a g-module, L(¢,0) is irreducible, that is,
there is no g-submodule of L(¢,0) that is not 0 or L(¢,0) itself.

We take the vacuum of L(¢,0) to be the coset containing the vacuum of V(¢,0). We
define the vertex operator map Y0y : L(¢,0) ® L(¢,0) — L(¢,0)((x)) by

YL(Z,O) (U + [(6, 0), .T) (U + [(6, 0)) = YV(Z,O) (U, [L')U + [(f, O)

The vacuum 1) is defined to 1y + 1(¢,0) and in the case £ + h¥ # 0, the conformal
element w0y is defined to be wy (g0 + 1(£,0).

Theorem 1.9 (see [EZ], [LL], [H8]). The triple (L(¢,0), Y0y, 1r@0) is @ grading-restricted
vertex algebra. When €+ hY # 0, (L(£,0), YL0), 1n0): Wr(eo)) s a vertex operator algebra.

The vertex operator algebra underlying the Wess-Zumino-Witten model associated to a
finite-dimensional simple Lie algebra g and a level ¢ € Z, is exactly L(¢,0). In this case,
there is an explicit formula I(¢,0) = U(g)eg(—1)"11, where 6 is the highest root of g and
eq is a root vector in gy (see [K| and [LL]).

1.2 Modules

In this subsection, we introduce various notions of (generalized) V-modules for a grading-
restricted vertex algebra, a Mobius vertex algebra or a vertex operator algebra V.

Definition 1.10. Let V' be a grading-restricted vertex superalgebra. A generalized V -module

is a C-graded vector space W =[], .c Wiy equipped with a vertez operator map

Yo : VoW — W((x)),
u®w— Yy (u,z)w

satisfying the following axioms:

1. Axioms for the gradings: There are operators dy, (also denoted by Ly (0)), (dw)s
(also denoted by Lw(0)s) and (dw)n (also denoted by Ly (0)y) on W such that
dw = (dw)s + (dw)N7 (dw)sv = nv for v € W[n] , (dW)N is nilpotent (fOl" we W,
there exists K € N such that ((dy)y)%w = 0), and

d
[dw, Yy (v, x)] = x%YW(v, z) + Y (dyo, x)

forveV.



2. Identity property: Let 1y be the identity operator on W. Then Yy (1,2) = 1y

3. L(—1)-derivative property: There exists Dy, : W — W (also denoted by Ly, (—1)) such

that for u € V,

%YW(U, 2) = Yi(Dyu, 2) = [Dw, Yir (u, 2)].

4. Duality: For uy,us € V, w € W and w’ € W', the series

(W', Yw (uq, 21) Y (uz, 22)w),
<w’, YW(“Z» ZZ)YW(ula Zl)w%

<7~Ul7 YW(YV(ula 1 — 22)U27 22)w>

are absolutely convergent in the regions |z1| > |29 > 0, |29] > |21| > 0, |22| > |21 — 22| >
0, respectively, to a common rational function in z; and 2z, with the only possible poles
at 21,29 = 0 and z; = 2.

A lower-bounded generalized V-module is a generalized V-module (W, Yy, dw, Dy) such
that W},; = 0 when R(n) is sufficiently negative. A grading-restricted generalized V -
module is a lower-bounded generalized V-module (W, Yy, dw, Dw) such that dim W, < oo.
An ordinary V-module or simply a V-module is a grading-restricted generalized V-module
(W, Yw, dw, Dw) such that (Dy )y = 0. When V' is a Mébius vertex algebra, a generalized V -
module or a lower-bounded generalized V -module or grading-restricted generalized V -module
or an ordinary V -module is such a VV-module when V' is viewed as a grading-restricted vertex
algebra with an operator Ly, (1) of weight 1 on W such that

[Lw(=1), Lw(1)] = —2Lw(0),
[Lw (1), Y (v,2)] = Yw(Ly(l)v,z)+ 22V (Ly(0)v, 2) + Yy (Ly (—1)v, )

for v € V. (Note that here we have used Ly (0), Ly (—1), Ly (0) and Ly (—1) to denote dy,
Dy, dy and Dy,.) When V is a vertex operator algebra, a generalized V -module or a lower-
bounded generalized V -module or grading-restricted generalized V -module or an ordinary V -

module is such a V-module when V' is viewed as a grading-restricted vertex algebra such
that dy = Res,zYw (w, z) and Dy = Res, Yy (w, x).

For a finite-dimensional Lie algebra g with an invariant nondegenerate bilinear form (-, -)
and complex number ¢ # —h" we can construct lower-bounded generalized V' (¢, 0)-modules
as follows:

Let M be a g-module. Defining a(0)m = am, a(n)m = 0 and km = ¢m fora € g, m € M
and n > 0. Then M is a module for gy & g,.. We then consider the induced g-module

V(ﬁ, M) = U(ﬁ) QU (o) M.

We will often omit the tensor product symbol when writing elements of V(¢, M). For ex-
ample, for m € M, we write 1 ® m as m. Using the PBW theorem, we see that V (¢, M)
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is linearly isomorphic to U(g-) ® M. Then V(¢, M) is spanned by elements of the form
aj(—nq) -+ - ag(—ng)m for ay,...,ar € g, ny,...,ng € Zy and m € M.
Let ay @ (x) : V€, M) = V (¢, M)((x)) for a € g be defined by

av e (@x)w = Z a(n)wr """

nel

for w € V (¢, M) where a(n) is action of a ® t" € g on V(¢, M). For simplicity, we shall

denote ay (e (x) simply by a(z). We can prove that for a,...,a, € g, w € V({, M)

and w' € V({, M), (W' a1(z) - ar(zr)w) is absolutely convergent to a rational function

R({(V';a1(21) - - - ag(zx)v)) with the only possible poles at z; =0, zo = 0 and 2z; — z5 = 0.
Forw e V({, M), weV({,M), a,...,a, €@, ny,...,n, € Z,, we define

YW(Z,M) C* — HOHI(V(K, O) ® W(g, M), W(g, M))

(W', Yy (ar(—ny) - - - ax(—ng)1, 2)w)
= Resg,—0 - Resg, o8 ™ - & " R((V, a1 (&1 + 2) - - - ag (& + 2)0)). (1.5)

Theorem 1.11 (see [EZ], [LL], [HS]). The pair (V (¢, M),Yv @) is a V(£,0)-module.

1.3 Intertwining operators

Definition 1.12. Let V be a grading-restricted vertex algebra and Wy, W5, W3 lower-bounded
generalized V-modules (grading-restricted generalized V-modules and ordinary V-modules

are special cases). An intertwining operator of type (W%”%) is a linear map

YV:WieW, — Ws{x}logz]
wy @wy = Y(wy, x)ws

(where Wy{z}[logz] is the space of formal series of the form Y71 > e anpx"(log z)* for
an € W3 and z and log « is formal variables such that % log x = x7!) satisfying the following
axioms:

1. L(0)-bracket formula: For wy, € Wi,

LW3 (O)y(wlv l’) - y(whx)LWz (O) = $%y(w1,$) + y(LW1 (O)wla l‘)

2. L(—1)-derivative property: For wy € Wy,

%y(whx) - y(LW1(_1)w17x) - LW3(_1)y(wle) - y(wlax)sz(_l)'



3. Duality with vertex operators: For w € V, wy € Wy, and wy € Wy, wi € Wy, for any
single-valued branch [(z9) of the logarithm of 2, in the region z5 # 0, 0 < arg z, < 27,
the series

<U}/3, YWS (u7 Zl)y(wla £L’2)U)2>

xh =enl(z2) Jog xo=l(z2)

= Z(wg, Y, (w, 21) TV (w1, 22)ws)

neC

a:g:e"l(Q) ,neC,log za=l(z2)

<w§,7 y(wh xz)YWQ (U, 21)w2>

zh=e"(22) neC, log x2=I(22)

- Z(wév y(w17 x2)7TnYV[/2 ('U,, Zl)w2>

neC

zP=e™(*2) neC,log zo=I(22)

<w§37 y(le (ua 21 — ZZ)wla x2)w2>

x%ze””zﬁ ,neC,log zo=I(z2)

= Z(wé7 V(mp Y, (u, 21 — 22)wy, T2)ws)

neC

(1.8)

:cg:e”l(ZQ ) ,n€C,log xa=I(z2)

(where m, for n € C is the projection from a generalized V-module W to its homoge-
neous subspace W, of weight n) are absolutely convergent in the regions |z1| > |22| > 0,
|za] > |z1] > 0, |22] > |21 — 22| > 0, respectively, and the sums can be analytically
extended to a common multivalued analytic functions with the only possible poles
z1 =0, 21 = 29, 21 = o0 and the only possible branch point z; = 0, 25 = c0..

Let

F(<w§57 YWB <u7 Zl)y(wh Z2)w2>)7
F(<wé’n y(wla ZQ)YW2 (uv 21)w2>),
F((ws, Y (Y, (u, 21 — z2)wi, 20)ws))

be the multivalued function obtained by analytically extending the sums of the series (1.6]),
(1.7) and ([1.8). Then they are of the form

9i k(21,5 2 7,
SOY g ) g, (1.9

2 (21 — z9) ik 2

for polynomials g; x(z1, 22) of z; and zo, Mk, nik, pir € N, 1; € C satistying 0 < R(r;) < 1
for i =1,...,N. In the case that w;, we and wj are homogeneous, N can be taken to be 1
and 7y, can be taken to be —wt wj + wt w; + wt ws.

It is clear from the definition that the set of all intertwining operators of type ( Ws ) is

W1Ws
a vector space and is denoted by Vvvgfwz. The dimension of VVVII,/f’WQ is called fusion rules of
W
type (Wllfvz)'



2 Tensor categories

We review the basic concepts and properties in the theory of tensor categories in this section.
The main references for this section are [J], [M], [T] and [EGNOJ.

2.1 Basic concepts in category theory
Definition 2.1. A category consists of the following data:
1. A collection of objects.
2. For two objects A and B, a set Hom(A, B) of morphisms from A to B.
3. For an object A, an identity 14 € Hom(A, A).
4. For three objects A, B,C, a map
o: Hom(B,C) x Hom(A4, B) — Hom(A,C)
(f.9) = foyg
called composition or multiplication.
These data must satisfy the following axioms:

1. The composition is associative, that is, for objects A, B,C, D and f € Hom(C, D),
g € Hom(B,C), h € Hom(A, B), we have fo(goh)=(fog)oh.

2. For an object A, the identity 1,4 is the identity for the composition of morphisms when
the morphisms involving A, that is, for an object B, f € Hom(A, B), g € Hom(B, A),
we have lyog=gand fol, = f.

We shall use C, D and so on to denote categories. For a category C, we use Ob C to
denote the collection of objects of C.

Definition 2.2. Let C be a category. For any A, B € Ob C, an element f € Hom(A, B)
is called an isomorphism if there exists f~' € Hom(B, A) such that fo f~! = 1 and

f_loleA.

Definition 2.3. Let C and D be categories. A covariant functor (or a contravariant functor)
from C to D consists of the following data:

1. A map F from the collection Ob C of objects of C to the collection Ob D of objects of
D.

2. Given objects A and B of C, a map, still denoted by F, from Hom(A, B) to Hom(F(A), F(B))
(or from Hom(A, B) to Hom(F(B), F(A)) for a contravariant functor).

These data must satisfy the following axioms:
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1. For objects A, B, C of C and morphisms f € Hom(B, ¢), g € Hom(A, B), we have
F(foyg)=F(f)eF(g)

(or
F(fog)=F(g)oF(f)

for a contravariant functor).
2. For an object A of C, F(14) = 15(4).
We shall denote the functor defined above by F.

Definition 2.4. Let F and G be functors from C to D. A natural transformation n from F
to G consists of an element 74 € Hom(F(A),G(A)) for each object A € Ob C such that the
following diagram is commutative for A, B € Ob C and f,g € Hom(A, B):

F(A) == G(4)

f(f)l lf(g)
F(B) T G(B).

A natural isomorphism from C to D is a natural transformation n from C to D such that
na € Hom(F(A),G(A)) for each object A € Ob C is an isomorphism.

Definition 2.5. Let F be a functor from a category C to a category D and G a functor from
a category D to a category £. The composition G o F of G and F is a functor from C to £
given by (Go F)(A) = G(F(A)) for A € Ob C and (Go F)(f) = G(F(f)) for f € Hom(A, B)
and A, B € Ob C. Let C and D be categories. We say that C is isomorphic to D if there is
a functor F from C to D and a functor F~! such that Fo F~' =1p and F 1o F =1.. We
say that C s equivalent to D if there is a functor F from C to D and a functor G such that
F o G is naturally isomorphic to 1p and G o F is naturally isomorphic to 1¢.

Definition 2.6. Let A; for j € I be objects of a category C. A product of A; for j € I
is an object [[;.; A; together with morphisms p; : [[;c; A; — A; satisfying the following
universal property: For any object A of C and any morphism f; : A — A;, there exists a
unique morphism f: A — Hje] A; such that such that f; = p;o f for i € I. A coproduct of
Aj for j € J is an object ]_[jel Aj together with morphisms 7; : A; — de A; satistying the
following universal property: For any object A of C and any morphism f; : A; — A, there

exists a unique morphism f : [[,c; A; — A such that f; = foi; fori € I.

Exercise 2.7. Prove that products and coproducts of objects A; for j € I in a category C
are unique up to isomorphisms.

Definition 2.8. An initial object in a category C is an object I in C such that for any object
X in C, Hom(I, X) has one and only one element. An terminal object in a category C is an
object T"in C such that for any object X in C, Hom(X,T') has one and only one element. A
zero object in a category C is both an initial object and a terminal object.
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Definition 2.9. Let C be a category containing a zero object 0. Let A and B be objects of
C and let f € Hom(A, B). A kernel of f is an object K and a morphism k& € Hom(K, A)
satisfying f o k = 0 and the following universal property: For any object K’ and morphism
k' € Hom(K', A) satisfying f o k' = 0, there exists a unique g € Hom(K’, K') such that
k' =kog. A cokernelof fis an object @) and a morphism g € Hom(B, Q) satisfying go f =0
and the following universal property: For any object )’ and morphism ¢ € Hom(B, Q')
satisfying ¢ o f = 0, there exists a unique v € Hom(Q), Q)’) such that ¢ = u o q.

Exercise 2.10. Prove that kernels and cokernels of of a morphism are unique up to isomor-
phisms.

Definition 2.11. Let C be a category containing a zero object 0. Let Aq,..., A, be objects
of C. A biproduct of Ay,..., A, is an object A;®---P A, of Candp,: A1 ®---D A, = A
and i 1 Ay = A1 @ DA, fork=1,...,nsuchthat pyoiy =14, fork=1,...,n,poip=0
forl #k, A; ®---® A, equipped with p, for kK = 1,...,n is a product of A;,..., A, and
A1 @ --- @ A, equipped with i, for Kk =1,...,n is a coproduct of Ay,..., A,.

Definition 2.12. Let C be a category. Let A and B be objects of C. A morphism f €
Hom(A, B) is said to be a monomorphism if for any object C' and any ¢, g2 € Hom(C, A),
fogi = fogyimplies g = go. A morphism f € Hom(A, B) is said to be aN epimorphism if
for any object C' and any gy, go € Hom(B, ('), g1 o f = g2 o f implies g; = g¢o.

Definition 2.13. An abelian category is a category C satisfying the following conditions:

1. For any objects A and B, Hom(A, B) is an abelian group and for any objects A, B and
C', the map from Hom(B, A) x Hom(C, B) to Hom(C, A) given by the composition of
morphisms is bilinear.

2. Every finite set of objects has a biproduct.
3. Every morphism has a kernel and cokernel.
4. Every monomorphism is a kernel of some morphism and every epimorphism is a cok-

ernel of some morphism.

2.2 Monoidal categories and tensor categories

Definition 2.14. An monoidal category consists of the following data:
1. A category C.
2. A bifunctor ® : C x C — C called the tensor product bifunctor.

3. A natural isomorphism A from ® o (1¢ X ®) to ® o (® X 1¢) called the associativity
isomorphism.

4. An object 1 called the unit object.
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5. A natural isomorphism [ from 1®- to 1¢ called the left unit isomorphism and a natural
isomorphism r from - ® 1 to 1¢ called the right unit isomorphism.

These data satisfy the following axioms:

1. The following pentagon diagram is commutative for objects Ay, Ay, As, Ay:

A ® (A ® (A3 ® Ay))

/ \

(A1 ® Az) ® (A3 ® Ay) A ® (A ® Az) @ Ay)
(A @A) @ A3) ® Ay = (A1 ® (A2 ® A3)) ® Ay

2. The following triangle diagram is commutative for objects Ay, As:

(A1®1)® A — A1 ®(1® A)

| l

Al ®A2 T> Al ®A2

Definition 2.15. A tensor category is an abelian category equipped with a monoidal cate-
gory structure such that the abelain category structure and the monoidal category structure
are compatible in the sense that for objects A, B, C' and D, the map ® : Hom(A, B) x
Hom(C, D) — Hom(A x C, B ® D) is bilinear.

Definition 2.16. Let C be a monoidal category. A graph diagram in C is a graph whose
vertices are functors obtained from the tensor product bifunctor and the unit objects and
the edges are natural isomorphisms obtained from the associativity isomorphisms, the left
and the right unit isomorphisms. A graph diagram is commutative if the compositions of the
isorphisms in any two paths with the same starting and ending vertices must be equal.

Theorem 2.17 (Mac Lane). Let C be a monoidal category. Any graph diagram in C is
commutative

We omit the proof here; see [M] and [EGNO].

Definition 2.18. A monoidal functor from a monoidal categoory C to a monoidal category
D is a triple (F, J, ) where F is a functor from C to D, J a natural transformation from
the functor F(-) ®p F(-) to the functor F(- ®¢ -) and ¢ an isomorphism from 1p to F(1¢)
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such that the diagram
(F (A1) ®@p F(Az)) @p F(A3) —— F(A1) @p (F(A) ®p F(A3))

l |

(F(A; ®c Ag) @p F(As) F(Ay) @p F(As ®@¢ As)

l |

(.F((Al Xe Ag) Re Ag) —_— ./T"(Al Re (A2 KR Ag))
for objects A;, A and As in C and the diagram
1p ®p F(A) —— F(A)
f(lc Xp .F(A) E— .F(lc R A)

for an object A in C are commutative. A monoidal eqivalence from a monoidal categoory
C to a monoidal category D is a monoidal functor (F, J,¢) from C to D such that F is an
equivalence of categories and J is a natural isomorphism.

Definition 2.19. A monoidal category is strict if

Ro(lex®) = ®o(®x 1¢),
1@ = 1
®1 = 1¢

and the associativity, the left and the right unit isomorphisms are identities.

Theorem 2.20 (Mac Lane). Any monoidal category is monoidal equivalent to a strict
monoidal category.

Exercise 2.21. Consider the category of bimodules for an associative algebra and the tensor
product bifunctor we defined in the section on associative algebras. Show that there exists
an associaitivity isomorphism such that the pentagon diagram is commutative.

2.3 Symmetries and braidings

Definition 2.22. Let C be a monoidal category. A symmetry of C is a natural isomorphism
C from ® to ® o 019 (012 being the functor from C x C to C x C induced from the nontrivial
element of Sy) such that for objects A;, A, the morphism

CAQ,Al o CAl,AQ . Al ® A2 — A2 ® Al — Al ® A2

is equal to the identity 14,54, and for objects A;, Ay and A,, the hexagon diagram

14



(A1 ® Ay) @ As

7N

(As ® A1) ® A AL ® (A2 ® As)
Y Y
A2® A1®A3 A2®A3 ®A1
Ay ® (A3 ® Aq)

is commutative. A symmetric monoidal category is a monoidal category with a symmetry.
A symmetric tensor category is a tensor category with a symmetry.

Definition 2.23. Let C be a monoidal category. A braiding of C is a natural isomorphism
R from ® to ® o o195 such that for objects Ay, As and As, the hexagon diagrams
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(A1 X A)) X Ag

Rt M/ \

(A K A;) K Ay A © (A, ® As)
Rj:l
| |
Ay ® (A K Aj) (Ay K A3) K A,
A3 @A

is commutative. A braided monoidal category is a monoidal category with a braiding. A
braided tensor category is a tensor category with a braiding.

2.4 Rigidity

Definition 2.24. Let C be a monoidal category. For an object A, a right dual of A is an
object A* and morphisms ev, : A*® A — 1 and coevy : 1 — A® A* such that the morphism
obtained by composing the morphisms in

A=51R0A—- (AA)RA - AQRA'®A) - Al — A
is equal to the identity 14 and the morphism obtained by composing the morphisms in
A" AL 5 ARQRARA) 2 (A "RA) A" -1 A" - A

is equal to the identity 14+. A left dual of A is an object *A and morphisms ev/y : A®*A — 1
and coev’y : 1 —* A ® A such that the morphism obtained by composing the morphisms in

A5 AR1 5 AQ(FARA) - (ARTA) A1 A— A
is equal to the identity 14 and the morphism obtained by composing the morphisms in
A1 A (FARA) " A" AR (ARTA) " A1 -7 A
is equal to the identity 1«4.
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Definition 2.25. A monoidal category C is said to be rigid if there are contravariant functors
*.:C — Cand -*: C — C such that for an object A, *A and A* are left and right duals of A.

Exercise 2.26. Show that the category of finite-dimensional representations for a finite
group and the category of finite-dimensional modules for a finite-dimensional Lie algebra are
rigid symmetric tensor categories.

2.5 Ribbon categories and modular tensor categories

Definition 2.27. Let C be a braided onoidal category. A twist of C is a natural isomorphism
0 : 1¢ — 1¢ such that for objects A; and A,

9A1®A2 - RAz,Al © RAl,Az © (eAl ® 9142)'

Definition 2.28. A ribbon category is a rigid braided monoidal category equipped with a
twist.

Lemma 2.29. In a ribbon category, the left dual and right dual can be taken to be the same.

We omit the proof of this lemma.
Let C be a ribbon category and let K = Hom(1,1). Then K is a monoid (a set with an
associative product and an identity).

Lemma 2.30. K is in fact commutative.

In a ribbon category, we can define the “trace” of a morphism and the “dimension” of
an object as follows:

Definition 2.31. Let f € Hom(A, A) be a morphism in a ribbon category. The trace of f
is defined to be
Tr f=evaoRga-0((6aocf)®1ax)ocoevy € K.

The dimension dim A of an object A is defined to be Tr 14.
The trace of a morphism satisfies the properties that a trace should have.
Proposition 2.32. Let C be a ribbon category. Then we have:
1. For f € Hom(A, B) and g € Hom(B, A), Tr fg = Tr gf.
2. For f € Hom(A;, As) and g € Hom(As, Ay), Tr (f @ g) = (Tr f)(Tr g).
3. Forke K, Trk==kF.

Example 2.33. The category of finite-dimensional representations of a finite group and
the category of finite-dimensional modules for a finite-dimensional Lie algebra are ribbon
categories whose braidings and twists are trivial.
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Example 2.34. Let G be an mulplicative abelian group (an abelian group whose operation
is written as a multiplication instead of an addition), K a commutative ring with identity
and ¢: G x G — K* a bilinear form (K™ being the set of invertible elements of K), that is,
for g,q¢',h,h' € G, we have

c(gg'sh) = clg,h)eld', h),
c(g,hh') = c(g,h)c(g, ).

We construct a ribbon category as follows: The objects of the category are elements of G.
For any g, h € G, Hom(g, h) is K if g = h and 0 if g # h. The composition of two morphisms
g — h —— f is the product of the two elements of K is ¢ = h = f and 0 otherwise. The
tensor product of two objects g, h € G is their product gh. The tensor product gg’ — hh'
of two morphisms ¢ — ¢’ and h — A’ is the product of the two elements in K if g = h
and ¢’ = b’ and is 0 otherwise. The unit object is the identity of G. The associativity and
left and right unit isomorphisms are the identity natural isomorphisms. For g,h € G, the
briading gh — hg = gh is defined to be ¢(g, h). For g € G, the twist g — ¢ is defined to be
c(g,9). For g € G, the (left and right) dual of ¢ is g~'. The morphisms ev,, coev,, evy, and
coev, are the indentity of K. Then we have a ribbon category.

Exercise 2.35. Verify that the example above is indeed a ribbon category.

We now consider ribbon tensor categories, that is, rigid braided tensor categories with
twists.

Let C be a ribbon tensor category. Then K = Hom(1,1) acts on Hom(A, B) for any
objects A and B by kf =lgo(k® f)ol,' for k € K and f € Hom(A, B). This action gives
Hom(A, B) a K-module structure.

Definition 2.36. An object A of a ribbon tensor category is said to be irreducible if
Hom(A, A) is a free K-module of rank 1. A ribbon tensor category is said to be semisimple
if the following conditions are satisfied:

1. For any simple objects A and B, Hom(A, B) = 0 if A is not isomorphic to B.

2. Every object is a direct sum of finitely many irreducible objects.
Example 2.37. The unit object is an irreducible object.

Example 2.38. The ribbon tensor category of finite-dimensional representations over a
field of a finite group such that the characteristic of the field does not divide the order of the
group and the ribbon tensor category of finite-dimensional modules for a finite-dimensional
semisimple Lie algebra are semisimple.

Definition 2.39. A modular tensor category is a semisimple ribbon tensor category C, with
finitely many equivalence classes of irreducible objects satisfying the following nondegeneracy
property: Let {A;}7_, be a set of representatives of the equivalence classes of irreducible
objects of C. Then the matrix (5;;) where

Sij ="Tr RAj7Ai 9] RAiij

for i, =1,...,n is invertible.
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Let I be the set of equivalence classes of irreduible objects in a modular tensor category.
We shall use 0 to denote the equivalence class in I containing the unit object.

Proposition 2.40. The dual object of an irreducible object is also irreducible.

We omit the proof.

From this proposition, we see that there is a map * : I — [ such that for any ¢ € I, 7* is
the equivalence class in I such that objects in ¢* are duals of objects in 1.

We now choose one object A; for each equivalence class ¢ € I. Then by definition, we
have

SO,i = 0,0 = dlm Az
forieI.
Definition 2.41. Let C be a modular tensor category. Assuming that there exists D € K
such that

D* =) (dim A;)*.

icl

We call D the rank of C.

If there is no such D in K, we can always enlarge K and the sets of morphisms such that
in the new category, there exists such a D.

For i € I, the twist 6,4, as an element of Hom(A;, A;) must be proportional to 14,, that
is, there exists A; € K such that 6; = A;14,. Since 04, is an isomorphism, A; is invertible.
Let A=Y, ;v (dim 4%, T = (6/v;) and J = (6%.). Then we have

(D719t = 1,
(DIT1S) = AD (D 'S)2

= ()
()

Then s and t are the generators of the modular group

Let

SL(2,Z)_{<Z Z) | a,b,c,d € Z, ad—bc—l}

satisfying the relations
st =1, (ts)® = 5%

Thus we see that s — D~1S and t — T~ ! give a projective matrix representation of SL(2,Z).
Since C is semisimple and I is the set of equivalence classes of irreducible objects in C,

we see that A; ® A; for 4, 7 € I must be isomorphic to @y INZ}Ak, where Ni’; are nonnegative

integers giving the numbers of copies of A;. These numbers Ni’; afre called fusion rules.
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Theorem 2.42. Fori,l,m € I, we have

Z S;}Nz‘lz‘skl = (dim Ay,,) " Sitm.

J,kel

In fact, if we let

for i € I, then the theorem above says that the matrix S diagonalizes N; for ¢ € I simulta-
neously.

Corollary 2.43. Fori,j,k € I, we have

NE=D? Z(dim A) 1SS 1Sk

lel

We omit the proofs of these results.

3 Tensor product modules and their construction

3.1 Definition of tensor product module

We have mentioned above that for two V-modules W7 and W5, W; ® W5 is not a V-module.
But tensor products for V-modules are important. They describe interations of the quantum
objects whose state spaces are W and W5. Mathematically tensor products also give us new
V-modules. Using intertwining operators, we can introduce a notion of tensor product of two
V-modules. Such a tensor product does not always exist. In order to prove the existence, V'
must satisfies certain conditions. In this subsection we give the definition of tensor product
V-module of two V-modules. But we will not discuss the existence of the tensor product
V-modules.

Our definition of tensor product V-module is given in terms of intertwining operators.
To motivate our definition of tensor product V-module, we first give a definition of tensor
product of two vector spaces using analogues of intertwining operators. Let Wy, W5 and W3
be vector spaces. A bilinear map I : Wy x Wy — W3 is called an intertwining operator of type
(Wlf/‘ifz)' We call a pair W3, I) consisting of a vector space W3 and an intertwining operator [
of type (WZVI;‘VQ) a product of Wi and W5. We define a tensor product vector space of W, and
Wj to be a product (W) ® Wy, ®) such that the following universal property holds: Given
any product (W3, I) of Wy and W, there exists a unique linear map f : Wi ® Wy — W3 such
that I = f o ®.

Here is a construction of a tensor product vector space: Let C(W; x W3) be the free
vector space generated by the direct product Wi x Ws. Let Wi ® W5 be the quotient vector
space C(W; x Wy)/J, where J is the subspace of W) x W, spanned by elemenets of the
form (Awy,wy) — (wq, Adws), AMwy,ws) — (Awy, ws), (wy + Wy, we) — (wy,wy) — (W, wy) and
(w1, wy + W) — (wy, we) — (wy, Wwe) for wy, Wy € Wi, we,w € Wy and A € C. We use w; ® ws
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to denote the coset (wy,wy) + J. Let @ : Wy x Wy — Wi ® Wy be the projection map. Then
® is an intertwining operator of type (Wl@wz) and (W, ® W3, ®) is a tensor product vector
space of W7 and Ws.

We now give the definition of tensor product V-module of two V-modules. For simplicity,
we work with the category of lower bounded generalized V-modules. For other categories
of V-modules, the definition is the same except that we replace the words “lower bounded
generalized V-module” by the names for the types of V-modules in the other categories.

One crucial new feature for the tensor product V-module is that it involves z € C*. For
such z € C*, we use log z to denote the value log|z| + iarg z, where 0 < arg z < 27 of the

logarithm of z. For an intertwining operator ) of type (WWSV ), we use Y(wy, z)ws to denote

Y(wi, x)ws

xn=en 1082 neC, log x=log z

Definition 3.1. Let z € C* and W; and W, lower-bounded generalized V-modules. A
P(z)-product of Wy and Wy is a pair (W3, I) consisiting of a lower-bounded generalized V-
module W3 and the value I = Y(-, 2)- : Wy @ Wy — W3 (called a P(z)-intertwining map of
type (WWW )) of an intertwining operator Y(-, x)- : Wy ® Wy — Ws{z}[log x] at z (with z™ for
n € C and logz be substituted by ¢"!°¢* and log z, respectively). A P(z)-tensor product of
Wi and Wy is a P(z)-product (W7 Xp(.) Wa, Mp.)) such that the following universal property
holds: Given any P(z)-product (Wg, I ) of W, and Wy, there exists a unique module map
J Wi p() Wo — W3 such that I = fo Xp(.), where f:W Xp) Wo — W4 is the unique

extenstion of [ to Wi Mp(,) Wy (note that f as a module map must preserve wegihts).

The value I of an intertwining operator Y(-,x)- at z is called a P(z)-intertwining map.

The first question about the P(z)-tensor product is its existence. For vector spaces,
the existence is trivial (see above). But for V-modules, it is not trivial in general. As
we mentioned above, in general the P(z)-tensor product might not exist. Under certain
conditions, the existence of P(z)-tensor product was proved in [HL4] and [HT7].

The category of V-mdules form a braided tensor category under certain conditions on
V' or a modular tensor category under stronger conditions. The two difficult part of the
construction is the construction of the associativity isomorphism and the proof of the rigidity.
These two difficult parts corresponding to the associativity of intertwining operators and the
modular invariance of intertwining operators, respectively. See [HI], [H3], [H4], [H6], [H7]
and [HLZ2].

3.2 A construction of tensor product modules

We now give a construction of the P(z)-tensor product Wy Mp(.) Wy in the category of
grading—restricted generalized V-modules. For a grading-restricted generalized V-module
W3, wh € W} and an intertwining operator Y of type ( we have an element \j,(wj) €
(W1 ® Wa)* given by

WW)

(A3 (ws) (wr @ wa) = (wh, Y(wy, 2)wa),
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S HOHI(WQ, Wg.

xn=enlogz neC,log z=log z

Then we obtain a linear map A3, : Wy — (W1 ® Wy)*. Let Witlp(,)W, be the subspace of
(W1 ® W3)* spanned by all elements of the form A},(w3) for a grading-restricted generalized
V-module W3, wi € W5 and an intertwining operator ) of type (WZVSVZ)) Then Aj, is in fact
a linear map from W3 to Witip(.) Wa.

We define a vertex operator map

where for simplicity we use Y(wy, 2) to denote Y (wq, x)ws

YWINP(z>W2 VR (WlEP(Z)WQ) — (Wlﬁp(Z)WQ)[[l‘,ﬁ_l]]

v A Y, ws (v, )\

by
(YW1EP(Z)W2 (U7 $))\§J<wé>>(w1 ® w2) = <YW§ (U7 $)wg’n y(w17 Z)U)2>
for wy € Wy, wy € W, wi € Wi and v e V.
Proposition 3.2. The space W1Sp\Wy equipped with Ywitip ., we 45 @ generalized V -module

such that for a grading-restricted generalized V-module W3, wh € Wi and an intertwining

operator Y of type (W%@)) 3 1s a V-module map from W3 to WitpyWh.

Exercise 3.3. Prove Proposition[3.5

Let W3 be a grading-restricted generalized V-module and J : Wy — Witp) Wy a V-
module map. Let V;(-,2)- : W; ® Wy — W3 be defined by

(wg, V(wr, 2)wa) = (J(wh)) (w1 @ wa).
Then we define
Vi(wy, x)wy = alws (), —Lws (O)yj(a;—Lwl 0) 2 Lwy 00y, z)x_LW2(0)ZLW2(0)w2.
In this way, we obtain a linear map
Vy: Wy @ Wy — Wa{z}log z].

Proposition 3.4. The linear map Y; is an intertwining operator of type (WZVVSVZ) such that
yA§ =Y and )\i,J =J.

Exercise 3.5. Prove Proposition [3.)
One immediate consequence of this proposition is the following:

Corollary 3.6. The map given by Y +— A is a linear isomorphism from the space of
intertwining operators of type (WVIVI}/Q) to the space of V-module maps from Wy to Witlp,\Ws.
The inverse of this map is the linear map given by J — ).

We shall now make the following assumption:
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Assumption 3.7. For any grading-restricted generalized V -modules Wy and Wo, WiSp,)Ws
1s a grading-restricted generalized V -module.

Under this assumption, for grading-restricted generalized V-modules W; and W5, the
graded dual W K p(,) W, = (Wlup Wz) of WiEp(,) W5 is also a grading-restricted generalized
V-module. Consider the identity operator 1W1QP<Z)W2 on WitpyWs. This is certainly a
V-module map from the graded dual WiS0p,)Ws of W Kp(,) Wy to Witp,)Ws. Then by

- . .. Wik (z>W2
Proposition , we have an intertwining operator ylwlgp(z>w2 of type ( WI: W ) We denote
the evaluation ylwlgp(z)% (+,2) of ylwlﬁp(z)wg at z by Mp(,). Let

Wi Rpy Wo = (Wimp) Wa)'.
Theorem 3.8. The pair (Wi Mp(.y Wa,Np,)) is a P(z)-tensor product of Wy and W.

Proof. Let (W3,I) be a P(z)-tensor product. Then by the definition of P(z)-intertwining

map, we have an intertwining operator Y’ of type (W%VQ) such that I = Y!(-,z)-. Then by

Propositions we have a V-module map A}, : Wi — Witlp(,yW, given by

<wé7 yl(wla Z)w2> = (>\§;1 (wg))(wl & wg).
The adjoint of \j, is a V-module map f : Wi Mp(,) Wo — W3. Then we have

(wh, I(w @ wa)) = (wh, Y(wi, 2)ws)

= (A (wy)) (w1 @ wo)
(1W1NP(Z)W2()\y(w3)))(w1 ® ws)
= (A(w ws), Y TpyWa (w1, 2)ws)
= (wy, (fo &p(z))(wl ® w2))

for w; € Wy, wy € Wy and wh € W4, Thus we obtain I = f o XMp(.y. The uniqueness of f
follows from the uniqueness of Y’ and A}, [

Note that the tensor product elements of the tensor product of two vector spaces span
the tensor product space. We also have a tensor product element of w; € W7 and wy € Wy
defined by

w1 Kp(z) we = Bp() (w1 @ we) =N (w1, 2)ws.

N
willp )W

But note that w; Kp(.) wy is in Wy Mp(.y Wy instead of W Kp(.y Wo.

Proposition 3.9. The homogeneous components m,(w, Mp.y we) (T, is the projection from
W1 Npy Wa to its homogeneous subspace of weight n) of wi Mpy we for n € C, w; € Wi
and wy € Wy span Wi Mpy Ws.
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Proof. Let W3 be the subspace of Wi Kp(,) W, spanned by homogeneous components
Tp(wy Mpy wa) of wy Mpy wy for n € C, wy € Wy and wy, € Wy, Then we have

wy Mpy wy € Wy for wy € Wy and wy € Wa. Recall the intertwining operator ),

of type (Wﬁf‘%wz) such that w; Xp(,) wo = ylm& (wq, 2)wy for wy € Wy and we € Wi

P(z)W2

If W3 is not equal to Wi p(.) W5, then there exists a nonzero subspace Wy of Witlp,y Wy =
(W1 Mp(y Wy)' such that for A € Wy, (A, 7, (w1 Mp(oy we)) = 0 for all n € C, wy € Wi and
wy € Wy. Then for A € Wy, (A, wy Xp(2) wy) = 0 for all wy € Wy and wy € Ws. Since

=
w1llp () Wa

</\, wn &P(z) w2> = <)\’y1W15p<z)Wz (wh z)w2> = )\(w1 X wz),
we obtain A\(w; ® wy) = 0 for all wy € Wy and ws € Wy, So A = 0 and thus Wy = 0.
Contradiction. |

The construction above is based on Assumption [3.7 We have the the following results
on this assumption:

Theorem 3.10 ([HL2]). Assume that V satisfies the following condition:
1. There are only finitely many irreducible V-modules (up to equivalence).

2. Every grading-restricted generalized V-module is completely reducible (and is in par-
ticular a finite direct sum of irreducible V-modules).

3. All the fusion rules for V are finite (for triples of irreducible V-modules and hence
arbitrary V -modules).

Then WiEp)Ws is a (ordinary) V-module.

Proof. Elements of Witp(,)Ws are spanned by elements of the form A3,(wj) for a grading-
restricted generalized V-module W3, an intertwining operator ) of type (WVIVI?VQ) and wj €
Ws. Then Witp)Ws is a sum of grading-restricted generalized V-modules. Since every
grading-restricted generalized V-module is completely reducible, Wi5p,) W5 is a direct sum of
irreducible V-modules. Since there are only finitely many irreducible V-modules, W5p(.)W»
is a direct sum of finitely or infinitely many copies of these finitely many irreducible V-
modules. To show that W5p(, W5 is a grading-restricted generalized V-module, we still need
to show that there are only finitely many copies of these irreducible V-modules appearing
in the decomposition of WiSp)Ws. If there are infinitely many copies of an irreducible
V-module W appearing in the decomposition of Widp)Ws, then for each copy of this
irreducible V-module in Widp.yW, we have an embedding map from W to Witp(.)Ws.
This embedding map is clearly a V-module map. Also, these infinitely many embedding V-
module maps are linearly independent. But by Corollary [3.6] these infinitely many linearly
independent embedding V-module maps corresponds to infinitely many linearly independent
intertwining operators of the type (WVIVV/VQ) In particular, the dimension of the space of

) is infinite. But all the fusion rules are finitely.

intertwining operators of the type (W?/V,VQ

24



Contradiction. So WiSp,)Ws is a direct sum of finitely many irreducible V-modules and
thus must be grading restricted. |

A vertex operator algebra V' is said to be of positive energy (or of CFT type) if V{,,y =0
for n < 0 and V{g) = C1. A vertex operator algebra is called Cs-cofinite if dim V/C» (V') < o0,
where Cy(V) is the subspace of V' spanned by elements of the form Res,x~2Yy (u,z)v for
u,v € V.

Theorem 3.11 ([H7]). Assume thatV is of positive energy and Ca-cofinite. Then Witip,yWa
18 a grading-restricted generalized V -module.

We omit the proof of this theorem here. See [H7] for a proof.

4 Associativity of intertwining operators and associa-
tivity isomorphisms

4.1 Associativity of intertwining operators

We formulate the associativity of intertwining operators in the category of grading-restricted
generalized V-modules as the main assumption in this section. We also state without proof
a result on the associativity of intertwining operators.

Assumption 4.1 (Associativity of intertwining operators in the category of grading-re-
stricted generalized V-modules). Let Wy, Wy, W3, Wy, W5 be grading-restricted generalized

V-modules and Y, and Yy intertwining operators of types (WYV{jV) and (W?/;/g), respectively.

1. Forw; € Wi, we € Wy, wy € W3 and w) € Wy, the series

(w, Vi (wr, z1) Ya(wa, z2)ws)

is absolutely convergent in the region |z1| > |z2| > 0 and its sum can be analytically
continued to a multivalued analytic function

F({w), V1(w1, 21) Va(ws, 20)ws))

on the region
M? ={(z1,2) € C* | 21,20 # 0,21 — 20 # 0} C C?

with the only possible singular points z1 = 0, z0 = 0 and z; = 25 being reqular singular
points.

2. There exist a grading-restricted generalized V -module Wy and intertwining operators

Y1 and Y, of types (Wlf/{j%) and (Wzvévd), respectively, such that for w; € Wi, wy € W,

w3 € W3 and w)y € Wy,
<wfp yl(wl, Zl)yz(’wm Z2>w3> = (wfpys(yzl(wl, Z1 — 2’2)71)2, 22)w3>

25



in the region |z1| > |za] > |21 — 22| > 0. (The absolute convergence of

<w£1a y3(y4(w17 Z1 — 22)1027 ZQ)U]3>

in the region |22| > |21 — 22| > 0 is a consequence of Part 1 above. See Proposition[{.]
below. )

Proposition 4.2. Let Wi, Wy, W3, Wy, Wy be grading-restricted generalized V -modules and

V3 and Yy intertwining operators of types (W‘;V‘j*vd) and (WVIV‘EVQ), respectively.

1. Suppose that Part 1 of Assumption [{.1] holds. Then for wy € Wy, wy € Wa, ws € Wy
and wy € Wy, the series

<w£17 yS(y4(w17 2 ZQ)w27 22)w3>

is absolutely convergent in the region |z3| > |21 — 22| > 0 and its sum can be analytically
extended to a multivalued analytic function

F((wy, Vs(Va(wy, 21 — 22)wg, z0)ws))

on the region M? with the only possible singular points z; = 0, 2o = 0 and 2, = 2
being reqular singular points.

2. Suppose that Assumption holds. Then there exist a grading-restricted generalized
V-module Wy and intertwining operators Y, and Y of the types (WZVI;/S) and (W%@)}
respectively, such that for wy € Wy, wy € Wy, ws € W3 and wy € Wy,

(wfl, y3(y4(wla 21— 22)102, 22)w3> = <w£17 yl<w17 Zl)yz(w% 22)w3>
in the region |z1| > |za] > |21 — 22| > 0.

We need skew-symmetry isomorphism for intertwining operators to prove this result. The
skew-symmetry isomorphism will be discussed in Section 4. We shall prove this result in that
section.

The associativity of intertwining operators holds only when the vertex operator algebra
satisfies certain conditions. Here is a result proved in [H7]:

Theorem 4.3 ([H7]). Assume thatV is of positive energy and Cs-cofinite. Then associativity
of intertwining operators in the category of grading-restricted generalized V -modules hold.

We omit the proof of this theorem here. See [H7] for a proof.
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4.2 Associativity isomorphisms

Assuming that the associativity of intertwining operators hold, we construct associativity
isomorphisms for the vertex tensor category structure and the braided tensor category struc-
ture.

Recall the tensor product element w; Mp(.y wp of Wi Kp(,) Wa. To construct and study
associativity isomorphisms , we need tensor products of three elements of three grading-
restricted generalized V-modules. Let W;, W5 and W3 be grading-restricted generalized
V-modules and z1, 2o € C satisfying |z1| > |22| > |21 — 22| > 0. By Assumption [4.1]

(wy, w1 Rp(z) (wo Wp(zy) w3)) = (w), Vi (w1, 21)371W2,ZP(22)W3 (w3, 22)w3)

WlNP(zN(WQ&P(zQ)W?’)

is absolutely convergent for w) € (W Np(.,) (Wa Mpry) Ws))', wi € Wi, wy € Wy and
w3 € W3. Thus we have a well-defined element

wy Mp(z) (wy Xp () wz) € Wi Xp(z) (W P (z2) Ws).

Similarly, we have a well-defined element

(01 Mp(zy—zy) Wa) Mp(oy) w3 € (W1 Kp(s,—2p) Wa) Kp(sy) Wa.
We now construct the associativity isomorphsim. We have the foloowing theorem:

Theorem 4.4. Let 21, z9 € C satisfying |z1]| > |z2| > |z1—22] > 0. Suppose that Assumptions
and[{.1] hold. Then there exist a unique natural isomorphism

P(z2),P(z1—=
AP o™ By o (T X Bp(zy)) = Bpiay) 0 (Rpeey) X Lig),

called associativity isomorphism, such that for grading-restricted generalized V -modules W7,

Wy and W3, the extension Aigf;’ig;)—@) of the module map

P(z2),P(z1—=
APEz?;,PEz;) o W1 Mp(z) (W2 DMp(z,) Ws) = (Wy X p(z—22) W2) Xp(z) Ws

to the algebraic extension Wy Mp..y (Wa Mp(.,) Ws) of Wi Wp(.,) (Wa Mp(.,) Ws) satisfies

P(z2),P(z1—=
AR o) (wy Bp(e,) (ws Bp(ey) w3)) = (w1 Bp(s, —0) wa) Bp(y) w3 (4.1)

fO’I" w1 € Wl, wy € Wy and wsy € Wj.

Proof.  For simplicity, we denote (W1 X p(, .,y Wa) M p(.,) W3 and Wi Np., _.,) Wa by Wy and
Wes. We also denote the intertwining operators ylwlgp(ZI722)W2)EP<22)W3 and ylwlxmwww
by Vs and Y,. For w) € Wi, w; € Wy, wy € Wy and w3 € W3, by Proposition there
exist grading-restricted generalized V-module W5 and intertwining operators ), and )s of

W W .
type (Wﬂj‘%) and (W2I;,3), respectively, such that

<wip (wl &P(zl—zg) w2) IEP(ZQ) w3> = (wfp y3(y4(w17 21 — 22)w2, 22)w3>
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= (w, V1 (wy, 21) Va(wa, 22)ws).

Let Iy = Ys(+,22)-. Then Iy is a P(z9)-intertwining map. So we have a P(zy)-product
(Ws, I5). By the universal property of the tensor product (W2 Xp(.,) W3, Xp(.,)), there exists
a unique V-module map f : Wo Wp(,,) W3 — W; such that I, = fo Xp(z,). We use V? to

denote that intertwining operator yl " . Then we have wy; Mp(,,) w3 = V2 (wy, z)ws
Walllp (2 W3’

and Vs (ws, 22)ws = f(yQ(w% 22)W3).
Let I; = Yi(+, 21) f(+). Since Yio(1ly, ® f(+)) is an intertwining operator of type (

is a P(z1)-intertwining map of type (

W1W) I

Wl(Wzlgjf(zg)Ws))‘ In particular, we have a P(z;)-product

(Wy, I) of Wy and Wy Mp(.,) W3. By the universal property of the tensor product
(W1 Mpeayy (Wa Wp(zy) Wa),Mp(.,y).
there exists a V-module map

P(z2),P(z1—22
AR o2 Wy Bpgay) (Wa Bp(ay) Wa) = (Wi Bp(ey—sp) Wa) Bp(sy) Wa(= W)

such that I, = A (2) 2) o Xp(). We use V' to denote the intertwining operator
Then

Wi lp ey (Wallp gy Ws)

P(z2),P(z1—=
AP ) (0 Ry w) = [ (wy @ w) = Vi (w1, 21) f (w)

for wy € Wi and w € Wy Mp.,) Wi.
Using all the calculations above, we obtain

P(z2),P(z1—=
(i, Ap) pieny ™ (w1 Bp(ey) (w2 Bp(ey) ws)))

29),P(z1—=z
= (i, AR (wy Bpgey) (ma(ws Bpeey) ws)))

neC

= Z(wé, Vi (wl, Zl)f(ﬂ'n(wQ IEP(zz) w3))>

neC

= (wi, V1 (w, Zl)f(w2 X p(z) w3))

= (wh, Vi (w1, z1) [ (V*(wa, 22)ws))
= (wy, V1(wi, 21) Vo (w2, z9)ws)
= (w]

wl, (w XIp (21 —29) ws) Xp(z) ws)

for wy € Wy, wy € Wi, we € Wy and w3 € W3. Thus we obatin (4.1).

The same construction also gives a V-module map from (W Xp(., .,y Ws) Mp(.,) W3 to
Wi Npe.,) (Walp(.,) W3) such that its extension to the algebraic completion of (W1 XMp., .,
W5) Rp(z) W3 maps (w1 Mp(z, ) wa) Mp(zy) ws to wi Mp(s,) (we Mp(.,) ws). The lfi(St )p;?pert)y

z2),(Z1—%22

P(z1),P(22)
So AP(Z% 11252) *2) i3 an isomorphism. .

of this V-module map shows that this VV-module map must be the inverse of A
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Now we choose the tensor product Xp(;) to be the tensor product bifunctor of the cat-
egory of grading-restricted generalized V-modules. We need to construct the associativity
isomorphism for this tensor product bifunctor.

We construct this associativity isomorphism using the associativity isomorphism AIIZEZ%]IZEZ; 22)
constructed above. But we first have to introduce and construct what we call parallel trans-
port isomorphisms.

Let 21,20 € C* and v a path in C* from 2; to z5. We denote the homotopy class of
by [y]. The following theorem and its proof gives a construction of the parallel transport
isomorphism:

Theorem 4.5. Let 21,25 € C* and v a path in C* from z; to zo. Then there exists a unique
natural isomorphism
Ty Bpir) = Bp(ey),

called the parallel transport isomorphism associated to (], such that for grading-rsetricted
generalized V-modules Wy and W, the extension Tp,) of the V-module map

7?7] - Wi &p(zl) Wy — W, IXP(ZQ) Wy

to the algebraic extension Wi NWp.,) Wa of Wi Mp(.,) Wa satisfies the following property:
For wy € Wy and we € Wy, the image ﬁv](wl Xp(z) wy) of the tensor product element

w1 M p(z,) wo underm is the element Y (w1, x)ws of Wi Mp(s,) Wa, where

an=e"r(*1) log x=1,(21)
Y is the intertwining operator of type (WI%%;WQ) and l,(z1) = log |z1| + iarg z; + i27p is

the value of logarithm of z; obtained by analytically extending the value log zo along the path
y.

Proof. Let I = Y(wy, x)ws . Then I is a P(z1)-intertwining map of type
zn=e"p(*1) log x=1,(21)

(ngv’j(;‘ng) and we have a P(2,)-product (W Mp(.,y W5, I) of Wi and Ws. By the universal

property of the P(z;)-tensor product Wi Mp(,,y W5, there exists a unique V-module map

Ty Wi Mpey) Wao — Wi Bpy) W

such that m oMp(;,) = I. The property follows immediately. The V-module map Ty is
invertible since the same construction also gives V-module map

7{7—1] : Wl IEP(ZQ) W2 — Wl IXP(zl) W2
which is clearly the inverse of 7). Thus the natural transformation 7, is a natural isomor-
phism. |
We have constructed the associativity isomorphisms Aigj‘gig;; for z1, 2o € C* satisfying

|21| > |22| > |21 — 22| > 0, 23 = 21 — 29 and z4 = 2. Let Wy, W5 and W3 be grading-restricted
generalized V-modules. We now constructe associativity isomorphisms

P(z4),P(z
AR e s Wi Bp(ey) (Wa Bp(ey) Wa) = (Wi Rp(e,) Wa) Bp(ey) W
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for general zi, 29, 23, 24 € C*.

Let ¢; and (» be nonzero complex numbers satisfying |¢1| > |G| > |G — (o] > 0. Let
~v1 and 7, be paths from z; and 23 to (; and (5, respectively, in the complex plane with a
cut along the positive real line, and let v3 and 4 be paths from (, and (; — (» to z3 and

24, respectively, also in the complex plane with a cut along the positive real line. Then we
define

P(z4),P(23) P(C1—¢2),P(C2)
AP(Z?),P(,Z;) = 7;3 © (7;'4 ®P(C2) 1W3) © AP(Ci),PQ(gQ) “o (1W1 gp(ﬁ) 7172) © 7;17

that is, Aiggiég is given by the commutative diagram

P(¢1—22),P(¢2)
P(¢1),P(¢2)

Wi Rp,) (Wa Mp(e,) Ws) (W1 Bp—c) Wa) Mp(e,) Wi

(1W1®P(Cl)732)°7—“/1]\ lﬂso(TM&P(Cz)lV‘%)

P(z4),P(23)

Wi X'P(zl) (W2 IZP(Z?) W3> M (Wl ®P(24) W2> ®P(Z3) W

The inverse of .A z4 PEZ:‘; is denoted o’ e ;PEZ‘Q’; It is clear that A (2; is independent

of (1, (2 and 71,72773774
In particular, when z; = 2z, = 23 = z4 = 1, we have the corresponding natural associativ-

ity isomorphism
Apiy et Wi B (Wa B Ws) — (W R Wa) R W,

We shall simply denote this associativity isomorphism by A.

In the case |z1| > |z2] > |21 — 22| > 0, the associativity isomorphism Aigf;’ﬁgz) =)
satisfies (4.1). In fact, (4.1) also holds when |2z1]| = |z2| = |21 — 22| > 0.
Proposition 4.6. For any z1, 22 € C* such that z; # 2z but |z1| = |22| = |21 — 22|, we have
ARE2REED () Rpy (wp B ) = (w & P (4.2)
P(21),P(22) 1 BP(z1) (W2 AP(z,) W3)) = (W1 WPz —2y) W2) BP(z) W3 .

forwy € Wi, wy € Wy and ws € W3, where

P(z1—22
ApCS 2D W Rpay) (Wa Rp(ey) Wa) = (Wi Bp(ey—s) Wa) Bp(e) Wi

is the natural extension of A 21) ;2()25(22)_
Proof. To prove (4.2)), we choose €; € C such that |21 +€1| > |22] > |(21+€1) — 22| > 0. Then

we know that (| . ) holds when z; is replaced by z; + ¢;. But A?EZ; 22):P(22) i¢ defined to be

P(z2)
the composition of A Zjﬂ:l)) (Z;))’P(ZQ) and the parallel transport isomorphism 7, associated

to a path ~ from z; + €; to z; in the complex plane with a cut along the nonnegative real
line. We further choose €; and the path ~ such that |z; + €| > |€;1]| and the path v — 25 from
(21 4+ €1) — 23 to 21 — 2 is also in the complex plane with a cut along the nonnegative real
line.
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Let )V, and )» be intertwining operators of types

(Wl Mp(zy) (W Bp,) Ws))
Wi WaMp(.,) Ws

and

W2 &P(ZQ) W3
Wy W3 ’

respectively, corresponding to the intertwining maps Mp;,) and Xp(.,), respectively. Then
the series
(W', V1 (wr, 21 + €1)Va(ws, 22)ws)

is absolutely convergent for w; € Wy, wy € Wy, ws € W3 and
w' € (Wl [X'P(zl) (Wz IEP(Z2) Wg)),.

The sums of these series define elements

y1(w1, z1 + 61)y2(w2, 22)w3 cW IXP(Zl) (Wz IXP(ZQ) WB)-

By the definition of the parallel transport isomorphism, for any path ~ from z; + ¢; to
z1 in the complex plane with a cut along the nonnegative real line, we have

Ty(uh |XP(zl+el) (w2 IEP(,zQ) w3)) = (w1, z1 + 61)372(1112, z2)w3. (4-3)
By definition, we know that
T =T
so that (4.3) can be written as
7;1—1(3)1 (w1, 21 + €1) Va(wz, z0)w3) = wi Mp(zy ) (W2 Mp(z,) w3). (4.4)

Since |z1 + €1] > |22| > |(21 + €1) — 22| > 0, we have

P((z14€1)—21),P(z
A ST (wy By ) (w2 Bpey) w3)) = (w1 Bp(ayep)-2a) W2) Bp(e) ws. (4.5)

Let Y3 and ), be intertwining operators of types

<(Wl &P(ﬂ—@) WQ) ®P(22) W3)
(Wl &p(zl_m) WZ) W3

and

Wy Wy

respectively, corresponding to the intertwining maps Xp(.,) and Mp(;, _.,), respectively. Then
the series

<Wl IXP(Zlfzz) WQ)

(W', V3(Va(wy, (21 + €1) — 22)wa, 22)ws)
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is absolutely convergent for m,n € R and
W' € (W1 Bp(zy—zp) Wa) Bp(y) Wa),

and the sums of these series define elements

V3 (Va(wn, (21 + €1) — 22)wa), 22)wz € (W1 Wp(z, .y Wa) Mp(ay) Wi.

Since the path v — z5 from (27 + €1) — 22 to z; — 29 is also in the complex plane with a
cut along the nonnegative real line, by the definition of the parallel transport isomorphism,
we have

Tz (W1 Bp((zyter)—20) W2) Mp(zy) w3) = Va(Va(wr, (21 + €1) — 22)wa, 22)ws. (4.6)

Combining |}1' and using the definition of the associativity isomorphism Aiég; ;2()2’5(”),
we obtain

Aigi;?gz’ﬂ(@)(% (wr, 21 4 €1) Vo (w2, 22)ws) = Va(Va(wr, (21 + €1) — 22)ws), 22)ws.
In particular, for wy € Wi, wy € Wy, w3 € W3 and m € C,
A B D (e ), 20 4 ) Vo, 25)ws)
= Vs(Va(mm (e 0wy, (21 + €1) — 22)ws), 22)ws. (4.7)

For wy; € Wi, we € Wy and w3 € Wi, since |z1 + €1] > |e1| > 0, both the series

S € (!, (o (w1), 21 + €)Y, )ucy)

meR

e B
=e (W, Vi(wr, 21 + €1) Vo (w2, z0)ws)
and

D @, VsVl (e Hwn), (21 + 1) — 22)wa, 22)ws)

meR

= (@', Vs(Va(e™ "Ny, (21 + €1) — 22) w2, 22)w3)
are absolutely convergent for
w' € (W1 Wpe,) (Wa Wp(,) Wa))'

and
w' < ((Wl &p(zl_@) Wg) &p(@) W3)/.
We know that
(W', Vi (w1, 21 + €1) Va(wa, 22)ws)
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and
(W', Vs(Va(wr, (21 + €1) — 20)ws, 22)ws)

are the values on a neighborhood of the point ({i,(2) = (21 + €1, 22) containing the point
(C1,Ca) = (21, 22) of single-valued branches F'(w', wy, wy, w3; (1, () and G (@', wy, wa, ws; (1, (2),
respectively, of some multivalued functions of (; and (5. Then by the definition of the tensor
product elements wy Mp(.,) (w2 Mp(.,y w3) and (wy Mp(z, ) w2) Mp(.,) ws, we have

(W', w1 Rp(zyy (wo Bp(y) ws)) = F(w', wi, wa, ws; 21, 22) (4.8)

and
(@', (w1 Rp(zy—zy) wo) Wp(zy) wz) = G(W', wr, wa, ws; 21, 22). (4.9)

On the other hand, since F(w',wy,ws,ws;(1,(2) and G(@0', wy, ws, ws; (1, 2) are analytic
extensions of matrix elements of products and iterates of intertwining maps, properties of
these products and iterates also hold for these functions if they still make sense. In particular,
they satisfy the L(—1)-derivative property:

0

3_C1F(w/’w1’w2’w3; C1;C2) = F(w/a L(_l)wl,w%ws; C17C2)7 (4'10)
a ~/ ~/

3_C1G(w ,’wl,wz,’w?,;Cl,CQ) = G(w 7L(_1)w1>w2aw33C1:C2>7 (4-11)

From the Taylor theorem (which applies since |21 + €1| > |e1]) and (4.10)—(4.11)), we have

F(w',wy, wy, ws; 21, 29) = Z F(uw', 7Tm(€_61L(_1))wl,’LU2,QU3; 21 + €1, 29), (4.12)
meR

G(W', wy, w, w3; 21, 22) = Z G(w', 7Tm<€_elL(_1))w1,w2, ws; 21 + €1, 22). (4.13)
meR

Thus by the definitions of

F(uw', Wm(e_elL(_l))wl, wa, w33 21 + €1, 22),

G(w', Wm(efelL(fl))wly Wa, w3; 21 + €1, 22),

and by (£12), (£13), (8) and (@I), we obtain
3w Pr (e ), 21+ 1) Va(wn, z2)ws)

meR
= (w', w1 Wp(zy) (w2 Wp(zy) ws)) (4.14)

and

ZW)/’ y3(y4(7rm(€_qL(_1)wl)> (21 4 €1) — 22)wa, 22)ws)

meR

= <U~J/, (w1 @p(zl_@) wg) @p(@) w3>. (4.15)
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Since w’ and @’ are arbitrary, (4.14) and (4.15) gives
D V(e D), 21+ €0) Va(wa, 22)ws

= W1 IXP(zl) (U)Q &P(zg) U)g) (416)
and

Z Vs(Va(mm (e D), (21 4 €1) — 22)ws, 20)ws
meR
= (w1 IEP(Z1—Z2) U)Q) &p(ZQ) Ws. (417)

Taking the sum ) o on both sides of (4.7)) and then using (4.16]) and (4.17]), we obtain
). .

5 Skew-symmetry and commutativity of intertwining
operators and braiding isomorphisms

5.1 Skew-symmetry and commutativity of intertwining operators

W3

W1W2) and an integer p, we introduce a linear map

For an intertwining operator ) of type (

Q) : Wo @ Wy — Wi{x}log x]
wy @ wy = (V) (we, x)wy

defined by

Q) p(w, 2)wy = 22" Y Y w0y y)w,

yn=en(mit+2pm) g1 log y=log x+mi+2pmi

We have a commutativity isomorphism. Let z € C*. For grading-restricted generalized
V-modules W; and W5, let ) be the intertwining operator associated to the P(z)-tensor
product Wy Mp(_,) W;. The we have an intertwining operator €()) of type (WQ%VP;‘;[E)M),
where Q()) is defined by

Q) (we, x)wy = TEWaRp (W (71))}(11;1, Y)ws

yr=enmign logy=log x+mi

5.2 Commutativity and braiding isomorphisms

The pair (Ws Mp.y Wi, QV)(-,2)-) is a P(z)-product of Wy and W,. By the universal
property of the tensor product Wy Kp(,) Wa, there exists a unique V-module map

Rp) : Wi Rpy We — Wo Mp_,) Wy
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such that o
Q). 2) = Rp) o Kp(z),

where ﬁp(z) is the natrual extension of Rp(;) and Mp.) is the value at z of the intertwining
operator associated to the tensor product Wi Mp(,) Ws.

Let v be a path from —1 to 1 in the closed upper half plane with 0 deleted. Let W;
and W5 be grading-restricted generalized V-modules. We define the brading isomorphsim
R: Wi KWy — Wy XKW, by

R =T, °Rpq).

Proposition 5.1. Let zq, 25 be nonzero complex numbers such that z; # zo but |z1] = |29 =
|21 — z2|. Let v be a path from zs to z; in the complex plane with a cut along the nonnegative
real line. Then we have

Ty 0 (Rp(z1—2) Mpeag) L) (w1 Mpay 20y wo) Mprayy w3) = (w2 Mpzy—z) wi) Mpey ws (5.1)
fO’/’ w1 € Wl, wy € Wy and w3 € Wg.

Proof. To pove (.1), we choose € such that [za| > e[, |22 + €| > [21 — 22| > 0. Let
V1= y®p<z2),0, Vi = ygp(zz)p and Y, = ygpwo be the intertwining operator of types

((Wl @P(ZI—ZQ) WQ) IXP(@) W3>
(W1 Bp(sy—np) Wa) Wy )’

((Wz Xp(ey—z) Wi) Mp(ay) W3>
(WQ IXP(zg—zl) Wl) W3 ’
and
((Wz NXpzp—2) Wi) Bp(zy) W3>
(W2 IXP(ngzl) Wl) WS ’
respectively, corresponding to the intertwining maps Mp(.,), Mp(.,) and Kp(,,), respectively.
Using the definition of Rp(,—.,), we obtain

(Rp(21—20) Bp(zg) Ly ) (D1 (w1 Rp(z, ) W2, 22 + €)w3)
— 5)1(6(21—22)L(—1)(w2 Mp (s 21) wy), 22 + €)ws. (5.2)

On the other hand, by the definition of the parallel isomorphism, we obtain

f(y1(€(zl_z2)L(_l)(w2 X p(z—21) W), 22 + €)w3)
= Vs((wa Mpray—zy) w1), 21 + €)ws. (5.3)

From ([5.2) and (j5.3]), we obtain

T3 0 (Rp(z1—2) Mpzy) 1wy (Vi (wi Bpes, —2y) Wa, 22 + €)ws)
= y3<(w2 &P(zz—m) wl)? z1 6)11]3.
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Taking the limit € — 0, we obtain

Ty 0 (Rp(z1—2) Bpea) L ) (V1 (w1 Wp(zy 2y Wa, 22)ws)

= Vs((wa Mpay—zy) 1), 21)ws,
which is the same as (5.1)). |
Proposition 5.2. Let zq, zo be nonzero complex numbers such that z; # zo but |z1]| = |29 =

|21 — 20|. Let v be a path from zy to zo — z1 in the complex plane with a cut along the
nonnegative real line. Then we have

T, © (Lw, Mp(zy) Rpa)) (we Mpry) (w1 Rp(.,) ws))

= ezlL(il)(wg &P(zz—zﬂ (w3 &p(_zl) wl)) (5.4)

fO’I" w1 € Wl, wy € Wy and wsy € Wi.

Proof. To prove (5.4), we choose € € C such that |z3| > €|, |22 + €], |22 — 21 + €| > |2z1| > 0.
Let Y, = ygp(z2>,o, V= ygp(zz),o and )y = ygp(zz_m,o be intertwining operators of types

(WQ XM p(zy) (W1 Xp(zy) W3))
Wy (W1 Bpe.,y Ws) ’

(Wz X p(zy) (W3 Bp—s) W1)>
Wo (W3 Bp—.y) W)

and

(W2 Np(zp—z) (Wi Mp(_s) W3))

Wy Wi,y W3 ’
respectively, corresponding to the intertwining maps Xp(.,), Xp(.,) and Xp(.,_.,), respec-
tively.
Using the definition of Rp(.,) and and the L(—1)-conjugation property, we obtain

(Iwy, Mp(zy) Rpe)) (Vi(w2, 22 + €) (w1 Mp(z,) ws))
= Vi(wa, 20 — 21 + €)<621L(_1) (ws Xp(—z) w))

= ezlL(_l))}l <UJ2, 29 — 21 —f- 6) (’LU3 &P(fn) wl). (55)
Using the definition of the parallel transport isomorphism, we obtain

T (e VY (wa, 25 — 21 + €) (ws Xp(—z) wi))
= 6Z1L(_1)y3(w27 29 — 21+ 6) (w3 &p(_zl) wl). (56)

From ([5.5)) and (j5.6]), we obtain

Ty 0 (Iw, Mp(z) Rper)) (Vi(wz, 20 + €)(wi Bpsy) ws))
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= BZIL(_I)yg(w27 29 — 21 + 6)(11]3 gP(—zl) wl). (57)
Taking the limit ¢ — 0, we obtain from ([5.8])

T5 0 (Lw, Mp(ay) Rpey)) (Vi(we, 22) (wy Mp(2yy ws))
= e FEVYs(wy, 29 — 21) (w3 Xp(—z) wr), (5.8)

which is the same as (5.4)).

6 Vertex tensor categories and braided tensor cate-
gories

6.1 Vertex tensor categories

We need the left and right unit isomorphisms. Given a grading-restricted generalized V-
module W, let Y be the intertwining operator of type (vx‘%;)W) given in the construction
of the tensor product V Mp,) W. Then VXp. is spanned by the homogeneous components
of Y(v,z)w for v € V and w € W. Using v = Res,z~ 'Yy (v, 2)1 and the associator formula
for the intertwining operator ), we see that homogeneous components of Y (v, z)w for v € V
and w € W are in fact spanned by elements of the form Y(1,z)w for w € W. But by
the L(—1)-derivative property, Y(1,z)w is independent of z and by the L(0)-commutator
formulas, it is homogeneous of wieght wt w if w is homogeneous. In particular, it is a well
defined element of V Mp,) W. Then Y(1,z) is a linear map from W to V Kpr) W. We
denote this map by 9. For v € V and w € W, using the commutator formula for ) and

Yv (v, 2)1 € V[[z]], we obtain
Yvw,w (v, 2)(w) = Yy, w(v, z)V(1, 2)w
= YV(1,2)Yw (v, z)w + Res,z ™9 (

=Y, 2)Yw(v,z)w
= (Y (v, x)w).

Z+T
x

) Y(Yy(v,2)1, 2)w

So 1 is a V-module map. Since Yy is an intertwining operator of type (lejv)’ (W, Yw (-, 2)-) is
a P(z)-product (W, Yy (-, z)-) of V and W. By the universal property of the tensor product
(V ®pey W, V(-, 2)-), there exists a unique V-module map ¢ : V Kp) W — W such that

Yw (v, 2)w = ¢(Y(v, 2)w) for v € V and w € W. In particular,

w =Yy (1, 2)w = oY1, 2)w) = ¢(¢(w)).

So ¢ and 1) are inverse to each other and thus are equivalences. We define the left P(z)-unit
isomorphism lyy., : V Mp.y W — W to be ¢.

We can also define the right P(z)-unit isomorphism 7y, : W Xpy V — W similarly. We
omit the details here.
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Before we prove that our category equipped with these data is a vertex tensor category,
we need to add another assumption on the covengence of products of intertwining operators.

Assumption 6.1 (Convergence of products of intertwining operators). Let Wy, Wy, ... W, 11,
Wi, ..., Wy_1 be grading-restricted generalized V-modules and )1, ..., ), ..., ), intertwin-

ing operators of types (WYVOWJ’ . (V‘;V’%Vl), . (anw_lﬂ)’ respectively. Forw, € Wi, ..., w41 €
W41 and wy € W, the series

<w(,)7yl(wlazl)"'yn(wnazn)wn—i—l) (61)
is absolutely convergent in the region |z;| > -+ > |z,| > 0 and its sum can be analytically

continued to a multivalued analytic function

F((“’/l? yl(wlv zl) e yn(wm zn)“n—i—l))

on the region
{(z1,...,20) | 2 #0,2, — z; # 0 for i # j} C C"

with the only possible singular points z; = 0,00 and z; = 2; being regular singular points.

This assumption holds when all the grading-restricted generalized V-modules involved
are C'1-cofinite.

Theorem 6.2. In the setting of Assumption if Wo, Wi, ... W,11 are Cy-cofinite, then
is absolutely convergent in the region |zi| > -+ > |z,] > 0 and its sum can be ana-
lytically continued to a multivalued analytic function with the only possible singular points
zi = 0,00 and z; = z; being regular singular points.

See [H3] for a proof of this result.

We need tensor product elements of four elements in four grading-restricted general-
ized V-modules. Let Wy, W5, W3 and W, be grading-restricted generalized V-modules. For
21, 29,23 € C satisfying |z1| > |z2] > |23] > 0, we have the tensor product V-modules
W3Bp(2p) Wa, Waldp.,y (WsBp(opy Wa) and WiKp(.,) (Waldp.,) (WsBp(.,y Wa)). let Vi, Vo, Vs
be the intertwining operators of the corresponding types such that Mp.,) = (-, 21)-,
Np(z) = Vol 22)- and Mp(.,) = V5(+, 23)-. Then by Assumption , for wy € Wy, wy € W,
ws € W3 and wy € Wy,

yl(wl, 21)y2(w27 Zz)y?,(w:s, 2’3)7114

is absolutely convergent to an element of (W Mp(.,,) Wa) Mp(.,,) Ws) Mpryy Wi We de-
fine the tensor product element wy Mp(.,) (w2 Mp(.,) (ws Mp(s,) wa)) to be this element of

W1 Rp,) (We Mp(o,) (W3 Rp(.,) Wy)). Similarly, we have other tensor product elements

(w1 Mp(zy —2y) W2) Mp(y) (w3 Wp(eyy wa) € (W1 Wpzy—p) Wa) Mp(ayy (W3 Kp(ay) Wa),
wy Mp(zyy (W2 Wp(zy—szy) w3) Wpry) wa) € Wi Rpey (Wa Wpsy—zyy Ws) Mp(ay) W),
(w1 Bp a2y (Wo Wp(ay—zg) W3)) Wp(ag) wa € (Wi Wp(zy—sg) (Wa Mpay—zg) W3)) Kpyy W,
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((wl &P(zl—ZQ) w2) @P(ZQ—Zg) w3) X’P(z;g) wy € ((W1 &P(zl—n) W2) @P(ZQ—Z?,) W3) X’P(Z3) W,

for suitable 21,25 € C*. The natural extensions of the associativity isomorphisms to the
algebriac completions of the corresponding modules in our category send such an element to
another such element. Also the homogeneous components of these elements span the tensor
product modules.

6.2 Braided tensor categories

Theorem 6.3. Under Assumptions|3.7, and[0.1}, the category of grading-restricted gen-
eralized V-modules equipped with the tensor product bifunctor X = Mp(y), the associativity
isomorphism A, the braiding isomorpism R, the unit object V and the left and right unit
1somorphisms | = 1y and r = ry is a braided tensor category.

Proof. We first prove the commtativity of pentagon diagrams for Aig?;igz; 2) and A.

We first prove the commutativity of the pentagon diagram involviﬁg these z’s. This
is in fact the prntagon diagram for vertex tensor categories. Let Wi, W5, W5 and Wy be
V-modules and let 21, 29, 23 € C satisfying

|21 > |22] > |23] > |21 — 23] > |22 — 23] > |21 — 22| > 0,
|21] > |22 — 25| + 23],
|22] > [21 — 20| + 23],
|za] > |21 — 22| + |22 — 23]

For example, we can take z; = 7, 2o = 6 and z3 = 4. We want to prove the commutativity
of the diagram:

W1 Mpy) (Wa Rp(zyy (Ws Mp(z,) Wa))

/\

(W1 Rp(z,,) W) Bp(.,) (W3 Rp(.,) Wy) W1 Bpyy (We Bp(z,q) Wa) Kp.,) Wa))

| |

(W1 ®p(z0) Wa) Rp(ay) W3) Rpay) Wa ~—— (W1 Rp,,) (W Rp(a,y) W3)) Kpa,) Wa

(6.2)

where z15 = 21 — 29 and 293 = 29 — z3. For wy € Wy, wy € Wy, w3 € W3 and wy € Wy, we
consider

wq IXP(zl) (w2 IXP(zQ) (w3 X’P(Z3) w4)) e &P(zl) (W2 gP(ZQ) (Ws IXP(ZS) W4))-

Since the natural extensions of the associativity isomorphisms send tensor products of ele-
ments to tensor products of elements, we see that the compositions of the natural extensions
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of the V-module maps in the two routes in (6.2)) applying to this element both give

(w1 Xp(z) wy) Xp(203) w3) Xp(zq) Wy € (W1 Xp(z) Wa) Xp(203) W3) XMp(zg) Wa.
Since the homogeneous components of
wn &P(zl) (w2 ®P(ZQ) (w3 &P(z;g) w4))
for wy € Wy, wy € Wy, wy € W3 and wy € Wy span
Wi Bp(y) (Wa Wp(,) (Ws Bpy) Wa)),
the diagram above is commutative.

By the definition of A, the diagrams

Wi Kp(z,) (W2 Bp(z,) (WsBpy) Wa)) —— (Wi Bp(s,,) Wa) Bp(z,) (W Bp(.,) Wa)

|

Wy R (W K (W3 K Wy)) - (W K Wa) B (W3 B W)

(W1 Rp () Wa) Mpyy (Ws Bpyy Wa) —— (W1 Kp(2,,) Wa) Bp(z,,) W3) Rp(z,) Wa

|

(W1 R W) B (W3 K W,) - (W, B W) KB W3) KW,

Wi Bp,) (Wa Bp(s,) (W3 Bpg) Wa)) —— Wi Bp(o,) (W2 Bp(ay) W) Bp(zq) Wa))

| |

Wi R (W & (W3 B Wy)) - W R (Wo B W) B W)

Wi Bpey) (We Rp(a,,) Wa) Rp,) Wa)) —— (W1 Rp(.,,) (We Rp,,) Wa)) Kp,) W

|

W K (Wa X W3) X Wy) - (WL R (W, X W3)) KW,y
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(W1 Bpary) Walp(.,,) Wa)) Mp(ayy Wa—— (W1 Bp(z,,) Wo) Mp(oy,) W3) Mp(.,) Wa

(W, R (W B W3)) B W, - (W1 R W) B W) B,

(6.7)

are all commutative. Combining all the diagrams (6.2)—(6.7)) above, we see that the pentagon
diagram

X (W3 X Wy))
(W1 X W) X (W3 X Wy) (W K W3) K Wy)
(W1 & W) B W) KWy (W1 B (W ) W3)) BW,

is also commutative.

Next we prove the commutativity of the hexagon diagrams for the braiding isomorphisms.
We prove only the commutativity of the hexagon diagram involving R; the proof of the
commutativity of the other hexagon diagram is the same. Let Wy, W5 and W3 be objects of
C and let z1, 29 € C* satisfying |z1| = |22] = |21 — 22| and let z15 = z; — 25. We first prove
the commutativity of the following diagram:

(W1 Rpz,,) W) Bp.,)

P(Zlg) P(ZQ

P(z12) IXP(ZQ Lw, P(Zl) P(22)
(Wo Rp(—z,) W) Kp(z,) Ws W1 Rpy) (W2 Kp(z,) Ws)
T
Y
(Wa Wp(—z1,) Wi) Bpz,) Ws Rp(z1)
P(=z12),P(z1)) "
(AP(ZQ)];;(ZI) ' ) i
Y
Wa Rp(.,) (W1 Mp(.,) Ws) (Wa Rp(zy) W3) Bp_.p) Wi
Ly, Mp(zy) RP(zn\
-1
P(z2),P(—=
W Bp () (Ws Bp(sy) Wh) (AP0

77\ 41

Wo Rp(—z,) (W3 Mp—.,) Wi))



(6.8)

where 7, and 7, are paths from 25 to z; and from z5 to —z19, respectively, in C with a cut
along the nonnegative real line.

Let w; € Wi, wy € Wo and ws € W3. By (4.2)), (5.1), (5.1) and the definition of Rp(.,),

the images of the element
(w1 Wp(zyy) wo) Mp(zy) ws

under the natural extension to

(W1 &P(Zu) Ws) X’P(Zz) Wi
of the compositions of the maps in both the left and right routes in from
(W1 IXP(ZH) Ws) X’P(Zz) Wi

to
W Bp(—z1) (W3 Bp(—z)) Wh)

are
ezlL(_l) (U)Q IXP(—zlz) (w3 IEP(_Zl) U)l))

Since the homogeneous components of
(w1 Mp(zry) w2) Bp(y) ws
for wy € Wy, wy € Wy and wsg € W3 span
(W1 Mp(zyy) Wa) Mp(.y) Wi,

the diagram commutes.
Now we consider the following diagrams:

(Wl &p(Zm) Wg) &p(ZQ) Wg —_— (Wl X Wg) X W3

| | (6.9)

(W2 &P(*le) Wl) &p(@) W3 — (W2 X W1> X W3
(WQ &p(_Zm) Wl) &p(@) Wy —— (WQ X Wl) X W,

l l (6.10)

(WQ IXP(*Z12) Wl) &P(n) Wy —— (W2 X Wl) X W,
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(WQ &p(_ZU) Wl) IEP(Zl) W3 — (WQ X W1> X W3

| | (6.11)

Wo Mpy) (Wi Wpy Ws) —— Wy (W X W3)

W2 &P(zz) (Wl ®P(21) Wg) e W2 X (Wl X Wg)

| | (6.12)

W2 &p(zz) (Wg &P(—zl) Wl) —_— W2 2 (Wg X W1>

(Wl &P(zm) WQ) &P(Q) W3 — (Wl X Wg) X W3

l l (6.13)

W1 &p(zl) (W2 ®P(Z’2) Wg) — W1 X (W1 X Wg)

W1 &p(zl) (W2 ®P(Z2) Wg) —_— W1 D (W1 X Wg)

| | (6.14)

(WQ IEP(ZQ) Wg) &p(_zl) W1 — (W2 X Wg) X W1

<W2 IEP(ZQ) Wg) IEP(*Zl) W, — <W2 X Wg) X Wi

l l (6.15)

W Wp(—zy) (Wa Bp(—zy) Wh) —— W (W5 KIW,)

Wy Xl1;'(*7«’12) (W?’ &P(*Zl) Wl) — WK (W3 X Wl)

| | (6.16)

W2 &p(zz) (Wg &p(,zl) Wl) E— W2 X (Wg X Wl)
The commutativity of the diagrams (6.9), (6.12) and (6.14) follows from the definition of the

commutativity isomorphism for the braided tensor category structure and the naturality of
the parallel transport isomorphisms. The commutativity of (6.11)), (6.13]) and (6.15)) follows
from the definition of the associativity isomorphism for the braided tensor product structure.
The commutativity of and follows from the facts that compositions of parallel
transport isomorphisms are equal to the parallel transport isomorphisms associated to the
products of the paths and that parallel transport isomorphisms associated to homotopically
equivalent paths are equal. The commutativity of the hexagon diagram follows from

(63) (6.10).

43



(W1 R Wa) B Wy

R X 1y, At
(Wo R W) R W3 Wy R (Wy X W3)
A1 R
Y Y
Wo ) (W) X W3) (Wo ¥ W3) KW,
lw, ¥R At

Wy B (W3 K W)

(6.17)

We now prove the commutativity of the triangle diagram for the unit isomorphisms. Let
z1 and zy be complex numbers such that |z;| > [z2] > |21 — 22| > 0 and let 215 = 21 — 2.
Also let v be a path from 25 to 2z; in C with a cut along the nonnegative real line. We first

prove the commutativity of the following diagram:

( P(Z12)»P(Z2))71
P(z1),P(z32)

(W1 gP(m) V) &P(ZQ) Wy > Wi gP(zl) (V X’P(zQ) W)

TZ12%W1®P(22)1W21 llW1&P(Z1)lW2

Wi &p(@) Ws T> Wi &p(zl) Ws.

Let wy € W; and wy € W5, Then we have

P(z1—22),P(z2)\ _
(Iwy Bp(ay) Leyy) © (Ap( 00 2) 71 (w1 Bp(ayy) 1) Bp(ey) w2)

= (1w, Mp(zy) Loy ) (w1 Mpeey) (1 Wp(ay) wa)
= wn p(21) wy.

But

Tariy Mp(y) Ty (W1 Bp(zp) 1) Kp(ay) wa)
= (6212L(71)w1) &p(zz) Wy.
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corresponding to the

Let YV = V,. 0 be the intertwining operator of type (Wﬁ’:('wzw2)

P(z)-intertwining map Xp.,). Then by the definition of the parallel transport isomorphism
and the L(—1)-derivative property for intertwining operators, we have
T2 V) Bpey)y wa) = Y2 Vwy, 20)w,

y(thl)wz
= w &p(zl) Way. (6.21)

Smce the elements (w; Mp(.,,) 1) Mp(,) w3 for wy € Wy and wy € Wy span (W) Mp(.,,)

) Mp(zy) Wi, - - give the commutativity of (6 -

Let 71 be a path from 2; to 1 in C with a cut along the nonnegative real line. Let v, be
the product of v and ~;. In particular, 75 is a path from z; to 1 in C with a cut along the
nonnegative real line. Also let 715 be a path from 25 = 21 — 25 to 1 in C with a cut along
the nonnegative real line. Then we have the following commutative diagrams:

A—l

TWEIO(TwI%@p(Q)l%)l lﬂIIO(lwlgmmTw}l) (6.22)
(W1 X p(z12) V) Xp(zy) Wo - » Wi lpe,) (V D p(z) Wa).
(A (212)7P(Z2)) 1
P(z1),P(232)
o( T, iR
(W1 RV) X W, oTvy) (W X p(210) V) Xp(z) Wa
W1|Z1W2l lTWIgP(Zz)IM@ (623)
Wi X W, e Wi &p(@) Ws.

—1
Tog

Ty °(1W1 ‘XlP(zl)T“/z)

Wi Mp(zy) (Wa Mp(,) Wa) » WKV K Wy)
1W1®P(ZI)ZW2J/ J{lWﬂZ’lWQ (624)

Wy &p(zl) Wo 7_—> Wy X Ws.

Ty
Wy p(ZQ) Wy —— Wi &p(zl) Wy
- l Jﬂl (6.25)

Wi X W = Wi X Wj.

The commutativity of (6.22)) follows from the definition of A. The commutativity of (6.23))
and (/6.24]) follows from the definition of the left and right unit isomorphisms and the parallel
transport isomorphisms. The commutativity of (6.25) follows from the fact that v is the

product of v and ;. Combining (6.18) and ([6.22)—(6.25)), we obtain the commutativity of

the triangle diagram for the unit isomorphisms.
Finally, it is clear from the definition that Iy, = ry .
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Thus we have proved that the category C equipped with the data in the theorem is a
braided monoidal category. |

7 Modular invariance of intertwining operators and
the Verlide formula

In this section, we assume that every grading-restricted generalized V-module is completely
reducible. In particular, every grading-restricted generalized V-module is an ordinary V-
module (grading-restricted and L(0)-semisimple).

7.1 Modular invariance of intertwining operators

We first recall geometrically-modified intertwining operators from [H4| (see also [HS|). Given

an intertwining operator ) of type (WYVI‘}/Q) and w; € Wi, we have an operator (actually

a series with linear maps from Wy to Wj as coefficients) Vi(wy, z). The corresponding
geometrically-modified operator is

yl (U(QZ>wl7 qz)a

where ¢ = ¢>™* U(q.) = (2miq.)"De~L" A and A; € C for j € Z, are defined by

1 ., 0
) — i1 9
5 log(1 4 2miy) = | exp jEEZ Ay’ 9 Y.
+

See [H4] for details.

We assume the convergence and extension property of g-traces of products of geometrically-
modified intertwining operators and the modular invariance of the spaces of the analytic
extensions of such g-traces:

Assumption 7.1. Let Wy, ..., W, be irreducible ordinary V -modules.
1. Lezfvwl, e ,@ be ordinary V-modules and Yy, ..., YV, intertwining operators of types

Wo Wp—1 . . o
(Wlwl)’ cee (Wan), respectively, where we use the convention Wy = W,,. For w; €

Wl,...,wnEWn,

L(0)—&
Trgp, VU(g2) w1, ¢2,) -+~ VoW (g, w42, )gr

is absolutely convergent in the region 1 > |q.,| > ... > |q.,| > |¢-| > 0 and can be

extended to a multivalued analytic function
Fy17-~~7yn,(w17 ceey Wni 21y -+ 45 2y 7—)-

in the region (1) >0, z; # z; + L +m7 fori#j, l,m € Z.
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2. For wy € Wy,...,w, € W, let Fy, . w, be the vector space spanned by functions of
the form

¢
Fyl,‘..,yn(wl» ceey Wni 21y - -y 2y 7—)

for all ordinary V-modules Wl, e ,Wn, all intertwining operators Y1, ..., YV, of types
( "o ), e (W"’1 ), respectively. Then for

WiWy W Wh,
a B
( v 6 ) € SL(2,7),

= 1\ 1\ 21 Zn QT+
wy, ..., Wy ———, .. ;
oI\ \ 7 46 b YT +6 YT +0 YT+ AT+

15 1M Fupy,.oop -

Theorem 7.2 (H. 2003[H4]). Assume that V is of positive energy, Ca-cofinite and assume
in addition that every grading-restricted generalized V -module is completely reducible. Let

Wi, ..., W, be a complete set of representatives of irreducible V -modules. Then Assumption
holds.

7.2 Verlinde formula

To prove the rigidity and nondegeracy property in the next section, we need the Verlinde
formula, or more precisely, some formulas obtained in [MSI] and [MS2] and proved in [H5|.
In this subsection, we give a proofs of these formulas under suitable assumptions.

We assume that every low-bounded generalized V-module is a direct sum of irreducible
(grading-restricted) V-mdoules. Then one can prove that there are only finitely many irre-
ducible ordinary V-mdoules. Let {W®},c4 be a complete set of representatives of equivalence
classes of irreducible (grading-restricted) V-modules. Then A is a finite set. We also assume
that V is irreducible. Then there exists e € A such that W€ is equivalent to V. We shall
take W* to be V.

We assume in addition that V' as a V-module is equivalent to V. This assmption is
equivalent to the existence of a nondegenerate invariant bilinear form (see [FHL]).

Since the contragredient module of an irreducible V-module is also irreducible, we have
amap’: A — A, ar d such that for a € A, (W?)' is equivalent to W'

For a1, az,a3 € A, let Vg3, be the space of intertwining operators of type (WZY:;@)- For
ai,az, a3 € A, we have isomorphisms Q_, : Vg3, — V32 and A_, : V33, — V:fa, for r € Z.
3

Using these isomorphisms, we define a left action of the symmetric group S3 on
v=J] v,
a1,a2,a3€A

as follows: For ay,as,a3 € A, Y €V, , we define

012(32) = 67”‘A(y)971 (J})
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— e—wiA(y)QO(y)7
ox(Y) = et Ay
— e—m’hal AO

Proposition 7.3. The actions 012 and 093 of (12) and (23) on V defined above generate an
action of S3 on V.

We also assume that the fusion rules among irreducible V-modules are finite. In partic-

ular, for a1, ay, a3 € A, we can find a finite basis of the space Vg3, of intertwining operators

wa3 . . a3 as
of type (W“1W“2)‘ For ay,as,as # e, we choose an arbitrary basis {ym%k}k:lNalaQ, where

Ngs,, = dim Vg3, is the fusion rule. For a € A, we choose V¢, | to be the the vertex oper-

ator Yy« defining the module structure on W* and we choose V., to be the intertwining

operator defined using the action of gy5, or equivalently the skew-symmetry in this case,

vet (Wa, W)U = 012(Vegy ) (Wa, ¥)u
- 62L(71) ga;l(”? —Z‘)U)a

= VY (u, —2)w,

for u € V and w, € W*. Since V' as a V-module is isomorphic to V', we have ¢’ = e. From
[FHL], we know that there is a nondegerate invariant bilinear form (-,-) on V' such that
(1,1) = 1. We choose Vs, = y;;,;l to be the intertwining operator defined using the action
of o93 by

Viwa = 023(Veea):
that is,

(t, Vs (Wa, 2)wer) = €™ (Vi (" (™2™ Oy, 7w, war)

foru € V, w, € W* and wy € W®. Since the actions of 015 and o3 generate the action of
S3 on V., we have

ys/a;l = UlQ(ySa/ﬂ)
for any a € A.

8 Rigidity, twists and modularity

In this section, we give proofs of the rigidity, the twists and the proof of nondegeneracy
property.
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8.1 Rigidity
8.2 Twisted

8.3 Nondegeneracy property
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