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Abstract

Let V be a simple vertex operator algebra satisfying the following
conditions: (i) V(n) = 0 for n < 0, V(0) = C1 and the contragredient
module V ′ is isomorphic to V as a V -module. (ii) Every N-gradable
weak V -module is completely reducible. (iii) V is C2-cofinite. We
announce a proof of the Verlinde conjecture for V , that is, of the
statement that the matrices formed by the fusion rules among irre-
ducible V -modules are diagonalized by the matrix given by the action
of the modular transformation τ 7→ −1/τ on the space of characters
of irreducible V -modules. We discuss some consequences of the Ver-
linde conjecture, including the Verlinde formula for the fusion rules,
a formula for the matrix given by the action of τ 7→ −1/τ and the
symmetry of this matrix. We also announce a proof of the rigidity
and nondegeneracy property of the braided tensor category structure
on the category of V -modules when V satisfies in addition the condi-
tion that irreducible V -modules not equivalent to V has no nonzero
elements of weight 0. In particular, the category of V -modules has a
natural structure of modular tensor category.

0 Introduction

In 1987, by comparing fusion algebras with certain algebras obtained in the
study of conformal field theories on genus-one Riemann surfaces, Verlinde
[V] conjectured that the matrices formed by the fusion rules are diagonalized
by the matrix given by the action of the modular transformation τ 7→ −1/τ
on the space of characters of a rational conformal field theory. From this
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conjecture, Verlinde obtained the famous Verlinde formulas for the fusion
rules and, more generally, for the dimensions of conformal blocks on Riemann
surfaces of arbitrary genera. In the particular case of the conformal field
theories associated to affine Lie algebras (the Wess-Zumino-Novikov-Witten
models), the Verlinde formulas give a surprising formula for the dimensions
of the spaces of sections of the “generalized theta divisors”; this has given rise
to a great deal of excitement and new mathematics. See the works [TUY] by
Tsuchiya-Ueno-Yamada, [BL] by Beauville-Laszlo, [F] by Faltings and [KNR]
by Kumar-Narasimhan-Ramanathan for details and proofs of this particular
case of the Verlinde formulas.

In 1988, Moore and Seiberg [MS1] showed on a physical level of rigor that
the Verlinde conjecture is a consequence of the axioms for rational conformal
field theories. This result of Moore and Seiberg is based on certain polynomial
equations which they derived from the axioms for rational conformal field
theories [MS1] [MS2]. Moore and Seiberg further demonstrated that these
polynomial equations are actually conformal-field-theoretic analogues of the
tensor category theory for group representations. This work of Moore and
Seiberg greatly advanced our understanding of the structure of conformal
field theories. In particular, the notion of modular tensor category was later
introduced to summarize the properties of the Moore-Seiberg polynomial
equations and has played a central role in the developments of conformal field
theories and three-dimensional topological field theories. See for example [T]
and [BK] for the theory of modular tensor categories, their applications and
references to many important works done by mathematicians and physicists.

The work of Moore and Seiberg gave a conceptual understanding of the
Verlinde conjecture and the modular tensor categories arising in conformal
field theories. However, it is a very hard problem to mathematically con-
struct theories satisfying the axioms for rational conformal field theories. In
fact, these axioms for rational conformal field theories are much stronger
than the Verlinde conjecture and the modular tensor category structures. In
the general theory of vertex operator algebras, introduced and studied first
by Borcherds [B] and Frenkel-Lepowsky-Meurman [FLM], a mathematical
version of the notion of fusion rule was introduced and studied by Frenkel,
Lepowsky and the author in [FHL] using intertwining operators, and the
modular transformations were given by Zhu’s modular invariance theorem
[Z]. Using these notions and some natural conditions, including in particular
Zhu’s C2-cofiniteness condition, one can formulate a general version of the
Verlinde conjecture in the framework of the theory of vertex operator alge-

2



bras. Further results on intertwining operators and modular invariance were
obtained in [HL1]–[HL4] by Huang-Lepowsky, in [H1], [H2] and [H3] by the
author, in [DLM] by Dong-Li-Mason and in [M] by Miyamoto. But these re-
sults were still not enough for the proof of this general version of the Verlinde
conjecture. The main obstructions were the duality and modular invariance
properties for genus-zero and genus-one multi-point correlation functions con-
structed from intertwining operators for a vertex operator algebra satisfying
the conditions mentioned above. These properties have recently been proved
in [H4] and [H5].

In this paper, we announce a proof of the general version of the Verlinde
conjecture above. Our theorem assumes only that the vertex operator algebra
that we consider satisfies certain natural grading, finiteness and reductivity
properties (see Section 2). We also discuss some consequences of our theo-
rem, including the Verlinde formula for the fusion rules, a formula for the
matrix given by the action of τ 7→ −1/τ and the symmetry of this matrix.
For the details, see [H6]. We also announce a proof of the rigidity and non-
degenracy condition of the braided tensor category structure on the category
of modules for such a vertex operator algebra constructed by Lepowsky and
the author [HL1]–[HL4] [H1] [H4], when V satisfies in addition the condition
that irreducible modules not equivalent to the algebra (as a module) has no
nonzero elements of weight 0. In particular, the category of modules for such
a vertex operator algebra has a natural structure of modular tensor category.

This paper is organized as follows: In Section 1, we give the definitions of
fusion rule, of the fusing and of the braiding isomorphisms in terms of ma-
trix elements, and of the corresponding action of the modular transformation.
These are the basic ingredients needed in the formulations of the main results
given in Sections 2 and 3 and they are in fact based on substantial mathemat-
ical results in [H1], [H2], [H3], and in [Z] and [DLM], respectively. Our main
theorems on the Verlinde conjecture, on the Verlinde formula for the fusion
rules, on the formula for the matrix given by the action of τ 7→ −1/τ , and
on the symmetry of this matrix, are stated in Section 2. A very brief sketch
of the proof of the Verlinde conjecture is given in this section. In Section 3,
our main theorem on the modular tensor category structure is stated and a
sketch of the proof is given.

Acknowledgment I am grateful to Jim Lepowsky and Robert Wilson for
comments. The author is partially supported by NSF grant DMS-0401302.
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1 Fusion rules, fusing and braiding isomor-

phisms and modular transformations

We assume that the reader is familiar with the basic definitions and results in
the theory of vertex operator algebras as introduced and presented in [B] and
[FLM]. We shall use the notations, terminology and formulations in [FLM],
[FHL] and [LL].

Let V be a simple vertex operator algebra, V ′ the contragredient module
of V , and C2(V ) the subspace of V spanned by u−2v for u, v ∈ V . In
the present paper, we shall always assume that V satisfies the following
conditions:

1. V(n) = 0 for n < 0, V(0) = C1 and V ′ is isomorphic to V as a V -module.

2. Every N-gradable weak V -module is completely reducible.

3. V is C2-cofinite, that is, dimV/C2(V ) <∞.

We recall that an N-gradable weak V -module is a vector space that admits
an N-grading W =

∐
n∈NW[n], equipped with a vertex operator map

Y : V ⊗W → W [[z, z−1]]

u⊗ w 7→ Y (u, z)w =
∑
n∈Z

unz
−n−1

satisfying all axioms for V -modules except that the condition L(0)w = nw
for w ∈ W(n) is replaced by ukw ∈ W[m−k−1+n] for u ∈ V(m) and w ∈ W[n].
Condition 2 is equivalent to the statement that every finitely-generated N-
gradable weak V -module is a V -module and every V -module is completely
reducible.

From [DLM], we know that there are only finitely many inequivalent
irreducible V -modules. Let A be the set of equivalence classes of irreducible
V -modules. We denote the equivalence class containing V by e. For each
a ∈ A, we choose a representative W a of a. Note that the contragredient
module of an irreducible module is also irreducible (see [FHL]). So we have
a map

′ : A → A
a 7→ a′.
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From [AM] and [DLM], we know that irreducible V -modules are in fact
graded by rational numbers. Thus for a ∈ A, there exist ha ∈ Q such that
W a =

∐
n∈ha+NW

a
(n).

Let Va3
a1a2

for a1, a2, a3 ∈ A be the space of intertwining operators of type(
Wa3

Wa1Wa2

)
and Na3

a1a2
for a1, a2, a3 ∈ A the fusion rule, that is, the dimension

of the space of intertwining operators of type
(

Wa3

Wa1Wa2

)
. For any Y ∈ Va3

a1a2
,

we know from [FHL] that for wa1 ∈ W a1 and wa2 ∈ W a2

Y(wa1 , x)wa2 ∈ x∆(Y)W a3 [[x, x−1]], (1.1)

where
∆(Y) = ha3 − ha1 − ha2 .

From [GN], [L], [AN], [H5], we also know that the fusion rules Na3
a1a2

for
a1, a2, a3 ∈ A are all finite. For a ∈ A, let N (a) be the matrix whose entries
are Na2

aa1
for a1, a2 ∈ A, that is,

N (a) = (Na2
aa1

).

We also need matrix elements of fusing and braiding isomorphisms. In
the proof of the Verlinde conjecture, we need to use several bases of one
space of intertwining operators. We shall use p = 1, 2, 3, 4, 5, 6, . . . to label
different bases. For p = 1, 2, 3, 4, 5, 6, . . . and a1, a2, a3 ∈ A, let {Ya3;(p)

a1a2;i | i =
1, . . . , Na3

a1a2
}, be a basis of Va3

a1a2
. For a1, . . . , a6 ∈ A, wa1 ∈ W a1 , wa2 ∈W a2 ,

wa3 ∈ W a3 , and w′a4
∈ (W a4)′, using the differential equations satisfied by

the series

〈w′a4
,Ya4;(1)

a1a5;i(wa1 , x1)Ya5;(2)
a2a3;j(wa2 , x2)wa3〉|xn1 =en log z1 , xn2 =en log z2 , n∈Q

and

〈w′a4
,Ya4;(3)

a6a3;k(Y
a6;(4)
a1a2;l(wa1 , x0)wa2 , x2)wa3〉|xn0 =en log(z1−z2), xn2 =en log z2 , n∈Q,

it was proved in [H4] that these series are convergent in the regions |z1| >
|z2| > 0 and |z2| > |z1 − z2| > 0, respectively. Note that for any a1, a2,

a3, a4, a5, a6 ∈ A, {Ya4;(1)
a1a5;i ⊗ Y

a5;(2)
a2a3;j | i = 1, . . . , Na4

a1a5
, j = 1, . . . , Na5

a2a3
} and

{Ya4;(3)
a6a3;l⊗Y

a6;(4)
a1a2;k | l = 1, . . . , Na4

a6a3
, k = 1, . . . , Na6

a1a2
} are bases of Va4

a1a5
⊗Va5

a2a3

and Va4
a6a3
⊗ Va6

a1a2
, respectively. The associativity of intertwining operators

proved and studied in [H1], [H3] and [H4] says that there exist

F (Ya4;(1)
a1a5;i ⊗ Y

a5;(2)
a2a3;j;Y

a4;(3)
a6a3;l ⊗ Y

a6;(4)
a1a2;k) ∈ C
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for a1, . . . , a6 ∈ A, i = 1, . . . , Na4
a1a5

, j = 1, . . . , Na5
a2a3

, k = 1, . . . , Na4
a6a3

,
l = 1, . . . , Na6

a1a2
such that

〈w′a4
,Ya4;(1)

a1a5;i(wa1 , x1)Ya5;(2)
a2a3;j(wa2 , z2)wa3〉|xn1 =en log z1 , xn2 =en log z2 , n∈Q

=
∑
a6∈A

N
a4
a6a3∑
k=1

N
a6
a1a2∑
l=1

F (Ya4;(1)
a1a5;i ⊗ Y

a5;(2)
a2a3;j;Y

a4;(3)
a6a3;l ⊗ Y

a6;(4)
a1a2;k) ·

·〈w′a4
,Ya4;(3)

a6a3;k(Y
a6;(4)
a1a2;l(wa1 , z1 − z2)wa2 , z2)wa3〉|xn0 =en log(z1−z2), xn2 =en log z2 , n∈Q

(1.2)

when |z1| > |z2| > |z1 − z2| > 0, for a1, . . . , a5 ∈ A, wa1 ∈ W a1 , wa2 ∈ W a2 ,
wa3 ∈ W a3 , w′a4

∈ (W a4)′, i = 1, . . . , Na4
a1a5

and j = 1, . . . , Na5
a2a3

. The
numbers

F (Ya4;(1)
a1a5;i ⊗ Y

a5;(2)
a2a3;j;Y

a4;(3)
a6a3;k ⊗ Y

a6;(4)
a1a2;l)

together give a matrix which represents a linear isomorphism∐
a1,a2,a3,a4,a5∈A

Va4
a1a5
⊗ Va5

a2a3
→

∐
a1,a2,a3,a4,a6∈A

Va4
a6a3
⊗ Va6

a1a2
,

called the fusing isomorphism, such that these numbers are the matrix ele-
ments.

By the commutativity of intertwining operators proved and studied in
[H2], [H3] and [H4], for any fixed r ∈ Z, there exist

B(r)(Ya4;(1)
a1a5;i ⊗ Y

a5;(2)
a2a3;j;Y

a4;(3)
a2a6;l ⊗ Y

a6;(4)
a1a3;k) ∈ C

for a1, . . . , a6 ∈ A, i = 1, . . . , Na4
a1a5

, j = 1, . . . , Na5
a2a3

, k = 1, . . . , Na4
a2a6

,
l = 1, . . . , Na6

a1a3
, such that the analytic extension of the single-valued analytic

function

〈w′a4
,Ya4;(1)

a1a5;i(wa1 , x1)Ya5;(2)
a2a3;j(wa2 , x2)wa3〉|xn1 =en log z1 , xn2 =en log z2 , n∈Q

on the region |z1| > |z2| > 0, 0 ≤ arg z1, arg z2 < 2π along the path

t 7→
(

3

2
− e(2r+1)πit

2
,
3

2
+
e(2r+1)πit

2

)
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to the region |z2| > |z1| > 0, 0 ≤ arg z1, arg z2 < 2π is

∑
a6∈A

N
a4
a2a6∑
k=1

N
a6
a1a3∑
l=1

B(r)(Ya4;(1)
a1a5;i ⊗ Y

a5;(2)
a2a3;j;Y

a4;(3)
a2a6;k ⊗ Y

a6;(4)
a1a3;l)·

·〈w′a4
,Ya4;(3)

a2a6;k(wa2 , z1)Ya6;(4)
a1a3;l(wa1 , z2)wa3〉|xn1 =en log z1 , xn2 =en log z2 , n∈Q.

The numbers
B(r)(Ya4;(1)

a1a5;i ⊗ Y
a5;(2)
a2a3;j;Y

a4;(3)
a2a6;k ⊗ Y

a6;(4)
a1a3;l)

together give a linear isomorphism∐
a1,a2,a3,a4,a5∈A

Va4
a1a5
⊗ Va5

a2a3
→

∐
a1,a2,a3,a4,a6∈A

Va4
a2a6
⊗ Va6

a1a3
,

called the braiding isomorphism, such that these numbers are the matrix
elements.

We need an action of S3 on the space

V =
∐

a1,a2,a3∈A
Va3
a1a2

.

For r ∈ Z, a1, a2, a3 ∈ A, consider the isomorphisms Ωr : Va3
a1a2
→ Va3

a2a1
and

Ar : Va3
a1a2
→ Va

′
2

a1a′3
given in (7.1) and (7.13) in [HL2]. For a1, a2, a3 ∈ A,

Y ∈ Va3
a1a2

, we define

σ12(Y) = eπi∆(Y)Ω−1(Y)

= e−πi∆(Y)Ω0(Y),

σ23(Y) = eπiha1A−1(Y)

= e−πiha1A0(Y).

We have the following:

Proposition 1.1 The actions σ12 and σ23 of (12) and (23) on V generate a
left action of S3 on V.

We now choose a basis Ya3
a1a2;i, i = 1, . . . , Na3

a1a2
, of Va3

a1a2
for each triple

a1, a2, a3 ∈ A. For a ∈ A, we choose Yaea;1 to be the vertex operator YWa

7



defining the module structure on W a and we choose Yaae;1 to be the inter-
twining operator defined using the action of σ12,

Yaae;1(wa, x)u = σ12(Yaea;1)(wa, x)u

= exL(−1)Yaea;1(u,−x)wa

= exL(−1)YWa(u,−x)wa

for u ∈ V and wa ∈ W a. Since V ′ as a V -module is isomorphic to V , we
have e′ = e. From [FHL], we know that there is a nondegenerate invariant
bilinear form (·, ·) on V such that (1,1) = 1. We choose Yeaa′;1 = Ye′aa′;1 to be
the intertwining operator defined using the action of σ23 by

Ye′aa′;1 = σ23(Yaae;1),

that is,

(u,Ye′aa′;1(wa, x)w′a) = eπiha〈Yaae;1(exL(1)(e−πix−2)L(0)wa, x
−1)u,w′a〉

for u ∈ V , wa ∈ W a and w′a′ ∈ (W a)′. Since the actions of σ12 and σ23

generate the action of S3 on V , we have

Yea′a;1 = σ12(Yeaa′;1)

for any a ∈ A. When a1, a2, a3 6= e, we choose Ya3
a1a2;i, i = 1, . . . , Na3

a1a2
,

to be an arbitrary basis of Va3
a1a2

. Note that for each element σ ∈ S3,
{σ(Y)a3

a1a2;i | i = 1, . . . , Na3
a1a2
} is also a basis of Va3

a1a2
.

We now discuss modular transformations. Let qτ = e2πiτ for τ ∈ H (H is
the upper-half plane). We consider the qτ -traces of the vertex operators YWa

for a ∈ A on the irreducible V -modules W a of the following form:

TrWaYWa(e2πizL(0)u, e2πiz)q
L(0)− c

24
τ (1.3)

for u ∈ V . In [Z], under some conditions slightly different from (mostly
stronger than) those we assume in this paper, Zhu proved that these q-traces
are independent of z, are absolutely convergent when 0 < |qτ | < 1 and can
be analytically extended to analytic functions of τ in the upper-half plane.
We shall denote the analytic extension of (1.3) by

E(TrWaYWa(e2πizL(0)u, e2πiz)q
L(0)− c

24
τ ).
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In [Z], under his conditions alluded to above, Zhu also proved the following
modular invariance property: For(

a b
c d

)
∈ SL(2,Z),

let τ ′ = aτ+b
cτ+d

. Then there exist unique Aa2
a1
∈ C for a1, a2 ∈ A such that

E

(
TrWa1YWa1

(
e

2πiz
cτ+d

L(0)

(
1

cτ + d

)L(0)

u, e
2πiz
cτ+d

)
q
L(0)− c

24

τ ′

)
=
∑
a2∈A

Aa2
a1
E(TrWa2YWa2 (e2πizL(0)u, e2πiz)q

L(0)− c
24

τ )

for u ∈ V . In [DLM], Dong, Li and Mason, among many other things,
improved Zhu’s results above by showing that the results of Zhu above also
hold for vertex operator algebras satisfying the conditions (slightly weaker
than what) we assume in this paper. In particular, for(

0 1
−1 0

)
∈ SL(2,Z),

there exist unique Sa2
a1
∈ C for a1 ∈ A such that

E

(
TrWa1YWa1

(
e−

2πiz
τ
L(0)

(
−1

τ

)L(0)

u, e−
2πiz
τ

)
q
L(0)− c

24

− 1
τ

)
=
∑
a2∈A

Sa2
a1
E(TrWa2YWa2 (e2πizL(0)u, e2πiz)q

L(0)− c
24

τ )

for u ∈ V . When u = 1, we see that the matrix S = (Sa2
a1

) actually acts on

the space of spanned by the vacuum characters TrWaq
L(0)− c

24
τ for a ∈ A.

2 The Verlinde conjecture and consequences

In [H6], we proved the following general version of the Verlinde conjecture in
the framework of vertex operator algebras (cf. Section 3 in [V] and Section
4 in [MS1]):
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Theorem 2.1 Let V be a vertex operator algebra satisfying the following
conditions:

1. V(n) = 0 for n < 0, V(0) = C1 and V ′ is isomorphic to V as a V -module.

2. Every N-gradable weak V -module is completely reducible.

3. V is C2-cofinite, that is, dimV/C2(V ) <∞.

Then for a ∈ A,

F (Yaae;1 ⊗ Yea′a;1;Yaea;1 ⊗ Yeaa′;1) 6= 0

and ∑
a1,a3∈A

(S−1)a1
a4
Na3
a1a2

Sa5
a3

= δa5
a4

(B(−1))2(Ya4
a4e;1
⊗ Yea′2a2;1;Ya4

a4e;1
⊗ Yea′2a2;1)

F (Ya2
a2e;1
⊗ Yea′2a2;1;Ya2

ea2;1 ⊗ Yea2a′2;1)
,

(2.1)
where (B(−1))2(Ya4

a4e;1
⊗ Yea′2a2;1;Ya4

a4e;1
⊗ Yea′2a2;1) is the corresponding matrix

elements of the square of the braiding isomorphism. In particular, the matrix
S diagonalizes the matrices N (a2) for all a2 ∈ A.

Sketch of the proof. Moore and Seiberg showed in [MS1] that the conclu-
sions of the theorem follow from the following formulas (which they derived by
assuming the axioms of rational conformal field theories): For a1, a2, a3 ∈ A,

N
a3
a1a2∑
i=1

N
a2
a′1a3∑
k=1

F (Ya2
a2e;1
⊗ Yea′3a3;1;Ya2

a′1a3;k ⊗ Y
a′1
a2a′3;i)·

·F (Ya2

a′1a3;k ⊗ σ123(Ya
′
1

a2a′3;i);Y
a2
ea2;1 ⊗ Yea′1a1;1)

= Na3
a1a2

F (Ya2
a2e;1
⊗ Yea′2a2;1;Ya2

ea2;1 ⊗ Yea2a′2;1) (2.2)

and ∑
a4∈A

Sa4
a1

(B(−1))2(Ya4
a4e;1
⊗ Yea′2a2;1;Ya4

a4e;1
⊗ Yea′2a2;1)(S−1)a3

a4

=

N
a3
a1a2∑
i=1

N
a2
a′1a3∑
k=1

F (Ya2
a2e;1
⊗ Yea′3a3;1;Ya2

a′1a3;k ⊗ Y
a′1
a2a′3;i) ·

·F (Ya2

a′1a3;k ⊗ σ123(Ya
′
1

a2a′3;i);Y
a2
ea2;1 ⊗ Yea′1a1;1). (2.3)
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So the main work is to prove these two formulas. The proofs of these formulas
in [H6] are based in turn on the proofs of a number of other formulas and on
nontrivial applications of a number of results in the theory of vertex operator
algebras, so here we can only outline what is used in the proofs.

The proof of the first formula (2.2) uses mainly the works of Lepowsky
and the author [HL1]–[HL4] and of the author [H1] [H2] [H3] and [H4] on the
tensor product theory, intertwining operator algebras and the construction
of genus-zero chiral conformal field theories. The main technical result used
is the associativity for intertwining operators proved in [H1] and [H4] for ver-
tex operator algebras satisfying the three conditions stated in the theorem.
Using the associativity for intertwining operators repeatedly to express the
correlation functions obtained from products of three suitable intertwining
operators as linear combinations of the correlation functions obtained from
iterates of three intertwining operators in two ways, we obtain a formula for
the matrix elements of the fusing isomorphisms. Then using certain prop-
erties of the matrix elements of the fusing isomorphisms and their inverses
proved in [H6], we obtain the first formula (2.2).

The proof of the second formula (2.3) heavily uses the results obtained in
[H5] on the convergence and analytic extensions of the qτ -traces of products of
what we call “geometrically-modified intertwining operators”, the genus-one
associativity, and the modular invariance of these analytic extensions of the
qτ -traces, where qτ = e2πiτ . These results allows us to (rigorously) establish
a formula which corresponds to the fact that the modular transformation
τ 7→ −1/τ changes one basic Dehn twist on the Teichmüller space of genus-
one Riemann surfaces to the other. Calculating the matrices corresponding
to the Dehn twists and substituting the results into this formula, we obtain
(2.3).

As in [MS1], the conclusions of the theorem follow immediately from (2.2)
and (2.3).

Remark 2.2 Note that finitely generated N-gradable weak V -modules are
what naturally appear in the proofs of the theorems on genus-zero and genus-
one correlation functions. Thus Condition 2 is natural and necessary be-
cause the Verlinde conjecture concerns V -modules, not finitely generated N-
gradable weak V -modules. Condition 3 would be a consequence of the finite-
ness of the dimensions of genus-one conformal blocks, if the conformal field
theory had been constructed, and is thus natural and necessary. For vertex
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operator algebras associated to affine Lie algebras (Wess-Zumino-Novikov-
Witten models) and vertex operator algebras associated to the Virasoro al-
gebra (minimal models), Condition 2 can be verified easily by reformulating
the corresponding complete reducibility results in terms of the representa-
tion theory of affine Lie algebras and the Virasoro algebra. For these vertex
operator algebras, Condition 3 can also be easily verified by using results in
the representation theory of affine Lie algebras and the Virasoro algebra. In
fact, Condition 3 was stated to hold for these algebras in Zhu’s paper [Z] and
was verified by Dong-Li-Mason [DLM] (see also [AN] for the case of minimal
models).

Using the fact that Na2
ea1

= δa2
a1

for a1, a2 ∈ A, we can easily derive the
following formulas from Theorem 2.1 (cf. Section 3 in [V]):

Theorem 2.3 Let V be a vertex operator algebra satisfying the conditions
in Section 1. Then we have Sae 6= 0 for a ∈ A and

Na3
a1a2

=
∑
a4∈A

Sa4
a1
Sa4
a2
S
a′3
a4

Sa4
0

. (2.4)

Theorem 2.4 For a1, a2 ∈ A,

Sa2
a1

=
See((B

(−1))2(Ya2
a2e;1
⊗ Yea′1a1;1;Ya2

a2e;1
⊗ Yea′1a1;1))

F (Ya1
a1e;1
⊗ Yea′1a1;1;Ya1

ea1;1 ⊗ Yea1a′1;1)F (Ya2
a2e;1
⊗ Yea′2a2;1;Ya2

ea2;1 ⊗ Yea2a′2;1)
.

(2.5)

Using (2.5) and certain properties of the matrix elements of the fusing
and braiding isomorphisms proved in [H6], we can prove the following:

Theorem 2.5 The matrix (Sa2
a1

) is symmetric.

3 Rigidity, nondegeneracy property and mod-

ular tensor categories

A tensor category with tensor product bifunctor £ and unit object V is rigid
if for every object W in the category, there are right and left dual objects W ∗

and ∗W together with morphisms eW : W ∗ £W → V , iW : V → W £W ∗,

12



e′W : W £ ∗W → V and i′W : V → ∗W £W such that the compositions of
the morphisms in the sequence

W −−−→ V £W iW£IW−−−−→ (W £W ∗)£W −−−→

−−−→ W £ (W ∗ £W )
IW£eW−−−−→ W £ V −−−→ W

and three similar sequences are equal to the identity IW on W . Rigidity is
a standard notion in the theory of tensor categories. A rigid braided tensor
category together with a twist (a natural isomorphism from the category to
itself) satisfying natural conditions (see [T] and [BK] for the precise condi-
tions) is called a ribbon category. A semisimple ribbon category with finitely
many inequivalent irreducible objects is a modular tensor category if it has
the following nondegeneracy property: The m × m matrix formed by the
traces of the morphism cWiWj

◦ cWjWi
in the ribbon category for irreducible

modules W1, . . . ,Wm is invertible. The term “modular tensor category” was
first suggested by I. Frenkel to summarize Moore-Seiberg’s theory of polyno-
mial equations. See [T] and [BK] for details of the theory of modular tensor
categories.

The results in the proceeding section give the following:

Theorem 3.1 Let V be a simple vertex operator algebra satisfying the fol-
lowing conditions:

1. V(n) = 0 for n < 0, V(0) = C1, W(0) = 0 for any irreducible V -module
which is not equivalent to V .

2. Every N-gradable weak V -module is completely reducible.

3. V is C2-cofinite, that is, dimV/C2(V ) <∞.

Then the braided tensor category structure on the category of V -modules con-
structed in [HL1]–[HL4], [H1] and [H4] is rigid, has a natural structure of
ribbon category and has the nondegeneracy property. In particular, the cate-
gory of V -modules has a natural structure of modular tensor category.

Sketch of the proof. Note that Condition 1 implies that V ′ is equivalent
to V as a V -module. Thus Condition 1 is stronger than Condition 1 in the
preceding section. In particular, we can use all the results in the proceeding
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section. This slightly stronger Condition 1 is needed in the proof of the
rigidity and nondegeneracy property.

We take both the left and right dual of a V -module W to be the contra-
gredient module W ′ of W . Since our tensor category is semisimple, to prove
the rigidity, we need only discuss irreducible modules. For any V -module
W =

∐
n∈QW(n), we use W to denote its algebraic completion

∏
n∈QW(n).

For a ∈ A, using the universal property (see Definition 3.1 in [HL3] and Def-
inition 12.1 in [HL4]) for the tensor product module (W a)′ £W a, we know
that there exists a unique module map êa : (W a)′ £W a → V such that

êa(w
′
a £ wa) = Yea′a;1(w′a, 1)wa

for wa ∈ W a and w′a ∈ (W a)′, where w′a £ wa ∈ (W a)′ £W a is the tensor
product of w1 and w2, êa : (W a)′ £W a → V is the natural extension of êa
to (W a)′ £W a. Similarly, we have a module map from W a £ (W a)′ to V .
Since W a £ (W a)′ is completely reducible and the fusion rule NV

Wa(Wa)′ is

1, there is a V -submodule of W a £ (W a)′ which is isomorphic to V under
the module map from W a £ (W a)′ to V . Thus we obtain a module map
ia : V → W a £ (W a)′ which maps V isomorphically to this submodule of
W a £ (W a)′. Now

W a −−−→ V £W a ia£IWa−−−−→ (W a £ (W a)′)£W a −−−→

−−−→ W a £ ((W a)′ £W a)
IWa£êa−−−−→ W a £ V −−−→ Wa

(3.1)
is a module map from an irreducible module to itself. So it must be the iden-
tity map multiplied by a number. One can calculate this number explicitly
and it is equal to

F (Yaae;1 ⊗ Yea′a;1;Yaea;1 ⊗ Yeaa′;1).

From Theorem 2.1, this number is not 0. Let

ea =
1

F (Yaae;1 ⊗ Yea′a;1;Yaea;1 ⊗ Yeaa′;1)
êa

Then the map obtained from (3.1) by replacing êa by ea is the identity.
Similarly, we can prove that all the other maps in the definition of rigidity
are also equal to the identity. Thus the tensor category is rigid.

For any a ∈ A, we define the twist on W a to e2πiha . Then it is easy
to verify that the rigid braided tensor category with this twist is a ribbon
category.
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To prove the nondegeneracy property, we use the formula (2.5). Now it
is easy to calculate in the tensor category the trace of cWa2 ,Wa1 ◦ cWa1 ,Wa2

for a1, a2 ∈ A, where cWa1 ,Wa2 : W a1 £W a2 → W a2 £W a1 is the braiding
isomorphism. The result is

((B(−1))2(Ya2
a2e;1
⊗ Yea′1a1;1;Ya2

a2e;1
⊗ Yea′1a1;1))

F (Ya1
a1e;1
⊗ Yea′1a1;1;Ya1

ea1;1 ⊗ Yea1a′1;1)F (Ya2
a2e;1
⊗ Yea′2a2;1;Ya2

ea2;1 ⊗ Yea2a′2;1)
.

By (2.5), this is equal to
Sa2
a1

See
,

and these numbers form an invertible matrix. The other data and axioms for
modular tensor categories can be given or proved trivially. Thus the tensor
category is modular. The details will be given in [H7].
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