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Abstract

We construct two associative algebras from a vertex operator algebra V and a
general automorphism g of V . The first, called g-twisted zero-mode algebra, is a
subquotient of what we call g-twisted universal enveloping algebra of V . These algebras
are generalizations of the corresponding algebras introduced and studied by Frenkel-
Zhu and Nagatomo-Tsuchiya in the (untwisted) case that g is the identity. The other is
a generalization of the g-twisted version of Zhu’s algebra for suitable g-twisted modules
constructed by Dong-Li-Mason when the order of g is finite. We are mainly interested in
g-twisted V -modules introduced by the first author in the case that g is of infinite order
and does not act on V semisimply. In this case, twisted vertex operators in general
involve the logarithm of the variable. We construct functors between categories of
suitable modules for these associative algebras and categories of suitable (logarithmic)
g-twisted V -modules. Using these functors, we prove that the g-twisted zero-mode
algebra and the g-twisted generalization of Zhu’s algebra are in fact isomorphic.

1 Introduction

Orbifold conformal field theories play an important role in mathematics and physics. They
are examples of conformal field theories constructed from known conformal field theories
and automorphisms of these known ones. Mathematically, the study of orbifold conformal
field theories can be reduced to the study of the twisted representation theory of vertex
operator algebras, that is, the theory of representations of vertex operator algebras twisted by
automorphisms. In fact, the first example of orbifold conformal field theories is the conformal
field theory corresponding to the moonshine module vertex operator algebra constructed by
Frenkel, Lepowsky and Meurman [FLM]. One conjecture proposed by the first author in
this twisted representation theory of vertex operator algebras is that g-twisted modules for
a vertex operator algebra V satisfying suitable conditions and elements g of a group G of
automorphisms of V equipped with twisted (logarithmic) intertwining operators among g-
twisted modules for g ∈ G have a structure of G-equivariant intertwining operator algebras
satisfying a modular invariance property. This conjecture in fact implies that the category
of g-twisted V -modules for g ∈ G has a structure of G-crossed (tensor) category in the sense
of Turaev [T].
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Automorphisms of a vertex operator algebra can be of finite or infinite orders. An ele-
ment of the Monster group gives an automorphism of the moonshine module vertex operator
algebra [FLM]. Such an automorphism is of finite order. An element of a simply connected
finite-dimensional Lie group gives an automorphism of the vertex operator algebra associated
to the affine Lie algebra of the Lie algebra of the Lie group [FLM] [FZ]. Such an automor-
phism is in general of infinite order. Moreover, in general it might not act on the vertex
operator algebra semisimply.

Twisted modules for a vertex operator algebra associated to an automorphism of finite
orders were introduced in the construction of the moonshine module vertex operator algebra
in [FLM]. In [H3], the first author introduced a notion of twisted module associated to a
general automorphism whose order does not have to be finite. One important new feature
of twisted modules in the general case is that twisted vertex operators might involve the
logarithm of the variable (logarithmic g-twisted module). For a historical discussion of
twisted modules for vertex operator algebras and the relevant references, see [H3]. Here
we mention only that the first class of examples of logarithmic g-twisted modules satisfying
the definition in [H3] is in fact obtained for automorphisms g obtained by exponentiating
screening operators (see [H3] and [AM]). More examples of logarithmic g-twisted modules
are given in [B], [BS] and [Y]. See also [B] for the Jacobi identity for a suitable component
of the twisted vertex operators that we shall derive from the axioms in [H3] and use in this
paper.

In the representation theory of Lie algebras, one of the most important tools is the
universal enveloping algebra of a Lie algebra. The representation theory of a Lie algebra is
equivalent to the representation theory of its universal enveloping algebra. It is natural to
try to find associative algebras that play the similar roles in the representation theory of
vertex operator algebras.

Let V be a vertex operator algebra. Frenkel and Zhu in [FZ] first constructed the universal
enveloping algebra U(V ) of V . V -modules of the weakest type (even more general than
the so called weak V modules) are equivalent to U(V )-modules. Though U(V ) is very
natural, it is not very useful because in the representation theory of vertex operator algebras,
we are interested mostly in V -modules with suitable lower bounded gradings. In [Z], Zhu
constructed an associative algebra A(V ) on a quotient of V with the product obtained from
the vertex operator map. He also constructed implicitly functors between the category of
V -modules with suitable lower bounded gradings and the category of A(V )-modules. In
[H2], motivated by the geometry of vertex operator algebras, the first author constructed
an associative algebra Ã(V ) using a product and a quotient that look very different from
those defining A(V ). It was also proved in [H2] that Ã(V ) is in fact isomorphic to A(V ) by
constructing explicitly an isomorphism between them using the conformal transformation

1
2πi

log(1 + 2πiz).
To study twisted modules for vertex operator algebras, we would also like to find suitable

associative algebras such that the study of twisted modules can be reduced to the study
of modules for these associative algebras. In the case that the automorphism g of the
vertex operator algebra V is of finite order, Dong, Li and Mason in [DLM1] generalized
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Zhu’s construction to obtain an associative algebra Ag(V ) together with functors between
the categories of suitable g-twisted V -modules and Ag(V )-modules. This associative algebra
Ag(V ) is in fact a subalgebra of Zhu’s algebra for the fixed point vertex operator algebra
under g. The construction in [DLM1] cannot be generalized directly to the case that the
order of g is infinite.

In the present paper, for a vertex operator algebra V and an automorphism g of V , we
first construct a g-twisted universal enveloping algebra Ug(V ) such that g-twisted V -modules
of the weakest type (even more general than g-twisted weak V -modules) are equivalent to
Ug(V )-modules. The construction is a straightforward generalization of the construction of
Frenkel-Zhu to the twisted case. We take the tensor algebra of the affinization of V with
suitable powers of the variable and take a topological completion so that suitable infinite
sums are allowed, and then divide this algebra by all the relations corresponding to the
identities that should hold for any type of g-twisted modules.

Just as in the case of V -modules, Ug(V ) is not very useful because we are interested
mostly in g-twisted V -modules with suitable lower bounded gradings. For g-twisted V -
modules graded by conformal weights, there exist lowest weight spaces. In the case that
such a g-twisted V -module is irreducible, the lowest weight space determines the module
completely. It is natural to expect that there exists an associative algebra obtained from
Ug(V ) such that the lowest weight space of an irreducible g-twisted V -module is a module
for this algebra.

In this paper, using Ug(V ), we construct an associative algebra Zg(V ) satisfying this
property and call it g-twisted zero-mode algebra, although the more appropriate name for this
algebra is probably g-twisted imaginary-mode algebra or g-twisted zero-real-mode algebra.
In fact, Ug(V ) is graded by conformal weights. Take the subalgebra of Ug(V ) generated
by elements of imaginary weights and then take the quotient of this algebra by the ideal
generated by elements of the form uv where u, v ∈ Ug(V ) have weights k + m and −m for
k ∈ I (the set of imaginary numbers) and m ∈ C satisfying <(m) > 0. This quotient algebra
is our g-twisted zero-mode algebra Zg(V ).

We also construct an associative algebra Ãg(V ), generalizing the algebra Ã(V ) in [H2],
and an isomorphic algebra Ag(V ), generalizing the algebra constructed in [DLM1] for g of
finite order. In fact, in this case, Ãg(V ) is more natural to work with. We give our construc-
tions and proofs mostly for Ãg(V ). The construction and results for Ag(V ) can be easily
derived from those for Ãg(V ) using the isomorphism between them. One interesting feature
in the case that the order of g is infinite is that Ag(V ) is in general not a subalgebra of Zhu’s
algebra for the fixed point vertex operator subalgebra under g. It is instead a subalgebra of
Zhu’s algebra for the fixed point vertex operator subalgebra under the semisimple part of g.

Our main results in this paper are the constructions of functors between the categories
of suitable g-twisted V -modules, suitable Zg(V )-modules and suitable Ãg(V )-modules (or
Ag(V )-modules). As in the case that the order of g is finite, a suitable g-twisted V -module
W has a subspace Ωg(W ) on which the components of the twisted vertex operators whose
weights have negative real parts act as 0. It is easy to prove from the definitions that Ωg(W )
is a Zg(V )-, Ãg(V )- or Ag(V )-module. We then construct right inverses of these functors and
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derive some consequences that will be useful for future study. Finally, using these results,
we prove that Zg(V ), Ãg(V ) and Ag(V ) are isomorphic to each other.

In the case that g is the identity, the g-twisted zero-mode algebra becomes the zero-
mode algebra, which appeared first in physics (see [BN]) and introduced rigorously in [FZ].
In [NT], Nagatomo and Tsuchiya [NT] proved that the zero-mode algebra is isomorphic to
Zhu’s algebra. As a special case (the case that g is the identity), our proof that Zg(V )
and Ag(V ) are isomorphic gives in particular a different proof that the zero-mode algebra is
isomorphic to Zhu’s algebra.

It seems to be easier to calculate Zg(V ) than to calculate Ag(V ) or Ãg(V ). On the other
hand, Ãg(V ) is more natural for the study of modular invariance. Ag(V ) is in some sense a
bridge connecting them. We expect that Zg(V ) will be especially useful for the construction
and study of twisted modules and twisted intertwining operators.

There are also higher zero-mode algebras Zg,n(V ) for n ∈ N as the quotient of the
subalgebra of Ug(V ) generated by elements of imaginary weights by the ideal generated by
elements of the form uv where u, v ∈ Ug(V ) have weights k + m and −m for k ∈ I and
m ∈ C satisfying <(m) > n. The g-twisted zero-mode algebra Zg discussed above is in fact
Zg,0(V ). We can also generalize higher Zhu’s algebras An(V ) introduced by Dong, Li and
Mason in [DLM2] to associative algebras Ag,n(V ) for n ∈ N such that Ag,0(V ) = Ag(V ) and
A1,n(V ) = An(V ) when g is the identity 1. There are also Ãg,n(V ) for n ∈ N generalizing
Ãg(V ). These algebras will be important for the study of twisted logarithmic intertwining
operators. But for simplicity, we shall study only Zg(V ), Ãg(V ) and Ag(V ) in this paper.
The general case will be discussed in another paper.

The definition of g-twisted module in [H3] was formulated using the duality properties
of the twisted vertex operators. It should be possible to use the duality properties and
immediate consequences to construct the associative algebras and functors above (see [HY]
for a construction of the functors between the category of modules for Zhu’s algebra A(V )
and the category of suitable V -modules without using the commutator formula for modules).
On the other hand, since twisted vertex operators are special (logarithmic) intertwining
operators, suitable components of twisted vertex operators might satisfy some Jacobi-type
identity as is discussed for intertwining operators by the first author in [H1]. A Jacobi-type
identity will give formulas that can be used to simplify our constructions. Indeed, a Jacobi
identity for suitable components of twisted vertex operators was obtained by Bakalov in
[B]. Bakalov gave in [B] a different definition of g-twisted V -module based on an associator
formula for the twisted vertex operators. From this definition, he derived a Jacobi identity
for the map obtained by taking the non-logarithmic component of the twisted vertex operator
map, that is, the constant term in the twisted vertex operator map when we view the twisted
vertex operator map as a polynomial in the logarithm of the variable. It was stated in [B]
that a g-twisted V -module satisfying the original definition given by the first author in [H3]
indeed satisfies the definition given in [B]. But no proof was given there.

Note that the twisted vertex operators given in the definition in [H3] are the objects that
we are interested in orbifold conformal field theory, not their non-logarithmic components.
For example, in the future, we would like to prove the modular invariance for the space of
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q-(pseudo-)traces of twisted vertex operators for g-twisted V -modules, not for the space of
q-(pseudo-)traces of non-logarithmic components of twisted vertex operators for g-twisted
V -modules. Thus before we can use the Jacobi identity in [B], we need to first show that for
suitable g-twisted V -modules, these two definitions are equivalent. We give a proof of this
equivalence in this paper. We then use freely the formulas derived from this Jacobi identity
to give our constructions and proofs.

The results obtained in the present papers have been used by the second author to con-
struct suitable twisted modules for vertex operator algebras associated to affine Lie algebras
in [Y].

The present paper is organized as follows: In Section 2, we recall several variants of the
notion of g-twisted V -module. We derive Bakalov’s Jacobi identity for the non-logarithmic
components of twisted vertex operators and some other useful properties in this section.
In this section, we also prove that when the other conditions for (generalized) g-twisted V -
modules hold, the duality property for the twisted vertex operators given in [H3] is equivalent
to the Jacobi identity for non-logarithmic components of twisted vertex operators given in
[B]. We give the constructions of g-twisted universal enveloping algebra Ug(V ) and the zero-
mode algebra Zg(V ) in Section 3. The constructions of Ãg(V ) and Ag(V ) are given in Section
4. Our main results, the constructions of functors between different categories, are given in
Section 5. In Section 6, we give the proof that Zg(V ), Ag(V ) and Ãg(V ) are isomorphic to
each other.

Acknowledgments We would like to thank Robert McRae for comments on the formu-
lation of the duality property in the definition of twisted modules.

2 Twisted modules

In this paper, we fix a vertex operator algebra (V, Y,1, ω) and an automorphism g of V . Since
we often use i to denote an index in this paper, we shall use explicitly the notation

√
−1 to

denote a fixed square root of −1. We shall use the convention that log z = log |z|+arg z
√
−1

where 0 ≤ arg z < 2π. We shall also use lp(z) to denote log z + 2πp
√
−1 for p ∈ Z. Besides

the usual notations C, R, Z, Z+ and N for the sets of complex numbers, real numbers,
integers, positive integers and natural numbers, respectively, we also use I and C+ to denote
the set of imaginary numbers and the closed right half complex plane.

In this section, we recall the definition of several variants of the notion of g-twisted V -
module and prove a number of useful properties for these g-twisted V -modules. Many of the
formulas proved in this section were obtained first by Bakalov [B] from a different definition
of g-twisted V -module. Here we prove them starting from the original definition in [H3]. We
also prove that when the other conditions for suitable g-twisted V -modules hold, the duality
property for the twisted vertex operators given in [H3] is equivalent to the Jacobi identity
for non-logarithmic components of twisted vertex operators given in [B].
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For α ∈ C/Z, we denote by

V [α] = {u ∈ V | (g − e2π
√
−1α)Λu = 0 for some Λ ∈ Z+}

the generalized eigenspace with eigenvalue e2π
√
−1α for g. For α ∈ C/Z, there is a unique

a ∈ [0, 1) + I such that a + Z = α. We call a ∈ [0, 1) + I a g-weight of V if V [a+Z] 6= 0. We

use P (V ) to denote the set of all the g-weights of V . Then V =
∐

n∈C,a∈P (V ) V
[a+Z]

(n) . Let

AV : V → V be the linear map defined by AV v = av for v ∈ V [a+Z] and a ∈ P (V ).

Definition 2.1 A C+-graded weak g-twisted V -module is a C+ × C/Z-graded vector space

W =
∐

n∈C+,α∈C/ZW
[α]
n (graded by C+-degrees and g-weights) equipped with a linear map

Y g :V ⊗W → W{x}[logx],

v ⊗ w 7→ Y g(v, x)w

and an action of g satisfying the following conditions:

1. The equivariance property: For p ∈ Z, z ∈ C×, v ∈ V and w ∈ W , Y g;p+1(gv, z)w =
Y g;p(v, z)w, where for p ∈ Z,

Y g;p(v, z)w = Y g(v, x)w

∣∣∣∣
xn=enlp(z), log x=lp(z)

is the p-th analytic branch of Y g.

2. The identity property: For w ∈ W , Y g(1, x)w = w.

3. The duality property: Let W
′
=
∐

n∈C+,α∈C/Z

(
W

[α]
n

)∗
and, for n ∈ C, πn : W → Wn =∐

α∈C/ZW
[α]
n be the projection. For any u, v ∈ V , w ∈ W and w

′ ∈ W ′
, there exists a

multivalued analytic function of the form

f(z1, z2) =
N∑

i,j,k,l=0

aijklz
mi
1 z

nj

2 (logz1)k(logz2)l(z1 − z2)−t

for N ∈ N, m1, . . . ,mN , n1, . . . , nN ∈ C and t ∈ Z+, such that the series

〈w′ , Y g;p(u, z1)Y g;p(v, z2)w〉 =
∑
n∈C

〈w′ , Y g;p(u, z1)πnY
g;p(v, z2)w〉,

〈w′ , Y g;p(v, z2)Y g;p(u, z1)w〉 =
∑
n∈C

〈w′ , Y g;p(v, z2)πnY
g;p(u, z1)w〉,

〈w′ , Y g;p(Y (u, z1 − z2)v, z2)w〉 =
∑
n∈C

〈w′ , Y g;p(πnY (u, z1 − z2)v, z2)w〉
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are absolutely convergent in the regions |z1| > |z2| > 0, |z2| > |z1| > 0, |z2| > |z1−z2| >
0, respectively, and are convergent to the branch

N∑
i,j,k,l=0

aijkle
milp(z1)enj lp(z2)lp(z1)klp(z2)l(z1 − z2)−t

of f(z1, z2) when arg z1 and arg z2 are sufficiently close (more precisely, when | arg z1−
arg z2| < π

2
).

4. The C+- and g-grading conditions: For v ∈ V(m) and w ∈ Wp =
∐

α∈C/ZW
[α]
p wherem ∈

Z and p ∈ C+, write Y g(v, x)w =
∑N

k=0

∑
n∈C Y

g
n,k(v)wx−n−1(log x)k. Then Y g

n,k(v)w is

0 when m−n−1+p 6∈ C+ (or <(m−n−1+p) < 0), is in Wm−n−1+p when m−n−1+p ∈
C+ and for r ∈ R,

∐
n∈IWn is equal to the subspace of W consisting of w ∈ W such

that when Y g
n,k(v)w = 0 for v ∈ V(m), n ∈ C, k = 0, . . . , N , m − n − 1 6∈ C+. For

α ∈ C/Z, w ∈ W [α] =
∐

n∈C+
W

[α]
n , there exists Λ ∈ Z+ such that (g−e2π

√
−1α)Λw = 0.

Moreover, gY g(u, x)v = Y g(gu, x)gv.

5. The L(−1)-derivative property: For v ∈ V ,

d

dx
Y g(v, x) = Y g(L(−1)v, x).

A lower bounded generalized g-twisted V -module or simply a lower bounded g-twisted V -
module is a C+-graded weak g-twisted V -module W together with a decomposition of W
as a direct sum W =

∐
n∈CW[n] of generalized eigenspaces W[n] with eigenvalues n ∈ C for

the operator Lg(0) = ResxxY
g(ω, x) such that for each n ∈ C and each α ∈ C/Z, W

[α]
[n+l] =

W[n+l] ∩W [α] = 0 for sufficiently negative real number l. A lower bounded generalized g-
twisted V -module is said to be strongly C/Z-graded or grading-restricted if it is lower bounded

and for each n ∈ C, α ∈ C/Z, dimW
[α]
[n] = dimW[n] ∩W [α] <∞.

In the twisted representation theory of vertex operator algebras, we are mainly interested
in strongly C/Z-graded or grading-restricted generalized g-twisted modules. For simplicity,
we shall call them simply g-twisted V -modules. In the case that g does not act on V
semisimply, since the twisted vertex operators involve not only powers of the variable but also
the logarithm of the variable, we shall also call such a g-twisted V -module a logarithmic g-
twisted V -module. Lower bounded g-twisted V -modules also often appear in the formulations
of certain conditions and assumptions. C+-weak g-twisted V -modules are not really needed
in the twisted representation theory of vertex operator algebras. They are not introduced in
[H3] because of this reason. But in this paper, they are needed in the proof of the theorem
that Zg(V ) and Ag(V ) are isomorphic. Because of this reason, we prove all the results in this
paper for C+-weak g-twisted V -modules and then derive the corresponding results for lower
bounded g-twisted V -modules and g-twisted V -modules (including logarithmic g-twisted
V -modules) as special cases.
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Let W =
∐

n∈C+,α∈C/ZW
[α]
n be a C+-graded weak g-twisted V -module with the twisted

vertex operator map Y g. For α ∈ C/Z, let W [α] =
∐

n∈C+
W

[α]
n . When W is a (lower

bounded) g-twisted V -module, we also have W [α] =
∐

n∈CW
[α]
[n] . As in the case of V , we call

a ∈ [0, 1)+I a g-weight of W if W [a+Z] 6= 0. Let P (W ) be the set of all g-weights of W . Then

W =
∐

n∈C+,a∈P (W ) W
[a+Z]
[n] . Let AW : W → W be the linear map defined by AWw = aw for

w ∈ W [a+Z] and a ∈ P (W ). It is clear that for a ∈ P (V ) and b ∈ P (W ), either a+b ∈ P (W )
or a+ b− 1 ∈ P (W ).

For v ∈ V , we have

Y g(v, x) =
N∑
k=0

∑
n∈C

Y g
n,k(v)x−n−1(log x)k.

Let
Y g
k (v, x) =

∑
n∈C

Y g
n,k(v)x−n−1.

Then

Y g(v, x) =
N∑
k=0

Y g
k (v, x)(log x)k.

Denote the formal variable log x by y and let

Y g(v, x, y) =
N∑
k=0

Y g
k (v, x)yk =

N∑
k=0

∑
n∈C

Y g
n,k(v)x−n−1yk (2.1)

for v ∈ V . Taking u in the duality property to be 1, we see that Y g
n,k(v)w = 0 for k = 0, . . . , N

when <(n) is sufficiently negative, that is, Y g
k (v, x)w for k = 0, . . . , N are lower truncated.

We say that Y g
k , k = 0, . . . , N , are lower truncated.

Since the homogeneous subspaces of V are finite dimensional and g preserves the homo-
geneous subspaces of V , by the multiplicative Jordan-Chevalley decomposition, there exist
a unique semisimple automorphism σ of V and a unique locally unipotent operator gu such
that σ and gu commute with each other and g = σgu. Here by locally unipotent operator,
we mean that gu − 1V is locally nilpotent, that is, for v ∈ V , (gu − 1V )jv = 0 when j is
sufficiently large. Let

N =
log gu

2π
√
−1

=
log(1V + (gu − 1V ))

2π
√
−1

=
∑
j∈Z+

(−1)j+1(gu − 1V )j

2π
√
−1j

. (2.2)
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Note that since gu is locally unipotent, the right-hand side of (2.2) is a finite sum when
acting on v ∈ V and is locally nilpotent. From the definition of N , we have

gu = e2π
√
−1N

=
∑
j∈N

(2π
√
−1N )j

j!
.

Thus we have g = σe2π
√
−1N .

Let (W,Y g) be a C+-graded weak g-twisted V -module. We now use the multiplicative
Jordan-Chevalley decomposition of g above to derive some formulas. For n ∈ Z, consider
the space Y g(V(n), x, y) of elements of (End W ){x}[y] of the form Y g(v, x, y) for v ∈ V(n).
Then Y g(·, x, y) is a surjective homomorphism from V(n) to Y g(V(n), x, y). In particular,
Y g(V(n), x, y) is finite dimensional. Since g preserve weights, g acts on V(n). Thus g also acts

on Y g(V(n), x, y) by g · Y g(v, x, y) = Y g(gv, x, y) for v ∈ V(n). Since on V(n), g = σe2π
√
−1N ,

we obtain a decomposition of this action of g on Y g(V(n), x, y) which, for simplicity, we shall

still write as g = σe2π
√
−1N where σ and N are the corresponding operators on Y g(V(n), x, y).

On the other hand, from the equivariance property,

Y g(gv, x, y) = e−2π
√
−1x∂/∂xe−2π

√
−1∂/∂yY g(v, x, y) (2.3)

for v ∈ V . By (2.3), the action of g on Y g(V(n), x, y) is equal to e−2π
√
−1x∂/∂xe−2π

√
−1∂/∂y. If

Y g(V(n), x, y) is invariant under e−2π
√
−1x∂/∂x and e−2π

√
−1∂/∂y, then e−2π

√
−1x∂/∂xe−2π

√
−1∂/∂y

is a Jordan-Chevalley decomposition of g on Y g(V(n), x, y). By the uniqueness of the Jordan-

Chevalley decomposition, we obtain σ = e−2π
√
−1x∂/∂x and e2π

√
−1N = e−2π

√
−1∂/∂y. Since

∂/∂y =
log(1Y g(V(n),x,y) + (e−2π

√
−1∂/∂y − 1Y g(V(n),x,y))

−2π
√
−1

=
∑
j∈Z+

(−1)j+1(e−2π
√
−1∂/∂y − 1Y g(V(n),x,y))

j

−2π
√
−1j

,

by the definition of N , we obtain N = −∂/∂y on Y g(V(n), x, y). Since we do not assume

that Y g(V(n), x, y) is invariant under e−2π
√
−1x∂/∂x and e−2π

√
−1∂/∂y, we have to prove σ =

e−2π
√
−1x∂/∂x and e2π

√
−1N = e−2π

√
−1∂/∂y directly, without using the uniqueness of the Jordan-

Chevalley decomposition for an operator on a finite-dimensional space.
Let v ∈ V [α]

(n) , α ∈ C/Z. Since the action of g on Y g(V(n), x, y) is equal to e−2π
√
−1x∂/∂xe−2π

√
−1∂/∂y

and Y g(v, x, y) is a generalized eigenvector of g with eigenvalue e2π
√
−1α, there exists M ∈ Z+

such that
(e−2π

√
−1x∂/∂xe−2π

√
−1∂/∂y − e2π

√
−1α)MY g(v, x, y) = 0. (2.4)
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From (2.1) and (2.4), we obtain

N∑
k=0

∑
m∈C

Y g
m,k(v)(e−2π

√
−1(−m−1)e−2π

√
−1∂/∂y − e2π

√
−1α)Mx−m−1yk

=
N∑
k=0

∑
m∈C

Y g
m,k(v)(e−2π

√
−1x∂/∂xe−2π

√
−1∂/∂y − e2π

√
−1α)Mx−m−1yk

= 0. (2.5)

From (2.5), we see that the coefficients of the left-hand side of (2.5) as a formal series in
powers of x must be 0, that is,

N∑
k=0

Y g
m,k(v)(e−2π

√
−1(−m−1)e−2π

√
−1∂/∂y − e2π

√
−1α)Myk = 0 (2.6)

for m ∈ C. Rewriting (2.6), we obtain

(e−2π
√
−1∂/∂y − e2π

√
−1(α−m−1))M

N∑
k=0

Y g
m,k(v)yk = 0

for m ∈ C. Let m ∈ C such that e2π
√
−1(α−m−1) 6= 1. If Y g

m,k(v) 6= 0 for some k, then∑N
k=0 Y

g
m,k(v)yk is a nonzero polynomial in y. Since e2π

√
−1i(α−m−1) 6= 1,

(e−2π
√
−1∂/∂y − e2π

√
−1(α−m−1))M

N∑
k=0

Y g
m,k(v)yk

cannot be equal to 0. Contradiction with (2.5). Thus for suchm, Y g
m,k(v) = 0 for k = 0, . . . , N

and we have

Y g(v, x, y) =
N∑
k=0

∑
m∈α

Y g
m,k(v)x−m−1yk.

In particular,

e−2π
√
−1x∂/∂xY g(v, x, y) = e2π

√
−1αY g(v, x, y)

= σY g(v, x, y).

Since v is an arbitrary element of V(n), e
−2π
√
−1x∂/∂x = σ on Y g(V(n), x, y) and thus e2π

√
−1N =

e−2π
√
−1∂/∂y.

Since n is arbitrary, we have proved the following formulas:

Lemma 2.2 For v ∈ V ,

Y g(σv, x, y) = e−2πix∂/∂xY g(v, x, y), (2.7)

Y g(N v, x, y) = −∂/∂yY g(v, x, y), (2.8)

Y g(e2πiNv, x, y) = e−2πi∂/∂yY g(v, x, y). (2.9)
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From (2.7), (2.8) and (2.9), for v ∈ V [a+Z], a ∈ P (V ) and w ∈ W , Y g(v, x)w ∈
x−aW ((x))[log x]. Then for v ∈ V [α], w ∈ W ,

Y g
k (v, x)w =

∑
n∈a+Z

Y g
n,k(v)wx−n−1,

Y g(v, x)w =

Ng(v)∑
k=0

Y g
k (v, x)w(log x)k,

where Ng(v) ∈ N depends only on N and v. For convenience, we shall use u(n) to denote
the operator Y g

n,0(u).
From (2.8), we have the following relation between Y g and Y g

0 :

Lemma 2.3 For v ∈ V ,
Y g(v, x) = Y g

0 (x−Nv, x), (2.10)

where x−N = e−N log x.

Proof. From (2.8) and the formal Taylor’s theorem, we obtain

Y g(xNv, x, y) = e−(log x)∂/∂yY g(v, x, y)

=

Ng(v)∑
k=0

e−(log x)∂/∂yY g
k (v, x)yk

=

Ng(v)∑
k=0

Y g
k (v, x)(y − log x)k. (2.11)

Substituting log x for y in (2.11) and then substituting x−Nv for v, we obtain (2.10).

We also need the following lemma:

Lemma 2.4 For u ∈ V , we have

σY g(u, x) = Y g(σu, x)σ, (2.12)

[N , Y g(u, x)] = Y g(Nu, x), (2.13)

eyNY g(u, x) = Y g(eyNu, x)eyN . (2.14)

Proof. Let u ∈ V [α] and v ∈ V [β]. Then u and v are generalized eigenvectors for g with
eigenvalues e2π

√
−1α and e2π

√
−1β. In particular, there exist M,N ∈ Z+ such that (g −

e2π
√
−1α)Mu = (g − e2π

√
−1β)Nv = 0.

Using the fact that g is an automorphism of V , we have

(g − e2π
√
−1(α+β))Y g(u, x)v = Y g((g − e2π

√
−1α)u, x)gv + Y g(e2π

√
−1αu, x)(g − e2π

√
−1β)v.
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Then

(g − e2π
√
−1(α+β))M+NY g(u, x)v

=
M+N∑
j=0

(
M +N

j

)
Y g(e2π

√
−1(M+N−j)α(g − e2π

√
−1α)ju, x)gj(g − e2π

√
−1β)M+N−jv

= 0.

Thus Y g(u, x)v ∈ V [α+β][[x, x−1]]. This proves (2.12).
Using (2.12) together with the fact that g is an automorphism of V , we obtain

e2π
√
−1NY g(u, x) = Y g(e2π

√
−1Nu, x)e2π

√
−1N

or

Y g(e2π
√
−1Nu, x) = e2π

√
−1NY g(u, x)e−2π

√
−1N

= Ad(e2π
√
−1N )(Y g(u, x)).

Thus by the definition of N ,

Y g(Nu, x) =
1

2π
√
−1

Y g(log(e2π
√
−1N )u, x)

=
1

2π
√
−1

(log(Ad(e2π
√
−1N ))))(Y g(u, x))

=
1

2π
√
−1

ad(2π
√
−1N )(Y g(u, x))

= [N , Y g(u, x)], (2.15)

proving (2.13). The formula (2.14) follows immediately from (2.13).

As consequences of Lemmas 2.3 and 2.4, we have the following properties:

Proposition 2.5 For n ∈ Z and v ∈ V ,

[N , L(n)] = 0, (2.16)

xNL(n) = L(n)xN , (2.17)

Y g
0 (L(−1)u, x) =

d

dx
Y g

0 (u, x)− x−1Y g
0 (Nu, x). (2.18)

Proof. Since gω = ω, we have Nω = ω. Then (2.16) follows from (2.13) and (2.17) is an
immediate consequence of (2.16).

The formula (2.18) is obtained by taking derivative with respect to x on both sides of
(2.10), using the L(−1)-derivative property for Y g and then take the 0-th power of log x on
both sides of the resulting equality.
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Using the the formulas obtained above, we prove a duality property for the map Y g
0 . For

u ∈ V , in the region |z2| > |z1 − z2| > 0, we use(
1 +

z1 − z2

z2

)N
u (2.19)

to denote the power series in the variable z1−z2
z2

with coefficients in V obtained by using the
binomial expansion. This series can also be obtained by writing (2.19) as

exp

(
log

(
1 +

z1 − z2

z2

)
N
)
u, (2.20)

expanding (2.20) as a power series in

log

(
1 +

z1 − z2

z2

)
(2.21)

and then expanding powers of (2.21) as powers series in z1−z2
z2

in the region |z2| > |z1−z2| > 0.
Since N is locally nilpotent, this series is in fact obtained from a polynomial in (2.21) with
coefficients in V by expanding powers of (2.21) as powers series in z1−z2

z2
in |z2| > |z1−z2| > 0.

In other words, (2.19) is a finite sum of elements of V multiplied by powers of (2.21), which
as power series in z1−z2

z2
are absolutely convergent in the region |z2| > |z1 − z2| > 0.

Theorem 2.6 Let W be a C+-graded weak g-twisted V -module. Then for u ∈ V [a+Z], v ∈
V [b+Z], a, b ∈ P (V ),

〈w′, Y g
0 (u, z1)Y g

0 (v, z2)w〉, (2.22)

〈w′, Y g
0 (v, z2)Y g

0 (u, z1)w〉, (2.23)〈
w′, Y g

0

(
Y

((
1 +

z1 − z2

z2

)N
u, z1 − z2

)
v, z2

)
w

〉
(2.24)

are absolutely convergent in the region |z1| > |z2| > 0, |z2| > |z1| > 0, |z2| > |z1 − z2| > 0,
respectively, to a function of z1 and z2 of the form

e−a log z1e−b log z2
g(z1, z2)

zr1z
s
2(z1 − z2)t

, (2.25)

where g(z1, z2) is a polynomial in z1 and z2, r, s, t ∈ Z.

Proof. Since u ∈ V [a+Z], v ∈ V [b+Z], a, b ∈ P (V ), by the duality property,

〈w′, Y g(u, z1)Y g(v, z2)w〉, (2.26)

〈w′, Y g(v, x2)Y g(u, x1)w〉, (2.27)

〈w′, Y g(Y (u, z1 − z2)v, z2)w〉 (2.28)
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are absolutely convergent in the region |z1| > |z2| > 0, |z2| > |z1| > 0, |z2| > |z1 − z2| > 0,
respectively, and are convegent when | arg z1 − arg z2| < π

2
to a function of z1 and z2 of the

form

N∑
i,j,k,l=0

aijkle
(−a−ri) log z1e(−b−sj) log z2(log z1)k(log z2)l(z1 − z2)−t

= e−a log z1e−b log z2

N∑
k,l=0

gkl(z1, z2)

zr01 z
s0
2 (z1 − z2)t

(log z1)k(log z2)l

where ri, sj, t ∈ Z satisfying ri < ri−1 and sj < sj−1 and gkl(z1, z2) are polynomials in z1 and
z2. In particular, in the region |z1| > |z2| > 0,

N∑
k,l=0

〈w′, Y g
k (u, z1)Y g

l (v, z2)w〉(log z1)k(log z2)l

= 〈w′, Y g(u, z1)Y g(v, z2)w〉

= e−a log z1e−b log z2

N∑
k,l=0

gkl(z1, z2)

zr01 z
s0
2 (z1 − z2)t

(log z1)k(log z2)l.

By Proposition 7.8 in [HLZ], we obtain

〈w′, Y g
k (u, z1)Y g

l (v, z2)w〉 = e−a log z1e−b log z2
g00(z1, z2)

zr01 z
s0
2 (z1 − z2)t

.

Taking g(z1, z2) to be g00(z1, z2) and r, s to be r0, s0, we see that (2.22) indeed converges
absolutely to a function of the form (2.25).

Similarly we can prove that (2.23) converges absolutely to a function of the form (2.25).
Since (2.26) and (2.27) converge to the same function in |z1| > |z2| > 0 and |z2| > |z1| >
0, respectively, from the argument above, the fact that the powers of z1 and z2 in these
expressions are congruent to a and b, respectively, and Proposition 7.8 in [HLZ], we see that
(2.22) and (2.23) converge absolutely to the same function of the form (2.25) in |z1| > |z2| > 0
and |z2| > |z1| > 0, respectively.

The same argument above shows that

〈w′, Y g
0 (Y (u, z1 − z2)v, z2)w〉

converges absolutely in the region |z2| > |z1 − z2| > 0. As is discussed above, (2.19) is a
finite sum of elements of V multiplied by powers of (2.21), which as power series in z1−z2

z2
are

absolutely convergent in the region |z2| > |z1−z2| > 0, (2.24) is absolutely convergent in the
same region. We shall use the associativity for Y g and (2.10) to show that (2.24) converges
to the same function that (2.22) converges to.
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By (2.10), (2.14) and the associativity for Y g, in the region |z1| > |z2| > |z1− z2| > 0, we
have 〈

w′, Y g
0

(
Y

((
1 +

z1 − z2

z2

)N
u, z1 − z2

)
v, z2

)
w

〉

=

〈
w′, Y g

(
zN2 Y

((
z1

z2

)N
u, z1 − z2

)
v, z2

)
w

〉
= 〈w′, Y g(Y (zN1 u, z1 − z2)zN2 v, z2)w〉
= 〈w′, Y g((z1)Nu, z1)Y g(zN2 v, z2)w〉
= 〈w′, Y g

0 (u, z1)Y g
0 (v, z2)w〉.

In [B], Bakalov derived a Jacobi identity for the map Y g
0 from an associator formula for

twisted V -modules. From Theorem 2.6, we obtain the Jacobi identity immediately.

Theorem 2.7 (Bakalov [B]) Let W be a C+-graded weak g-twisted V -module. Then we
have the twisted Jacobi identity

x−1
0 δ

(
x1 − x2

x0

)
Y g

0 (u, x1)Y g
0 (v, x2)− x−1

0 δ

(
−x2 + x1

x0

)
Y g

0 (v, x2)Y g
0 (u, x1)

= x−1
1 δ

(
x2 + x0

x1

)(
x2 + x0

x1

)a
Y g

0

(
Y

((
1 +

x0

x2

)N
u, x0

)
v, x2

)
(2.29)

or equivalently, the component form of the twisted Jacobi identity∑
k∈N

(−1)k
(
l

k

)
u(l − k +m)v(k + n)−

∑
k∈N

(−1)k−l
(
l

k

)
v(l − k + n)u(k +m)

=
∑
j∈N

(((
l +N
j

)
u

)
j

v

)
(m+ n− j) (2.30)

for u ∈ V [a+Z], v ∈ V [b+Z], m ∈ a + Z, n ∈ b + Z and l ∈ Z, where u(p) = Y g
p,0(u) and

v(q) = Y g
q,0(v) for p ∈ a+ Z and q ∈ b+ Z.

As a consequence of Jacobi identity, we have the commutator formulas:
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Corollary 2.8 For u ∈ V [a+Z], v ∈ V [b+Z], m ∈ a+ Z and n ∈ b+ Z, we have

[Y g
0 (u, x1), Y g

0 (v, x2)] = Resx0x
−1
1 δ

(
x2 + x0

x1

)(
x2 + x0

x1

)a
·

·Y g
0

(
Y

((
1 +

x0

x2

)N
u, x0

)
v, x2

)
, (2.31)

[u(m), Y g
0 (v, x2)] =

∞∑
j=0

xm−j2 Y g
0

(((
m+N

j

)
u

)
(j)v, x2

)
, (2.32)

[u(m), v(n)] =
∞∑
j=0

(((
m+N

j

)
u

)
j

v

)
(m+ n− j). (2.33)

We also have the associator formula and weak associativity:

Corollary 2.9 For u ∈ V [a+Z], v ∈ V and w ∈ W ,

Resx1x
a
1x
−1
0 δ

(
x1 − x2

x0

)
Y g

0 (u, x1)Y g
0 (v, x2)− Resx1x

a
1x
−1
0 δ

(
−x2 + x1

x0

)
Y g

0 (v, x2)Y g
0 (u, x1)

= (x2 + x0)aY g
0

(
Y

((
1 +

x0

x2

)N
u, x0

)
v, x2

)
. (2.34)

For u ∈ V [a+Z], v ∈ V and w ∈ W , let l ∈ a+ Z such that u(n)w = 0 for n ≥ l. Then

(x0 +x2)lY g
0 (u, x0 +x2)Y g

0 (v, x2)w = (x2 +x0)lY g
0

(
Y

((
1 +

x0

x2

)N
u, x0

)
v, x2

)
w. (2.35)

Finally we have the following equivalence of the main properties of C+-graded weak
g-twisted modules:

Theorem 2.10 The following properties for a C+-graded weak g-twisted V -module are equiv-
alent:

(1) The duality property for Y g in Definition 2.1.

(2) The duality property for Y g
0 in Theorem 2.6.

(3) The property that Y g
0 is lower truncated and the twisted Jacobi identity (2.29).

(4) The property that Y g
0 is lower truncated, the commutator formula (2.31) and the weak

associativity (2.35).

Proof. We have shown that (1)⇒ (2)⇒ (3)⇒ (4). The same method as that for ordinary
modules shows that (4)⇒ (2). Using (2.10), we see that (2)⇒ (1).
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Remark 2.11 By Theorem 2.10, the notion of C+-graded weak g-twisted V -module given
by Definition 2.1 is equivalent to the notion of twisted module satisfying the definition in
[B] equipped with a C+-grading satisfying the axioms related to the C+-grading given in
Definition 2.1. In the representation theory of vertex (operator) algebras and conformal
field theory, gradings and the axioms satisfied by them play an important role. Without
the gradings and their properties, we will not be able to obtain any substantial result. For
example, we even cannot define correlation functions in general. This is the reason why in
[H3] and in this paper, we discuss only twisted modules with such gradings and having the
relevant properties.

3 The g-twisted universal enveloping algebra and g-

twisted zero-mode algebra

In this section, we construct two associative algebras associated with V and the automor-
phism g, one is called the “g-twisted universal algebra of V ” and the other is called the
“g-twisted zero-mode algebra associated to V ”.

Let
L(V, g) =

∐
a∈P (V )

V [a+Z] ⊗ taC[t, t−1].

For u ∈ V [a+Z] and m ∈ a+ Z, we use u(m) to denote the element u⊗ tm ∈ L(V, g).
Let T (L(V, g)) be the tensor algebra of L(V, g). Then T (L(V, g)) is spanned by elements

of the form
u1(i1)⊗ · · · ⊗ un(in)

for us ∈ V [as+Z], is ∈ as + Z. For simplicity, we omit the tensor symbols for the elements.
Then the multiplication is given by

(u1(i1) · · ·um(im))(v1(j1) · · · vn(jn)) = u1(i1) · · ·um(im)v1(j1) · · · vn(jn).

Define a grading called weight on T (L(V, g)) as follows: For λ ∈ C,

wt λ = 0

and for λ ∈ C, homogeneous us ∈ V [as+Z] and is ∈ as + Z,

wt (λu1(i1) · · ·un(in)) =
n∑
s=1

(wt us − is − 1).

Let P̃ (V ) be the subset of [0, 1) + I such that P̃ (V ) + Z is the subgroup of C/Z generated
by P (V ) +Z. Then the weight of a homogeneous element of T (L(V, g)) is in P̃ (V ) +Z. Let
T (L(V, g))k denote the subspace of T (L(V, g)) consisting of the elements of weight k. Then
we have

T (L(V, g)) =
∐

k∈P̃ (V )+Z

T (L(V, g))k
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and
T (L(V, g))kT (L(V, g))l ⊂ T (L(V, g))k+l.

For k ∈ P̃ (V ) + Z and n ∈ Z, let

T (L(V, g))nk =
∐

a∈P̃ (V ),i∈n+N

T (L(V, g))k+a+iT (L(V, g))−a−i.

Then we have
T (L(V, g))n+1

k ⊂ T (L(V, g))nk

and also ⋂
n∈Z

T (L(V, g))nk = 0,⋃
n∈Z

T (L(V, g))nk = T (L(V, g))k.

Hence, {T (L(V, g))nk | n ∈ Z} is a fundamental neighborhood system of T (L(V, g))k. Denote
by T̃ (L(V, g))k its completion and let

T̃ (L(V, g)) =
∐

k∈P̃ (V )+Z

T̃ (L(V, g))k.

Then T̃ (L(V, g)) is a complete topological vector space.

Proposition 3.1 The multiplication for T (L(V, g)) is continuous under the topology given
by the fundamental neighborhood system above. In particular, its topological completion
T̃ (L(V, g)) is a complete topological ring.

Proof. It suffices to prove that given m ∈ P̃ (V ) + Z and n ∈ Z and given k, l ∈ P̃ (V ) + Z
satisfying k + l = m, there exist n1, n2 ∈ Z such that

T (L(V, g))n1
k T (L(V, g))l + T (L(V, g))kT (L(V, g))n2

l ⊂ T (L(V, g))nm. (3.1)

Let l = c+ l′ where c ∈ P̃ (V ) and l′ ∈ Z. We take n1 = n+ l′ + 1 and n2 = n. Elements
of T (L(V, g))n+l′

k are finite sums of elements of the form ϕψ where ϕ ∈ T (L(V, g))k+a+i and
ψ ∈ T (L(V, g))−a−i for a ∈ P̃ (V ), i ∈ n+ l′+1+N. Let η ∈ T (L(V, g))l. When a−c ∈ P̃ (V ),
ϕ ∈ T (L(V, g))(k+l)+(a−c)+(i−l′) and ψη ∈ T (L(V, g))−(a−c)−(i−l′). Since a − c ∈ P̃ (V ) and
i− l′ ∈ n+ 1 + N ⊂ n+ N,

ϕψη ∈ T (L(V, g))(k+l)+(a−c)+(i−l′)T (L(V, g))−(a−c)−(i−l′)

⊂ T (L(V, g))nk+l

= T (L(V, g))nm.
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When a−c 6∈ P̃ (V ), we must have a−c+1 ∈ P̃ (V ). Then ϕ ∈ T (L(V, g))(k+l)+(a−c+1)+(i−l′−1)

and ψη ∈ T (L(V, g))−(a−c+1)−(i−l′−1). Since a− c+ 1 ∈ P̃ (V ) and i− l′ − 1 ∈ n+ N,

ϕψη ∈ T (L(V, g))(k+l)+(a−c+1)+(i−l′−1)T (L(V, g))−(a−c+1)−(i−l′−1)

⊂ T (L(V, g))nk+l

= T (L(V, g))nm.

Since the addition is continuous with respect to the topology and elements of T (L(V, g))n+l′

k

are finite sums of elements of the form ϕψ above, we have shown that

T (L(V, g))n1
k T (L(V, g))l ⊂ T (L(V, g))nm. (3.2)

Similarly, elements of T (L(V, g))nl are finite sums of elements of the form ϕψ where
ϕ ∈ T (L(V, g))l+a+i and ψ ∈ T (L(V, g))−α−i for a ∈ P̃ (V ), i ∈ n + N. Let η ∈ T (L(V, g))k.
Then ηϕ ∈ T (L(V, g))k+l+a+i and

ηϕψ ∈ T (L(V, g))k+l+a+iT (L(V, g))−a−i

⊂ T (L(V, g))nk+l

= T (L(V, g))nm.

Thus
T (L(V, g))kT (L(V, g))n2

l ⊂ T (L(V, g))nm. (3.3)

Combining (3.2) and (3.3), we obtain (3.1).

Proposition 3.2 For k ∈ P̃ (V ) +Z, elements of T̃ (L(V, g))k are of the form u1 + u2 where
u1 ∈ T (L(V, g))k and u2 is in the topological completion of∐

a∈P̃ (V ),i∈Z+

T (L(V, g))k+a+iT (L(V, g))−a−i.

Proof. The topological completion T̃ (L(V, g))k of T (L(V, g))k is the space of all Cauchy
sequences or equivalently all Cauchy series in T (L(V, g))k. Assuming that

∑
m∈Z+

wm where
wm ∈ T (L(V, g))k is such a Cauchy series. Then for any n ∈ Z,

M+N∑
m=M

wm ∈
∐

a∈P̃ (V ),i∈n+N

T (L(V, g))k+a+iT (L(V, g))−a−i

for sufficiently large M ∈ Z+ and N ∈ Z+. In particular, if we take n = 1, then there
exists M ∈ Z+ such that wm ∈

∐
a∈P̃ (V ),i∈Z+

T (L(V, g))k+a+iT (L(V, g))−a−i for m > M . Let

u1 =
∑M

m=1wm and u2 =
∑∞

m=M+1wm. Then u1 as a finite sum of elements of T (L(V, g))k
is still an element of T (L(V, g))k. Since

∑
m∈Z+

wm is a Cauchy series, u2 =
∑∞

m=M+1wm is
also a Cauchy series. Since wm ∈

∐
a∈P̃ (V ),i∈Z+

T (L(V, g))k+a+iT (L(V, g))−a−i when m > M ,
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it is in fact a Cauchy series in
∐

a∈P̃ (V ),i∈Z+
T (L(V, g))k+a+iT (L(V, g))−a−i and thus is in its

topological completion.

Note that the two terms in the left-hand side of (2.30) and the right-hand side of (2.30)
both correspond to well defined elements of T̃ (L(V, g)). Taking the difference between the
sum of the two elements of T̃ (L(V, g)) corresponding to the two terms in the left-hand side
of (2.30) and the element of T̃ (L(V, g)) corresponding to the right-hand side of (2.30), we
obtain an element of T̃ (L(V, g)). These are the elements of T̃ (L(V, g)) corresponding to
the Jacobi identity (2.30). Let J be the two-sided ideal in T̃ (L(V, g)) generated by these
elements of T̃ (L(V, g)) corresponding to the Jacobi identity (2.30), the elements 1(n)− δn,−1

for n ∈ Z corresponding to the identity property for Y g
0 , and the elements

(L(−1)u)(n) + (n+N )u(n− 1) (3.4)

for n ∈ Z and u ∈ V corresponding to the L(−1)-derivative property (2.18).

Definition 3.3 The g-twisted universal enveloping algebra Ug(V ) of V is the quotient alge-
bra T̃ (L(V, g))/J of T̃ (L(V, g)) by the two-sided ideal J . Since J is generated by homoge-
neous elements, the grading on T̃ (L(V, g)) induces a grading on Ug(V ) and we still call the
degree of an element of Ug(V ) its weight. The homogeneous subspace of Ug(V ) of weight
n ∈ C is denoted by Ug(V )n.

In the special case that g = 1V , the g-twisted universal enveloping algebra Ug(V ) of V is
the universal enveloping algebra U(V ) of V introduced by Frenkel and Zhu [FZ].

The action of g on V [α] for α ∈ C/Z induces an action of g on L(V, g). This action of g on
L(V, g) induces an action of g on T (L(V, g)) such that this action in fact gives an automor-
phism of the associative algebra T (L(V, g)). By the definition of the topological completion
of T (L(V, g)), this action of g on T (L(V, g)) extends continuously to an automorphism of
the topological completion T̃ (L(V, g)). Since the elements of T̃ (L(V, g)) corresponding to
(2.30), the elements 1(n)− δn,−1 and (3.4) for n ∈ Z and u in generalized eigenspaces for g
are also in generalized eigenspaces for g in T̃ (L(V, g)), Ug(V ) as the quotient of T̃ (L(V, g))
by the ideal generated by these elements also has an action of g. Moreover, the action of g
on Ug(V ) is an automorphism of Ug(V ).

The following result follows immediately from Proposition 3.2:

Proposition 3.4 For k ∈ C, let πUg(V )k be the projections from T̃ (L(V, g))k to Ug(V )k.
Then elements of Ug(V )k are of the form u1 + u2 where u1 ∈ πUg(V )T (L(V, g))k, and u2 is in
the topological completion of∐

a∈P̃ (V ),i∈Z+

(πUg(V )T (L(V, g))k+a+i)(πUg(V )T (L(V, g))−a−i).

Proposition 3.5 Let W be a C+-graded weak V -module. Then W has a natural structure of
a Ug(V )-module such that the Ug(V )-module structure is compatible with the action of g on
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Ug(V ) and W in the sense that for u ∈ Ug(V ) and w ∈ W , g(uw) = (gu)(gw). Conversely,

let W =
∐

n∈C+,α∈C/ZW
[α]
[n] be a Ug(V )-module equipped with gradings by C+ and C/Z and

an action of g on W satisfying the following conditions:

1. The Ug(V )-module structure is compatible with the action of g on Ug(V ) and W in the
sense that for u ∈ Ug(V ) and w ∈ W , g(uw) = (gu)(gw).

2. For u ∈ V [a+Z] (a ∈ P (V )) and m ∈ Z and w ∈ W , u(a + m)w = 0 when m is
sufficiently large.

3. For u ∈ V(m) and w ∈ Wp =
∐

α∈C/ZW
[α]
p where m ∈ Z and p ∈ C+, u(n)w is

0 when m − n − 1 + p 6∈ C+, is in Wm−n−1+p when m − n − 1 + p ∈ C+ and for
r ∈ R,

∐
r∈RW

√
−1r is equal to the subspace of W consisting of w ∈ W such that

when u(n)w = 0 for u ∈ V(m), m ∈ Z, n ∈ C, m − n − 1 6∈ C+. For α ∈ C/Z,

w ∈ W [α] =
∐

n∈C+
W

[α]
n , there exists Λ ∈ Z+ such that (g − e2π

√
−1α)Λw = 0, where

Lg(0) = ω(1) ∈ Ug(V ).

Then W is a C+-graded weak g-twisted V -module. In particular, the category of C+-graded
weak g-twisted V -modules and the category of Ug(V )-modules satisfying three conditions above
are isomorphic (not just equivalent since the underlying vector spaces are the same). Un-
der this isomorphism, lower bounded generalized g-twisted V -modules correspond to Ug(V )-

modules of the form W =
∐

n∈C,α∈C/ZW
[α]
[n] such that W[n] =

∐
α∈C/ZW

[α]
[n] for n ∈ C are

generalized eigenspaces of Lg(0), satisfying the three conditions above and the lower bounded

condition that for each n ∈ C and each α ∈ C/Z, W
[α]
[n+l] = 0 for sufficiently negative real

number l. Under this isomorphism, grading-restricted generalized g-twisted V -modules (or
simply g-twisted V -modules as we have called them) correspond to Ug(V )-modules of the form
above, satisfying the three conditions above, the lower bounded condition and the condition
that for each n ∈ C, α ∈ C/Z, dimW

[α]
[n] <∞.

Proof. The first conclusion is clear from the construction of Ug(V ).
For its converse, we define Y g

0 (u, x)w =
∑

n∈α+Z u(n)wx−n−1 for u ∈ V and w ∈ W and

Y g(u, x)w = Y g
0 (xNu, x)w. For u ∈ V [a], m ∈ a + Z and w ∈ W [b+Z], we have u(m)w ∈

W [a+b+Z] Thus gY g
0 (u, x)w = Y g

0 (gu, x)gw and gY g(u, x)w = Y g(gu, x)gw. Since u(a +
m)w = 0 when m ∈ Z is sufficiently large, Y g

0 (u, x)w is lower truncated. Since W is a
Ug(V )-module, the Jacobi identity (2.29) and the L(−1)-derivative property (2.18) hold. By
Theorem 2.10, the duality property for Y g holds. It is also clear that all the other axioms
for a g-twisted generalized V -module hold.

The other conclusions are all clear.

It is clear that the subspace Ug(V )I =
∐

n∈I Ug(V )n spanned by elements of Ug(V ) whose
weights are imaginary numbers is a subalgebra of Ug(V ). Let N(Ug(V )I) be the two-sided
ideal in Ug(V )I generated by ∐

n∈I,a∈P̃ (V ),i∈N,<(a+i)>0

Ug(V )n+a+iUg(V )−a−i.
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Definition 3.6 The g-twisted zero-mode algebra associated to V is the quotient algebra

Zg(V ) = Ug(V )I/N(Ug(V )I).

For weight homogeneous v ∈ V [a+Z], a ∈ P (V ) ∩ I, we write og(v) for v(wt v + a− 1) ∈
Ug(V )I, denote by [og(v)] the image of og(v) in the quotient Zg(V ), and extend [og(v)] to all
v ∈ V by linearity.

From the definition of Zg(V ) and Proposition 3.4, we have the following useful result:

Proposition 3.7 The g-twisted zero-mode algebra Zg(V ) is spanned by elements of the form

[og(u1)] · · · [og(uk)]

for u1, . . . , uk ∈ V and k ∈ N.

Proof. By Proposition 3.4, elements of Ug(V )n for n ∈ I are of the form u1 + u2 where
u1 ∈ πUg(V )T (L(V, g))n, and u2 is in the topological completion of∐

a∈P̃ (V ),i∈Z+

(πUg(V )T (L(V, g))n+a+i)(πUg(V )T (L(V, g))−a−i).

Since (πUg(V )T (L(V, g))n+a+i)(πUg(V )T (L(V, g))−a−i) ⊂ Ug(V )n+a+iUg(V )−a−i, we see that u2

is in the topological completion of
∐

a∈P̃ (V ),i∈Z+
Ug(V )n+a+iUg(V )−a−i. Since <(a+ i) > 0 for

a ∈ P̃ (V ) and i ∈ Z+, we have
∐

a∈P̃ (V ),i∈Z+
Ug(V )n+a+iUg(V )−a−i ⊂ N(Ug(V )I). Thus u2 ∈

N(Ug(V )I) and elements of Zg(V ) are of the form u1 +N(Ug(V )I) for u1 ∈ πUg(V )T (L(V, g))n,
n ∈ I . But T (L(V, g))n is spanned by elements of the form u1(m1) · · ·uk(mk) for k ∈ N,
homogeneous u1 ∈ V [a1+Z], . . . , uk ∈ V [ak+Z], a1, . . . , ak ∈ P (V ), m1 ∈ a1+Z, . . . ,mk ∈ ak+Z
such that

∑k
i=1(wt ui −mi − 1) = n. For simplicity, we shall also use the same notation to

denote the images of such elements in Ug(V )n under the map πUg(V ). Since the commutator
formula holds for elements in Ug(V ), these elements in Ug(V )n are linear combinations of
elements of the same form but satisfying the additional condition <(wt ui−m1− 1) ≥ · · · ≥
<(wt ui − mk − 1). If <(wt ui − mi − 1) < 0 for some i, then <(wt uk − mk − 1) < 0
and u1(m1) · · ·uk(mk) is in Ug(V )n+ak+(−wt uk+mk−ak+1)Ug(V )−ak−(−wt uk+mk−ak+1) satisfying
<(ak + (−wt uk + mk − ak + 1)) = <(−wt uk + mk + 1) > 0. Hence u1(m1) · · ·uk(mk) is
in N(Ug(V )I). Thus if u1(m1) · · ·uk(mk) is not in N(Ug(V )I), <(wt ui − mi − 1) ≥ 0 for

i = 1, . . . , k. Since
∑k

i=1(wt ui −mi − 1) = n ∈ I, we must have <(wt ui −mi − 1) = 0 or
<(mi) = wt ui − 1 for i = 1, . . . , k. Since mi ∈ ai + Z, we see that <(ai) = 0 and hence
ai ∈ I. Moreover, mi = wt ui + ai − 1. Thus

u1(m1) · · ·uk(mk) +N(Ug(V )I) = [og(u1)] · · · [og(uk)].

We shall discuss modules for Ug(V ) and for Zg(V ) and their connections with suitable
g-twisted V -modules in Section 5. In Section 6, Proposition 3.7 is needed in the proof
that Zg(V ) and Ag(V )( (to be constructed in the next section) are isomorphic. Then as a
consequence of the isomorphism, we obtain in turn an improvement of Proposition 3.7.
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4 A generalization of Zhu’s algebra to the g-twisted

case for g of infinite order

In [DLM1], Dong, Li and Mason introduced a generalization of Zhu’s algebra for suitable
g-twisted V -modules when g is of finite order. But their generalization does not generalize
straightforwardly to the case of a general automorphism g, especially in the case that g
does not act on V semisimply. In this section, we give such a generalization. When g does
not act on V semisimply, the definition of this associative algebra involves the operator
N obtained from the multiplicative Jordan-Chevalley decomposition of g. Moreover, this
associative algebra is not a quotient of the fixed point subalgebra; instead, it is a quotient of
the generalized eigenspace of eigenvalue 1 of g. This means that when g does not act on V
semisimply (in this case the order of g must be infinite), this generalization of Zhu’s algebra
might have some interesting new features.

In [H2], the first author found a natural definition of Zhu’s algebra in connection with
the modular invariance. Besides its geometric meaning in connection with the modular
invariance, the advantage of this definition is that one can separate vertex operators from
other formal series or analytic functions in the proofs of the properties of the algebra. This
advantage makes it particularly simple for our generalization such that all the proofs are
identical to those in [H2] except for some properties of the operator N . Because of this
reason, we give our generalization by generalizing the definition in [H2]. Just as in [H2],
the difference between the definition given in this section and a direct generalization of
the definitions of Zhu and Dong-Li-Mason is given by an isomorphism obtained from the
conformal transformation 1

2π
√
−1

log(1+2π
√
−1z), the geometry underlying vertex operators

and the Virasoro operators.
For weight homogeneous u ∈ V [a+Z], a ∈ P (V ), let l(u) ∈ a+Z such that <(wt u−n−1) <

0 for n ∈ a + Z and n − a ≥ l(u) − a. Then l(u) = wt u + a when a ∈ P (V ) ∩ I and
l(u) = wt u + a − 1 when a ∈ P (V ) ∩ ((0, 1) + I). We define a linear operator L on V by
Lu = l(u)u for weight homogeneous u ∈ V [a+Z] and linearity. We define a product •g in V
as follows: For u, v ∈ V ,

u •g v = Resyy
−1Y

(
(1 + y)L−L(0)+Nu,

1

2π
√
−1

log(1 + y)

)
v

= Resx
2π
√
−1e2π

√
−1x

e2π
√
−1x − 1

Y (e2π
√
−1x(L−L(0)+N )u, x)v.

Recall the operator AV defined in Section 2. Let Õg(V ) be the subspace of V spanned
elements of the form

Resyy
−nY

(
yL(0)−L+AV (1 + y)L−L(0)+Nu,

1

2π
√
−1

log(1 + y)

)
v

= Resx
2π
√
−1e2π

√
−1x

(e2π
√
−1x − 1)n

Y

((
1

e2π
√
−1x − 1

)L(0)−L+AV

e2π
√
−1x(L−L(0)+N )u, x

)
v
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for n > 1, u, v ∈ V . Note that by definition, when u ∈ V [α], a 6∈ I, u •g v ∈ Õg(V ). Also note
that

Resyy
−nY

(
(1 + y)L−L(0)+Nu,

1

2π
√
−1

log(1 + y)

)
v ∈ Õg(V ) (4.1)

for n > 1 since for homogeneous u, (L(0)− L + AV )u is either 0 or u.
Let Ãg(V ) = V/Õg(V ).

Theorem 4.1 The product •g in V induces a product (denoted still by •g) in Ãg(V ) such
that Ãg(V ) together with this product and the equivalence class of the vacuum 1 ∈ V is
an associative algebra with identity. Moreover, for u ∈ V [a+Z], a ∈ P (V ) ∩ I, v ∈ V ,
((L(−1) + 2π

√
−1(a+N ))u) •g v ∈ Õg(V ) and for u ∈ V [a+Z], v ∈ V [b+Z], a, b ∈ P (V ) ∩ I,

u •g v − v •g u ≡ 2π
√
−1ResxY (e2π

√
−1x(a+N )u, x)v mod Õg(V )

= 2π
√
−1
∑
i∈N

2π
√
−1

i!
((N + a)iu)iv. (4.2)

In particular, ω •g v− v •g ω ≡ (2π
√
−1)2N v mod Õg(V ) for v ∈ V [b+Z], b ∈ P (V )∩ I, and

ω + Õg(V ) brackets with v + Õg(V ) sufficiently many times in Ãg(V ) is 0 for v ∈ V .

Proof. The proof of the first part is the same as the proof of the corresponding part in
Proposition 6.1 in [H2] except that we need to use (2.14) to take care of the additional
operator e2π

√
−1xN appearing in the definition and to take care of those factors involving

a ∈ P (V ) just as in [DLM1]. To convince the reader that the same proof together with
(2.14) and with the adjustments involving a ∈ P (V ) indeed works, we give as examples the
proof that(

Resx
2π
√
−1e2π

√
−1x

(e2π
√
−1x − 1)n

Y

((
1

e2π
√
−1x − 1

)L(0)−L+AV

e2π
√
−1x(L−L(0)+N )u1, x

)
u2

)
•g u3

=

(
Resx

2π
√
−1e2π

√
−1ax

(e2π
√
−1x − 1)n

Y (e2π
√
−1xNu1, x)u2

)
•g u3 (4.3)

is in Õg(V ) when u1 ∈ V [a+Z] (a 6= 0), u2, u3 ∈ V and n > 1.
In the case that u2 ∈ V [b+Z] and b 6= 1− a,

Resx
2π
√
−1e2π

√
−1ax

(e2π
√
−1x − 1)n

Y (e2π
√
−1xNu1, x)u2 ∈ V [a+b+Z] 6= V [0].

Thus by definition, (4.3) is in Õg(V ). The only case we need to consider is u2 ∈ V [1−a+Z].
Using the definition of •g, (2.14), the Jacobi identity for the vertex operator for V and

the property of the formal delta function, we modify the first step in (6.8) in [H2] to obtain
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that (4.3) is equal to

Resx0Resx2
2π
√
−1e2π

√
−1ax0

(e2π
√
−1x0 − 1)n

2π
√
−1e2π

√
−1x2

e2π
√
−1x2 − 1

Y (e2π
√
−1x2NY (e2π

√
−1x0Nu1, x0)u2, x2)u3

= Resx0Resx2
2π
√
−1e2π

√
−1ax0

(e2π
√
−1x0 − 1)n

2π
√
−1e2π

√
−1x2

e2π
√
−1x2 − 1

·

·Y (Y (e2π
√
−1(x2+x0)Nu1, x0)e2π

√
−1x2Nu2, x2)u3

= Resx1Resx2Resx0
2π
√
−1e2π

√
−1ax0

(e2π
√
−1x0 − 1)n

2π
√
−1e2π

√
−1x2

e2π
√
−1x2 − 1

·

·x−1
0 δ

(
x1 − x2

x0

)
Y (e2π

√
−1(x2+x0)Nu1, x1)Y (e2π

√
−1x2Nu2, x2)u3

−Resx1Resx2Resx0
2π
√
−1e2π

√
−1ax0

(e2π
√
−1x0 − 1)n

2π
√
−1e2π

√
−1x2

e2π
√
−1x2 − 1

·

·x−1
0 δ

(
x2 − x1

−x0

)
Y (e2π

√
−1x2Nu2, x2)Y (e2π

√
−1(x2+x0)Nu1, x1)u3

= Resx1Resx2Resx0
2π
√
−1e2π

√
−1ax0

(e2π
√
−1x0 − 1)n

2π
√
−1e2π

√
−1x2

e2π
√
−1x2 − 1

·

·x−1
0 δ

(
x1 − x2

x0

)
Y (e2π

√
−1x1Nu1, x1)Y (e2π

√
−1x2Nu2, x2)u3

−Resx1Resx2Resx0
2π
√
−1e2π

√
−1ax0

(e2π
√
−1x0 − 1)n

2π
√
−1e2π

√
−1x2

e2π
√
−1x2 − 1

·

·x−1
0 δ

(
x2 − x1

−x0

)
Y (e2π

√
−1x2Nu2, x2)Y (e2π

√
−1x1Nu1, x1)u3. (4.4)

Then using the same remaining steps in (6.8) in [H2], we see that the right-hand side of (4.4)
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is equal to∑
k∈N

(
−n
k

)
Resx1Resx22π

√
−1e2π

√
−1a(x1−x2)(e2π

√
−1x1 − 1)−n−ke−2π

√
−1(−n−k)x2·

·(e−2π
√
−1x2 − 1)k

2π
√
−1e2π

√
−1x2

e2π
√
−1x2 − 1

Y (e2π
√
−1x2Nu1, x1)Y (e2π

√
−1x2Nu2, x2)u3

−
∑
k∈N

(
−n
k

)
Resx1Resx22π

√
−1e−2π

√
−1a(x2−x1)(e−2π

√
−1x2 − 1)−n−ke2π

√
−1(−n−k)x1 ·

·(e2π
√
−1x1 − 1)k

2π
√
−1e2π

√
−1x2

e2π
√
−1x2 − 1

Y (e2π
√
−1x2Nu2, x2)Y (e2π

√
−1x2Nu1, x1)u3

=
∑
k∈N

(
−n
k

)
Resx2e

−2π
√
−1ax2e−2π

√
−1(−n−k)x2(e−2π

√
−1x2 − 1)k

2π
√
−1e2π

√
−1x2

e2π
√
−1x2 − 1

·

·Resx1
2π
√
−1e2π

√
−1ax1

(e2π
√
−1x1 − 1)n+k

Y (e2π
√
−1x2Nu1, x1)Y (e2π

√
−1x2Nu2, x2)u3

−
∑
k∈N

(
−n
k

)
Resx1e

2π
√
−1ax1(−1)−n−ke2π

√
−1(−n−k)x1(e2π

√
−1x1 − 1)k ·

·Resx2
2π
√
−1e2π

√
−1(1−a)x2

(e2π
√
−1x2 − 1)1+n+k

e2π
√
−1(n+k)x2Y (e2π

√
−1x2Nu2, x2)Y (e2π

√
−1x2Nu1, x1)u3.

(4.5)

The first term in the right-hand side of (4.5) is in Õg(V ). Since u2 ∈ V [1−a+Z] 6= V [0] and

e2π
√
−1(n+k)x2 can be written as a polynomial in e2π

√
−1x2 − 1 with degree less than or equal

to n+ k, the second term in the right-hand side of (4.5) is also in Õg(V ).
Next we prove ((L(−1) + 2π

√
−1(a +N ))u) •g v ∈ Õg(V ) for u ∈ V [a+Z], a ∈ P (V ) ∩ I

and v ∈ V . Using the properties of the vertex operator map Y and (2.16), we have

(L(−1)u) •g v

= Resx
2π
√
−1e2π

√
−1x

e2π
√
−1x − 1

Y (e2π
√
−1x(a+N )L(−1)u, x)v

= Resx
2π
√
−1e2π

√
−1x

e2π
√
−1x − 1

d

dx
Y (e2π

√
−1x(a+N )u, x)v

−Resx
2π
√
−1e2π

√
−1x

e2π
√
−1x − 1

Y (e2π
√
−1x(a+N )2π

√
−1(a+N )u, x)v

= −Resx

(
d

dx

2π
√
−1e2π

√
−1x

e2π
√
−1x − 1

)
Y (e2π

√
−1x(a+N )u, x)v − 2π

√
−1((a+N )u) • v

= Resx
(2π
√
−1)2e2π

√
−1x

(e2π
√
−1x − 1)2

Y (e2π
√
−1xNv, x)1− 2π

√
−1((a+N )u) • v. (4.6)
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Since the first term in (4.6) is in Õg(V ), we obtain ((L(−1)+2π
√
−1(a+N ))u)•g v ∈ Õg(V ).

Now we prove (4.2). For u ∈ V [a+Z], v ∈ V [b+Z], a, b ∈ P (V ) ∩ I,

u •g v − 2π
√
−1ResxY (e2π

√
−1x(a+N )u, x)v

= Resx
2π
√
−1e2π

√
−1x

e2π
√
−1x − 1

Y (e2π
√
−1x(a+N )u, x)v − 2π

√
−1ResxY (e2π

√
−1x(a+N )u, x)v

= −Resx
2π
√
−1e−2π

√
−1x

e−2π
√
−1x − 1

Y (e2π
√
−1x(a+N )u, x)v

= −Resx
2π
√
−1e−2π

√
−1x

e−2π
√
−1x − 1

e2π
√
−1x(a+b+N )Y (u, x)e−2π

√
−1x(b+N )v

≡ −Resx
2π
√
−1e−2π

√
−1x

e−2π
√
−1x − 1

e−xL(−1)Y (u, x)e−2π
√
−1x(b+N )v mod Õg(V )

= −Resx
2π
√
−1e−2π

√
−1x

e−2π
√
−1x − 1

Y (e−2π
√
−1x(b+N )v,−x)u

= Resy
2π
√
−1e2π

√
−1y

e2π
√
−1y − 1

Y (e2π
√
−1y(b+N )v, y)u

= v •g u,

where we have used (2.14), the fact that the coefficients of Y (u, x)e−2π
√
−1x(b+N )v is in

V [a+b+Z], (4.6) with a replaced by a+ b and the skew-symmetry of Y .
Take u = ω and note thatNω = 0, a = 0 and ω0 = L(−1). Then we obtain ω•gv−v•gω =

L(−1)v ≡ −2π
√
−1N v mod Õg(V ). Since N is nilpotent, we see that the last conclusion

is true.

We now derive a generalization of the algebra Ag(V ) introduced in [DLM1]. Recall the
invertible operator

U(1) = (2π
√
−1)L(0)e−L+(A)

on V introduced in [H2], where L+(A) =
∑

n∈Z+
AjL(j) and the coeffieients Aj for j ∈ Z+

are uniquely determined by

1

2π
√
−1

(e2π
√
−1y − 1) =

exp

−∑
j∈Z+

Ajy
j+1 ∂

∂y

 y.

Note that N commutes with all the Virasoro operators (see (2.16)). Thus (1.5) in [H2] gives

U(1)Resyy
−nY

(
(1 + y)Nu,

1

2π
√
−1

log(1 + y)

)
v

= Resyy
−nY

(
(1 + y)L(0)+NU(1)u, y

)
U(1)v. (4.7)

We define a product ∗ on V by

u ∗g v = Resxx
−1Y

(
(1 + x)L+Nu, x

)
v
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for u, v ∈ V . Let Og(V ) be the subspace of V spanned by elements of the form

Resxx
−nY

(
xL(0)−L+AV (1 + x)L+Nu, x

)
v

for n > 1, u, v ∈ V . By (4.7), we obtain the following result:

Corollary 4.2 Let Ag(V ) = V/Og(V ). Then Ag(V ) is an associative algebra isomorphic to
Ãg(V ). The isomorphism from Ãg(V ) to Ag(V ) is given by the map induced from U(1).

Because of Corollary 4.2, the categories of Ag(V )-modules and Ãg(V )-modules are equiv-
alent.

Note that the conformal transformation w 7→ e2π
√
−1w maps a parallellogram in the

complex plane to an annulus centered at 0 in the sphere C ∪ {∞}. Then w is the standard
coordinate vanishing at 0 on the parallellogram and w′ = e2π

√
−1w − 1 is the standard

coordinate vanishing at 1 on the annulus. The coordinate change from the coordinate w′

to the coordinate w is given by w = 1
2π
√
−1

log(1 + w′). The map U(1) corresponds exactly

to this coordinate change (see [H2]). Thus the algebra Ãg(V ) defined using this coordinate
change is most suitable for the study of the modular invariance.

5 Functors between module categories

In this section, we construct functors between suitable categories of Zg(V )-modules, Ãg(V )-
modules, Ag(V )-modules and g-twisted V -modules.

We are interested only in Zg(V )-modules that have compatible actions of g and can be
written as direct sums of generalized eigenspaces of the actions of g. Recall the notation
[og(v)] for v ∈ V in Section 3. We are also interested in such Zg(V )-modules with another
grading given by the generalized eigenspaces of [og(ω)] ∈ Zg(V ).

Definition 5.1 Let M be a Zg(V )-module. If M =
∐

α∈C/ZM
[α] where M [α] for α ∈ C/Z

are the generalized eigenspaces of the action of g, we call M a g-graded Zg(V )-module.

Let M =
∐

n∈C,α∈C/ZM
[α]
[n] be a Zg(V )-module with double gradings by C and by C/Z

(or equivalently, by a subset of [0, 1)). If M[n] =
∐

α∈C/ZM
[α]
[n] for n ∈ C are generalized

eigenspaces of the action of [og(ω)] on M with eigenvalues n (called weights) and the C/Z-
grading is given by the generalized eigenspaces of an action of g compatible with the Zg(V )-
module structure, then we call M a doubly-graded Zg(V )-module or simply graded Zg(V )-

module. Let M =
∐

n∈C,α∈C/ZM
[α]
[n] be a graded Zg(V )-module, if for each n ∈ C and each

α ∈ C/Z, M
[α]
[n+l] = 0 for sufficiently negative real number l, we call M a lower bounded Zg(V )-

module. A lower bounded Zg(V )-module M =
∐

n∈C,α∈C/ZM
[α]
[n] is called grading restricted if

dimM
[α]
[n] <∞ for n ∈ C, α ∈ C/Z.

28



Note that in particular, Zg(V ) itself is a g-graded Zg(V )-module.

Let W =
∐

n∈C+,α∈C/ZW
[α]
n be a C+-graded weak g-twisted V -module. Recall the set

P (W ) of all g-weights of W . In particular, W =
∐

n∈C+,a∈P (W ) W
[a]
n . It is clear that for

a ∈ P (V ) and b ∈ P (W ), either a+ b ∈ P (W ) or a+ b− 1 ∈ P (W ). Let

Ωg(W ) = {w ∈ W | u(k)w = 0 for homogeneous u ∈ V,<(wt u− k − 1) < 0}.

Then by the C+-grading condition in Definition 2.1 and (2.10), Ωg(W ) =
∐

n∈IWn =∐
n∈I,a∈P (W ) W

[a+Z]
n . In the case that W is a lower bounded g-twisted V -module, the gradings

on W also induce gradings on Ωg(W ). In particular, we have

Ωg(W ) =
∐
n∈C

(Ωg(W ))[n] =
∐

a∈P (W )

(Ωg(W ))[a+Z] =
∐

n∈C,a∈P (W )

(Ωg(W ))
[a+Z]
[n] .

By Theorem 3.5, W is a Ug(V )-module and hence also a Ug(V )I-module. In particular,
Ωg(W ) generates a Ug(V )I-submodule of W . By the commutator formula (2.33), Ωg(W ) is
invariant under the action of v(wt v+a−1) for weight homogeneous v ∈ V [a+Z], a ∈ P (V )∩I.
In particular, the restriction of v(wt v+a− 1) to Ωg(W ) gives us a linear operator oW (v) on
Ωg(W ). Also by the commutator formula (2.33), u1(m1) · · ·uk(mk)w = 0 for homogeneous
ui ∈ V [ai], w ∈ Ωg(W ) and mi ∈ ai +Z satisfying <(wt u1−m1− 1 + · · ·+ wt uk−mk− 1 +
wt w) < 0. Thus N(Ug(V )I) acts on Ωg(W ) as 0. In particular, Ωg(W ) is a Ug(V )I-module
and moreover Ωg(W ) is a Zg(V )-module with the action of Zg(V ) given by [og(v)]w = oW (v)w
for v ∈ V and w ∈ Ωg(W ). Note that the weight of the operator v(wt v + a− 1) for weight
homogeneous v ∈ V [a+Z] where a ∈ P (V ) ∩ I is −a ∈ I. Thus we have:

Proposition 5.2 The action of Zg(V ) on Ωg(W ) given by [og(v)]w = oW (v)w gives Ωg(W ) a
g-graded Zg(V )-module structure. When W is a lower bounded g-twisted V -module, Ωg(W )
is a lower bounded Zg(V )-module. In this case,

∐
n∈r+I(Ω

g(W ))[n] for r ∈ R are Zg(V )-
submodules of Ωg(W ).

Theorem 5.3 The functor Ωg from the category of C+-graded weak g-twisted V -modules to
the category of g-graded Zg(V )-modules given by W 7→ Ωg(W ) has the following properties:

1. The functor Ωg has a right inverse, that is, there exists a functor Hg from the category
of g-graded Zg(V )-modules to the category of C+-graded weak g-twisted V -modules such
that Ωg ◦Hg = 1, where 1 is the identity functors on the category of g-graded Zg(V )-
modules.

2. We can find such Hg such that for any C+-graded weak g-twisted V -module W , there
exists a natural surjective homomorphism of C+-graded weak g-twisted V -modules from
Hg(Ωg(W )) to the C+-graded weak g-twisted V -submodule of W generated by Ωg(W ).

3. The restriction of Ωg to the category of lower bounded g-twisted V -modules (or (grading-
restricted generalized) g-twisted V -modules) is a functor from this subcategory to the
category of lower bounded Zg(V )-modules (or grading-restricted Zg(V )-modules).
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4. The restrictions of Hg to the category of lower bounded Zg(V )-modules (or grading-
restricted Zg(V )-modules) is the right inverse of the restriction of Ωg to the category
of lower bounded g-twisted V -modules (or (grading-restricted generalized) g-twisted V -
modules) such that for any object W in the category, there exists a natural surjective
homomorphism in the category from Hg(Ωg(W )) to the lower bounded g-twisted V -
submodule (or the (grading-restricted generalized) g-twisted V -submodule) of W gen-
erated by Ωg(W ).

Proof. Let M =
∐

α∈C/ZM
[α] be a g-graded Zg(V )-module. We now construct a Ug(V )-

module Hg(M) =
∐

n∈C+,α∈C/ZHg(M)
[α]
n equipped with gradings by C+ and C/Z and an

action of g on W satisfying Conditions 1 to 3 in Theorem 3.5. Then by Theorem 3.5, we see
that Hg(M) is a C+-graded weak g-twisted V -module.

From the definition of Ug(V ), Ug(V )− =
∐

a∈P̃ (V ),i∈N,<(a+i)>0 Ug(V )−a−i is a subalgebra

of Ug(V ). Since M is a Zg(V )-module, it is also a Ug(V )I-module. We define the action
of Ug(V )− on M to be 0. Then M becomes a Ug(V )− ⊕ Ug(V )I-module. Let Hg(M) =
Ug(V ) ⊗Ug(V )−⊕Ug(V )I M . Then Hg(M) is a Ug(V )-module. By Proposition 3.4, elements of
Ug(V )k are of the form u1 + u2 where u1 ∈ πUg(V )T (L(V, g))k, and u2 is in the topological
completion of ∐

a∈P̃ (V ),i∈Z+

(πUg(V )T (L(V, g))k+a+i)(πUg(V )T (L(V, g))−a−i).

Since (πUg(V )T (L(V, g))−a−i) ⊂ Ug(V )−a−i ⊂ Ug(V )− for a ∈ P̃ (V ) and i ∈ N satisfying
<(a+i) > 0, it acts on M as 0 and thus u2w = 0 for w ∈M . Since u1 ∈ πUg(V )T (L(V, g))k, it
is a linear combination of elements of the form u1(m1) · · ·uk(mk) for ui ∈ V [ai+Z], ai ∈ P (V ),
mi ∈ ai + Z. Thus elements of Hg(M) are finite linear combinations of elements of the
form u1(m1) · · ·uk(mk)w for ui ∈ V [ai+Z], ai ∈ P (V ), mi ∈ ai + Z and w ∈ M . Using the
commutator formula repeatedly and the actions of Ug(V )− and Ug(V )I on M , we see that
Hg(M) is spanned by elements of the same form for homogeneous ui ∈ V [ai+Z], ai ∈ P (V ),
mi ∈ ai + Z and w ∈M , satisfying <(wt ui −mi − 1) > 0.

For an element of the form u1(m1) · · ·uk(mk) for weight homogeneous ui ∈ V [ai+Z], ai ∈
P (V ), mi ∈ ai + Z, we define its C+-degree to be wt u1 −m1 − 1 + · · · + wt uk −mk − 1.
This gives a C+-grading on Hg(M). The actions of g on Ug(V ) and M also induce an action
of g on Hg(M). Moreover, the C/Z-gradings by generalized eigenspaces for the actions of
g on Ug(V ) and M give a C/Z-grading by generalized eigenspaces for the action of g on
Hg(M). The C/Z-grading of Hg(M) can also be given explicitly by defining the C/Z degree

of u1(m1) · · ·uk(mk)w to be
∑k

i=1 ai + b+ Z when w ∈ W [b+Z].
Condition 1 in Theorem 3.5 is satisfied by Hg(M) because of the definition of the action

of g on Hg(M). Condition 2 in Theorem 3.5 is also satisfied by Hg(M) because u(a +

m)(u1(m1) · · ·uk(mk)w) = 0 when m > <(wt u− a− 1 +
∑k

i=1(wt ui −mi − 1)). It is clear
that un changes the C+-degree by wt u− n− 1 and the degree 0 homogeneous subspace of
Hg(M) is M which is also the subspace of Hg(M) annihilated by Ug(V )−. Moreover, Hg(M)
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is a direct sum of generalized eigenspaces for the action of g on Hg(M). Thus Condition 3
is satisfied.

Since our construction is natural, we obtain a functor Hg from the category of Zg(V )-
modules to the category of C+-graded weak g-twisted V -modules.

By definition, M ⊂ Ωg(Hg(M)). Since Hg(M) is spanned by elements of the form
u1(m1) · · ·uk(mk)w for homogeneous ui ∈ V [ai+Z], ai ∈ P (V ), mi ∈ ai + Z and w ∈ M
satisfying wt ui −mi − 1 > 0, we see that Ωg(Hg(M)) = M . Thus we have Ωg ◦Hg = 1.

Now let W be a C+-graded weak g-twisted V -module. Then the C+-graded weak
g-twisted V -submodule of W generated by Ωg(W ) is spanned by elements of the form
u1(m1) · · ·uk(mk)w for ui ∈ V [ai+Z], ai ∈ P (V ), mi ∈ ai + Z and w ∈ Ωg(W ). Define a
linear map from Hg(Ωg(W )) to this submodule of W by sending the elements of the same
form in Hg(Ωg(W )) to these corresponding elements in this submodule. This linear map is
well defined because the only relations among these elements in Hg(Ωg(W )) are given by the
commutator formula, the weak associativity, the L(−1)-derivative property, the properties
for the vacuum and the Virasoro relations and these relations are all satisfied by the cor-
responding elements in the submodule of W . By definition, this linear map is a surjective
module map from Hg(Ωg(W )) to this submodule of W .

The other conclusions follows immediately.

We now discuss Ãg(V )- and Ag(V )-modules and C+-graded weak g-twisted V -modules.
As in the case of Zg(V )-modules, we also discuss only Ãg(V )- and Ag(V )-modules with
actions of g and are direct sums of generalized eigenspaces of the actions of g. As in the case
of Zg(V )-modules, we are also interested in g-graded Ãg(V )-modules with another grading
given by the generalized eigenspaces of ω + Õg(V ) ∈ Ãg(V ).

Definition 5.4 Let M be an Ãg(V )- or Ag(V )-module. If M =
∐

α∈C/ZM
[α] where M [α] for

α ∈ C/Z are the generalized eigenspaces of the action of g, then we call M a g-graded Ãg(V )-

and Ag(V )-module. Let M =
∐

n∈C,α∈C/ZM
[α]
[n] be an Ãg(V )-module with double gradings by

C and by C/Z (or equivalently, by a subset of [0, 1)+I). If M[n] =
∐

α∈C/ZM
[α]
[n] for n ∈ C are

generalized eigenspaces of the action of ω+ Õg(V ) on M with eigenvalues n (called weights)
and the C/Z-grading is given by the generalized eigenspaces of an action of g compatible
with the Ãg(V )-module structure, then we call M a doubly-graded Ãg(V )-module or simply

a graded Ãg(V )-module. Let M =
∐

n∈C,α∈C/ZM
[α]
[n] be a graded Ãg(V )-module, if for each

n ∈ C and each α ∈ C/Z, M
[α]
[n+l] = 0 for sufficiently negative real number l, we call M

a lower bounded Ãg(V )-module. A lower bounded Ãg(V )-module M =
∐

n∈C,α∈C/ZM
[α]
[n] is

called grading restricted if dimM
[α]
[n] <∞ for n ∈ C, α ∈ C/Z. The notions of graded Ag(V )-

module, lower bounded Ag(V )-module and grading-restricted Ag(V )-module are defined in the
same way.

Note that in particular, Ãg(V ) (Ag(V )) itself is a g-graded Ãg(V )-module (Ag(V )-module).
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Let W =
∐

n∈C+,α∈C/ZW
[α]
[n] be a C+-graded weak g-twisted V -module. Define two linear

maps oW and ρW = oW ◦ U(1) from V to End Ωg(W ) by v 7→ oW (v) and v 7→ oW (U(1)v),
respectively, for v ∈ V , where

oW (v)w = Resxx
a−1Y0(xL(0)v, x)w = v(wt v + a− 1)w

for a ∈ P (V ) ∩ I, weight homogeneous v ∈ V [a+Z], w ∈ Ωg(W ) and

oW (v)w = 0

when a 6∈ I, v ∈ V [a+Z], w ∈ Ωg(W ). By definition, oW and ρW are determined by their
restrictions to

∐
a∈P (V )∩I V

[a+Z].
We have the following:

Theorem 5.5 The spaces Og(V ) and Õg(V ) are in the kernels of oW and ρW , respectively,
and the maps given by u+Og(V ) 7→ oW (u) and u+ Õg(V ) 7→ ρW (u) for u ∈ V give Ωg(W )
g-graded Ag(V )- and Ãg(V )-module structures, respectively. When W is a lower bounded
g-twisted V -module, Ωg(W ) is a lower bounded Ag(V )- or Ãg(V )-module. In particular,∐

n∈r+I(Ω
g(W ))[n] for r ∈ R are Ag(V )- or Ãg(V )-submodules of Ωg(W ) .

Proof. As in the proofs of Theorem 4.1 and Corollary 4.2, the proofs of the first statement
for Õg(V ) and Ãg(V ) are the same as the corresponding proofs of the first statement in
Proposition 6.4 in [H2] except for the use of (2.14) and for the adjustments involving a ∈
P (V ). The proofs for Og(V ) and Ag(V ) can be obtained either from those for Õg(V ) and
Ãg(V ) using the map U(1) or by directly generalizing the proof in [Z] and [DLM1].

Here we give only the proof of the statement that

ρW

(
Resx0

2π
√
−1e2π

√
−1ax0

(e2π
√
−1x0 − 1)n

Y (e2π
√
−1x0Nu, x0)v

)
= 0 (5.8)

for u ∈ V [a+Z], a ∈ P (V ), 0 < <(a) < 1, and v ∈ V [b+Z].
If a + b − 1 6∈ I, Y (e2π

√
−1x0Nu, x0)v ∈ V [a+b+Z][[x, x−1]] where a + b + Z 66∈ I + Z. Then

by definition,
ρW (Y (e2π

√
−1x0Nu, x0)v) = 0

and thus (5.8) holds. So we need only consider the case a + b − 1 ∈ I. In this case, for
n ∈ Z+ and w ∈ Ωg(W ), using the definitions, (1.5) in [H2], the L(0)-conjugation formula,
(2.16), the basic property of the formal delta-function and the Jacobi identity (2.29) for Y0,
we have

ρW

(
Resx0

2π
√
−1e2π

√
−1ax0

(e2π
√
−1x0 − 1)n

Y (e2π
√
−1x0Nu, x0)v

)
w

= Resx2
1

x
(1−a−b)+1
2

Resx0
2π
√
−1e2π

√
−1ax0

(e2π
√
−1x0 − 1)n

Y0(U(x2)Y (e2π
√
−1x0Nu, x0)v, x2)w
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= Resx2Resx0
2π
√
−1e2π

√
−1ax0

x2−a−b
2 (e2π

√
−1x0 − 1)n

·

·Y0(x
L(0)
2 Y (U(e2π

√
−1x0)e2π

√
−1x0Nu, e2π

√
−1x0 − 1)U(1)v, x2)w

= Resx2Resx0
2π
√
−1e2π

√
−1ax0

x2−a−b
2 (e2π

√
−1x0 − 1)n

·

·Y0(Y (x
L(0)
2 U(e2π

√
−1x0)e2π

√
−1x0Nu, x2(e2π

√
−1x0 − 1))x

L(0)
2 U(1)v, x2)w

= Resx2Resx0
2π
√
−1e2π

√
−1ax0

x2−a−b
2 (e2π

√
−1x0 − 1)n

·

·Y0(Y (e2π
√
−1x0Nx

L(0)
2 U(e2π

√
−1x0)u, x2(e2π

√
−1x0 − 1))x

L(0)
2 U(1)v, x2)w

= Resx2Resy0

(
1 +

y0

x2

)a−1
1

x3−a−b−n
2 yn0

·

·Y0

(
Y

((
1 +

y0

x2

)N
U(x2 + y0)u, y0

)
U(x2)v, x2

)
w

= Resx2Resy0Resx1x
a−1
1 x−1

1 δ

(
x2 + y0

x1

)(
x2 + y0

x1

)a
xb−2+n

2

yn0
·

·Y0

(
Y

((
1 +

y0

x2

)N
U(x2 + y0)u, y0

)
U(x2)v, x2

)
w

= Resx2Resy0Resx1x
a−1
1 x−1

1 δ

(
x2 + y0

x1

)(
x2 + y0

x1

)a
xb−2+n

2

yn0
·

·Y0

(
Y

((
1 +

y0

x2

)N
U(x1)u, y0

)
U(x2)v, x2

)
w

= Resx2Resy0Resx1
xa−1

1 xb−2+n
2

yn0
y−1

0 δ

(
x1 − x2

y0

)
·

·Y0(U(x2 + y0)u, x1)Y0(U(x2)v, x2)w

−Resx2Resy0Resx1
xa−1

1 xb−2+n
2

yn0
y−1

0 δ

(
x2 − x1

−y0

)
·

·Y0(U(x2)v, x2)Y0(U(x2 + y0)u, x1)w

= Resx2Resx1
xa−1

1 xb−2+n
2

(x1 − x2)n
Y0(U(x1)u, x1)Y0(U(x2)v, x2)w

−Resx2Resx1
xa−1

1 xb−2+n
2

(−x2 + x1)n
Y0(U(x2)v, x2)Y0(U(x1)u, x1)w. (5.9)

Since w ∈ Ωg(W ), the right-hand side of (5.9) is 0.
Since the weight of the operator ρW (u) is I,

∐
n∈r+I(Ω

g(W ))[n] for r ∈ R are invariant

under ρW (u) and thus are Ã(V )-submodules of Ωg(W ). The compatibility with the action
of g clear.
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Theorem 5.6 The functor Ωg from the category of C+-graded weak g-twisted V -modules to
the category of g-graded Ag(V )-modules or Ãg(V )-modules given by W 7→ Ωg(W ) has the
following properties:

1. The functor Ωg has a right inverse, that is, there exist functors Sg and S̃g from the
categories of g-graded Ag(V )-modules and Ãg(V )-modules, respectively, to the category
of C+-graded weak g-twisted V -modules such that Ωg ◦Sg = 1 and Ωg ◦ S̃g = 1̃, where 1
and 1̃ are the identity functors on the categories of Ag(V )-modules and Ãg(V )-modules,
respectively.

2. We can find such Sg and S̃g such that for any C+-graded weak g-twisted V -module
W , there exists a natural surjective homomorphism of C+-graded weak g-twisted V -
modules from Sg(Ωg(W )) or S̃g(Ωg(W )) to the C+-graded weak g-twisted V -submodule
of W generated by Ωg(W ).

3. The restriction of Ωg to the category of lower bounded g-twisted V -modules (or (grading-
restricted) g-twisted V -mdoules) is a functor from this subcategory to the category of
lower bounded (or grading-restricted) Ag(V )-modules or Ãg(V )-modules.

4. The restrictions of Sg and S̃g to the categories of lower bounded (or grading-restricted)
Ag(V )-modules and Ãg(V )-modules, respectively, are right inverses of the restriction of
Ωg to the categories of lower bounded (or grading-restricted) g-twisted V -modules such
that for any lower bounded (or grading-restricted) g-twisted V -module W , there exists
a natural surjective homomorphism of such g-twisted V -modules from Sg(Ωg(W )) or
S̃g(Ωg(W )) to the lower bounded (or grading-restricted) g-twisted V -submodule of W
generated by Ωg(W ).

Proof. We prove only the results for Ãg(V ). The proofs of the results for Ag(V ) can be
derived from the results for Ãg(V ). The proofs of these results are the same as the proofs of
the second and third statements of Proposition 6.4 in [H2] except that instead of expressions
corresponding to the commutator formula, the L(−1)-derivative property and the associator
formula for V -modules, here we use the expressions corresponding to (2.31), (2.18) and
(2.35).

We need to construct a C+-graded weak g-twisted V -module from a g-graded Ãg(V )-
module. Recall the space L(V, g), the tensor algebra T (L(V, g)) and the notations we have
used in Section 3.

Let M =
∐

α∈C/ZM
[α] be a g-graded Ãg(V )-module and let ρ : Ãg(V )→ End M be the

map giving the representation of Ãg(V ) on M . Consider T (L(V, g))⊗M . Again for simplicity
we shall omit the tensor product sign. So T (L(V, g))⊗M is spanned by elements of the form

u1(m1) · · ·uk(mk)w for ui ∈ V [ai+Z], mi ∈ ai + Z, ai ∈ P (V ), i = 1, . . . , k, and w ∈ M [b+Z]
[n] ,

b ∈ [0, 1) + I, n ∈ C. For u ∈ V [a+Z], m ∈ a+ Z where a ∈ P (V ), u(m) acts from the left on
T (L(V, g))⊗M . In the case that ui are homogeneous with respect to the grading by weights,
we define the C+-degree of u1(m1) · · ·uk(mk)w to be (wt u1−m1−1)+ · · ·+(wt uk−mk−1)
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and its C/Z degree by a1 + · · ·+ ak + b+ Z. For any u ∈ V [a+Z], let

Y t
0 (u, x) : T (L(V, g))⊗M → T (L(V, g))[[x, x−1]]

be defined by

Y t
0 (u, x) =

∑
m∈a+Z

u(m)x−m−1.

For a homogeneous element u ∈ V [a+Z], a ∈ P (V ) ∩ I, let ot(u) = u(wt u + a − 1). Using
linearity, we extend ot(u) to inhomogeneous u ∈

∐
a∈P (V )∩I V

[a+Z].

Let I be the graded T (L(V, g))-submodule of T (L(V, g)) ⊗ M generated by elements
of the forms u(m)w (u ∈ V [a+Z], a ∈ P (V ), m ∈ a + Z, wt u − m − 1 < 0, w ∈ M),
ot(U(1)u)w − ρ(u + Õ(V ))w (u ∈

∐
a∈P (V )∩I V

[a+Z], w ∈ M) and the coefficients in x1 and
x2 of

Y t
0 (u, x1)Y t

0 (v, x2)w − Y t
0 (v, x2)Y t

0 (u, x1)w

−Resx0x
−1
1 δ

(
x2 + x0

x1

)(
x2 + x0

x1

)a
Y t

0

(
Y

((
1 +

x0

x2

)N
u, x0

)
v, x2

)
w (5.10)

(u ∈ V [a+Z], v ∈ V , a ∈ P (V ) and w ∈ T (L(V, g)) ⊗ M). Note that as in the proof
of Proposition 6.4 in [H2], the coefficients of the formal expression above are indeed in
T (L(V, g))⊗M . Let S1

g (M) = (T (L(V, g))⊗M)/I. Then S1
g (M) is also a graded T (L(V, g))-

module. In fact, by the definition of I, we see that S1
g (M) is spanned by elements of the

form u1(m1) · · ·uk(mk)w + I for k ∈ N, homogeneous ui ∈ V [ai+Z], mi ∈ ai + Z, ai ∈ P (V ),
i = 1, . . . , k, and w ∈M [b+Z], b ∈ [0, 1) + I, satisfying <(wt u1 −m1 − 1) ≥ · · · ≥ <(wt uk −
mk− 1) > 0. In particular, S1

g (M) is doubly graded by C+ and C/Z. Thus for homogeneous
u ∈ V and w ∈ S1

g (M), u(m)w = 0 when the real part of m is sufficiently large. Moreover,
S1
g (M) = S1

g (M)+ ⊕ S1
g (M)0, where S1

g (M)+ is the subspace of S1
g (M) spanned by elements

of the form above for k ∈ Z+ and S1
g (M)0 is spanned by the elements of the form w + I for

w ∈M .
We show that S1

g (M)0 is linearly isomorphic to M . We need only show that if
∑k

i=1 ρ(ui1+

Õ(V )) · · · ρ(uik + Õ(V ))w 6= 0 in M , then
∑k

i=1 ρ(ui1 + Õ(V )) · · · ρ(uik + Õ(V ))w + I 6= 0 in

S1
g (M)0, or equivalently,

∑k
i=1 ot(U(1)ui1) · · · ot(U(1)uik)w 6∈ I. Assume that this is not true,

that is,
∑k

i=1 ot(U(1)ui1) · · · ot(U(1)uik)w ∈ I. Since
∑k

i=1 ρ(ui1+Õ(V )) · · · ρ(uik+Õ(V ))w 6= 0

in M ,
∑k

i=1 ot(U(1)ui1) · · · ot(U(1)uik)w cannot be in the graded T (L(V, g))-submodule of
T (L(V, g)) ⊗ M generated by elements of the forms ot(U(1)u)w − ρ(u + Õ(V ))w (u ∈∐

a∈P (V )∩I V
[a+Z], w ∈ M). Clearly,

∑k
i=1 ot(U(1)ui1) · · · ot(U(1)uik)w is not in the graded

T (L(V, g))-submodule of T (L(V, g)) ⊗M generated by elements of the forms u(m)w (u ∈
V [a+Z], a ∈ P (V ), m ∈ a+Z, wt u−m−1 < 0, w ∈M). Thus

∑k
i=1 ot(U(1)ui1) · · · ot(U(1)uik)w

is in fact in the the graded T (L(V, g))-submodule Ĩ of T (L(V, g))⊗M generated by the coef-
ficients in x1 and x2 of (5.10) (u ∈ V [a+Z], v ∈ V , a ∈ P (V ) and w ∈ T (L(V, g))⊗M). Then

by the definition of Ĩ,
∑k

i=1 ot(U(1)u1) · · · ot(U(1)uk) must be in the subalgebra of T (L(V, g))

35



spanned by products of at least one element of the form

ot(U(1)v1)ot(U(1)v2)− ot(U(1)v2)ot(U(1)v1)− 2π
√
−1Resx0ot(U(1)Y (e2π

√
−1x(a1+N )v1, x0)v2)

for vj ∈ V [aj+Z], aj ∈ P (V )∩I for j = 1, 2, and elements of the form ot(U(1)v) for v ∈ V [a+Z],

a ∈ P (V ) ∩ I. So the element
∑k

i=1 ρ(ui1 + Õ(V )) · · · ρ(uik + Õ(V ))w of M corresponding

to
∑k

i=1 ot(U(1)ui1) · · · ot(U(1)uik)w must be a sum of elements obtained by applying at least
one operator of the form

ρ(v1 + Õ(V ))ρ(v2 + Õ(V ))− ρ(v2 + Õ(V ))ρ(v1 + Õ(V ))

−2π
√
−1Resx0ρ(Y (e2π

√
−1x(a1+N )v1, x0)v2 + Õ(V ))

= ρ(v1 •g v2 − v2 •g v1 − 2π
√
−1Resx0Y (e2π

√
−1x(a1+N )v1, x0)v2 + Õ(V ))

and operators of the form ρ(v) for v ∈ V [a+Z], a ∈ P (V ) ∩ I to w. By (4.2),

v1 •g v2 − v2 •g v1 − 2π
√
−1Resx0Y (e2π

√
−1x(a1+N )v1, x0)v2 + Õ(V ) = 0.

Thus
∑k

i=1 ρ(ui1 + Õ(V )) · · · ρ(uik + Õ(V ))w = 0. We have a contradiction. So S1
g (M)0 is

linearly isomorphic to M . We shall identify S1
g (M)0 with M . Then S1

g (M) = S1
g (M)+ ⊗M .

Let J be the C+ × C/Z-graded T (L(V, g))-submodule of S1
g (M) generated by the coef-

ficients in x of

Y t
0 (L(−1)u, x)w − d

dx
Y t

0 (u, x)w + x−1Y t
0 (Nu, x)w

and the coefficients in x0 and x2 of

(x0 + x2)lY t
0 (u, x0 + x2)Y t

0 (v, x2)w − (x2 + x0)lY t
0

(
Y

((
1 +

x0

x2

)N
u, x0

)
v, x2

)
w

(which are indeed in S1
g (M)) for u ∈ V [a+Z], v ∈ V , w ∈ S1

g (M) and l ∈ a + Z satisfying
u(n)w = 0 for n ∈ a+ Z such that n− a ≥ l − a.

Let Sg(M) = S1
g (M)/J . Then Sg(M) is also a C+ × C/Z-graded T (L(V, g))-module.

We can still use elements of T (L(V, g)) ⊗ M to represent elements of Sg(M). But note
that these elements now satisfy relations. We equip Sg(M) with the vertex operator map
Y g

0 : V ⊗ Sg(M) → Sg(M)[[x, x−1]] given by u ⊗ w 7→ Y g
0 (u, x)w = Y t

0 (u, x)w. As in
S1
g (M), for u ∈ V [a+Z], m ∈ a + Z and w ∈ Sg(M), we also have u(m)w = 0 when the

real part of wt u −m − 1 is sufficiently negative. Clearly Y g
0 (1, x) = 1Sg(M) (where 1Sg(M)

is the identity operator on Sg(M)). By definition, we know that the commutator formula,
the weak associativity and the L(−1)-derivative property for Y g

0 all hold. The C+-grading
condition is also clear. Thus Sg(M) is a C+-graded weak g-twisted V -module.

We still need to show that Ωg(Sg(M)) = M . To prove this fact, we need only prove that
the relations given by J already hold in M . Let πM be the projection from S1

g (M) to M .
we need only prove that

πMY
t

0 (L(−1)u, x)w − πM
d

dx
Y t

0 (u, x)w + πMx
−1Y t

0 (Nu, x)w = 0 (5.11)
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and

(x0 + x2)lπMY
t

0 (u, x0 + x2)Y t
0 (v, x2)w = (x2 + x0)lπMY

t
0

(
Y

((
1 +

x0

x2

)N
u, x0

)
v, x2

)
w

(5.12)
hold in S1

g (M) for homogeneous u ∈ V [a+Z], v ∈ V , w ∈ S1
g (M). Recall l(u) ∈ a + Z in

Section 4 defined by wt u− n− 1 < 0 (thus u(n)w = 0 for w ∈M) for n ∈ a+ Z satisfying
n− a ≥ l(u)− a. We first prove these formulas for w ∈M ⊂ S1

g (M) and l = l(u).
Since u is homogeneous with respect to the C-grading (weight grading), the terms whose

weights are in I in the series Y t
0 (L(−1)u, x) , d

dx
Y t

0 (u, x) and x−1Y t
0 (Nu, x) are 0 when

a 6∈ P (V )∩ I and are (L(−1)u)(wt u+ a)x−wt u−a−1, (−wt u− a)u(wt u+ a− 1)x−wt u−a−1

and (Nu)(wt u + a − 1)x−wt u−a−1, respectively, when a ∈ P (V ) ∩ I. Then in S1
g (M), for

a ∈ P (V ) ∩ I,

πMY
t

0 (L(−1)u, x)w − πM
d

dx
Y t

0 (u, x)w + πMx
−1Y t

0 (Nu, x)w

= ((L(−1)u)(wt u+ a) + (wt u+ a)u(wt u+ a− 1) + (Nu)(wt u+ a− 1))wx−wt u−a−1

= ot((L(−1) + L(0) + a+N )u)wx−wt u−a−1

= ot((L(−1) + L(0) + a+N )U(1)(U(1))−1u)wx−wt u−a−1. (5.13)

By (1.15) in [H2] ((L(−1)+L(0))U(1) = U(1) L(−1)

2π
√
−1

) and the fact that the Virasoro operators
commutes with N , we have

(L(−1) + L(0) + a+N )U(1) = U(1)

(
L(−1)

2π
√
−1

+ a+N
)
.

Thus the right-hand side of (5.15) is equal to

ot

(
U(1)

(
L(−1)

2π
√
−1

+ a+N
)

(U(1))−1u

)
wx−wt u−a−1

= ρ

((
L(−1)

2π
√
−1

+ a+N
)

(U(1))−1u+ Õg(V )

)
wx−wt u−a−1. (5.14)

Since
(
L(−1)

2π
√
−1

+ a+N
)
v ∈ Õg(V ) for v ∈ V (by Theorem 4.1) and ρ(u + Õg(V )) = 0 for

u ∈ Õg(V ), the right-hand side of (5.14) and thus the right-hand side of (5.15) are 0 in
S1
g (M), proving (5.11) in the case w ∈M .

For the same u and v but for w ∈ S1
g (V )+, by straightforward calculations using the

commutator formula for Y t
0 , the properties of the formal δ-function and Res and the L(−1)-

derivative property for Y , it is easy to show that

Y t
0 (L(−1)u, x)w − d

dx
Y t

0 (u, x)w + x−1Y t
0 (Nu, x)
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commutes with Y t
0 (v, y) for v ∈ V and thus also commutes with v(n) for v ∈ V [b+Z], b ∈ P (V )

and n ∈ b + Z. Here we omit the calculations. Now let w = v1(m1) · · · vk(mk)w0 ∈ S1
g (M)+

for vi ∈ V [ai+Z], mi ∈ ai + Z, w0 ∈M such that wt vi −mi − 1 > 0. Then

πM

(
Y t

0 (L(−1)u, x)w − d

dx
Y t

0 (u, x)w + x−1Y t
0 (Nu, x)

)
w

= πM

(
Y t

0 (L(−1)u, x)w − d

dx
Y t

0 (u, x)w + x−1Y t
0 (Nu, x)

)
v1(m1) · · · vk(mk)w0

= πMv1(m1) · · · vk(mk)

(
Y t

0 (L(−1)u, x)w − d

dx
Y t

0 (u, x)w + x−1Y t
0 (Nu, x)

)
w0.

(5.15)

Since the weight of v1(m1) · · · vk(mk) is bigger than 0 and w0 ∈ M , the right-hand side of
(5.15) must be 0, proving (5.11) in this case.

We now prove (5.12) in the case w ∈M . To prove (5.12) in this case, we need only prove
that coefficients in x0 of the two sides of (5.12) are equal, that is, for n ∈ Z,

Resx0x
n
0 (x0 + x2)l(u)πMY

t
0 (u, x0 + x2)Y t

0 (v, x2)w

= Resx0x
n
0 (x2 + x0)l(u)πMY

t
0

(
Y

((
1 +

x0

x2

)N
u, x0

)
v, x2

)
w. (5.16)

For n ∈ Z, by changing the variable from x0 to x1, we obtain

Resx0x
n
0 (x0 + x2)l(u)πMY

t
0 (u, x0 + x2)Y t

0 (v, x2)w

= Resx1(x1 − x2)nx
l(u)
1 πMY

t
0 (u, x1)Y t

0 (v, x2)w. (5.17)

For n ∈ N, using the commutator formula for Y t
0 for S1

g (M), we see that the right-hand side
of (5.17) is equal to

Resx1(x1 − x2)nx
l(u)
1 πMY

t
0 (v, x2)Y t

0 (u, x1)w

+Resx1Resx0(x1 − x2)nx
l(u)
1 x−1

1 δ

(
x2 + x0

x1

)(
x2 + x0

x1

)a
·

·πMY t
0

(
Y

((
1 +

x0

x2

)N
u, x0

)
v, x2

)
w. (5.18)

Since u(l(u))w = 0,

Resx1x
l(u)+i
1 Y t

0 (u, x1)w = 0

for 0 ≤ i ≤ n. Thus the first term in the right-hand side of (5.18) is 0. The second term in
the right-hand side of (5.18) is equal to

Resx0x
n
0 (x2 + x0)l(u)πMY

t
0

(
Y

((
1 +

x0

x2

)N
u, x0

)
v, x2

)
w. (5.19)
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From (5.18) and (5.19), we obtain (5.16) in the case n ∈ N.

For n ∈ −Z+−1, Resx1(x1−x2)nx
l(u)
1 Y t

0 (u, x1) contains terms proportional to u(l(u)+n−i)
for i ∈ N. Recall from Section 4 that l(u) = wt u + a when a ∈ I and l(u) = a + wt u − 1
when a ∈ P (V ) ∩ ((0, 1) + I). Together with n ∈ −Z+ − 1 and i ∈ N, we have πMu(l(u) +
n − i)v(k)w = 0 for k ∈ C. Thus the right-hand side of (5.17) is 0. We now show that the
right-hand side of (5.16) is also 0. First note that for homogeneous u ∈ V [a+Z] and w ∈ M ,
πMY

g
0 (xL(0)u, x)w = u(wt u+ a− 1)wx−a = ot(u)wx−a if a ∈ P (V )∩ I and is 0 if otherwise.

Now come back to u, v, w as above. Recall the operator L introduced in Section 3. By
changing the variable x0 to y = x0

x2
, we obtain

Resx0x
n
0 (x2 + x0)l(u)πMY

t
0

(
Y

((
1 +

x0

x2

)N
u, x0

)
v, x2

)
w

= Resyx2(x2y)n(x2 + x2y)l(u)πMY
t

0

(
Y
(
(1 + y)Nu, x2y

)
v, x2

)
w

= x
l(u)+n+1+wt u+wt v
2 πMY

t
0

(
x
L(0)
2 Resyy

nY
(
(1 + y)L+Nu, y

)
v, x2

)
w

= x
l(u)+n+1+wt u+wt v
2 ot(Resyy

nY
(
(1 + y)L+Nu, y

)
v)w

= x
l(u)+n+1+wt u+wt v
2 ρ(U(1)−1Resyy

nY
(
(1 + y)L+Nu, y

)
v + Õg(V ))w. (5.20)

By (4.7) and (4.1),

U(1)−1Resyy
nY
(
(1 + y)L+Nu, y

)
v

= Resyy
nY

(
(1 + y)L−L(0)+NU(1)−1u,

1

2π
√
−1

log(1 + y)

)
U(1)−1v

∈ Õg(V ). (5.21)

Thus the right-hand side of (5.20) is 0.
We still need to prove (5.16) in the case n = −1. We first prove this formula when

a ∈ P (V )∩ ((0, 1) + I). Since l(u) = wt u+a− 1 and πMu(l(u)− 1− i)v(k)w = πMu(wt u+
a− 2− i)v(k)w = 0 for i ∈ N and k ∈ C,

Resx0x
−1
0 (x0 + x2)l(u)πMY

t
0 (u, x0 + x2)Y t

0 (v, x2)w

= Resx1(x1 − x2)−1x
l(u)
1 πMY

t
0 (u, x1)Y t

0 (v, x2)w

= 0. (5.22)

On the other hand, the same calculation as in (5.20) and (5.21) gives

Resx0x
−1
0 (x2 + x0)l(u)πMY

t
0

(
Y

((
1 +

x0

x2

)N
u, x0

)
v, x2

)
w

= x
l(u)+wt u+wt v
2 ρ(U(1)−1Resyy

−1Y
(
(1 + y)L+Nu, y

)
v + Õg(V ))w
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= x
l(u)+wt u+wt v
2 ρ

(
Resyy

−2Y

(
yL(0)−L+A(1 + y)L−L(0)+N ·

·U(1)−1u,
1

2π
√
−1

log(1 + y)

)
U(1)−1v + Õg(V )

)
w

= 0 (5.23)

because a ∈ P (V )∩((0, 1)+I), proving (5.16) in this case (n = −1 and a ∈ P (V )∩((0, 1)+I)).
In the case a ∈ P (V ) ∩ I, since l(u) = wt u + a, we have πMu(l(u) − 1 − i)v(k)w =

πMu(wt u + a − 1 − i)v(k)w = 0 for i ∈ Z+ and k ∈ C, πMu(l(u) − 1)v(k)w = 0 for either
v ∈ V [b], b ∈ P (V ) ∩ ((0, 1) + I), k ∈ C or v ∈ V [b], b ∈ P (V ) ∩ I, k 6= wt v + b − 1 and
πMu(l(u)− 1)v(wt v+ b− 1)w = u(wt u+ a− 1)v(wt v+ b− 1)w for v ∈ V [b], b ∈ P (V )∩ I.
Using these formulas, we see that in the case v ∈ V [b] and b ∈ P (V ) ∩ ((0, 1) + I), the
right-hand side of (5.17) is equal to 0. But in this case,

Y t
0

(
Y

((
1 +

x0

x2

)N
u, x0

)
v, x2

)
w = 0.

Thus (5.16) holds in this case (n = −1, a ∈ P (V ) ∩ I and b ∈ P (V ) ∩ ((0, 1) + I)). In the
case v ∈ V [b] and b ∈ P (V ) ∩ I, the right-hand side of (5.17) is equal to

x−wt v
2 u(wt u+ a− 1)v(wt v + b− 1)w

= x−wt v
2 ot(u)ot(v)w

= x−wt v
2 ρ(U(1)−1u+ Õg(V ))ρ(ρ(U(1)−1v + Õg(V ))w

= x−wt v
2 ρ((U(1)−1u •g U(1)−1v) + Õg(V ))w

= x−wt v
2 ρ(U(1)−1(u ∗g v) + Õg(V ))w

= x−wt v
2 ot(u ∗g v)w

= x−wt v
2 πMY

t
0 (x

L(0)
2 (u ∗g v), x2)w

= x−wt v
2 Resyy

−1πMY
t

0 (x
L(0)
2 Y ((1 + y)L(0)+Nu, y)v, x2)w

= Resx0x
−1
0 x−wt v

2 πMY
t

0

(
x
L(0)
2 Y

((
1 +

x0

x2

)L(0)+N

u,
x0

x2

)
v, x2

)
w

= Resx0x
−1
0 (x2 + x0)lπMY

t
0

(
Y

((
1 +

x0

x2

)N
u, x0

)
v, x2

)
w,

proving (5.16) in the case n = −1, a, b ∈ P (V ) ∩ I.
We now prove (5.12) for the same u and v but for w ∈ S1

g (V )+. By straightforward
calculations generalizing the last part of the calculations in the proof of Proposition 6.1 in
[DLM1], for u ∈ V [a+Z], a ∈ P (V ), v ∈ V , v1 ∈ V [a1+Z], a1 ∈ P (V ), m1 ∈ a1 + Z such that
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<(wt v1 −m1 − 1) > 0, w ∈ S1
g (V ), l ∈ a+ Z such that u(n)v1(m1)w = 0 for n ∈ a+ Z and

n− a ≥ l − a, we have(
(x0 + x2)lY t

0 (u, x0 + x2)Y t
0 (v, x2)

−(x2 + x0)lY t
0

(
Y

((
1 +

x0

x2

)N
u, x0

)
v, x2

))
v1(m1)w

= v1(m1)

(
(x0 + x2)lY t

0 (u, x0 + x2)Y t
0 (v, x2)

−(x2 + x0)lY t
0

(
Y

((
1 +

x0

x2

)N
u, x0

)
v, x2

))
w (5.24)

Here we omit the detailed calculations. Now let w = v1(m1) · · · vk(mk)w0 where vi ∈ V [ai+Z],
mi ∈ ai + Z satisfying <(wt vi −mi − 1) > 0 and w0 ∈ M . Then by (5.24), for l ∈ a + Z
such that u(n)v1(m1) · · · vk(mk)w0 = 0 for n ∈ a+ Z and n− a ≥ l − a, we have

πM

(
(x0 + x2)lY t

0 (u, x0 + x2)Y t
0 (v, x2)

−(x2 + x0)lY t
0

(
Y

((
1 +

x0

x2

)N
u, x0

)
v, x2

))
v1(m1) · · · vk(mk)w0

= πMv1(m1) · · · vk(mk)

(
(x0 + x2)lY t

0 (u, x0 + x2)Y t
0 (v, x2)

−(x2 + x0)lY t
0

(
Y

((
1 +

x0

x2

)N
u, x0

)
v, x2

))
w0

= 0,

where the last step uses the fact that <(wt vi −mi − 1) > 0 for i = 1, . . . , k together with
the projection πM force us to take only components of

(x0 + x2)lY t
0 (u, x0 + x2)Y t

0 (v, x2)− (x2 + x0)lY t
0

(
Y

((
1 +

x0

x2

)N
u, x0

)
v, x2

)

of negative weights. This proves (5.12) in the case that w ∈ S1
g (V )+.

LetW be a C+-graded weak g-twisted V -module. We define a linear map from Sg(Ωg(W ))
to W by mapping u1(m1) · · ·uk(mk)w of Sg(M) to u1(m1) · · ·uk(mk)w of W for ui ∈ V [ai+Z],
mi ∈ ai+Z (i = 1, . . . , k) and w ∈ Ωg(W ). Note that the only relations among u1(m1) · · ·uk(mk)w
for ui ∈ V , mi ∈ Z (i = 1, . . . , k) and w ∈ Ωg(W ) are given by the action of V on Ωg(W ),
the commutator formula, the weak associativity and the L(−1)-derivative property for Y g

0 .
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These relations also hold in W . Thus this map is well-defined. Clearly, this is a surjec-
tive homomorphism of C+-graded weak g-twisted V -modules from Sg(Ωg(W )) to C+-graded
weak g-twisted V -submodule of W generated by Ωg(W ).

The other statements follow immediately.

6 Isomorphisms between Zg(V ), Ãg(V ) and Ag(V )

In this section, using the results obtained in the preceding sections, we prove that the algebras
Zg(V ), Ãg(V ) and Ag(V ) are isomorphic to each other.

Theorem 6.1 The associative algebras Zg(V ) and Ag(V ) are isomorphic.

Proof. We view Ag(V ) as an Ag(V )-module. By Theorem 5.6, Sg(Ag(V )) is a C+-graded
g-twisted V -module such that Ωg(Sg(Ag(V ))) = Ag(V ). Then by Proposition 5.2, Ag(V ) is
a Zg(V )-module and, by definition, the action of Zg(V ) on Ag(V ) is given by the homomor-
phism from Zg(V ) to the endomorphism algebra of Ag(V ) determined by [og(v)] 7→ v+Og(V )
for v ∈ V , where v+Og(V ) is viewed as an element of the endomorphism algebra of Ag(V ).
Here we have also used Proposition 3.7. Since the image of this homomorphsim is in fact in
Ag(V ), it is a homomorphism f : Zg(V )→ Ag(V ) of associative algebras.

Conversely, we view Zg(V ) as a Zg(V )-module. By Theorem 5.3, Hg(Zg(V )) is a C+-
graded g-twisted V -module such that Ωg(Hg(Zg(V ))) = Zg(V ). Then by Theorem 5.5,
Zg(V ) is an Ag(V )-module and, by definition, the action of Ag(V ) on Zg(V ) is given by the
homomorphism from Ag(V ) to the endomorphism algebra of Zg(V ) defined by v+Og(V ) 7→
[og(v)] for v ∈ V , where [og(v)] is viewed as an element of the endomorphism algebra of
Zg(V ). Since the image of this homomorphsim is in fact in Zg(V ), it is a homomorphism
g : Ag(V )→ Zg(V ) of associative algebras.

Clearly f and g are inverse to each other. Thus they are isomorphisms of associative
algebras.

Corollary 6.2 The associative algebras Zg(V ) and Ãg(V ) are isomorphic.

From Theorem 6.1, we also obtain an improvement of Proposition 3.7:

Corollary 6.3 The elements of Zg(V ) are of the form [og(v)] for v ∈ V .

Proof. Since an element of Ag(V ) is of the form v + Og(V ) for v ∈ V and under the
isomorphism from Ag(V ) to Zg(V ), such an element is mapped to [og(v)] for v ∈ V , the
conclusion follows.
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Remark 6.4 Because of Theorem 6.1, if we have results for the algebra Zg(V ) (or Ag(V )),
we can immediately conclude that the same results hold for Ag(V ) (or Zg(V )). In particular,
we can derive the results in Section 5 on Ag(V ) (or Zg(V )) from the corresponding results
on Zg(V ) (or Ag(V )). But since our proof of Theorem 6.1 has used the results in Section 5
for both Zg(V ) and Ag(V ), the proofs of the results in Section 5 are all needed.

Remark 6.5 In many cases, using Corollary 6.3, it is easier to calculate Zg(V ) than to
calculate Ag(V ) or Ãg(V ). The algebra Ãg(V ) is more natural for the study of modular
invariance. The algebra Ag(V ) is in some sense a bridge between Zg(V ) and Ãg(V ). We
expect that Zg(V ) will play an important role in the future construction and study of twisted
modules and twisted intertwining operators.
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