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Abstract

We prove the Verlinde conjecture in the following general form: Let
V be a simple vertex operator algebra satisfying the following condi-
tions: (i) Viny = 0 for n < 0, V(o) = C1 and V' is isomorphic to V'
as a V-module. (ii) Every N-gradable weak V-module is completely
reducible. (iii) V is Co-cofinite. (In the presence of Condition (i),
Conditions (ii) and (iii) are equivalent to a single condition, namely,
that every weak V-module is completely reducible.) Then the ma-
trices formed by the fusion rules among the irreducible V-modules
are diagonalized by the matrix given by the action of the modular
transformation 7 — —1/7 on the space of characters of irreducible
V-modules. Using this result, we obtain the Verlinde formula for the
fusion rules. We also prove that the matrix associated to the modular
transformation 7 — —1/7 is symmetric.

0 Introduction

In the present paper, we formulate and prove a general version of the Ver-
linde conjecture and prove the Verlinde formula for fusion rules using the
representation theory of vertex operator algebras.

The Verlinde conjecture [V] in conformal field theory states that the ac-
tion of the modular transformation 7 — —1/7 on the space of characters of a
rational conformal field theory diagonalizes the fusion rules. Except for some
particular examples (see below), the general Verlinde conjecture has been an
open problem for twenty years. In [MS1], Moore and Seiberg showed on a
physical level of rigor that this conjecture follows from the axioms for rational
conformal field theories (see [K], [S1], [S2] and [S3] for axioms for conformal



field theories and [MS2] for axioms and assumptions for rational conformal
field theories on a physical level of rigor). Axioms for rational conformal
field theories are in fact much stronger than statements such as the Verlinde
conjecture. The work [MS1] [MS2] of Moore and Seiberg greatly advanced
our understanding of the structure of conformal field theories. However, it
is a very hard problem to actually construct theories satisfying these axioms
mathematically and therefore the existence of rational conformal field theories
is a very strong assumption. In fact, the construction of full rational con-
formal field theories, especially the hard part of verifying the axioms, need,
among many other things, the Verlinde conjecture (see [HK1] and [HK2]).

Assuming that the axioms for higher-genus rational conformal field theo-
ries are satisfied, the Verlinde conjecture leads to a Verlinde formula [V] for
the dimensions of the spaces of conformal blocks on higher-genus Riemann
surfaces. In the special case of the conformal field theories associated to
affine Lie algebras (the Wess-Zumino-Novikov-Witten models), this Verlinde
formula gives a surprising formula for the dimensions of the spaces of sec-
tions of the ”generalized theta divisors” and has given rise to a great deal of
excitement and new mathematics. See the works [TUY]| by Tsuchiya-Ueno-
Yamada, [BL] by Beauville-Laszlo, [F] by Faltings and [KNR] by Kumar-
Narasimhan-Ramanathan for details and proofs of this particular case of the
Verlinde formulas.

In this paper, using the results on the duality and modular invariance
of genus-zero and genus-one correlation functions, especially those obtained
recently in [H6] and [H7], we formulate and prove a general version of the Ver-
linde conjecture in the framework of the theory of vertex operator algebras,
which were first introduced and studied in mathematics by Borcherds [B] and
Frenkel-Lepowsky-Meurman [FLM]. Our theorem assumes only that the ver-
tex operator algebra we consider satisfies certain natural grading, finiteness
and reductivity properties (see below). This result is part of a program to
mathematically construct conformal field theories in the sense of Kontsevich
[K] and Segal [S1] [S2] [S3] from representations of vertex operator algebras.
It will be a main step towards a mathematical proof of the Verlinde formula
for the dimensions of conformal blocks on higher-genus Riemann surfaces for
conformal field theories other than the Wess-Zumino-Novikov-Witten mod-
els.

To state our main result, we need to discuss briefly matrices formed by
fusion rules and modular transformations. Let V' be a simple vertex operator
algebra satisfying the following conditions: (i) V(,) = 0 for n < 0, V(o) = C1
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and V' is isomorphic to V' as a V-module. (ii) Every N-gradable weak V-
module is completely reducible. (iii) V' is Cy-cofinite (that is, dim V/Cy(V) <
oo where Cy (V) is the subspace of V spanned by u_ov for u,v € V. By results
of Li [Li] and Abe-Buhl-Dong [ABD], Conditions (ii) and (iii) are equivalent
to a single condition that every weak V-module is completely reducible. Let
A be the set of equivalence classes of irreducible V-modules. For a € A, we
choose a representative W in a such that W€ = V where e is the equivalence
class containing V.

For ai,az,a3 € A, let N§3, = N, be the corresponding fusion
rules, that is, the dimensions of the spaces of intertwining operators of types
(WZY;:}%) (see [FHL]). For a € A, let N(a) be the matrix whose entries are
Ng2 for ay,ay € A, that is,

N(a) = (N2).

aal

For a € A, we have the characters TrWaqTL (0)_20_4, also called shifted graded

dimensions, where ¢, = €™ and 7 € H. In [Z], Zhu proved under certain
conditions that the maps given by

£

u = Trye Yiye (QQWzL(O)u’ e27rz)q7l_/(0)— >

for u € V, where a € A, are linearly independent and there exist 532 € C
for ai,as € A such that

Tz 1 T2 — <
TrWal YW”’l (e 27' L(O) (__) u, 62T> qL(O) 24
T —

1
=

_ Z ngT‘rWa2YWa2(e2“L(0)u, ezm)qTL(O)—;j'

a2€A

in [DLM], Dong, Li and Mason improved Zhu’s results above by showing that
they also hold under the conditions (slightly weaker than what) we assume
in our paper. In partiuclar, when v = 1, we have

T‘I‘VVMQf(lO)_ﬂ = Z SglzTrW%CZf(O)_ﬂ.
" a2€A

Now we can state the main result of the present paper: The matrix
S = (S22) diagonalizes N (a) for a € A. See Theorem 5.2 for a more complete
and precise statement. Using this result, we obtain the Verlinde formula for
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the fusion rules for such a vertex operator algebra. We also prove that the
matrix S is symmetric.

Note that fusion rules and modular transformations of characters were al-
ready defined mathematically for suitable vertex operator algebras by Frenkel-
Huang-Lepowsky in [FHL] using intertwining operators and by Zhu in [Z]
using his modular invariance theorem, respectively. The Cs-cofiniteness con-
dition was also introduced in [Z]. These are already enough for the mathe-
matical formulation of the general version of the Verlinde conjecture proved
in this paper. Further results on intertwining operators and modular invari-
ance were obtained in [HL1]-[HL4] by Huang-Lepowsky, in [H1], [H2] and
[H5] by the author, in [DLM] by Dong-Li-Mason and in [M] by Miyamoto.
However, the proof of the Verlinde conjecture in the present paper requires
much stronger results than these. We need the duality and modular invari-
ance properties for genus-zero and genus-one multi-point correlation functions
constructed from intertwining operators for a vertex operator algebra satis-
fying the conditions above. These properties have been proved recently in
[H6] and [H7] by the author so that the proof of the Verlinde conjecture in
the present paper has now become possible.

The main content of the present paper is to establish mathematically
certain formulas needed in the proof of the Verlinde conjecture. Most of
the formulas were first obtained on a physical level of rigor by Moore and
Seiberg [MS1] [MS2] using the (assumed) axioms for rational conformal field
theories. In the present paper, our formulations and proofs are based on
the results obtained in the theory of vertex operator algebras. We use only
those results which have been established mathematically and we do not
assume that all axioms for rational conformal field theories hold. In [MS1]
and [MS2], Moore and Seiberg discussed many of the subtle technical details
using examples such as the minimal models. Many of these discussions cannot
be generalized to general cases. For example, in [MS1] and [MS2], spaces of
chiral vertex operators (intertwining operators) are identified with tensor
products of spaces of lowest weight vectors in modules. This identification
allows them to give an S3 action easily on the direct sum of these spaces and
the formulas obtained in [MS1] and [MS2] depend heavily on this action. It is
known that in general spaces of intertwining operators cannot be identified
with tensor products of spaces of lowest weight vectors and thus, even if
we assume that all axioms for rational conformal field theories hold, the
method based on particular examples in [MS1] and [MS2] cannot be directly
adopted to establish the formulas we need. In the present paper, we define
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this action of S3 using the skew-symmetry for intertwining operators and
the contragredient intertwining operators in [FHL] and [HL2] and prove all
the results and formulas needed. There are other examples similar to this
one in the present paper. In this sense, even if we assume that all axioms
for rational conformal field theories hold, the formulas and results stated in
[MS1] and [MS2] are actually conjectures and in the present paper we give
mathematical proofs.

The results of the present paper have been used in [H10] to prove the
rigidity and modularity of the tensor category of modules for a vertex opera-
tor algebra satisfying the conditions mentioned above. They have also been
used in the constructions of genus-zero and genus-one full conformal field
theories in [HK1] and [HK2]. The results of the present paper have been
announced in [H8] and [H9]. See also [Le] for an exposition.

We assume that the reader is familiar with the basic theory of vertex op-
erator algebras as presented in [FLM], [FHL] and [LL]. We also assume that
the reader has some basic knowledge in the theories of intertwining opera-
tors, tensor products, composition-invertible formal series and the Virasoro
algebra, and the modular invariance, as developed in, for example, [DLM],
[HL1]-[HL4], [H1]-[H7], [M] and [Z].

The present paper is organized as follows: In Section 1, we state our basic
assumptions and we discuss intertwining operators and genus-zero correla-
tion functions constructed from them. An action of S3 on the direct sum
of spaces of intertwining operators among irreducible modules are also given
in this section. In section 2, we discuss geometrically-modified intertwining
operators and genus-one correlation functions constructed from these oper-
ators. The modular transformation associated to 7 — —1/7 is recalled in
this section. Section 3 is devoted to the proof of three formulas for braiding
and fusing matrices. Using all the results obtained in Sections 1, 2 and 3, we
prove two formulas derived first by Moore and Seiberg from the axioms for
rational conformal field theories in Section 4. Finally in Section 5, we prove
the Verlinde conjecture, the Verlinde formula for fusion rules and that the
matrix associated to the modular transformation 7 — —1/7 is symmetric.

Notations In this paper, i is either y/—1 or an index, and it should be easy
to tell which is which. The symbols N, Z, Z, Q, C, C* and H denote the
nonnegative integers, positive integers, integers, rational numbers, complex
numbers, nonzero complex numbers and the upper half plane, respectively.



We shall use z, vy, ... to denote commuting formal variables and z, 21, 2, ... to
denote complex numbers or complex variables.
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1 Intertwining operators and genus-zero cor-
relation functions

Let V' be a simple vertex operator algebra and Cy(V') the subspace of V
spanned by u_ov for u,v € V. In the present paper, we shall always assume
that V satisfies the following conditions:

1. Viny = 0forn <0, V(o) = C1 and V" is isomorphic to V" as a V-module.
2. Every N-gradable weak V'-module is completely reducible.
3. V is Cy-cofinite, that is, dim V/Cq(V) < 0.

Note that when V,) = 0 for n < 0, V(o) = C1, V' is isomorphic to V" as a
V-module if for any irreducible V-module not isomorphic to V', Wy = 0. So
the results of the present paper still hold if Condition 1 above is replaced by
the condition V{,,y = 0 for n < 0, V(¢y = C1, and Wy = 0 for any irreducible
V-module not isomorphic to V. As we have mentioned in the abstract and
introduction, by results of Li [Li] and Abe-Buhl-Dong [ABD], Conditions (ii)
and (iii) are equivalent to a single condition that every weak V-module is
completely reducible.

From [DLM], we know that there are only finitely many inequivalent
irreducible V-modules. Let A be the set of equivalence classes of irreducible
V-modules. We denote the equivalence class containing V' by e. Note that
the contragredient module of an irreducible module is also irreducible (see
[FHL]). So we have a map

A - A
a — a.

For a € A, if a # d/, we choose representatives W and W of a and
@' such that (W®) = W and, after we identify (WW¢)” with W, we also
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have (W®) = We. If a = o’ # e, we choose any nondegenerate symmetric
bilinear invariant form on W% and using this form, we can identify (W?®)’
with W¢ (and (W®)" with W). For a = e, we choose the nondegenerate
symmetric bilinear invariant form (-,-) normalized by (1,1)=1. Since the
results of the present paper involve only elements of A, not representatives
of these elements, it is convenient to identify V-modules and their double
contragredient modules and to identify (W) with W and (W) with
W using the chosen nondegenerate bilinear invariant forms. After these
identifications, we see that we can find a representative W% of a for each
a € A such that W¢ =V and (W)’ = W¢. In this paper, for simplicity,
we fix such a choice. From [AM] and [DLM], we know that irreducible V-
modules are in fact graded by rational numbers. Thus for a € A, there exists
he € Q such that W* = Hneha+N Wny and Wig,) #0.

For ay,a,a3 € A, let Vg3, be the space of intertwining operators of type

(WZY;?}Q). For any Y € V3, , we know from [FHL] that for w,, € W and
Wq, € W2

Y (Way, #)wa, € 25PN W [z, 7], (1.1)
where

A(y) = h’as - h’a1 - ha2'

In the present paper, we shall use the following conventions: For z € C*,
logz = log|z| + iargz, where 0 < argz < 27. For z € C* and r € C,
2" = €87 Forn € Z and s € C, (€")® = . Similarly, for 2 € C* and
O an linear operator, 20 = e(1982)0  if ¢(1°62)0 ig well-defined. For n € Z and O
a linear operator, (€")9 = "0 if ¢"™0 ig well defined. For ay,ay,as € A,
ze€CLreC Y eVs,, w, € W4 and w,, € W%, Y(wg,, 2)Wa, is
y(walﬂ x)waz ‘m":e"IOSZ, neC and y(wal’ erx)waz is y(wal ’ y)wa2 |y"=€m$"7 neC by
the conventions above.

We also know that the fusion rules N2, = NyJaly e, for ai, a0, a3 € A are

all finite (see [GN], [Li], [AN], [H6]). For a1, as, as € A, we have isomorphisms
Qo 2 V2, = Vig,, and A, 1 Vi, = V,?, for r € Z, defined in Section 7
of [HL2|. Using these isomorphisms, we define a left action of the symmetric

group S3 on
v= [ v=,

a1,02,a3€A

as follows: For a1,as,a3 € A, Y € V% we define

aijaz?

012()/) = emA(y)Q—l (y)
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_m'A(y)QO (y)’

= e
o3(Y) = €A (D)
e_mh“lAO(y).

Proposition 1.1 The actions o1o and 023 of (12) and (23) on V defined
above generate an action of S3 on V.

Proof. We need only prove the relations which must be satisfied by o1 and
023 Propositions 7.1 and 7.3 in [HL2| are actually equivalent to o7, = 1 and
o35 = 1, respectively. So the only relation we need to prove is

012023012023 = 023012. (1.2)

Let ) be an element of V%

2,- Then for w, € W, w,, € W,, and
wa3 € Wag,

(023(012(Y)) (Way, )W, , W, )
= "2 (W), 515 (V) (€™ (e ™z ) Oy, , 27w, )

_ mi(haz—ha z L L(-1 —mi,,—1Y ,zL(1) ( ,—mi,,,—2\L(0
= emilhes~har) (! ™ DY (wg,, e M) et (e iy 2) H Oy, ).

On the other hand,

(012(093(012(023(V)))) (Was, )Wy, , Way )

= e hea~has) (PN 504 (019 (003(V))) (why, € ™) Way, W, )
_ grither —has)

(Way, 012(023 (Y ))( —HEW (e (e ) T2 MO e e Wy, )
— o Tihag (w@,e_f 0_23();)(6zL(1 Way, & Ve xL(1)(emac )L(O) w))
— ¢milhay —hag) <y( z7iL(1 )(e—wz(x 1)—2)L( )emL(l)wal’m)e—z_ (1)wa2’

e =L (erig 210y

= emilhay o) (y] | (emig2) 0= L(-1)

_y(ew—lL(l) (6—m’x2)L(0)6wL(1)wa1 ’ x)e—w_lL(l)wa2>

z~1L(-1) (emx72)L(0) .

.y(e:c’lL(l) (67w1x2)L(0)ewL(1)wa1 , x)efw*IL(l)wa2>

_ mi(ha;—h - 10(-1
— e ( aq a3 <wa3’ ( ) .

_ mi(hg; —h
= e ( aq ag <wa3,



y((emx—Z)L(O) z~ (1)(e—m'a:2)L(0)eacL(1)wal’ em'x—l) .

. (67rix72)L(0)ef:c—1L(1)wa2>

= s o) (wf e MDY, e T e O (e T )M 0u,,). (14)

a3’

From (1.3) and (1.4), we obtain

(023(012(Y)) (Way, T)Ways Way ) = (012(023(012(023(V)))) (Way, T)Wey, Way )-

Since a1, az, a3, Wa,, Way, Wy, and Y are arbitrary, we see that (1.2) holds. B

For p=1,...,6 and a,as,a3 € A, let y;‘f;w wyi=1,...,N%, . be bases
of Vg3, . From Thereom 3.9 in [H6], the space Hae AW has a natural struc-

ture of an intertwining operator algebra in the sense of [H4] and [H5]. In
particular, we have the associativity of intertwining operators (see (14.55) in
[H1], Condition (vii) in Definition 3.1 in [H4] and Axiom 3 in Definition 2.1
in [H5]). Thus there exist

as;(1 a , . a4; 3 ae;
FYeil) @ yusi®) yuuit) @ yesthy e ©

for ai,...,0¢ € A, 1 = Ngf%a .7 = 1) Ngjag’ k = Nglﬁaa’
I=1,...,NZ,., such that

<waﬁp ygfé(g, z(wau Zl)y;l:&(s g (waw 22)wa3>

Ng8ay Natas
_ a4, a53(2) , v,04;(3) a6;(4)
Z Z Z alasz ®ya2a3,]’ya6a3l ®ya1a2, )
ag€A k=1 I[=1
CL4,(3) aﬁ;(4)
'<waiu yaeag;l (yalag;k(wal » Rl — Z2)wa27 ZQ)wa:z) (1'5)

when [z1| > |z9| > |21 — 22| > 0, for ay,...,a5 € A, w,, € W, w,, € W,
Wy € W, wy, € W% = (W), i=1,...,N4, and j=1,...,N2%, . Note
that here we have used our convention on the choices of values of intertwining

operators. The numbers
H 7 . (3 5 4
F(Vaiaa © Vagag Yasagd ® Yaragik)

are matrix elements of the fusing isomorphism. In [H5], when these four
bases are chosen to be the same, these matrix elements are denoted as

Fi%l(ay, as, as; a4). In the present paper, since we want to emphasize their



dependence on the bases and since we shall need matrix elements of the fus-
ing isomorphism under different bases, we have to instead use the notation
above.
The fusing isomorphism is invertible. Thus for any bases as above, there
exist
F (y;l;&sz ® yff(;Q b Vet ® )7;125,;3 J) eC
for ay,...,a6 € A, i = 1,...,N* 4§ =1,...,N% 'k =1,..., N%

aias’? a2a3? ai1a2’?
— a4
I=1,...,Ng,.,, such that

<waﬁlv y;z;;;glg (y;lfz;z(f;c (wm’ Rl ZQ)wazv 22)w03>

a1a5 a2a3

(1) 3(2) . ; (4
=% Z FH(Yml) @ Ve Y @ yast) -

as€A 1=1 =
-<wa;, ys;z?i (Way» 21) Veri) (way, 22)Was) (1.6)
when |21]| > |zg| > |21—22| > 0, foray,...,a4,a6 € A, Wy, € W™, w,, € W,
Way, € WS, wy, € W = (W), k =1,...,N&, and | = 1,..., N4 .

These numbers are matrix elements of the inverse of the fusing isomorphlsm
By Lemma 4.1 in [H5] or by the differential equations given by Theorem
1.4 in [H6], we know that

(e, Vo) (way, 21) Vo2 (way, 20) g ), (1.7)
(3 (4
(e, VIO Y2 (way, 21 — 22)Way, 22)Way)), (1.8)
(B (6
(W, V25O, (wag 22) V2O (way, 21 Y0 (1.9)

can all be analytically extended to multi-valued analytic functions on
M? ={(z1,2) € C* | 21,20 # 0, 21 # 22}

We can lift multi-valued analytic functions on M? to single-valued analytic
functions on the universal covering M? of M?. However, these single-valued
liftings are not unique. To obtain a unique lifting, we have to give single-
valued branches of the multi-valued analytic functions in simply-connected
subsets of M?2.

Consider the following three regions:

M?(Jz1] > |22] > 0, 0 < arg z;, arg 29 < 27); (1.10)
M?*(|z2| > |21] > 0, 0 < arg z;, arg 29 < 27); (1.11)
M?(|z9] > |21 — 22| > 0, 0 < arg o, arg(z; — 2) < 27). (1.12)
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These are, respectively, the region |21| > |23| > 0 with cuts along the real lines
in the 2z;- and zo-planes; the region |23 > |21] > 0 with cuts along the real
lines in the z;- and zo-planes; the region |z5| > |21 —22| > 0 with cuts along the
real lines in the z9- and z; — z3-planes. The multi-valued analytic extensions
of (1.7) and (1.8) have single-valued branches (1.7) and (1.8), respectively, on
(1.10) and (1.12), respectively. Thus we have the corresponding single-valued
analytic functions on M?2. We denote these analytic functions by

E({way, Vris ) (way 1) Vosico) (Way 2)0as )
and
aq;(3 a6;(4
E(<wa'4: yaga(s;g (yafa(-z;gc(walﬁ 21— ZQ)waw ZQ)waE,))a

respectively.
Then from (1.5) and (1.6), we immediately obtain

a4; a 72
E(<waﬁu yafa(s Z(walﬂ Zl)ya;a(s ;(waz’ Z2)wa3>)

Ng$a, N%a3
_ a4, ® yas,(Z ya4, (3) ® yaﬁ, )
- a1a5, aza3;j? Y agas;l aiaz;k
ag€EA k=1 1

=
a i( ae;(4
B ((way, VS D2 (way, 21 — 22)Way, 22)Wa0))  (1.13)

and

aq;(1 ae;(2
E((wa, Ve (V25D (w0, 21 — 20)Ways 22)Was))

Natag Nabag " o “
a‘ ) ae; a4; as;
- Z Z Z F a:as Ry yafaz, yafa5 i ® ya;a,e,,])
as€A =1 j=1
E({wa, Y (w,,, 20) V5D (w,,, 20)way)). (1.14)
a47 aias;t al 1 aza3;j a 2 as -

From a single-valued analytic function f on M- 2 we can construct other
single-valued analytic functions on M? such that they and f correspond to
the same multi-valued analytic functions on M?. One particularly interesting
construction is given by a braiding operation. To give this construction, we
need only give a single-valued branch of the multi-valued analytic function
on M? corresponding to f on a simply-connected region in M 2. We can view
the region (1.11) as a simply-connected region in M?2. Thus f gives a single-
valued function on this region. For any r € Z, we now give a single-valued
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analytic functions on the region (1.10) in the following way: Consider the

path
3 e(2r+1)7rit 3 e(2r—|—1)7rit
bt (2 - ———— S ———
<2 2 2 2 )
from the point (1,2) in the region (1.11) to the point (2,1) in the region
(1.10). This path and the restriction of f to the region (1.11) gives a unique
single-valued analytic function on the region (1.10). This single-valued ana-
lytic function on this simply-connected region determines uniquely a single-
valued analytic function B (f) on M? such that f and B")(f) correspond
to the same multi-valued analytic function on M?2.
We now consider (1.9). From the discussion above, we have a single-
valued analytic function

HE (6
E({way, YO (way, 20) V) (way 21)0a5))

on M?2. Apply our construction above, we obtain another single-valued ana-
lytic function

r aq;(3 ae;(4
BO(B((way, V) (way, 22) V2 (tay 21)as)))

on M2. In terms of these functions, the commutativity for intertwining
operators (see Theorem 3.1 in [H2] and Proposition 2.2 [H5]) can be written
as

r a4; as;(2
BO(E((way, Vel (way, 20) Vi) (way, 21)1ay)))

a4 a6
Na2a6 Na1a3

5(1) i(2) . ; (4
=> > Z BO(Viiah ® Varicss Vs ® Yieus) -
aﬁEA k=1 =1
(3 (4
B (W, Veri®) (way, 21) Vesil) (way , 22)10a,)),
where the numbers
1 1 ) 3 5 4
B( )(ysfa(mz ® yl(llzsas,]’ y((zl;ae, ik ® y;lfag l)

are the matrix elements of the braiding isomorphism.
From the construction above, it is easy to see that the square (B()? of
B is actually the map sending a single-valued analytic function f on M?
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to another one (B()2(f) corresponding to the same multi-valued analytic
functions on M? in the following way: Consider the path

3 62(2r+1)7rit 3 62(27‘+1)7rit
¢ 4 - 2z
~ (2 T ) 2 )

from the point (2, 1) to itself. This path and the restriction of f to the region
(1.10) gives another single-valued analytic function on the same region. This
new single-valued analytic function on the region (1.10) gives a single-valued
analytic function (B™)2(f) on M2. From this description of (B™)2(f), we
see that (B()2(f) is in fact the monodromy of the multi-valued function
corresponding to f given by log(z; — z2) > log(z1 — 22) + 2(2r + 1)7i

We shall also use similar notations to denote the matrix elements of the
square (B™)? of B") under the bases above as

r a4; as;(2 aq; a6;
(B( )) (yaf%, ® yaja(g;z’ yafae, ® ya;as,])

that is,

r a7 as; a,3 a54
- Z Z B( afasz ®ya25a3 ]’yafa(fw@ya;a(:%i;) ’

1

=
B ((way, Ve5U) (way, 20) VP (way, 20)0ay)). (1.15)

As in the case of correlation functions constructed from products and
iterates of intertwining operators above, if we have a series ¢ which is abso-
lutely convergent in a region in M? and can be analytically extended to a
multi-valued analytic function on M 2 then we obtain a unique single-valued
analytic function E(p) on M?. For example, we know that for z € C,

) - b 2 -
<w“ix’ y:fai z(wal’ <1 ) #H l)y::a(a i(waw g2 — Z)e =l 1)wa3>
is absolutely convergent in the region given by |z1| > |z2| > 0 and |z2—2z| > |z]
and it can be analytically extended to a multi-valued analytic function on
M?. Thus we have a single-valued analytic function

E({way, Yo (way, 20) X DY (0, 25 — 2)e gy, ))

13



on M2. All the other properties of intertwining operators, for example, the

skew-symmetry, the contragredient intertwining operators and so on, can all

be expressed using equalities for such single-valued analytic functions on M?2.
We shall need the following result:

Proposition 1.2 For ay,as,a3,as € A, the maps from fI/K“:l QW W g
W to the space of single-valued analytic functions on M? given by

W, ® Way ® Way @ Wag —+ E((way, VoSl (wy, 21) Ve (way , 20)1as)),

as € A, i =1,... ., N2, , 5 =1,...,NZ, . are linearly independent. Simi-

larly, for ay,a9,a3,a4 € A, the maps from I/Kfﬁ QWM QW W to the
space of single-valued analytic functions on M? given by

We, ® Way ® Way @ Way — E({way, Veril®) (Ve (wyy, 21 — 20)Way, 22)Was)),

ag €A, k=1,...,N* [ =1,...,N%  are linearly independent.

asas’ aiaz’

Proof. We prove only the linear independence of the maps obtained from
products of intertwining operators. For iterates, the proof is similar.

Since analytic extensions are unique, we need only prove that the maps
from W% @ W% @ W ® W% to the space of the single-valued analytic
functions on the region (1.10) given by

a. a
Wa, ® Way @ Way ® Way > {Ways Vel (way, 20) V) (way, 20) 04y, ),

as €A, i=1,...,Ng&, , j=1,...,Ng, , are linearly independent. Assume
that

N4 as
a1a5 Na2"'3

Sy Z Nasiing (Watyy Veril) (way, 21) Vo3P (wqy, 20)1ay) = 0 (1.16)

as€A i=1 =

Since (1.16) holds for all z; and z, satisfying |z;| > |22 > 0, we obtain the
following equation in formal variables:

a4 as
Na1a5 Na2a3

>y Z Nas ing Wty Ve (way, 1) V) (way 9)t0ag) = 0 (1.17)

as€A i=1 j=1
We want to show that A, ;; = 0 for a5 € A, ¢ = NG, and j =
Loy Ngbos-

14



From the tensor product theory in [HL1] and [HL4], we know that the
tensor product module W% Xp,,) W4 is isomorphic to @4,eaNgs,, W . For

a2as3
as € Aand j =1,..., N, let m,.; be the projections from @q;caNg5,, W

a2a3

to the j-th copy of W“5 Let f: W Mp(,,) W — @4,ealNgsy, W be the
isomorphism such that

— T as;(2
71-as;j(f(wtm &P(w) wa3)) = ya;a(g g(waw ZQ)wa?,

for w,, € W and w,, € W, where

— . as T1795
7Ta5;j . ®a5EANa2a3Wa5 — W

and

7 : Waz |Z|p(22) Was — @aseANgg’%W%

are the natural extensions of 7, ; and f. By the universal property for
the tensor product module, such f indeed exists. Let ), be the intertwin-

ing operator corresponding to the intertwining map Xp(,,) : W @ W —
W Wp(,,) W (see [HL1] and [HL4]). Then we have

Tanig (f (Vo (War, 0)Wa3)) = Varalh (Wa, )04 (1.18)
for w,, € W and w,, € W. Let ), be the intertwining operator of type
weaa .
(W"*l (W“2®p(Z2)W“3)) given by
Ngtas Natas
Vi(way, 2w =Y Y Z Aas g Vot (Way, @) Tagig (f(w))  (1.19)
as€A 1=1 =

for w,, € W and w € W Kp(,,) We.
By (1.18) and (1.19), the left-hand side of (1.17) is equal to

a1a5 02”'3

Sy Z Nas,isg (Watys Veril) (W, 1) Ty (f (Vo (Way, 22) 0y )

as€A 1=1 =
- <wa4a Wi (walaxl)yQ(waza "L'Z)w%)'

Thus we have
<uhga)ﬁ(uhlaml))b(uh2ax2)uhm) =0 (1'20)

for wy, € W, We, € WU, w,, € W%, w,, € W*®. Since the homo-
geneous components of wg, Mp(,,) wq, or equivalently the zo-coefficients of

15



Vo (Way, T2)Wq, for w,, € W and w,, € W span W Mp(,,) W (see [H1]),
we obtain from (1.20) that

<waila y(walaxl)w> = 0.

for wy, € W, we, € W and w € W Kp(,,) W.

Now take w to be an element of W Np(,,) W such that f(w) is in the
j-th copy of W% in @aseANg;%Was, that is, take w such that m,,.;(f(w)) =
f(w), Tagm(f(w)) = 0 for m # j and 7mam(f(w)) = 0 for a # as. Then we
have

a1a5

Z /\as, ,J<wa4’ 2{11,15 z(walﬁxl)f(w» =0.

Since wg;,, Wa,, w are arbitrary elements of We, W and the j-th copy of
W in @, e 4NJ3,. W, respectively, we obtain

aza3

a1a5

as;(1
Z )\a5a ’.7 afagz - 0

1 . . h
Since Y1) for § = 1,..., N2 are linearly independent, we obtain A, ; ; =
a1as; i aias y 55%,0
0 for a5 € .A 1= Ngfas and j =1,.. Ng§a3 u
Since

a 1 e a 2

<wa’2: yaﬁe;l(waz, 21) a’g,aa;l(wa%’ ZQ)yafaz;i(wal’ Z3)wa2> (1.21)
and

a a 2

<wa'2’ ya4u3, (ya;a ]( asr A1 Z2)waf3’ Zz)yafm;i (wal’ Z3)wa2> (1.22)

satisfy a system of differential equations of regular singular points with co-
efficients in

(C[Zl, Zgla 22, Z;Ia 23, 23715 (Zl - 22)71; (Zl - Z3)71a (ZZ - 23)71]
(see [H6]), they are absolutely convergent in the region given by |z;| > |z3| >

|zs| > 0 and in the region given by |z5| > |21 — 22| > 0, |z2| > |23] > 0,
|zo — 23| > |21 — 22| > 0, respectively. Using also these differential equations,

16



we see that (1.21) and (1.22) can also be analytically extended to multi-valued
analytic functions on

M? = {(21,29,23) € C* | 21,20, 23 # 0,21 # 29, 20 # 23,21 # 23}

We can also choose single valued branches of these multi-valued analytic
functions on the region given by |z1| > |z2| > |z3] > 0 with cuts along the
real lines in the z;-, zo- and z3-planes and on the region |z3| > |21 — 29| > 0,
|za| > |z3] > 0, |22 — 23] > |21 — 22| > 0 with cuts along the real lines in the
Zo-, 21 — 2o~ and zs3-planes.

Similarly to the case of two intertwining operators above, we also have
the single-valued analytic functions

E(<wa'27 yg;e;l(wiw Zl) ;gag;l(waga ZQ)yglag z(wam Z3)’LU2 >)

and
E(<wal2)ya4a3’ (yZ:a ]( azazl _ZQ)U)CL%’z2)ygfa2;i(wal7z3)w22))

on the universal covering M3 of M3. The associativity can also be written
using these single valued analytic functions. Similarly we have other single
valued analytic functions on M3, for example,

E(<wa'2’ ygjaa;k(yg;a'g;j(wézﬁ 1= ZQ)wa's’ ZQ)ygfaz i(Way, z3)w22)),

B (E((way, Ve (w0l 20) V5 o (W 22) Vi (Way 28)w2,))),

BE (B ((way, Voo (w0l 20) V5 o (Wags 22) Vi (Wan  23)w2,)))
and so on, where the subscripts 12 and 23 in Bg) and Bég), respectively, mean
that they corresponding to braiding isomorphisms which braid the first two
and the last two intertwining operators, respectively.

Similarly to the case of two intertwining operators, we also have the
following result:

)
)

Proposition 1.3 For ai,as,as,a4,a5 € A, the maps from W% ® W ®
W @ W @ W to the space of single-valued analytic functions on M3
given by

wa’5 ® Wq, ® Wa, ® Wqgq ® Way —

as; ae;(2 a
E((wy, Ve (VIO Va) (way, 21 — 22)Way, 22 — 23)Wags 23)Way))

17



for ag,ar € A, k= 1,... N, L =1,...,Ng. and m = 1,...,NZ7
are linearly independent. Similarly, ai,as,as3,a4,a05 € A, the maps from
W“E@W‘“ QW2 QW QW™ to the space of single-valued analytic functions
on M3 given by the lifting to the universal covering of analytic extensions of
products or combinations of products and iterates of bases of intertwining

operators are linearly independent.

The proof of this proposition is similar to the proof of Proposition 1.2
and is omitted.

2 Geometrically-modified intertwining oper-
ators and genus-one correlation functions

We now discuss genus-one correlation functions. In the present paper, we
need only one or two point functions. Genus-one correlation functions are
defined using what we called geometrically-modified intertwining operators
(see [H7]). We shall first discuss these operators and prove some important
properties needed in this paper.

Let A;, j € Z, be the complex numbers defined by

1 : 1, 0
57 log(1 + 2miy) = | exp Z Ajy”la—y Y.
JEL+
For any V-module W, let
U(z) = 2miz)" e "M ¢ (End W){z} (2.1)

where Ly(A) = > .cp,

tors on W. Given an intertwining operator ) of type (WZY:;%), the map
Wa @ W* — We{z} defined by ws, ® we, — Y(U(X)We,,x)w,, is the
corresponding geometrically-modified intertwining operator. We need the
following property of geometrically-modified intertwining operators:

A;L(j) and L(j) for j € Z are the Virasoro opera-

Proposition 2.1 Let Y be an intertwinirllg operator of type (WZY;S,@)- Then

for wg, € W, we, € W and w,, € W, we have

(W, 023(V) U(2) ey, T)wa,) = €™t (YU (™)™ Owyy, 27wy, way)
= e YU O, Yl ).

az’

(2.2)

18



Proof. We first prove the first equality in (2.2). By the definition of o43()),
we have

(Whys 023(Y) (U(2)Way , T)Was )
= ¢thay (3/(6“(1) (6_7”':1:_2)L(O)Z/{(x)wa1 T )w%, Wa,)- (2.3)

We now calculate e*£() (e=™z=2)LO)1f(z)w. The equality

1 x 1
2mi g( y 1 +x) 2mi og(1 + zy)

gives
5 0 0 0 Z A y7+1
Ty (i YOy (i) DOy pich
e Y (e7™z™%) (27rzac) Y eje + y
J+1
9 Z Azy By my2
= (27riac_1) 874 eI€L+ e Oy Y.

Using the method developed and results obtained in Chapters 4 and 5 of
[H3], we obtain

oL(1) (e—m'x—Q)L(O) (27T,L-$)L(O)€—L+(A) _ (27_‘_2-1,—1)L(O)e—L+(A)e—7riL(0)’

that is,
6:1cL(1)( —7i

T 2)L(O)Z/{( ) Z/{(a:_l)e_mL(O),
Thus the right-hand side of (2.3) is equal to

mha1< (Z/l(:v ) —miL(0 )wa1,-77 l)wagaw(m)a

proving the first equality in (2.2).
The second equality in (2.2) follows immediately from the first equality
and the equality

wL(0) ,—27L(0)

we, = e Ve Wa,
6_27rha1€7rL(0)’wa1
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As 1n the preceding section, For a;,as,a3 € A and p = 1,2,3,4,5,6,
let y“f;m, =1,...,N%, . be bases of V% . Let ¢ = ™" for 7 € H.
We consider qT—traees of geometrically-modified intertwining operators of the

following form:

Tryes y;‘fa(ji U™ w,, e27riz)c1f(())_ﬂ (2.4)

for aj,a; € A, i =1,...,N?, . In [M] and [H7], it was shown that these
g-traces are independent of z, are absolutely convergent when 0 < |¢,| < 1
and can be analytically extended to analytic functions of 7 in the upper-half
plane. We shall denote the analytic extension of (2.4) by

E(Trwa2ya27(1 ( (627Tiz)wa1’e27riz)q7l_’(0)_2c_4)‘

a1a2z

These are genus-one one-point correlation functions. In [M] and [H7], the
following modular invariance property is also proved: For

( CCL Z) € SL(2,7),

let 7/ = %. Then for fixed a; € A, there exist unique A32 € Cforay,a3 € A

such that

. 1 L(0) . .
Trwazygfé(zl;z (u(627rzcr+d) ( ) wal’eQﬂ'zm qf'(O) o7

ct+d

a1a3
c

= 33 A T Ve U g 27 ) O

j=1 agzeA

for w,, € W% and ¢ = 1,..., N2, . This modular invariance property can

be written in terms of the analytlc extensions as follows:

(1 iz 1 Lo 2miz L(0)—
E | Trye V2t Z/{(e”+d)(c7_+ d) Ways €570 | g%

a1a3
= >0 D ARE(Trwes Vol U(e *hwa, )

j=1 az€eA

24).

We consider the space F7,; spanned by linear maps of the form

q?a : ‘/ — «}i;l
u = Wu(u;T)
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for a € A, where

\Ifa(u; 7') = E(Trwaya;gl) (u(e%z’z)u’ e?m‘z)qTL(O)—i)

ea;l

and GY,; is the space spanned by functions of 7 of the form W, (u; 7).

We also need genus-one two-point correlation functions. They are con-
structed from the ¢,-traces of products or iterates of two geometrically-
modified intertwining operators as follows: For a;,as,a3,a4 € A, i =1,...,
Ngtosy 3 =1,...,Ng2, , consider

aia aza4?

Trypas ya4, ( (627riz1 )wal’ emzl)y%;@_)- (u(e%rizg)waw 2mz2)qT L(0)—5; ) (25)

a1a3;t a2a4;]

In [H7], it was shown that these ¢,-traces are absolutely convergent when
0 < |g;| < |e?™| < [e*™#2| < 1 and can be analytically extended to multi-
valued analytic functions on

M2 = {(21,20,7) €C* | 2y # 20+ pr +qforp,q € Z, T € H}.

(In fact, these multi-valued analytic functions depend only on z; — 2o and
7 by the L(—1)-derivative property. See [H7]|.) These multi-valued analytic
functions on M? are genus-one two-point correlation functions. They can be
lifted to single-valued analytic functions on the universal covering ]\’/712 As in
the case of genus-zero correlation functions, these liftings are not unique. To
obtain a unique single-valued analytic function on M? from a multi-valued
analytic functions f on MZ, we have to give a single valued branch of f
on some simply connected region in M? or values of f on some simply-
connected subset of MZ. In fact, (2.5) gives a single valued branch of its
analytic extension in the region given by 0 < |g,| < |e*™#| < |e*™#2| < 1.
We denote this single-valued analytic function on ]\7/12 by

0)—;71).
(2.6)
Similarly, these genus-one two-point correlation functions can also be con-
structed from g,-traces of iterates of two intertwining operators as follows:
For ai,a9,a5,a6 € A, k=1,..., N 1 =1,...,N% _ consider

aszayq’ ai1a2?

E(TI'Wa4 ygf(;(sl,z (u (627Ti21 )wal 7 e?m'zl ) ygj&f; (u(627ri22 )wa2 , 627riz2 )q’f(

TI‘W Bya67(3 ( (eszl)yas;M) (wala 21 — 22)wa21 62Wi22)q£(0)_;j' (27)

asag;k aya;l

In [H7], it was shown that these ¢,-traces are absolutely convergent when
0 < |g.| < |e?™*2| < 1and 0 < |e?™*1~22) —1| < 1 and can be analytically ex-
tended to multi-valued analytic functions on M?. (Again, these multi-valued
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analytic functions depend only on z; — 2z and 7 by the L(—1)-derivative
property.) These multi-valued analytic functions on M7 are also genus-one
two-point correlation functions. The multi-valued analytic extension of (2.7)
can also be lifted uniquely to a single-valued analytic function on Mf using
the single-valued branch (2.7). We denote it by

[¢]

E(Tryas Y5O U (22 Y5 (o 21 — 29)1wa,, €2722) gl O730). (2.8)

asag;k aiaz;l

In [H7], an associativity property for geometrically-modified intertwin-
ing operators is proved. This associativity together with the convergence
property of ¢ -traces of gives

E(TrWa4 y;;x(;z(g‘lz (Z/{(ezmzl )wal ’ eZm‘zl )ya3;(2)' (u(e%rizz )wa2 ’ eZm’zz )(]f(o)_ 24 )

aza4;j]
Nafay Nagay
_ 2 : E : 2 : a4y aa,(Z). a4;(3) as;(4)
a1a3 z a2a4;j’ ya5a4;k ® yalaz;l) )
as€A =1 k=1
a4;(3) 2miz1 as;(4) omizey  L(0) 71
E(TrW“4ya5a4 k( (6 )yauzz l(waw 21T %2 )waz’ € )qT 1249)
and
a4; 2721 a3;(4) 2Tz L(O)_;j
E(TrW“4ya3a4 Ic( (6 )yamz;l (wal’ £l Z2)wa2’ € )qT
Ngf% Ngsa:a
_ a47 3) (13,(4 a4; 1) as;
§ : E : E : F a3a4k ®ya1a2,l’ya1as, ®yaza4,1)
as€A =1 =

E(TYWM ysfl;(slz( (627riz1 )wa1 ’ e27riz1) .
.ya5;(2)_ (u(e21riz2 )wa2 ’ e?m’zz)qTL(O)_ 21 QQ- 10)

a204;]

In particular, the space of all single-valued analytic functions on Mf spanned
by functions of the form (2.6) and the space of all single-valued analytic
functions on ﬁf spanned by functions of the form (2.8) are the same. We
shall denote this space by Gf,,.

We need the following result:

Proposition 2.2 For a;,a; € A, the maps from W @ W to Gf,, given
by

Wq, ® Wy, H

E(Tr o ya4,(1) ( (eQm'zl )wa1 : e2miz1 )ya3;(2)_ (u(e%rz’zz )wa2 ’ p2miz2 )qf(o)* 31 ) :

a1a3;t a2a4;]
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as,ay € A, 1 = 1,...,N* ~j =1,...,N%  are linearly independent.

aiag’ a2a4’

Similarly, for ai,as € .A the maps from W @ W to Gf, given by

ey ®wa, = B(Trwes Vot U )V (e, 21 = 22)wn,, €752)g ),

asas;k aiaz;l

ag,as € A, k=1,...,N® 1=1,...,N%  are linearly independent.

aszaq’ ai1a’

Proof. We prove only the linear independence of the maps obtained from
g--traces of iterates of intertwining operators. For the linear independence
of the maps obtained from traces of products of intertwining operators, the
proof is similar.

Since analytic extensions are unique, we need only prove that the maps
given by

; 2 (4 omi L(0)—5
Wy @ Wqy > Tryyas yM (U(e MZI)yas (-) (wan 21— 22)wa2a € MZZ))QT >,

azaq;k ajaz;l

as,ay € A, k = SN, L= 1,..., N, are linearly independent.

Assume

Ngday Nata,
E, E: E, a3,a4,k,l °
ag,as€A k=1 I=1
a4;(3) 2mizo a3;(4) 2mizo L(O)_;j
TrWa4ya3a4 k( (6 )yalaz;l(wan 21— ZQ)waw € )qT
=0 (2.11)

for w,, € W* and w,, € W*. Since (2.11) holds for all z; and z, satisfying
0 < |g-| < [e*™2| < 1 and 0 < [e?™z1722) — 1| < 1, we obtain the following
equation in which the variable z; — 25 is replaced by a formal variable x,:

E E E )‘ag,a4,k [
a3, a4€A k=1 I=1

[¢]

Tryes Vel U (2722) V) (way , 20) ey, €275 O

=0 (2.12)

for w,, € W and w,, € W*. We want to show that Ay, 4,4, = 0 for
ag,as € A, k=1,... N andl=1,...,N&, .
As in the proof of Proposition 1.2, there exists an isomorphism

f W gp(zl_;m) we — EB%EANGS Wwes

a1as
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such that for w,, € W and w,, € W,

— T (4
71-ae.;l(f(wal [ZP(zzl—z2) wa2)) = y:zlfa(z;z (wal, k1 — Z2)wa2a

where 7, is the projections from @©q,e 4 Ng2,, W to the I-th copy of W%
and

— Q T7793
Tasyl * PageaNara W3 — W

and

7 t W p(y ) W2 — DBazeaNaja, W

are the natural extension of 7,,,; and f, respectively. Let ), be the intertwin-
ing operator corresponding to the intertwining map Xp(,,) : W% @ W —
W Wp(y,—z) W (see [HL1] and [HL4]). Then we have

Tagst (f (Vo (Way, T)wa,)) = yff’(;(fg (Way , T)Wa, (2.13)

for w,, € W and w,, € W*. For a4 € A, let ),, be the intertwining

wae4a .
operator of type ((Walxp(zl_mwaz) wes) given by
Nagay Najas "
Vau (W, T)Way = Z Z Z )\aa,a4,kl a3a4 k(ﬂ-a&l(f(w))’x)wm
a3€A k=1 =

for w € W Mp(,, —.,) W and w,, € W. Then the left-hand side of (2.12)
is equal to

N4 ag
“3“4 N"*l”’2

E E )‘a3,a4,k,l )

az,a4€A k=1 I=1

a T2 T2 L(0)— 53
Ty Vil U2 )Tt (f (Vo (War, 70 ) ), €2722)gr
= > Trwes Vuy U(E™) Vo (Way 20) s, €222) g 75 (2:14)
as€A
By (2.12) and (2.14), we have
2mizo 2129 L(O)_zc_4 —_
Z TrW“4ya4 (Z/{(e )yQ(wal ) xO)waza € )qT - 0 (2]‘5)

as€A
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for w,, € W* and w,, € W*. Since the coefficients of YV, (w,,,zo)w,, for
Wy, € W and w,, € W span W Rp(,, _,,) W, we obtain from (2.15)
that .
Z Tryes Ve, U™ w, e27r"z2)(]£(0)_ﬂ =0 (2.16)
as€A
for w € W Rp(,, .,y W and w,, € WS,
Since W for a4 € A are irreducible V-modules, we have T(W®) =
W&“ Y where
ayq
TW*)={weW* |u,w=0ueV,wtu—n-—1<0}

(see [HT7]). Since 7 € H is arbitrary, from (2.16), we have

> Trrgyes)oy,, U(L)w) =0 (2.17)

as€A

for w € W Rp(,,_,,) W, where

0Ya, (@) = (Vas)wt o1 (D)

for homogeneous W € W Kp(,, .,y W (see Chapter 6 of [H7] for more de-
tails). Since W% for ay € A are inequivalent irreducible V-modules, T'(W )
for ay € A are inequivalent irreducible A(V')-modules by Proposition 6.5 in
[H7]. Thus Trp(wes for ay € A are linearly independent. So from (2.17), we
obtain

0y,, U(1)w) (2.18)

0
for w € W Rp(,,_z) W, Thus p(Va,) = 0 where
p(ya4) : A(Wal &P(m*m) Wa2) ®A(V) T(Wa4) - T(Wa4)
is given by

P(Vas) ((w + O(Wal Xp(zy—29) W) ® wa,) = 0y,, U)w)wa,

for w € W Rp(,,_,) W and w,, € T(W*) (see chapter 6 of [H7]). By
Theorem 6.9 in [H7], p(V,,) = 0 is equivalent to ),, = 0 for a4 € A, that is

ya4(w,x) =0 (2.19)

for ay € A and w € W Kp(,, _,,) W,
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For az,ay, € Aandl =1,...,NZ3 , take w to be an element of the tensor
product module W Mp(,, _,) W“2 such that f(w) is in the I-th copy of W%
in @ayecaNG2,, W, that is, T, (f(w)) = f(w), Taym(f(w)) = 0 for m # 1
and 7o (f(w)) = 0 for a # a3. Then by (2.19) and the definition of the

intertwining operator ),,, we have

“3‘7'4

Z )\ag,a4,k ly:;;(f;c(f( ) l‘) =0.

Since f(w) is an arbitrary element of the /-th copy of W in @,,e 42, W,
we obtain

a3a4

a47
E : Aaz,aa,k1Y 3a4k

for az,a, € Aand | = 1,...,N® . Since y“4’<3) for k =1,...,N% are

aijas” azaqik a3a4

linearly independent, we obtam Aagas ke = 0 for as,as € A, k = 1, NG,

and/=1,...,N% [ |

aiaz "’

We now introduce a space Fi,2 spanned by linear maps of the form

k,l . a a’ e
vl s [[WeewY = G,
acA
Wo @ Wy > \I]al,ag,ag (waa Wq! 21, 22, 7_)

for aj,a0,a3 € A, k=1,...,N® [1=1,...,N*, where

agai’? az a ?

k,l

a1,a2,a3 (waa Wq!y 21, 225 7—) =0

when a # ay and

k,l . .
qlal,aQ,ag (w,m wa'Qa 21, 225 T)

= E(Trwalyah u (62“”2))7“3;§2)(wa2,21 . Zz)wafz,62m22)q£(0)_24),

azal;k azay;l

Let F7, be the subspace of Fi;3 spanned by maps of the form ybl  for

a1,a2,e

ai1,a; € A and let FT'5 be the subspace of Fi spanned by maps of the form
ykil for ai,as,a3 € A, a3 #e, k=1,...,Nu andlzl,...,NSj’ag. We

a1,a2,a3 aszal
have:
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Proposition 2.3 The intersection of Ff, and F1'§ 15 0. In particular,
Frp=Fi, @ Fi5
and there exist a projection T : Fi,o — Fis.

Proof. By Proposition 2.2, Uk for a,as,a3 € A, k=1,...,N% and

a1,a2,a3 asai
I=1,...,N2  are linearly independent. Thus the intersection of the space
2o

spanned by ‘Il};ll,az,e

_ a
ay,a,a3 € A, a3 #Fe, k=1,..., N2}

for a1,a2 € A and the space spanned by U+t for

a1,a2,a3

and [ =1,...,N% , are 0. |

ai 205

We define S : Ff,, — F7,; as follows: For a € A, let

1\ “© 1
S, ; = U, 4 1
(S(Wa)) (s 7) ( ) -
H .z 1 L(O) . .
= Trye :(’lg) (Z/{(€27T172) <__> u, 67271'172 qf(l()) 7
Here we have used our convention that

1 L(0) )
<__> _ (log(—1))L(0)

T

Note that by the modular invariance of genus-one one-point functions proved
in [M] and [H7], S(¥,) is indeed in F7,;. Thus we do obtain maps S : Ff,; —
€
1;1-
Now we define an action of the map S on the space F7,, by

(S(‘Iltlz,ll,ag,e))(wa’ wa’; Zla 22; T) = 0

when a # ay and

(S(\Ilcll.,ll,a2,e)) (waza walz; 21, 223 T)
L(0
— a15(1) —2omif2 _l © ]
== E Trwal yeal;l Z/{(e T )

€(2) —omiZ2 |\ L(0)—5;
'ya2al2;1(wa2azl - ZZ)walzae T )4_1

=
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= E(TI'WM :;ﬁ) (Z/[(€27ri272) .

L(0) L(0)
i(2) 1 1 1 1 .
.y22a'2;1 ((_;> Way _;Zl — <_;ZQ> > (_; wa’2; e 211 = .
1\ ¥© 1)\ L© 1 ] .
B \I’i’fm’e <<_;) Was <_;> Wars =21, =225~ | -

We shall also need the following result:
Proposition 2.4 Fora € A, u € V, we have

TI'Wa YWa (u(e27riz)u’ e27riz)q7l_'(0)* 207

_ Trwail Yo (u(e—27riz)e7riL(O)u’ e—2mz)qTL(0)*§—4)‘ (2.20)

;s a y Q. a a
Foraz,ay € A, i =1,... N3, j=1,...,NZ& , we, € W%, w,, € W,
we have

E(TrWa4 s (yafo,;(l)) (u(627rizl )wal ’ e2min ) )

aral;i
al; L2 Tz L(0)— 53
2 (Vo) U (€= gy, €272/ )

azal;j
_ _—wi(ha,+h ay3(2) —2miz iL(0 —2miz
=¢ (b az)E(TrWafiya;alg;j(u(e " Q)eﬂ ( )waw e " 2) :
/. 1 _ . . _ . L 0 _c
.y;lf(;(a;g(u(e 2mzl)emL(0)wal’ e 27rzz1)q7_( ) 24)

(2.21)
and

E(TI“WGQLO'QZ,’O;M;(Z%) )(u(em’z2)ya3;(4) (wal’ 2 — ZQ)wa2, €2ﬂi22)qTL(O)_ﬂ)

azaq;k aiaz;l
_ ¢Tihag E(Trwwyg;ﬁ;c (L{( eznm) e mL(0) |
as; T2 L(0)— 33
yaft,l(;l,g (wal’ k1~ ZQ)waw e’ 2)q7( : 4)-
(2.22)
Proof. These formulas follows immediately from (2.2). |
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3 Properties of fusing and braiding matrices

In the present section, we prove some properties of the fusing and braiding
matrices. These properties play important role in the proofs of Moore-Seiberg
formulas in the next section and in the proof of the symmetry of the matrix
associated to the modular transformation 7 +— —1/7 in Section 5.
In this section, for p = 1,2,3,4,5,6 and ai,a9,a3 € A, y;‘f;m,
L,...,Ng2,, , are bases of Vg2 .
Proposition 3.1 The following equality expressing the squares of braiding
matrices in terms of the fusing matrices and the inverses of fusing matrices
holds:

a
N‘ZIGZ Na7‘7'3

aq;(1 as;(2 aq; ar;
Z Z Z afa(s;g' ®ya25ag;3’ya:a3l ®ya17a2 k)

ar€A k=1 I[=1
: 2@”1)“““7—h«—wF—l(ys:gs ) @ YuriO); yasld) @ yaeid))
T a4; 1 a y a4; ag;
= (BM)2(yeiil) @ yusi), yasi®) @ yacih)), (3.1)

Proof. Let wy, € W, wa, € W, w,, € W and wy, € W, Then we
have

a. 5 1 a 3
E({way, Vi) (way, 20) Vo) (W, 22)was))

a a
Najay Nagag

. a4, as,(2) aq;( ar;(
§ : § : § : alas, zas,J’yaw:sl ®ya1az k)
ar€A k=1 1

I=
E((way, Vorad Vorask (Ways 21 = 22)Way 22)tay)-
Applying (B™)? to both sides of the above formula, we obtain

(BOY(E((way, V5 (way, 21) Va2 (w4, 22) 045 )))

a a
Nafaz Na;lag

a,l as; . a4; a’6
- Z Z Z F(yafa(s,) ®ya25a3 ]’ya:asl ®yﬂfa(253“) .

1
{(BOY(B((way, VeSO VO (way, 21 — 22)Way, 22)Wa3)))-
(3.2)
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In Section 1, we have seen that (B()? is the monodromy given by
log(z1 — 22) — log(z1 — 22) + 2(2r + 1)mi

Using this fact and
ar;(6)
yam;k (wa1 , x) ‘wn:en(log(zl—12)+2(27‘+1)7ri), neC
_ 62(2r+1)7ri(ha7—ha1—haz)ya7;(6)

alaz;k(wm ) LE) |xn:en 105(21—z2)’ neC
we have
r as;(5 ar;(6
(B( ))Q(E(<wag; ya;la(:,’;g (yafag;gc(wal, 21— ZQ)wa2, z2)wa3>))
= 62(2T+1)7r’i(ha7*ha1 *ha2)E(<wa’4’ yg:égj% (ygf;(f;;c(wal, 1 — 22)wa2, ZQ)wa3>)-
(3.3)

Using (3.2), (3.3) and the associativity (1.6) expressed in terms of the matrix
elements of the inverse of the fusing isomorphism, we obtain

(BOY2(E((wa, V) (way, 21) VISP (way, 20)10a5)))

a7 Na4
Najag Nagag
. 2: }: E : a4, a5;5(2) | y7a4;(5) a7;(6)
a1a5, ® yazaa,]’ ya7a3, ® ya1a2, )
ar€eA k=1 I[=1
e 2(2r4+1)wi(hay —hay —ha,) |
E((w , ya4;(5) (ya7,( )(w ) ) >)
ay1 Yaraz;l \Yaraz;k a5 %1 — 22 )Way, 22 )Wag
Nafay Natas
_ E : E : E : a4, a53(2) . yyaa;(5) a7;(6)
a1a5, ® ycmag,]’ ya7a3;l ® yawz;k) '
ar€A k=1 =
e (21‘—|—1)7rz(ha7 hay—hasy) |
Ngtag NaSas

a47(5 a75(6) a4, a6 ; 4)
E , E : E : F a7a3l ® ya1a2 ik yamep yazas,q)
ag€A p=1 g=1

'E(<waiu ygft;l(eg;)p(wal ) Zl)ygfégl;)q (waw ZQ)was))' (3'4)

Comparing (3.4) with the definition (1.15) of the matrix elements of (B(™)?2
and using Proposition 1.2, we obtain (3.1). |
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Proposition 3.2 The following equality expressing the inverses of the fusing
matrices in terms of the fusing matrices holds:

aq;(1 ag;(2 a4;(3 as;(4)
F- (ya:a(gi ®y fazzc’yafa(g,z ®ya25a(3,])

= F(01(Vesi) ® oa(Vemaen); 1o (Veraon) ® 01 (Veric). (3.5)
Proof. Let wq, € W, w,, € W%, wy, € W and wy, € We. Then using
the definition of o9, the relation oi, = 1, the associativity (1.5) and the
L(—1)-conjugation property (see [FHL]), we have

aq;(1 ae;(2
B Veopigt Viras (s 21 = 22)0, 22) )

(1 5(2
= E((wa, 0 (V0N (0% (Vi) ) (Ways 21 — 22)Way, 22)Way))
7i(hay—hag—haz) oTi(hag —hay —hay) .

=€
2o L(— a4;(1 —7i
'E(<wa§1a€ 2 1)012(ya§a(3;%)(w03,6 29) -
.e(z1fz2)L(*1)0.12(y;"ft;lgi) (waw 677”'(,21 - Zg))wa1>)
— eﬂi(ha4_ha1 _hag_hag)E(<wa'4, 621L(—1)0_12(y2:(,l(3 2)(wa3, e ﬂ-izl) .

ae;(2 —
-alz(yafag;i)(waz, e (21 — 22))wa,))
N4

a1a5 ‘7'2”'3

= i(hay —hay —hay—hag) E E E

as€A =1 =
Flop(V ")) @ am(y:f;‘fb au(y:fai,z) ® o (y:;&‘t})) :
E({way, TV 015 (V4O (012 (V) (way, € ™ 25)

'waza e ™ (21 — 22))wa,))

0105 ‘12‘7'3

— ¢milhag—hay—hay) ymi(hay—hay—hag) Z Z Z

as€A =1 =
-F(012(3’3;‘a‘3 ) ® ffu@;f&fb olz(yffﬁi) ® 012(37225(;124;;)) '
B({wg, M Do (RN (e

019 (y;‘;a(s 3)(wa3 L€ 2y ) Wy, €™

%1)Wa,))

a a
Najas Najag

as€A i=1 j=1
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F(o 12(3’5;(;21;2) ® 012(375?;(22;39); 012(%322) ® 012(3’5;24;})) :
ag; as;(4
E((way, Vo (Way, 21) Varat) (Was, 22)ay)- (3.6)
Comparing (3.6) with (1.14) and using Proposition 1.2, we obtain (3.5). &

In the proof of the next property of fusing matrices, we need the following
lemma:

Lemma 3.3 For any 21,22 € C* satisfying 21 # 22 and any V-module W,
the following equalities for maps from W to W holds:

esz(l)ezl_lL(—l) — e(Z1—22)_1L(—1)621_122(21—22)L(1) (Zl (21 — z2)_1)2L(0), (37)
ezl—lz2(zl_z2)L(1)(zl (Zl _ 22)_1)2L(0)6Z1L(1)(e_mzf2)L(0)
= elz1=22) L) (g7 (5 — 2,)=2)LO0), (3.8)
Proof. From the identity
1 -1 —1y-2 ( 1 )
—— — 2] = (z1(z1— 2 ,
Tl4+z ! (121 = 22)7) (x — (21 — 22)" 1)~ + 27 ' 22(21 — 20)

we obtain

—14d _
1 degp = e

d

(r=z2) My oo 22 (5= m)P (4 () — 25) 7Y s (3.9)

—pop2d
e 2 gp o %

Using (3.9) and the theory developed in Chapters 4 and 5 of [H3], we obtain
(3.7).
To prove (3.8), we note that the weight of L(1) is —1. So we have

(21 (21 — 22)_1)2L(0)L(1)(21 (Zl - 22)_1)_2L(0) = 21_2(2!1 - 22)2L(1) (310)
Using (3.10), we obtain

(zl(zl _ Z2)71)2L(0)ez1L(1)
— (21(Z1 o z2)71)2L(0)ezlL(1) (21(21 o 22)71)72]:(0)(251(21 . 22)71)2L(0)

Z1(21(Zlfzz)fl)zL(O)L(l)(Zl (z1722)71)72l’(0) (21 (21 o Z2)71)2L(0)

=e
= ezl_1(z1_z2)2L(1)(zl (21 — z2)_1)2L(0). (3.11)
The equality (3.8) follows immediately from (3.11). |

Let 0193 = 012093 and 0132 = 023012. We have:
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Proposition 3.4 The following equality between fusing matrices holds:
a4; as;(2 aq; ag;
F(yafagg, ® ya;a(g,,j’ ya:ag il ® ya16a2 k)
= F(0152(Veri®) @ 0135 (Vi ') 0125 (Vo) @ 012 (Vari))).
(3.12)

Proof. Let wa, € W, wa, € W, wo, € W and wy, € W9, Then using
the definitions of 015 and 093 and the relations 0%, = 03; = 1, we obtain

aq;(1 as;
E(<waﬂla yafag Z(wal ’ Zl)ya;ag 3(’(1]&2, ZQ)was))
’ 1 ) 2

= E((“’dﬁp 023 (ygfai;')i)(wala Z1)012 (y::ag;g')(waw ZQ)wa3>)

— eﬂi(ha1+ha5—ha2—h’a3) .
aq;(1 2z -7, — -
B((om(Viie D (e O (e 2 Owyy, 27w,
215V (way, €™ 20) 10, )

. eﬂi(ha1+ha5_ha2_h’as) .

E((03(02s (Ve (€20 (€7 272) 0w,y 27 gy,

a1as;t
M D o% (012 (Vasao) (Way, ¢ ™ 22)was))

7i(2hag —hay —hay) .

=e
-E(<0132 (y::é(g?;;_)(e—zzL(l)(efvri2272)L(0)wa3’ ewizfl)6z2L(1)ezl—1L(fl) .
13 (Ve (way, e ™2 1) e T (672 2) L0, g, ).

(3.13)

By (3.7), (3.8), the L(—1)-, L(0)- and L(1)-conjugation formulas (see
[FHL]), (1.1) and the associativity, the right-hand side of (4.5) is equal to

o™i(2has—hay—hay).

-E(<0'132 (yas;(%).) (e—Z2L(1) (G_MZZ_Q)L(O)’UJ@S, em'zz—l) .

a2a3;]
_e(z1—22)_1L(—1)ezl_lzg(zl—zz)L(l) (Zl (21 o ZQ)_l)QL(O) .

0103 (Va0 (way € ™2 ) e O (e 2 2 E O, w,,))
7i(2hag —hay—hay) |
.E(<e(zl—z2)_1L(_1)o-132(y;l;;(;;;)(€_Z2L(1) (e—ﬂi22—2)L(0) }

2y tza(z1—22)L(1) |

=e
Wy, €™ 2125 (21 — 22))e
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13 (VeN (21(21 — 22) ") Oy, e 27 (21 — 22)72) -

'(Zl (Zl _ Z2)—1)2L(0) ezlL(l) (e—mzl—Q)L(O),wa1 ’ wa2>)
Ti(2hags —hay—hay)

=e
.E((e(zl—zz)_lL(—l)o-Bz (y(‘;;ﬁg) (e—zzL(l) (e 2—2)L(0)
'waa,em»’«“ﬂ{l(zl - 22))0123(37;3(51;1)(ezzL(l)w e (Z — )" 1)'

21_1Z2(ZI_ZQ)L(1) (

e 21(21 = 2) 71O W (€72 2) H 0wy, w,, )

7i(2hag —hay —hay) .

,E(<e(21—22)‘1L(—1)0132 (yas;(Q).) (6—22L(1) (e—niz2—2)L(0) .

a2a3;)

=e
27y —Tt -1
Weg, €€ 2125 (21 — 22)) -
'0123(3}:?:;(51;2)(@”“ )wa' e (21 — 29)7 ") -

.e(zl—zz)L(l)(e (2’1 - ZZ)_ )L(O)wawwm»
_ e7ri(ha272ha3*ha4) .

'E(<6(z1_z2)_1L(_1)0'132(yg;;(f;;)(6_’22[’(1)(e_”iZQ_Z)L(O) .
Wy, € 2125 (21 — 22)) 0123 (Vatil D) (€2 W wgy, e ™ (2 — 22) 1) -

.elz1—22)L(1) (677”. (21 — 22)72)L(0)wa1  Way))

Nggas Nata,
7i(hay—2has —hay) Z Z Z
ag€A k=1 I=
F(0132(y225,’lg;;) & 0123(3}2;1,’1(5 2) 0123(3}3?;(24;3) ® 0132(3}2;;1(33;')) )
E({e®17) M55 (VI (0155 (VD) (720 (72 7) MO
-wa3,6_m22_1)€z2L(1)wa11,6 i (21 . 22)—1) .
L) (o i (5 ) 2 EO gy Y)Y, (3.14)

Using the definitions of o1 and o093, the relations 03y = 033 = 1, 0120123 =
093, 0230132 = 012, We see that the right-hand side of (3.14) is equal to

N4 ag
a6a3 Nal”’2

7rz(ha6+ha1 —2hgg —hay) § : 2 : 2 :

ag€EA k=1 I=1
F(o132 (y;‘jagz) ® o123 (y;‘fa(ji), 0123 (y;‘f,;g,)) ® 0132 (yﬁg‘a(fi)) :
- E((012(0123(V25D)) (17220 (77 (2 — 25)72)H(0) .

Way, (21 = 22) T )o135 (Voo (€72H 0 (€77 25 MOy, e e 257 -
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N4 a6
‘16“3 Na1a2

— pmi(ha;+hay—hag) Z Z Z

as€A k=1 =
F(0132(3’325&(3;;) ® 0123(3’@&(5;3); 0123(37;1?&(2 N®o 32(375;1&2?3)) :
B ({025 (V25D (G122 (67 (21 — 2) ) Oy, (2 — 2) 1) -

0139 (ygg‘;(g?:)) (e—sz(l) (e—m'ZQ—Q)L(O)waB’ engl)ezzL(l)wag, w@))

a
aéla3 NafaQ

— mihay—hag—hag) Z Z Z

ag€EA k=1 =1
F(015(Vesi) @ 015 Vet D); 12s(Visi)) @ o1sn(Vesio))) -
'E(<wuga €Z2L(_1)023(0132 (yz:a(fz))(was, e_”zz) .
02 (V) (wWay s 21 — 22)Way))

ayq ag
Na6a3 Nal”’?

= milhoy oy —ho) 3§ 37
=1

as€A k=1
F(om (Vo) ® 01 Varigd) o123(Varigd) © o132 Vagaghy))
'E(<wag: 6z2L(71)0_12(ya4;(3_).)(wa3, e 22) .

agas;t
(4
023 (VD) (way, 21 — 22)Way))

F(0132(3’2 aﬁ,i) ®0 23(3’3{1;?;2); 0123(372?&(2,)) ® 0132@3@2})) :

aq;(3 ae;(4
E({way, 0% (Vi) (02 (V) (way, 21 — 22)Way, 22)Way))

F(o12(Vemioh) ® 13 (Vatic); o123 (Veeis)) @ 0132(Vesil))) -
B ((way, Voot Vavasyy (Wars 21 = 22)Wag, 22)Was)). (3.15)
Using (3.13)—(3.15), we see that the left-hand side of (3.13) is equal to
the right-hand side of (3.15). Comparing this resulting equality with (1.5)
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and using Proposition 1.2, we obtain (3.12). n

4 Moore-Seiberg formulas

In [MS1], Moore and Seiberg derived two formulas from the (assumed) axioms
for rational conformal field theories. The Verlinde conjecture is a consequence
of these equations. In this section, we prove these formulas mathematically
using the results obtained in the representation theory of vertex operator
algebras, especially those obtained in [H6] and [H7] and in the preceding
sections.

: as > — [¢5 a,
We now want to choose a basis V%, ., 1 = 1,...,Ng3 . of Vg2 for
each triple ai,az,a3 € A. Note that for each element o € S3, 0(¥)g2,, .
i=1,...,Ng,, is also a basis of Vg3, .

For a € A, we choose Vg, to be the the vertex operator Yjy« defining the
module structure on W and we choose yge;l to be the intertwining operator
defined using the action of 019, or equivalently the skew-symmetry in this
case,

geil(wa’x)u = 012(yga;1)(waax)u
- ewL(il) ga;l(u: _x)wa

= VY (u, —2)w,

for u € V and w, € W°. Since V' as a V-module is isomorphic to V', we have
¢/ = e. From [FHL|, we know that there is a nondegerate invariant bilinear
form (-,-) on V such that (1,1) = 1. We choose Y¢,., = V&, to be the

aa’;1l
intertwining operator defined using the action of o935 by

7
yga’;l = 023 (yge;l)’

that is,

(U, Veart (Wa, 2)war) = €™ (Vi (7 (e 72) Oy, &7 u, war)

foru € V, w, € W and wy € W®. Since the actions of 015 and 0,3 generate
the action of S3 on V, we have

yg’a;l =012 (yga’;l)

36



1=1,...,N® _to be

for any a € A. When a1, as, a3 # e, we choose ataz’

an arbitrary basis of Vg3, .
Recall that o193 = 012093 and o130 = 093012. The following theorem gives

the first Moore-Seiberg formula in [MS1]:

alazz’

Theorem 4.1 For ay,aq,a3 € A, we have

N2

a3
alaz a/ 123

a a)
Z Z a261®ya a3,1’ya2a3k®ya21a z)
=1 =

a a’ .
F(ya’fae‘;k ® 0123 (ya;ag;i)7 ea2,1 ® yglal 1)
a a e . Va e
- Na13a2 (yaQZe;l ® yafzaz;l’ yecfz;l ® yaza’z;l)' (41)

Proof. For ai,az,a3 € A, wa, € W, wy, € Wes, Wy,
W, i=1,...,N% by the associativity (1.5), we have

ai1a2’

w € W%, wy €

i
B (g, Vi 1 22) Ve (0 200125 (Vi ) (g, 20)02,)

a

aga 04(13
a
:Z Z Z azel®yaa3,17ya4a3k®ya;a j)‘

ag€A j=1 =

!
E((Wayy Vg Vetor 5 (Ways 21 = 22)wasy, 22)0128 (Vo ) (War s 23) w3, )
a

agaly a4a3

_ Z Z Z F(Vasen ® Varasits Varasik © Vaga i) -

ag€A j=1 =

0'4“1 ‘7'5”'2

as ai . ya as
Z Z Z yawsk ®0123(ya2ag;i)’ya52az; ®ya4a1, )-

as€A =1 m=1

E(<wa'2’ a5a2, (ygjm, (yc?;a ]( az? *1 T ZQ)walg’ %2 — Z3)wa1’ 23)11122))

a

4
a2 ag a9
‘7'2”- a4a3 Na4a1 Na5a2

=> > Z Z (V2 ® Ve g5 Ve @ Vit )

asg,a5€A j=1 k=1 m=1
!
F(ygfaa;k ® O123 (y;l;ag;i); ygszln;m ® gjaul) )
E(<wa’2’ gszaz;m(ygjm;l(y;;a%;j (wi2’ 1 Z2)waf3’ Z2 Z3)wa1’ 23)11122))-
(4.2)
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On the other hand, also by the associativity (1.5), we have

I
E((wag,yﬁe;l(wéz,h) géas;l(waé’z2)0123(ya21a z)(w‘“’z?’)wQ )

= Y PV ® 0193Vt )i Visan @ 0las Vit 1)) -

n=1
!
'E(<wa’2a 322@;1(111(112, Zl)ygg@;l(‘7%23(37:21,13;”)(7“%: Zg — 23)Way s 23)1”22»

!
02
a3a1

al ) 9 a’
Z ya’3a3 H ® 0-123 (yazlag;i)’ yggaz;l ® 0-123 (ya;a’s,n)) )

a,

agal aea2

Z Z Z 02€1®y§a217 a6a2s®yg26a2 )

ag€A r=1 s=1

'E(<wa’27 gezaz;s(ys;alz;r(w;w 21— 23) )

I
.0-?23 (yszlag’n)(wag’ R — z3)wa1’ 23)w22 )

N“,'2
agay
_ a4 . Ve 2 al
- F(yggag;l ® 0123 (yazlaé;i)ﬂ ya,’Qaz;l ® 0193 (yaglag;n)) )
n=1

Q,
a9
a2a2 Na6a2

[¢2
D2 D PO @ Vi Vit © Vi)
ag€EA =

a
N 7a/ Na$a1
ag 2 al ag ar .
) Z Z Z yaza i &® 0123()70.20. n) yawl,q ® yazas,p)
a7€A p=1 g¢=1
a 1 2
'E(<wa2a a6a2, ( g?al;q(ya;ag;p(wap <1 — 22)’“}&37 z9 — 23)wa1’ Z3)wa2>)
ag ]Vaﬁ
a2a a6a2 aQa a7a1

ZZZZZZ

ag,a7€EA n=1 r=1 s=1 p=1

F(YS 01 ® 0—123(37;;1%.1.)- y:jg it @ Ol (Vib, ) -
F( aze 1 ® ya’ a2,1’ aﬁaz, y:26a r) )

'F(y;:a b @ 0123(y221ag;n); ara1zq @ ys;a p)
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'E(<wa'2’ yggtm;s (ygfal;q(y:;a p( as? 21— 32)waga 22— Z3)wal’ 23)’(1)22)).

(4.3)
Using (4.2)—(4.3) and Proposition 1.3, we obtain
NoZag
Z F( a2e1®y§ agl’ygjagk@)ygsa j)
k=1
a a’ . a
F(yafa;;;k & 0-123(yu;ag;i)’ (15@2, yajal, )
N2 NS
agal  agag , ,
n=1 r=1
F( a2e1®y§a21’ a5a2, yc?;)a r)'
a
.F(y(?;a i ® 0-123()}(1210.3;71); ya4a1 il &® yg;a ])
In particular, for a5 = e and a4 = af, we have
ag
aaag
Z F(yazel®y§ as; 1’y;12(13 y:;a J)
k=1
(yg:as ik ® 0123 (ya;ag z) eaz m ® yg Taisl )
al
agal I !
= Z F(yggas;l ® o123 (y:;afs;i)Q :2(12 a1 ® 0123(3;2;@'3;”)) )
n=1
'F(yage 1 ® yg a2,17 yeag,l ® ya2a2, ) :
.F(y§2al2;1 ® 0-123(‘)}(120, n) yglal,l ® y:;a ’])
af
a3a1 , ,
= (3 FOuns © o) Vi © VL)
n=1
F i ® 0% Veh ) Vi © Vi) )
F( aze 1 ® ygzag,lﬁ ea2 1 ® yggaz, ) (44)
On the other hand, by the deﬁnition of 015 and 093, the relations o2, =
05 = 1 and the choices of the bases Vg, ,, Vi1, Yoy and Vg, for a € A,
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we have

!
(u, yggagg(wag; $1)U123(y:21a:3;i)(wa1, T9)Way)

= (1, 03 (Vi) (Watyy ©1)03 (012 (Y gp0550)) (War , £2)0a,)
= e”(ha1+h“3)<a23(0123(ya1 ))(6w2L(1)(e*”im§2)L(o)wa1a 25 -

azalf;i

023 (yggag;l) (ewlL(l) (6*71'1'.,1:.1*2)[/(0) waga xfl)u, wa2>
— em‘(hal +hag) <023 (0.123 (y;léug;i)) (ez‘zL(l) (e_mxz_Z)L(O)wap $2—1) .
! .
.ysgy,e;l (e:mL(l) (e—mxl—Q)L(O) Wa, xl_l)u, wa2>

_ em(hal—l—h“?’)<U12(U123(y221ag;i))(emL(l)((e_m$2_2)L(O)wa1; $2—1) .

DY (0, —ap e O () Oy, w,,)

eay;l
_ em‘(ha1+ha3) .
1 ! ;
(e L(71)023(0123(ys;ag;i))(emL(l)(efwzxzﬁ)L(O)@Uala55271 —ay')
Y (u, _xl—l)ezlL(l) (e_”ixl_2)L(0)wa’3a W, ) (4.5)

By the locality between vertex operators on V-modules and intertwining
operators and the definition of o3, there exists a positive integer N such
that
xQ—Nem'(hal—l—h%)

'<e$1_1L(_1)0-23 (0123 (yg;lag;i))(emL(l)(6_7rix2_2)L(0)wa1 ) 372_1 - -731_1) '

V(=2 e PO (€71 ) Owyy, wg,)
= (" — o) = (ay ) Nemmthe)
—1 ! .

.<ew1 L(71)023(U123 (y;l;ag;i))(emL(l)(efmx272)L(0)wal’x;l . .’Efl) .
'Ywag (U,, _ml—l)e;clL(l) (e—wim,;?)L(O)wag, wa2>
= (25" —21") = (map)Nemathe)

! .
.0'23(0'123()}:21%;2.))(655213(1)(e*szQfQ)L(O)wal’ Z;l _ Z; ) .
-ezlL(l) (efwiZ;Q)L(O)wa%’ wa2>

— $2—Ne7ri(ha1+ha3) .
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'<012(YWa’2)(023 (0123 (yZ;ag;i)) (esz(l) (e_WixEZ)L(O)wal ) .132_1 - xl_l) )

ac1L(1)( —7i —Z)L(O

e L1 )wagaxl_l)uawm)

,Ne7ri(hal—|—h,a:,’fha2 < rzhaly

- (O iy YO gl O nh).

! .
.0’23 (0123 (y:;ag’z))(ex2l/(1) (e_ml'2_2)L(0)wa1, :L.2—1 _ .7/‘1_1) .

z1L(1) (e*”i:EIQ)L(O)waga xfl)u, Wa,)

=y N thos o) (o, g (V5 (€) KO )

! .
'€w1L(1) (efm'xlf2)L(0)wag’ $1)wa2>

u, 1((€_M:L'§)L(O)6_$1L(1) .
a, az

! .
023(0123 (Vg ) (€250 (€72, 2) O 2y — ) -

z1L(1) (e—wixl—Z)L(O)wag’ $1)wa2>

€

= gy N emilhaythay —hay) (

-e
_ $2—N€ni(hal+ha3—ha2) .

7 .
(U, Va1 (023(0123(Volor 1)) (Way s €7 (21 — @) )Wt 1) War)

(Ve (U OB D) fa—aaynn)

'023(0123());121&3#))(10@, em(ﬂﬁl - $2))wa’3; 21)Way)
= 25 (u, Vg g (e VHED
'012(023(0123(375;%;1-)))(wa1,371 - iEz)wag, xl)wm)-
(4.6)

A

Using (4.5), (4.6), the L(—1)-derivative property for 012(023(0123()]221(1,3,1.)))
and the equality 012093 = 0123, We obtain

E((u, Vg a551 (Wa azl)ffus(yz;a i) (Way , 22)Way))
= E((“’a ya’2a2;1 (e(Z2*Z1)L( b

!

'012(023(0123 (y,j;ag,z))) (wal, 21 — 22)wa'3, zl)wa2>)

= B((tt, Vg1 (070 (Vi ) (War, 21 — )0, 22)10s,))

41



Thus we obtain
F(yg'sag;l ® 0123(3)2;@'3;1)3 y;gaz;l ® 0%23(37;21,1'3;71)) = din. (4.7)
Similarly, we can prove
F( gza i1 ®‘7123(ya2a n) y§1a1,1 ®y221a 9) = Op; (4.8)

Using (4.7) and (4.8), we see that (4.4) becomes

a2
]

a1a3
Z F(y:ll;e;l ® ysfo,as;l; ys’fag;k ® y:;la ])
k=1
F (Vo ® 0123Vl s )i Vears © Vaanst)
= 5ijF(yt(1122€;1 ® yggag;l; yggQ;l ® ygzafz;l)' (49)
Summing over 7 = 1,...,Ng2  on both sides in the special case j = ¢ of (4.9),
we obtain (4.1). ]

We now prepare to prove the second formula. Recall from Section 2 the
maps Wiy, o [Taea W@ W — G, for ay,az € A and the projection m :
Frp — Fio. For any f € Fi, we shall, for convenience, denote (7(f))(w, ®
wy) by 7(f(we ® wa)).

We need the following lemma:

Lemma 4.2 For aj,ay € A, wa, € W and w,, € W, we have

1,1 ) )
\I!al ,02, e(wa2awa’azlaz2 - 1,7')

a a

Nl N3 N4
asa 1 aa 2
sag ~ aha 41““2

D3PI ID WD LN

az3€A i=1 j=1 asc€A k=1 I=1
-1 e a
F (yeal Hi ®ya2a2 l’ya2a3, ®ya3a1 ]) )
al ai
F(ya2a3;z' ® a’ al E ya4a1 ik ® a2a l)
2Tz
.E(Trwa1 (U (ET2) -

as 2Tz L(O)_ﬁ
(wa27 Z1 — 22)wa(27 € )qT

) azab;l
(4.10)
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and

1,1 . .
\IIal ,a2 e(wazawagazlazQ +’T T)

03
azaa ‘12“1 0403 “2“2

SN T S

a3€A i=1 j=1 a4€A k=1 I[=1

F_l( ea1 1 ®ya2a 1’023(ya2a ’L) ®013(ya’a1 ]))
-F(ya2a Z®0123(J7, ) ya4a k YV, )

asat;j a2a2

) (TrWa‘3 gfa;;;k (u(627ri22) g;alz;l(waw Z1 — ZQ)wa,’w 627%22)(]7["(0)_2074) .
(4.11)

In particular, for any ay,a; € A, the maps from [, 4, W* QW to the space
of single-valued analytic functions on M? given by

1,1 . .
wa®wa’ = \IIal a2, e(wa,wa’,Z1,22— 177-)’

1,1 . .
We @ Wy > \I’alaze(waawa'azlnz2+7—u7—)

for w, € W® and wy € W are in Fio.

Proof. Using the definition of Wl!
(1.6) and (1.1), we have

1,1
ail,az,e

= B(Trwer Vg, (70 -

. _ L(0)—<
gza’z;l(wazazl B (22 . 1))wa,2, e2miz: 1))qT( ) 24)

ai.ases the associativity properties (1.5),

(Way, Way; 21,22 — 157)

a3
N&los Nabay
-1 e ai as .
E :F ( ea11®ya2a l’ya2a3, yaalj)
GSEA 1= j:l

1
-FE (TI‘W(U yazl(IS’ (Z/{(€27rizl )waz, 62,”21) -

Vi U g, i) O )

a50a1;]

1 e a a
Z Z Z F ea1 1 Y yagaz,l’ yaglag, yajal ])
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-FE (TI'Wtu yg;aa;i (u(627ri2:1 )wa2, 627ri2:1) .

_ 9 ; _ 9 ; L(0)— £
y;z;sahj( ( 27r1627rzn)wa,2, e 27rz627r1z2)qT( ) 24)

B —2ri(hag—ha;) a1 e ai a3
= e e er) BT (yea11®ya2a l’ya2a31®ya ‘11]).

azeA i=1 j=1
B (Toer V2 (U 0, 2752
a 2miz omizgy L(0)— 355
'ya’;’aﬁj(u(e " 2)wﬂ’2’ € mzz)qT *

_ —27i(hg,—h -1 a e . Ya a
- Z € (a3 al)F (yecil;1®ya2a’2;17ya21a3z yaaal,])

az€A i=1 j=1
Ngtay NZ;'Z
) Z F(yazag, ® ya, 50137’ ya,4a1 ik ® yaga l)

B (Trwos Vil o U(€772) -
amizyy LO- 5
'yg;a’z;l(waza <1 — 22)wa'27 € wzzz)qT 24 >

proving (4.10).

The proof of (4.11) is more complicated. Using the definition of W3-t
the associativity properties (1.5), (1.6), the L(0)-conjugation property, the
property of traces, and (1.1),

1,1 . .
\Ila,,l’az’e(wl]@’ wag’ Zl’ ZQ + T’ 7-)

= E(Trwal ea; I(U(GQWi(Z2+T)) .

e

] L(0)—£
Vet 21 = (o + 7, €2247) 0 5)

a3
N&tos Nabay
1 a a a
F- (yetil,l ® yGQ(l ;13 023(ya2a z) ® Ul3(ya§u1;j)) )
az3€A i= Jj=1

1
B(Truer0m (V5 Uy 275

mi(z2+T wi(z2+7)y (0~ 57
14V U g o) 00
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a3a1;]

= F l(ygél 4 ® yaw 1,023(ya;a z) R 0-13())11,2 )) .

1
-E (TI"Wal O3 (ya'3 , ) (u(e%im )wa2 ’ eZm‘zl) .

a2a} 3t

2 i L(0)— &
713 (ya' ai; J)( (q762mzz)wa,2’ QTEQWZZQ)CIT( : 24)

F (Ve ® Veyai 08Vt ) ®013(Vely ) -

1
-F (TI‘WM 0923 (y:ésafl ;i) (Z/{(eQM'.n )wa2 , e?m’n) .

OB (2, U g, 07

aalj

a3
ay N
Nasaz  ahay

!
= 1 ea1,1 b2 ya2a2 ;1 0'23()];12(1 z) ® 0'13(:)7;1;&1;]_)) .

M

az€eA i=1 j=1

-E{ Tryyes 0-13 ) (u(€27ri22 )wa’2 : e?ﬂ'izg) .

aalj

a; TiZ iz LO_QL
-023(ya23’a,1;i)(2/1(62 Nw,,, €2 l)qT() 4). (4.12)

Using (2.21), the relations 03; = 1, 093013 = 0193 and the genus-one
associativity, we have

B (Tries 15 (V2 ) U7t 275,
(Vi ) U gy, 27750 gy 75
=F (Trwa3 033 (013 (yg,;al;j)) (z,{(e%m)wag’ e2riza) .

093 (y;l;;%all ;i) (u(€27riz1 )Way 2zl )qTL(O)* 24 )
— o~ 2mihay E(Trwag P (U( 21 ) mil Oy e_gm-zl> _

azal i

-093(013 (ya, iy ])) (u(e271'i22 )ewiL(O)wa{2 ’ e—27ri22) qTL(O)_ ﬂ)
= e—27riha2 E (T‘rw“% yz;a’l;i (u(e—27ri21 )67riL(0) Way, 6—27rizl) .
0123(VZa,57) (Z/{ (e2miz2) L Oy, 6727riz2) O )
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(4.13)

We now prove

E(Tr AL

a;al K

<u(672mz1 )emL(O)wa2 ’ 6727mz1) .

c

0123V a,57) (Ll (e72miz2)miL Oy, 6—27riz2> 0" 24>

- F1(;)]al3 ’1;' ® 0-123(32:;5(“;]'); ya4a sk ® aga l)

BT, Yo, (u(e_m”) Z;alz;l(emL(O)waza e (21 — Zz)) '
_em'L(O) Way, 6—27ri22) qf(o)_zc_zl) )
(4.14)

To prove (4.14), we need only prove their restrictions to a subregion of J\f;[/l2
are equal. So we need only prove that

ay —2miz1\ ,miL(0 —27iz
Ty Vo s (U270, 2.
[

as —27iza miL(0 —omize ) L(0)—5;
.0'123(yagal;j) (Z/I(e Je ( )wa,we )C]r

= Z F(ygja’l,z ® 0123 (yg’;al:])’ ya4a ik ® yZ;ag )

was y:zlfag;k (u(e_%izz)yzsag;l (6ﬂiL(0)wa2a 67ri(zl - 22)> :
e —2mizg | L(O
Oy, -2zt ) g0 )
(4.15)

holds when |g,;| < |e7?™%2| < |e72™%1| < 1 and 0 < |e?™(—at22) _ 1| < 1,
From (2.9), we see that in this region the left-hand side of (4.15) is equal to

NG N
a4a3 agal,

220 X P ® o Vi) Vidas © Vel

as€A k=1 =1

-Tlrwag,,y“3 . (u(e*””"”) as (e”L(O)wa2, (—2 +22)> :

asag; 112(12,1
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‘€7TiL(0)wa’2, e—?ﬂ'izz)qf_’(o)_;_zi)
(4.16)

Now in this region, because |e™2™#2| < |e~2™#1| the imaginary part of z;
must be bigger than the imaginary part of z5. Thus z; — 25 is in the upper
half plane. This means that arg(z; — z3) < 7 and arg(z; — 2z3) + 7 < 2.
So we have arg(—(z; — 22)) = arg(z; — 22) + . Now for any n € C, by our
convention,
(—21+22)n — nlog(—z1+22)
—  pnlog(—(21—22))
n(log |—(z1—22)|+i arg(—(z1—22)))

€
€
e”
—  enllog|(z1—22)[+iarg(z1 —z2)+mi)
en(log(z1—22)+mi)

(e"

(21— 2))"
This shows that indeed when |g,| < [e72™#2| < |e7?™1] < 1 and 0 <
e?mil=21t22) _ ]| < 1, (4.16) is equal to the right-hand side of (4.15) and
(4.15) holds. Consequently, we obtain (4.14).
Using (2.22) and the L(0)-conjugation formula, we have

E<TrW“ ya4a ik ( (6_27ri22) Z;a’z;l (eWiL(O)waw em(zl - Z2)> )
L) Way, e—27riz2> qTL(O)—i)

_ e”h%E(TrWag as (u(€27rizz)e—7riL(O)_

agas;k
. Z;a’ 1 <€7TiL(0)wa2, 6“ (21 — z2)> eWiL(O)w%’ e27rizz)q7l_/(0)_ﬁ)
e mi22)\)a mizay  L(0)— 3%
= ha4E(TI'Wa3ya4a3 Ic( (62 )ya;a’z;l(waw 2 — 22)wa,2,e2 )qT( ) 24).
(4.17)
Combining (4.12), (4.13), (4.14) and (4.17), we obtain (4.11). B
For ay,ay € A, we define a(¥y',, ) and B(¥p', ) by
(a (\Ijéllaz, ) (Wa, Wars 21, 225 7) = (‘Ifillag e(Was War; 21, 20 — 157)),
(B(Ya7 ar.0) (Wa, wars 21, 223 7) = (WG, o(Wa, Wars 21,22 + 75 7))

fora € A, w, € W and wy € W¥.
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Proposition 4.3 For ay,ay € A, we have

(\I}zlzll,ag, ) = e_QWih% (B(_l))2(yale 1 ® yg a2,17 yale 1 ® yg as; 1)\1!1 ! (418)

a1,a2,€e

and

a
Ne1 NP
agag @201

1,1 _ —27ih, a e a al .
5(\1]“1412’6) = e e Z Z Z F( 11226;1®yallal;1’ya2a1j®ya§a z)

ascA i=1 j=1
(ygza,l id ® 0123 (yaQa z) yga%g il ® ya’ as; k‘) (11.31,0.2,6'
(4.19)

Proof. Using the definitions of o, m and Wp',  (wa,, wa; 21, 225 7), (4.10)
and (3.1), we have

( (\11111110,2 e))(wa2’ ’U)al2, R1, 225 T)
= (\IICIZ110,2 e(waw ’LUalz, 21,22 — 1; T))

al Na3 “1 N aa
aza3 ahay Nagay = aza),

S IDIDID 3D ID I

az€A i=1 j=1 ascA k=1 I=1

'Fil(yeal ;1 ® ya2a2,1’ yazaa, ® yas ) :

CL2CL1 7.7

(yaa;ag i ® yasal ]’ ygial ik ® aza l)
- (E (TI‘Wtzl yi;l(h;k (Z/{(@27T’iz2) .

278 L(0)— 5
Vi, 21 = ), 750) g

a3

Niloy Nafay
—27i(hag—ha,) 7—1 e a1 as .
E € 3 VF ( ea11®ya2a2,1’ya2a31 ya alj)
azé& A =1 :1
-F

(ya 2a3;1 ® ygsal;j; ea1,1 ® ygzaz, ) )
E(TI'W(LI yeal 1( (627riz2) .

[

2mizey L(0)— 23
a2a’2;1(wa2’ 2 ZQ)wa’za € )

qr

a3
a; N
Ngjag = ahay

_ _—2mih e a a
=72 N N Y PVt ® Vipanits Vertani © Ver i) -

azeA =1 j=1

48



—27i(hag —hay —Pay) —1 e
e ag aq a F ( a3a21® a1a ], alel@ya2a2 1)

B (Trywes Ve, (U (™) -

e
a2(1’2;1(w6u7 21— 22)w0’27 €

2miza )qql_‘(o) 31 )
= 6_27riha2 (B(_l))Q( ale 1 ® yg a2,1’ ale 1 ® ya’ az;l ) :
Wl o, o(Way, Way 21, 223 7),
proving (4.18).
Using the definitions of 8, m and Wyl  (wa,, wa; 21, 22;7), (4.11), we
have
(ﬁ(‘ll}z;l,aa, ))(w1127 Wal,; 215 223 T)

= (\I!(1111,a2, (wa2, Wal,; 215 22 +7; T))

azaa “2“1 a403 “2“2

=zzzzzz ot

az3€A i=1 j=1 a4€A k=1 I[=1

'F_l( ea1 1® ya2a2 17023(ya2a z) ® 013(ya’ ai; ])) )
'F(y;lga z®0-123(yg’§a1;j);ya4a k®yaga l)

2 omize\, L(0)= 2z
-7T (E (TrWa3 ygfag;k (Z/I(e MZQ) g;alg;l(wam <1 Zz)walz’ € MZQ)qT "

a3
Noyag ~ ahay

. I
=e e N TN TN P (Vi © Veuns 0 Vit o) ® 013(ViE,,0)) -

az€A =1 j=1
al a ) . .
F(V2 i @ 0123(Valy )i Voo ® Voyaty) -
. ; L(0)— <
'E(TTW"'S as . (u(6271'122) ¢ /;1(wa2: 21— ZZ)wa’Z, eszz)qT( ) 24)

eas;l a2a;,
ag
Nila, Na2a1 ,
—27ih ay as
e Z Z 601,1 ® yaza 1) 023(ya2a z) ® 013(ya§,a1;j)) '

az3cA =1 j=
a2 e
(ya23a @ 0123(ya Lar; j) s;k ® yaza,ﬂ) .
1 1 . .
\Ila3,042, (wa2’ wa’27 Zl) z27 T)-

Thus we obtain

B )
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NOL N7
a2a3 asay

_27r’Lha2 Z Z P~ 1 yggl,l ® ya2a 1’023(ya2a ,L) X 013(y2'§a1;j)) .

azs€A i=1 j=1
‘F(yaza ) ® 0-123(3)22(11 j) y:;g;lc ® ygza’z;l)\lltlzzgl,ame' (420)

Now using (3.5), (3.12) and the relations 019093 = 0123, 012013 = 0132 and
01230132 = 01320123 = 1, we have

(Ve @ Veya s Uzz(yaw ) ®013(Vero )
= F(o9( gal ) ® am(yazag;l); alg(azg(ys;sai.i)) ® 012(013(37;1;@1;]-)))
= F(yglle;l ® ysgaz;ﬁ ‘712(‘723()72311' i) ® 012(013()7a2a1 y)))
=F(Veen ® y,iflal;l; 0123(0132 (ya:al J)) ® 0132(0123(y:§a11;i)))
= F(Viter ® Yoy Viary © Yooy

asar;j aza’ z)

(4.21)

and
F(yaza i ® 0123 (ya’ ai; ]) yea ik ® ygz%, )
= F(0132(0123(37;12,11 J)) ® 0123(ya§a Z) 0123(y§2a’2;l) ® 0132(373213;,6))

=F(V,,,; ® 0123(%2@ )i Veart © Varagin)- (4.22)
From (4.20)—(4.22), we obtain (4.19). n

By Proposition 2.11, \Ila1 e 01 € A form a basis of F7,. For fixed
ay € A, we use o33 (as) and (a2) a1, a3 € A, to denote the matrix elements
of o and B, respectively, under the basis Ul''  a; € A.

a1,a2,e’

Corollary 4.4 The matriz elements of®(az) and (33(az), ay,a3 € A, are
given by

Ofg‘:’ (aQ) = 501(13 (B(_l))Q(yglle;l ® yglzag;l; yg:e;l ® yg’zaz;l) (423)
and
N1 ag
a2a3 Nazal
—9mihg a’
gf(a2) = 2Zh2z Z yg2261®y§a11’y;12a1]®ya;a z)'
i=

(ygzal _7 ® 0-123 (yaza 'L) yggz il ® yasag, )
(4.24)
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Proof. This corollary follows directly from the definition of oj?(az) and
B3 (az), ar,as € A, (4.18) and (4.19). |
It is also easy to establish the relationship between a and f:
Proposition 4.5 We have the following formula:
SaS™! = B. (4.25)
Proof. We have

(ﬁ(s(‘ll(lz,ll,ag,e)))(waw wa’2§ 214 22, 7_)

= 7T(‘S’(\Ilclz.,ll,a.z,e)(U)az7 Wal,; 21, 22 + 73 T))

L(0
— (B Trwe v ey (=1 v
- wal eal;l( (6 T )

e —omiZ2tT L(0)—5;
Varar it Wazs 21 — 22 + T)way, e =" 7 )gq

A=

= W(E (FPI'W(H yggl;l (Z/{(QQW’L'(_?—U) .

1\ *@ 1 1
'y22a§;1< <_;> Was, _;Zl - (_;ZQ - 1)) ’

= (S(a(TLt ) (Wa,, W 21, 22; T)-

al,a2,e

Thus we obtain

BS = Sa
or equivalently (4.25). |

With the bases of the spaces of intertwining operators we choose in the
beginning of this section, we have

Vo, (;7) = Trwa Yo UE™)u, esz)qu(o)iﬂ

o1



= Tryae Yya (Z/{(e%iz)u’ GZMZ)C]TL(O)_ﬁ

fora, € A, u €V and

1,1 . .
\Ila;,az e(waz, wa’ 3 R15 22, 7—)

i o L(0)—2
= E(Trwe: Yol 1 (U(¥™%2) s (Was 21 = 22)Way, 62””2)%( ) 2)

= B(Trwe: Yives (U(€72) V5 00 1 (Way, 21 — 22)05,€72) g 0 5)

a2ay;1

for aj,ay € A, we, € W and wy, € We,
Since W, for a; € A are linear independent, they form a basis of F7,;.
Thus we know that there exist unique Sg* € C for ay, a3 € A such that

(S(Wa)(wim) = Y SetWaq(us7), (4.26)

a3€A

S(Wy,) = ) SHY,, (4.27)

as€A

Clearly we also have

S(\I]l’l ) Z Sal\Ijl 1

a3,a2,€e
as€EA

for a,,as € A.

We can identify the space spanned by ¥, for a € A with the vector space
[,c4 CIW*] where [W*] is the equivalence class of W* and is actually equal
to a. Then we can view S as a linear operator on this vector space spanned
by A. In terms of the basis [W?], a € A, we have

S(Wa)) =) Suwe).
a2€A

Let u = 1 in (4.26). Then we see that S$2, a;,a, € A, gives an action

of the modular transformation 7 — —1/7 on the space spanned by shifted
graded dimensions (vacuum characters) of irreducible V-modules.
The following theorem gives the second Moore-Seiberg formula in [MS1]:

Theorem 4.6 For ai,a9,a3 € A, we have

Z S:f (B(_l))Q(yg:e;l ® yggag;l; yg:e;l @ yggag;l)(s_l)gi
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az
a N
Naday a

193
Z F ygse;l & yggag;l’ y;m% yz;a z) )
=1 k=1
F( foas;k ® 0123(ya2a Z) Veana ® ya’al, ) (4.28)
Proof. This follows from (4.25), (4.23) and (4.24) immediately. n

Corollary 4.7 For ay,as,a3 € A, we have

D SH(BUI (Vitot @ Vi ayias Viton © Yy ) (S

as€A
Nglsaz (yc?je;l & ygga%l; ygjz;l X nga’z;l)' (429)

Proof. This follows immediately from (4.9) and (4.28). |

5 The main theorem and the Verlinde for-
mula

In this section, using the results obtained in the preceding section, we prove
the main theorem, the Verlinde conjecture, of the present paper, derive the
Verlinde formula for fusion rules and prove that (S5?) is symmetric.

First, we have the following:

Proposition 5.1 Fora, € A,
F(ygje;l ® y;(zag;l; yg(fg;l ® yz;a’z;l) 7é 0.

Proof. 1If
F(ygge;l & ysgaz;l; yg;2;1 Y y§2a’2;1) = 0’

then by (4.29),

(B(_l))Q(yg:e;l & yggaz;l; yg:e;l ® ya’ Sa2;1 ) =0
for a, € A. But we know that

(B(_l))Q(ySe;l & yg’zag;l’ y ee;l & y;gag;l) =1
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Contradiction. ]

For ay € A, let N(az) be the matrices whose entries are Ng3, = N3, for
ay,a3 € A, that is,

N(az) = (Nafo,) = (NiZay)-

a1a2 a2a1

Then we have the main result of the present paper:

Theorem 5.2 Let V' be a simple vertex operator algebra satisfying the con-
ditions in Section 1. Then we have

Z (S )alNas Ga5 — §as (B(_l))Q(yg:e;l & y§§a2;1; ygfe;l ® y‘fga??l)
araz - as o F(ygzze;l ® yg’zazil; yg;Q;l ® ygﬂl,?;l)

ai,az3cA
(5.1)
In particular, the matriz S diagonalizes the matrices N (ag) for all as € A.

Proof. By Proposition 5.1, we can rewrite (4.29) as (5.1). Since the right-
hand side of (5.1) are entries of diagonal matrices, S diagonalizes the N (az)
for all ay € A. [ |

We now prove the Verlinde formula for fusion rules. We first need the
following:

Proposition 5.3 The square S? viewed as a linear operator on the vector
space spanned by A is equal to the linear operator obtained from the map

" A— A

Proof. By definition, we have

(S2(W))(w:7) = (S(T,) (( )L(O)u;—g

= ¥, (e(l"g”l"g(_’ L)y, 7'). (5.2)

o4



Note that both 7 and —1 are in the upper half plane. So 0 < arg 7, arg(—1) <
7. Thus by our convention,

1
arg T + arg(——) = arg(—1) = 7.
T

1 . IR 1
log 7 + log (——) = log|r| +iarglog ——‘ +iarg (——)
T T T

So we have

Using (5.3) and (2.20), we see that the right-hand side of (5.2) is equal to

‘Ila(eﬂ‘L(O)u; 7) = TrweYwe (u(e—m‘z) emiL(0) u, e—zm‘z)qTL(O)—ﬁ
= Trye Yy (Z/{(e%i“)u e2wiz)q£(0)*ﬁ)

= Wy (u;7) (5.4)
Combining (5.2) and (5.4), we obtain
§*(Ta) =
proving the conclusion. |
An immediate consequence of the proposition above is the following:

Corollary 5.4 The inverse S™' of S is equal to S o ' =' oS. In particular,
we have

(sMe = sz

ai

— 52,12 (5.5)
for ai,ay € A.
Now we have the following Verlinde formula for fusion rules:

Theorem 5.5 Let V be a vertex operator algebra satisfying the conditions
in Section 1. Then we have S¢ # 0 for a € A and

. 504504 S
N, = § :75@ iy (5.6)
as€A €

)



Proof. Let

(BED)2(Vatens @ Vepants Vatert © Vipapt)

A = n . P (5.7)
: F(YVasea ® Ve hasz; l’ya21®ya2a'z;1)
for as, a4 € A. Then by (5.1), we have
> (8 DEN, S8 = 0,
ai,a3€A
or equivalently
NE, =) Suxea(s)m. (5.8)
as€A
Using (5.5), we see that (5.8) becomes
Nito, = ) SuihiasSes. (5.9)

as€A

We know that Ng2 = 632. Combining this fact with (5.8), we obtain

eas

0ir =) Sea(STha.

as€A

Thus we have
Sgug; = Sg; (5.10)

From (5.10) we see that if S = 0 for some a4 € A, then there is one column
of the matrix S is 0. Contradictary to the fact that S is invertible. So 524 # 0
for a, € A. Rewrite (5.10) as

Sas
X =g (5.11)
Substituting (5.11) into (5.9), we obtain (5.6). |

Finally we have:

Theorem 5.6 The matriz (S32) is symmetric.
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Proof. Rewriting (5.8) as

D (STENGe = Xt (ST (5.12)
ai
and then letting a3 = a4 = e in (5.12) and using N{ ,, = 522, we obtain
(St = X, (ST (5.13)
Using (5.5), (5.13) can be written as
Se2 = Ag,S¢. (5.14)

By (5.11), (5.14) and (5.7),
Saa = g, Se e
Se(B™Y)? (Vaten @ Vaaniti Varen ® Vian))
T PR, ® Veransti Vearst @ Voyar ) )F Vaten @ Vi 015 Veasn @ Voyan)
(5.15)

By (5.15), we obtain
Sg((B(_l))Q(ygfe;l ® yg'zaz'l; y e;l ® yg (12, ))

F(yggze;l ® y;’ZaQ;l; yg;z;l & ygzag;l)F( a e;l ® y§4a ;10 yea ;1 ® ya’ a4; 1)
(5 16)

From (3.1), (3.12), (3.5) and the choice of the bases of the spaces of inter-

twining operators when some of the modules involved are V', we have

(B(_l))z(ya e;l ® y22a271’ ya e;l ® ygzaz, )
= (B( D ) (yg;e;l ® y(i;ail;l’ ygje;l & y(i;aﬂl;l)' (517)
Using (5.17) and (5.15), we see that the right-hand side of (5.16) is equal to
Se((B( 1 ) (yaaje 1 ® u,4a, 1’ y:zze 1 ® a4a 1))

al,
Sgt =

F( ahesl ® ygza 1 yea i1 ® yg az; 1) (y ase;l ® ygﬁlaul; yea i1 ® yci;a 1) !
(5.18)
The formulas (5.16) and (5.18) gives
Sth = 53
proving that (S;?) is symmetric. |
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