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Abstract

We discuss a recent proof by the author of a general version of the
Verlinde conjecture in the framework of vertex operator algebras and
the application of this result to the construction of modular tensor
tensor category structure on the category of modules for a vertex
operator algebra.

0 Introduction

One of the most important discoveries by physicists in two-dimensional con-
formal field theory is the famous relation between the fusion rules and the
action of the modular transformation τ 7→ −1/τ on the space of vacuum
characters. It states that this action of the modular transformation diag-
onalizes the matrices formed by the fusion rules. This relation was first
conjectured by Verlinde [V] based on a comparison between the fusion al-
gebra of a rational conformal field theory and an algebra arising from the
study of the genus-one part of the theory. Assuming the axioms for rational
conformal field theories, Moore and Seiberg [MS1] proved this Verlinde con-
jecture by deriving a fundamental set of polynomial equations. Moore and
Seiberg [MS2] also observed that the genus-zero part of these polynomial
equations is analogous to braided tensor categories. The theory of complete
sets of such polynomial equations was then called “modular tensor category”
which was first suggested by I. Frenkel. Later, this notion of modular tensor
category was reformulated precisely using the language of tensor categories
(see, for example, [T] and [BK] for expositions and references on modular
tensor categories).
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Given a modular tensor category, we have fusion rules and an action of
modular transformations. It is not difficult to show (see, for example, [BK])
that for the fusion rules and the action of the modular transformation τ 7→
−1/τ given in this way, the Verlinde conjecture holds. But this version of the
Verlinde conjecture is not the original one because the action of the modular
transformation is the one constructed from the modular tensor category,
not the one on the space of the vacuum characters of the corresponding
conformal field theory. The missing piece is an identification of the two
actions of the same modular transformation τ 7→ −1/τ , or equivalently,
is a mathematical construction of the modular tensor category associated
to a rational conformal field theory. Moreover, the starting point of the
original work [MS1] and [MS2] of Moore and Seiberg is the axioms for rational
conformal field theories, which are actually even more difficult to prove than
the Verlinde conjecture. It is therefore desirable to formulate and prove a
general and mathematical version of the Verlinde conjecture which should
give precise and natural conditions on the vertex operator algebras (chiral
algebras) such that the Verlinde conjecture holds for these algebras.

Recently, the author was able to formulate and prove such a general
and mathematical version of the Verlinde conjecture. Using this result, the
author has also proved the rigidity and nondegeneracy of the semisimple
braided tensor category structure constructed by Lepowsky and the author
on the category of modules for the vertex operator algebra. In particular,
the modular tensor category structure on the category of modules for the
vertex operator algebra is mathematically constructed. See [H7] and [H9] for
details and see also [H8] for an announcement of the results. In the present
paper, we shall discuss this general and mathematical version of the Verlinde
conjecture, its proof and its application to the proofs of the rigidity and
nondegerneracy of the braided tensor category structure mentioned above.

Acknowledgment I am grateful to Jürgen Fuchs for inviting me to give
a talk at this conference. This research is partially supported by NSF grant
DMS-0401302.

1 Vertex operator algebras and fusion rules

Vertex (operator) algebras were introduced in 1986 by Borcherds [B] in con-
nection with representations of affine Lie algebras and the moonshine module
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for the Monster finite simple group, which was conjectured to exist by Con-
way and Norton [CN] and constructed using vertex operators by Frenkel,
Lepowsky and Meurman [FLM1] [FLM2]. These algebras are essentially
equivalent to chiral algebras (see, for example, [MS2]) in physics, which were
first studied systematically by Belavin, Polyakov and Zamolodchikov [BPZ]
in 1984, though without the name chiral algebra. Here we explain briefly the
basic concepts in the theory of vertex operator algebras.

A vertex operator algebra is a graded vector space V =
∐

n∈Z V(n) equipped
with a vertex operator map Y : V ⊗ V → V ((z)) (the space of formal Lau-
rent series in z with finitely many negative power terms), a vacuum 1 ∈ V
and a conformal element ω ∈ V . These data must satisfy the following
axioms which are very natural from the point of view of conformal field the-
ory in physics: One formulation of the main axioms is: For u1, u2, v ∈ V ,
v′ ∈ V ′ =

∐
n∈Z V

∗
(n), the series

〈v′, Y (u1, z1)Y (u2, z2)v〉
〈v′, Y (u2, z2)Y (u1, z1)v〉

〈v′, Y (Y (u1, z1 − z2)u2, z2)v〉

are absolutely convergent in the regions |z1| > |z2| > 0, |z2| > |z1| > 0 and
|z2| > |z1 − z2| > 0, respectively, to a common rational function in z1 and z2

with the only possible poles at z1, z2 = 0 and z1 = z2. Other axioms include:

dimV(n) <∞

for n ∈ Z,
V(n) = 0

when n is sufficiently negative (these are called grading-restriction condi-
tions);

Y (1, z) = 1, lim
z→0

Y (u, z)1 = u;

let L(n) : V → V be defined by Y (ω, z) =
∑

n∈Z L(n)z−n−2, then

[L(m), L(n)] = (m− n)L(m+ n) +
c

12
(m3 −m)δm+n,0

(c is called the central charge of V ),

d

dz
Y (u, z) = Y (L(−1)u, z)
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and
L(0)u = nu for u ∈ V(n)

(n is called the weight of u and is denoted wt u). For u ∈ V , we write
Y (u, z) =

∑
n∈Z unz

−n−1. Then for homogeneous u ∈ V , the maps un : V →
V have weights wt u− n− 1, that is, they map V(m) to V(wt u−n−1+m).

For vertex operator algebras, we have the following important condition
which was first introduced by Zhu [Z]:

C2-cofiniteness condition: Let V be a vertex operator algebra and C2(V )
be the subspace of V spanned by elements of the form u−2v for u, v ∈ V .
Then we say that V is C2-cofinite or satisfies the C2-cofiniteness condition if
dimV/C2(V ) <∞.

In other words, the C2-cofiniteness condition says that the coefficients of
the terms in the first power of z in Y (u, z)v for all u, v ∈ V span the whole
space V except for a finite-dimensional subspace. This condition is an easy
consequence of the condition that the spaces of genus-one conformal blocks
are finite-dimensional. The author showed in [H6] that together with some
other conditions, the C2-cofiniteness condition also implies the finiteness of
the dimensions of the spaces of genus-one conformal blocks. In practice, it
is much easier to verify this condition than to prove the finiteness of the
dimensions of the spaces of genus-one conformal blocks. For vertex opera-
tor algebras associated to the Wess-Zumino-Novikov-Witten models, vertex
operator algebras associated to minimal models, lattice vertex operator alge-
bras and the moonshine module vertex operator algebra, the C2-cofiniteness
condition was stated to hold in Zhu’s paper [Z] and was verified by Dong-Li-
Mason [DLM] (see also [AN] for the case of minimal models).

A V -module can be defined simply as a C-graded vector space W =∐
n∈CW(n) equipped with a vertex operator map YW : V ⊗W → W [[z, z−1]]

satisfying all those axioms for V which still make sense. We also need the
notion of N-gradable weak V -module. An N-gradable weak V -module is an
N-graded vector space W =

∐
n∈NW[n] and a vertex operator map

Y : V ⊗W → W [[z, z−1]]

u⊗ w 7→ Y (u, z)w =
∑
n∈Z

unz
−n−1

satisfying all axioms for V -modules except that the condition L(0)w = nw
for w ∈W(n) is replaced by ukw ∈ W[m−k−1+n] for u ∈ V(m) and w ∈W[n].
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For V -modules W1, W2 and W3, an intertwining operator of type
(

W3

W1W2

)
is a linear map Y : W1⊗W2 → W3{z}, where W3{z} is the space of all series
in complex powers of z with coefficients in W3, satisfying all those axioms
for V which still make sense. For example, for u ∈ V , w1 ∈ W1, w2 ∈ W2

and w′3 ∈W ′
3 =

∐
n∈C(W3)∗(n),

〈w′3, YW3(u, z1)Y(w1, z2)w2〉
〈w′3,Y(w1, z2)YW2(u, z1)w2〉

〈w′3,Y(YW1(u, z1 − z2)w1, z2)w2〉

are absolutely convergent in the regions |z1| > |z2| > 0, |z2| > |z1| > 0 and
|z2| > |z1−z2| > 0, respectively, to a common (multivalued) analytic function
in z1 and z2 with the only possible singularities (branch points) at z1, z2 = 0
and z1 = z2. Also

d

dz
Y(w1, z) = Y(L(−1)w1, z).

We denote the space of intertwining operator of type
(

W3

W1W2

)
by VW3

W1W2
. The

dimension of VW3
W1W2

is the fusion rule NW3
W1W2

.

2 Fusing and braiding isomorphisms

In the definitions of vertex operator algebra, module and intertwining op-
erator, we see that the main axioms are all about products and iterates of
vertex operators or products and iterates of one vertex operator and one
intertwining operator. It is natural to expect that products and iterates of
intertwining operators should have similar properties. Indeed, it was proved
by the author in [H1] and [H5] that for vertex operator algebras satisfying
suitable finiteness and reductivity conditions, intertwining operators satisfy
associativity and commutativity properties. These properties give fusing and
braiding isomorphisms.

Note that the associativity for intertwining operators is a strong version of
the operator product expansion of “chiral vertex operators” (which is equiv-
alent to intertwining operators for vertex operator algebras). In fact, in the
important work [MS1] and [MS2] of Moore and Seiberg, in addition to other
axioms for rational conformal field theories, the operator product expansion
of chiral vertex operators was a basic assumption. In physics, though there
were calculations for particular operators in particular examples, operator
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product expansion was not a mathematical theorem and calculations based
on it are by no means simple. The associativity for intertwining operators
proved in [H1] and [H5] under suitable conditions is in fact a strong version of
operator product expansion for intertwining operators in the following sense:
The associativity states that the product of two intertwining operators is
equal to the iterate of two other intertwining operators in a suitable region.
If we expand the intertwining operator inside the other intertwining oper-
ator in the iterate, we immediately obtain the operator product expansion
of intertwining operators. On the other hand, in [H1], the author proved
associativity for intertwining operators under the assumption that the con-
vergence and extension property and some other conditions hold. Operator
product expansion for chiral vertex operators (intertwining operators) as-
sumed in [MS1] and [MS2] actually implies the convergence and extension
property. So the operator product expansion together with some other condi-
tions implies associativity for intertwining operators. Since the associativity
immediately gives the operator product expansion, but on the other hand,
only together with some other conditions the operator product expansion
gives the associativity, we see that the associativity is indeed stronger than
the operator product expansion.

Let V be a simple vertex operator algebra of central charge c and V ′

the contragredient module of V as a V -module. In the remaining part of
the present paper, we shall always assume that V satisfies the following
conditions:

1. V(n) = 0 for n < 0, V(0) = C1 and V ′ is isomorphic to V .

2. Every N-gradable weak V -module is completely reducible.

3. V is C2-cofinite, that is, dimV/C2(V ) <∞.

Note that finitely generated N-gradable weak V -modules are what nat-
urally appear in the proofs of the theorems on genus-zero and genus-one
correlation functions. Thus Condition 2 is natural and necessary because the
Verlinde conjecture concerns V -modules, not finitely generated N-gradable
weak V -modules. For vertex operator algebras associated to affine Lie al-
gebras (Wess-Zumino-Novikov-Witten models) and vertex operator algebras
associated to the Virasoro algebra (minimal models), Condition 2 can be ver-
ified easily by reformulating the corresponding complete reducibility results
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in terms of the representation theory of affine Lie algebras and the Virasoro
algebra.

From [DLM], we know that there are only finitely many inequivalent
irreducible V -modules. Let A be the set of equivalence classes of irreducible
V -modules. We denote the equivalence class containing V by e. For each
a ∈ A, we choose a representative W a of a. Note that the contragredient
module of an irreducible module is also irreducible (see [FHL]). So we have
a map

′ : A → A
a 7→ a′.

From [AM] and [DLM], we know that irreducible V -modules are in fact
graded by rational numbers. Thus for a ∈ A, there exist ha ∈ Q such that
W a =

∐
n∈ha+NW

a
(n).

Let Va3
a1a2

for a1, a2, a3 ∈ A be the space of intertwining operators of type(
Wa3

Wa1Wa2

)
and Na3

a1a2
for a1, a2, a3 ∈ A the fusion rule, that is, the dimension

of the space of intertwining operators of type
(

Wa3

Wa1Wa2

)
. For any Y ∈ Va3

a1a2
,

we know from [FHL] that for wa1 ∈ W a1 and wa2 ∈ W a2

Y(wa1 , x)wa2 ∈ x∆(Y)W a3 [[x, x−1]], (2.1)

where
∆(Y) = ha3 − ha1 − ha2 .

From [GN], [L], [AN], [H6], we also know that the fusion rules Na3
a1a2

for
a1, a2, a3 ∈ A are all finite. For a ∈ A, let N (a) be the matrix whose entries
are Na2

aa1
for a1, a2 ∈ A, that is,

N (a) = (Na2
aa1

).

We also need matrix elements of fusing and braiding isomorphisms. In
the proof of the Verlinde conjecture, we need to use several bases of one
space of intertwining operators. We shall use p = 1, 2, 3, 4, 5, 6, . . . to label
different bases. For p = 1, 2, 3, 4, 5, 6, . . . and a1, a2, a3 ∈ A, let {Ya3;(p)

a1a2;i | i =
1, . . . , Na3

a1a2
}, be a basis of Va3

a1a2
. For a1, . . . , a6 ∈ A, wa1 ∈ W a1 , wa2 ∈W a2 ,

wa3 ∈ W a3 , and w′a4
∈ (W a4)′, using the differential equations satisfied by

the series

〈w′a4
,Ya4;(1)

a1a5;i(wa1 , x1)Ya5;(2)
a2a3;j(wa2 , x2)wa3〉|xn1 =en log z1 , xn2 =en log z2 , n∈Q
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and

〈w′a4
,Ya4;(3)

a6a3;k(Y
a6;(4)
a1a2;l(wa1 , x0)wa2 , x2)wa3〉|xn0 =en log(z1−z2), xn2 =en log z2 , n∈Q,

it was proved in [H5] that these series are convergent in the regions |z1| >
|z2| > 0 and |z2| > |z1 − z2| > 0, respectively. Note that for any a1, a2, a3,

a4, a5, a6 ∈ A, Ya4;(1)
a1a5;i ⊗Y

a5;(2)
a2a3;j and Ya4;(3)

a6a3;l ⊗Y
a6;(4)
a1a2;k are bases of Va4

a1a5
⊗Va5

a2a3

and Va4
a6a3
⊗ Va6

a1a2
, respectively. The associativity of intertwining operators

proved and studied in [H1], [H4] and [H5] says that there exist

F (Ya4;(1)
a1a5;i ⊗ Y

a5;(2)
a2a3;j;Y

a4;(3)
a6a3;l ⊗ Y

a6;(4)
a1a2;k) ∈ C

for a1, . . . , a6 ∈ A, i = 1, . . . , Na4
a1a5

, j = 1, . . . , Na5
a2a3

, k = 1, . . . , Na4
a6a3

,
l = 1, . . . , Na6

a1a2
such that

〈w′a4
,Ya4;(1)

a1a5;i(wa1 , x1)Ya5;(2)
a2a3;j(wa2 , z2)wa3〉|xn1 =en log z1 , xn2 =en log z2 , n∈Q

=
∑
a6∈A

N
a4
a6a3∑
k=1

N
a6
a1a2∑
l=1

F (Ya4;(1)
a1a5;i ⊗ Y

a5;(2)
a2a3;j;Y

a4;(3)
a6a3;l ⊗ Y

a6;(4)
a1a2;k) ·

·〈w′a4
,Ya4;(3)

a6a3;k(Y
a6;(4)
a1a2;l(wa1 , z1 − z2)wa2 , z2)wa3〉|xn0 =en log(z1−z2), xn2 =en log z2 , n∈Q

(2.2)

when |z1| > |z2| > |z1 − z2| > 0, for a1, . . . , a5 ∈ A, wa1 ∈ W a1 , wa2 ∈ W a2 ,
wa3 ∈ W a3 , w′a4

∈ (W a4)′, i = 1, . . . , Na4
a1a5

and j = 1, . . . , Na5
a2a3

. The
numbers

F (Ya4;(1)
a1a5;i ⊗ Y

a5;(2)
a2a3;j;Y

a4;(3)
a6a3;k ⊗ Y

a6;(4)
a1a2;l)

are the matrix elements of the fusing isomorphism, that is, these numbers
together give a matrix which represents a linear isomorphism, called fusing
isomorphism, from ∐

a1,a2,a3,a4,a5∈A
Va4
a1a5
⊗ Va5

a2a3

to ∐
a1,a2,a3,a4,a6∈A

Va4
a6a3
⊗ Va6

a1a2
.

By the commutativity of intertwining operators proved and studied in
[H2], [H4] and [H5], there exist

B(r)(Ya4;(1)
a1a5;i ⊗ Y

a5;(2)
a2a3;j;Y

a4;(3)
a2a6;l ⊗ Y

a6;(4)
a1a3;k) ∈ C
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for r ∈ Z, a1, . . . , a6 ∈ A, i = 1, . . . , Na4
a1a5

, j = 1, . . . , Na5
a2a3

, k = 1, . . . , Na4
a2a6

,
l = 1, . . . , Na6

a1a3
, such that the analytic extension of the single-valued analytic

function

〈w′a4
,Ya4;(1)

a1a5;i(wa1 , x1)Ya5;(2)
a2a3;j(wa2 , x2)wa3〉|xn1 =en log z1 , xn2 =en log z2 , n∈Q

on the region |z1| > |z2| > 0, 0 ≤ arg z1, arg z2 < 2π along the path

t 7→
(

3

2
− e(2r+1)πit

2
,
3

2
+
e(2r+1)πit

2

)
to the region |z2| > |z1| > 0, 0 ≤ arg z1, arg z2 < 2π is

∑
a6∈A

N
a4
a2a6∑
k=1

N
a6
a1a3∑
l=1

B(r)(Ya4;(1)
a1a5;i ⊗ Y

a5;(2)
a2a3;j;Y

a4;(3)
a2a6;k ⊗ Y

a6;(4)
a1a3;l)·

·〈w′a4
,Ya4;(3)

a2a6;k(wa2 , z1)Ya6;(4)
a1a3;l(wa1 , z2)wa3〉|xn1 =en log z1 , xn2 =en log z2 , n∈Q.

The numbers
B(r)(Ya4;(1)

a1a5;i ⊗ Y
a5;(2)
a2a3;j;Y

a4;(3)
a2a6;k ⊗ Y

a6;(4)
a1a3;l)

are the matrix elements of the braiding isomorphism.
We need an action of S3 on the space

V =
∐

a1,a2,a3∈A
Va3
a1a2

.

For a1, a2, a3 ∈ A, we have isomorphisms Ω−r : Va3
a1a2
→ Va3

a2a1
and A−r :

Va3
a1a2
→ Va

′
2

a1a′3
for r ∈ Z (see [HL2]). For a1, a2, a3 ∈ A, Y ∈ Va3

a1a2
, we define

σ12(Y) = eπi∆(Y)Ω−1(Y)

= e−πi∆(Y)Ω0(Y),

σ23(Y) = eπiha1A−1(Y)

= e−πiha1A0(Y).

Then the actions σ12 and σ23 of (12) and (23) on V defined above generate a
left action of S3 on V .

We now choose a basis Ya3
a1a2;i, i = 1, . . . , Na3

a1a2
, of Va3

a1a2
for each triple

a1, a2, a3 ∈ A. For a ∈ A, we choose Yaea;1 to be the vertex operator YWa
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defining the module structure on W a and we choose Yaae;1 to be the inter-
twining operator defined using the action of σ12,

Yaae;1(wa, x)u = σ12(Yaea;1)(wa, x)u

= exL(−1)Yaea;1(u,−x)wa

= exL(−1)YWa(u,−x)wa

for u ∈ V and wa ∈ W a. Since V ′ as a V -module is isomorphic to V , we
have e′ = e. From [FHL], we know that there is a nondegenerate invariant
bilinear form (·, ·) on V such that (1,1) = 1. We choose Yeaa′;1 = Ye′aa′;1 to be
the intertwining operator defined using the action of σ23 by

Ye′aa′;1 = σ23(Yaae;1),

that is,

(u,Ye′aa′;1(wa, x)w′a) = eπiha〈Yaae;1(exL(1)(e−πix−2)L(0)wa, x
−1)u,w′a〉

for u ∈ V , wa ∈ W a and w′a′ ∈ (W a)′. Since the actions of σ12 and σ23

generate the action of S3 on V , we have

Yea′a;1 = σ12(Yeaa′;1)

for any a ∈ A. When a1, a2, a3 6= e, we choose Ya3
a1a2;i, i = 1, . . . , Na3

a1a2
,

to be an arbitrary basis of Va3
a1a2

. Note that for each element σ ∈ S3,
{σ(Y)a3

a1a2;i | i = 1, . . . , Na3
a1a2
}, is also a basis of Va3

a1a2
.

3 Modular Invariance

We discuss modular invariance briefly in this section. Let qτ = e2πiτ for
τ ∈ H (H is the upper-half plane). We consider the qτ -traces of the vertex
operators YWa for a ∈ A on the irreducible V -modules W a of the following
form:

TrWaYWa(e2πizL(0)u, e2πiz)q
L(0)− c

24
τ (3.1)

for u ∈ V (recall that c is the central charge of V ). In [Z], under some
conditions slightly different from (mostly stronger than) those we assume in
this paper, Zhu proved that these q-traces are independent of z, are absolutely
convergent when 0 < |qτ | < 1 and can be analytically extended to analytic
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functions of τ in the upper-half plane. We shall denote the analytic extension
of (3.1) by

E(TrWaYWa(e2πizL(0)u, e2πiz)q
L(0)− c

24
τ ).

In [Z], under his conditions mentioned above, Zhu also proved the following
modular invariance property: For(

a b
c d

)
∈ SL(2,Z),

let τ ′ = aτ+b
cτ+d

. Then there exist unique Aa2
a1
∈ C for a1, a2 ∈ A such that

E

(
TrWa1YWa1

(
e

2πiz
cτ+d

L(0)

(
1

cτ + d

)L(0)

u, e
2πiz
cτ+d

)
q
L(0)− c

24

τ ′

)
=
∑
a2∈A

Aa2
a1
E(TrWa2YWa2 (e2πizL(0)u, e2πiz)q

L(0)− c
24

τ )

for u ∈ V . In [DLM], Dong, Li and Mason, among many other things,
improved Zhu’s results above by showing that the results of Zhu above also
hold for vertex operator algebras satisfying the conditions (slightly weaker
than what) we assume in this paper. In particular, for(

0 1
−1 0

)
∈ SL(2,Z),

there exist unique Sa2
a1
∈ C for a1 ∈ A such that

E

(
TrWa1YWa1

(
e−

2πiz
τ
L(0)

(
−1

τ

)L(0)

u, e−
2πiz
τ

)
q
L(0)− c

24

− 1
τ

)
=
∑
a2∈A

Sa2
a1
E(TrWa2YWa2 (e2πizL(0)u, e2πiz)q

L(0)− c
24

τ )

for u ∈ V . When u = 1, we see that the matrix S = (Sa2
a1

) actually acts on

the space of spanned by the vacuum characters TrWaq
L(0)− c

24
τ for a ∈ A.

4 The Verlinde conjecture and consequences

In [H7], the author proved the following general version of the Verlinde con-
jecture in the framework of vertex operator algebras (cf. Section 3 in [V] and
Section 4 in [MS1]):
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Theorem 4.1 Let V be a vertex operator algebra satisfying the following
conditions:

1. V(n) = 0 for n < 0, V(0) = C1 and V ′ is isomorphic to V as a V -module.

2. Every N-gradable weak V -module is completely reducible.

3. V is C2-cofinite, that is, dimV/C2(V ) <∞.

Then for a ∈ A,

F (Yaae;1 ⊗ Yea′a;1;Yaea;1 ⊗ Yeaa′;1) 6= 0

and

∑
a1,a3∈A

(S−1)a1
a4
Na3
a1a2

Sa5
a3

= δa5
a4

(B(−1))2(Ya4
a4e;1
⊗ Yea′2a2;1;Ya4

a4e;1
⊗ Yea′2a2;1)

F (Ya2
a2e;1
⊗ Yea′2a2;1;Ya2

ea2;1 ⊗ Yea2a′2;1)
.

(4.1)
In particular, the matrix S diagonalizes the matrices N (a2) for all a2 ∈ A.

The main work in the proof of this theorem is to prove the following
formulas derived by Moore and Seiberg [MS1] from the axioms of rational
conformal field theories: For a1, a2, a3 ∈ A,

N
a3
a1a2∑
i=1

N
a2
a′1a3∑
k=1

F (Ya2
a2e;1
⊗ Yea′3a3;1;Ya2

a′1a3;k ⊗ Y
a′1
a2a′3;i)·

·F (Ya2

a′1a3;k ⊗ σ123(Ya
′
1

a2a′3;i);Y
a2
ea2;1 ⊗ Yea′1a1;1)

= Na3
a1a2

F (Ya2
a2e;1
⊗ Yea′2a2;1;Ya2

ea2;1 ⊗ Yea2a′2;1) (4.2)

and ∑
a4∈A

Sa4
a1

(B(−1))2(Ya4
a4e;1
⊗ Yea′2a2;1;Ya4

a4e;1
⊗ Yea′2a2;1)(S−1)a3

a4

=

N
a3
a1a2∑
i=1

N
a2
a′1a3∑
k=1

F (Ya2
a2e;1
⊗ Yea′3a3;1;Ya2

a′1a3;k ⊗ Y
a′1
a2a′3;i) ·

·F (Ya2

a′1a3;k ⊗ σ123(Ya
′
1

a2a′3;i);Y
a2
ea2;1 ⊗ Yea′1a1;1). (4.3)
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The proof of the first formula (4.2) uses mainly the works of Lepowsky
and the author [HL1]–[HL4] and of the author [H1] [H2] [H4] and [H5] on the
tensor product theory, intertwining operator algebras and the construction of
genus-zero chiral conformal field theories. The main technical result used is
the associativity for intertwining operators proved in [H1] and [H5] for vertex
operator algebras satisfying the three conditions stated in the theorem.

As is discussed in Section 2, assuming the convergence and extension
property and some other conditions, the associativity for intertwining opera-
tors was proved in [H1]. In [H3], the commutativity for intertwining operators
was proved using the associativity. In Lemma 4.1 in [H6], using the associa-
tivity and commutativity proved in [H1] and [H2], respectively, it was shown
that one can analytically extend products or iterates of two intertwining
operators to

M2 = {(z1, z2) ∈ C2 | z1, z2 6= 0, z1 6= z2}.

Moreover, the construction of the map (Ψ
(1)
P (z1,z2))

−1 in (14.65) in [H1] can be
reinterpreted as a proof of the fact that any four point correlation function
can be obtained in this way. For multipoint correlation functions, the corre-
sponding results can be proved using the same method or using the results
for four point correlation functions above. This result shows that assuming
the convergence and extension property and some other conditions, products
or iterates of intertwining operators can be analytically extended to multi-
valued analytic functions defined on the moduli spaces of pointed genus-zero
Riemann surfaces.

The convergence and extension property was proved in [H1] under con-
ditions weaker than the conditions we assume above. The proof is based
on the existence of systems of differential equations and the regularity of
the singular points of these systems. Since we know only the existence, not
the explicit forms, of these systems of differential equations, many powerful
tools available for Knizhnik-Zamolodchikov equations in the Wess-Zumino-
Novikov-Witten models are not available here anymore. However, the theory
of intertwining operator algebras developed in [H3], [H4] and [H5] allows us
to reduce the use of these differential equations to a minimum. For exam-
ple, we do need the regularity of the singular points of these systems. But
only the regularity of some ordinary differential equations induced from these
systems are needed and such regularity can be proved easily.

Now using the associativity for intertwining operators repeatedly to ex-
press the correlation functions obtained from products of three suitable inter-

13



twining operators as linear combinations of the correlation functions obtained
from iterates of three intertwining operators in two ways, we obtain a formula
for the matrix elements of the fusing isomorphisms. Then using some prop-
erties of the matrix elements of the fusing isomorphisms and their inverses
proved in [H7], we obtain the first formula (4.2).

The proof of the second formula (4.3) mainly uses the results obtained in
[H6] on the convergence and analytic extensions of the qτ -traces of products
of what we call “geometrically-modified intertwining operators”, the genus-
one associativity, and the modular invariance of the space of these analytic
extensions of the qτ -traces, where, as in Section 3, qτ = e2πτ . In [Z], in
addition to the convergence and modular invariance of qτ -traces of vertex
operators, Zhu also proved the convergence and modular invariance of the
space of the qτ -traces of products of more than one vertex operators acting
on modules. In [DLM], Dong, Li and Mason generalized Zhu’s result to the
case of twisted modules. In [M], Miyamoto generalized Zhu’s result to the
case of products of one intertwining operator and arbitrarily many vertex
operators. However, these results of Zhu, Dong-Li-Mason and Miyamoto
do not give all genus-one correlation functions and thus are not enough for
the construction conformal field theories. More specifically, the problem of
proving the convergence, the modular invariance and duality properties for
qτ -traces of products of more than one intertwining operator was still open
at that time. This problem is equivalent to the problem of constructing all
the chiral genus-zero correlation functions and establishing all the desired
properties.

The difficulty in the case of more than one intertwining operator is that
the method of Zhu, further developed by Dong-Li-Mason and Miyamoto,
cannot be adapted or generalized to this case, because there is no commutator
formula for general intertwining operators. Here by commutator formulas for
general intertwining operators, we mean a formula for

Y1(w1, x1)Y2(w2, x2)− Y3(w2, x2)Y4(w1, x1)

where Y1, Y2, Y3 and Y4 are suitable intertwining operators. There is no
such formula, even in the case of abelian intertwining operator algebras in
the sense of Dong and Lepowsky [DL]. Without such commutator formula,
one cannot prove a recurrence formula needed in the method of Zhu, Dong-
Li-Mason and Miyamoto. Even the generalized commutator formula of Dong
and Lepowsky for abelian intertwining operator algebras cannot be used to
obtained such recurrence relations.

14



In [H6], the author solved these previously open problems. These prob-
lems actually form one of the main obstructions to a new range of applications
of the theory of vertex operator algebras. It is the solution to these problems
together with the results on the duality properties of genus-zero correlation
functions discussed in the preceding section that allowed us to prove (4.3).
The method in [H6] is completely different from the one in [Z], [DLM] and [M]
in the case of products of more than one operators: Instead of the nonexistent
commutator formula, the author used the associativity and commutativity
for intertwining operators and the method of analytic extensions. The lack of
a commutator formula was one of the subtle difficulties which was overcome
in [H6].

To prove the second formula (4.3), using the results proved in [H6], we
introduce two operators α and β on the space of linear maps from

∐
a∈AW

a⊗
(W a)′ to the space of genus-one two-point correlation functions obtained from
the analytic extensions of the qτ -traces of iterates of suitable “geometrically-
modified intertwining operators” introduced in [H6]: α is induced from the
translation of one of the points by −1 and β is induced from the translation
of one of the points by τ . The work in [H6] is crucial in proving that these
operators are well-defined and have the desired properties. The matrix S
also acts on the same space of linear maps and it is easy to prove the relation

SαS−1 = β.

We then use the genus-one associativity and other properties of the genus-
one correlation functions in [H6] to calculate α and β explicitly in terms of
the matrix elements of the fusing and braiding isomorphisms. Substituting
the explicit expressions of α and β into this relation, we obtain (4.3).

As in [MS1], the conclusions of the theorem follow immediately from (4.2)
and (4.3).

All the consequences of the Verlinde conjecture derived by physicists now
hold for vertex operator algebras satisfying the conditions in the theorem.
In particular, we have the following Verlinde formula for fusion rules: For
a ∈ A, Sae 6= 0 and

Na3
a1a2

=
∑
a4∈A

Sa4
a1
Sa4
a2
S
a′3
a4

Sa4
e

(4.4)
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(cf. Section 3 in [V]). We also have the following well-known formula: For
a1, a2 ∈ A,

Sa2
a1

=
See((B

(−1))2(Ya2
a2e;1
⊗ Yea′1a1;1;Ya2

a2e;1
⊗ Yea′1a1;1))

F (Ya1
a1e;1
⊗ Yea′1a1;1;Ya1

ea1;1 ⊗ Yea1a′1;1)F (Ya2
a2e;1
⊗ Yea′2a2;1;Ya2

ea2;1 ⊗ Yea2a′2;1)
.

(4.5)
The formula (4.5) and certain properties of the matrix elements of the fusing
and braiding isomorphisms proved in [H7] imply that the matrix (Sa2

a1
) is

symmetric.

5 Rigidity, nondegeneracy and modular ten-

sor categories

A tensor category with tensor product bifunctor £ and unit object V is rigid
if for every object W in the category, there are right and left dual objects W ∗

and ∗W together with morphisms eW : W ∗ £W → V , iW : V → W £W ∗,
e′W : W £∗ W → V and i′W : V →∗ W £W such that the compositions of
the morphisms in the sequence

W −−−→ V £W iW£IW−−−−→ (W £W ∗)£W −−−→

−−−→ W £ (W ∗ £W )
IW£eW−−−−→ W £ V −−−→ W

and three similar sequences are equal to the identity IW on W . The rigidity
is a standard notion in the theory of tensor categories. A rigid braided tensor
category together with a twist (a natural isomorphism from the category to
itself satisfying natural conditions) is called a ribbon category. A semisim-
ple ribbon category with finitely many inequivalent irreducible objects is a
modular tensor category if the following nondegeneracy condition or modu-
larity is satisfied: The m×m matrix formed by the traces of the morphism
cWiWj

◦ cWjWi
in the ribbon category for irreducible modules W1, . . . ,Wm is

invertible. See [T] and [BK] for details of the notions in the theory of modular
tensor categories.

Using the results discussed in the proceeding section, we obtain the fol-
lowing result:

Theorem 5.1 Let V be a simple vertex operator algebra satisfying the fol-
lowing conditions:
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1. V(n) = 0 for n < 0, V(0) = C1, W(0) = 0 for any irreducible V -module
which is not isomorphic to V .

2. Every N-gradable weak V -module is completely reducible.

3. V is C2-cofinite, that is, dimV/C2(V ) <∞.

Then the braided tensor category structure on the category of V -modules con-
structed in [HL1]–[HL4], [H1] and [H5] is rigid, has a natural structure of
ribbon category and satisfies the nondegeneracy condition. In particular, the
category of V -modules has a natural structure of modular tensor category.

Note that Condition 1 implies that V ′ is isomorphic to V as a V -module.
Thus Condition 1 in the theorem is slightly stronger than Condition 1 in
Theorem 4.1.

We now discuss the proof of this theorem. We take both the left and right
dual of a V -module W to be the contragredient module W ′ of W . Since our
tensor category is semisimple, to prove the rigidity, we need only discuss
irreducible modules. For a ∈ A, using the universal property for the tensor
product module (W a)′ £ W a, we know that there exists a unique module
map êa : (W a)′ £W a → V such that

êa(w
′
a £ wa) = Yea′a;1(w′a, 1)wa

for wa ∈ W a and w′a ∈ (W a)′, where êa : (W a)′ £W a → V is the natural
extension of êa. Similarly, we have a module map from W a £ (W a)′ to V .
Since W a £ (W a)′ is completely reducible and the fusion rule NV

Wa(Wa)′ is 1,

there is a V -submodule of W a £ (W a)′ which is isomorphic to V under the
module map from W a£ (W a)′ to V . Thus we obtain a module map ia : V →
W a£(W a)′ which maps V bijectively to this submodule of W a£(W a)′. Now

W a −−−→ V £W a ia£IWa−−−−→ (W a £ (W a)′)£W a −−−→

−−−→ W a £ ((W a)′ £W a)
IWa£êa−−−−→ W a £ V −−−→ Wa

(5.1)
is a module map from an irreducible module to itself. So it must be the iden-
tity map multiplied by a number. One can calculate this number explicitly
and it is equal to

F (Yaae;1 ⊗ Yea′a;1;Yaea;1 ⊗ Yeaa′;1).
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From Theorem 4.1, this number is not 0. Let

ea =
1

F (Yaae;1 ⊗ Yea′a;1;Yaea;1 ⊗ Yeaa′;1)
êa.

Then the map obtained from (5.1) by replacing êa by ea is the identity.
Similarly, we can prove that all the other maps in the definition of rigidity
are also equal to the identity. So the tensor category is rigid.

For any a ∈ A, we define the twist on W a to e2πiha . Then it is easy
to verify that the rigid braided tensor category with this twist is a ribbon
category.

To prove the nondegeneracy, we use the formula (4.5). Now it is easy to
calculate in the tensor category the trace of cWa2 ,Wa1 ◦cWa1 ,Wa2 for a1, a2 ∈ A,
where cWa1 ,Wa2 : W a1£W a2 → W a2£W a1 is the braiding isomorphism. The
result is

((B(−1))2(Ya2
a2e;1
⊗ Yea′1a1;1;Ya2

a2e;1
⊗ Yea′1a1;1))

F (Ya1
a1e;1
⊗ Yea′1a1;1;Ya1

ea1;1 ⊗ Yea1a′1;1)F (Ya2
a2e;1
⊗ Yea′2a2;1;Ya2

ea2;1 ⊗ Yea2a′2;1)
.

By (4.5), this is equal to
Sa2
a1

See
which form an invertible matrix. So the semisimple balanced rigid tensor
category is nondegenerate. Thus the tensor category is modular. Details will
be given in [H9].
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