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Orbifold conformal field theories

Orbifold conformal field theories play an important role in
mathematics. The moonshine module constructed by
Frenkel, Lepowsky and Meurman is the first example of
orbifold conformal field theories. The mirror symmetry for
Calabi-Yau manifolds was studied first in physics using the
conjectures on the existence of the Calabi-Yau
superconformal field theories and on the construction of
orbifold conformal field theories.
Conjecture [H.]: Let V be a vertex operator algebra
satisfying suitable conditions and G a group of
automorphisms of G. Then twisted intertwining operators
among irreducible g-twisted V -modules for g ∈ G form a
twisted intertwining operator algebra satisfying the modular
invariance property.
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Orbifold conformal field theories

Conjecture [Kirillov, H.]: Let V and G be as above. Then
the category of g-twisted V -modules for g ∈ G is a
G-crossed category in the sense of Turaev.
The first step: Construct and study twisted modules.
Explicit examples: Twisted vertex operators. Modules for
twisted affine Lie algebras.
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Vertex operator algebras

Data: V =
∐

n∈Z V(n), YV : V ⊗ V → V ((x)), 1 ∈ V(0) (the
vacuum), ω ∈ V(2) (the conformal element).
The main axioms: The Jacobi identity: For u, v ∈ V ,

x−1
0 δ

(
x1 − x2

x0

)
YV (u, x1)YV (v , x2)

−x−1
0 δ

(
x2 − x1

−x0

)
YV (v , x2)YV (u, x1)

= x−1
1 δ

(
x2 + x0

x1

)
YV (YV (u, x0)v , x2)
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Vertex operator algebras

Or, equivalently, the duality property: For u1,u2, v ∈ V and
v ′ ∈ V ′ ∈

∐
n∈Z V ∗(n),

〈v ′,YV (u1, z1)YV (u2, z2)v〉,
〈v ′,YV (u2, z2)YV (u1, z1)v〉,

〈v ′,YV (YV (u1, z1 − z2)u2, z2)v〉

are absolutely convergent in the regions |z1| > |z2| > 0,
|z2| > |z1| > 0, |z2| > |z1 − z2| > 0, respectively, to a
common rational function of the form

g(z1, z2)

zm
1 zn

2 (z1 − z2)t

for a polynomial g(z1, z2), m,n, t ∈ N.
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Automorphisms of a vertex operator algebra

Let V be a vertex operator algebra. An automorphism of V
is an invertible linear map g : V → V preserving the
grading, the vacuum and the conformal element, and
satisfying the condition gYV (u, x)v = YV (gu, x)gv .
Examples: An element of the Monster group gives an
automorphism of the moonshine module vertex operator
algebra V \. Such an automorphism is of finite order.
An element of a simply connected finite-dimensional Lie
group gives an automorphism of the vertex operator
algebra associated to the affine Lie algebra of the Lie
algebra of the Lie group. Such an automorphism is in
general of infinite order. Moreover, in general it might not
act on the vertex operator algebra semisimply.
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Definition of twisted module

Let V be a vertex operator algebra and g an automorphism
of V .
Frenkel-Lepowsky-Meurman and Lepowsky, mid 1980’s :
g-twisted modules when g is of finite order.
H., 2009: g-twisted modules in the general case. Important
new feature: The twisted vertex operators might involve the
logarithm of the variable (logarithmic g-twisted module).
Data for a (grading-restricted generalized) g-twisted
V -module: W =

∐
n∈C,α∈C/Z W [α]

[n] ,
YW : V ⊗W 7→W{x}[logx ].
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Definition of twisted module

Main axioms:
The equivariance property: For p ∈ Z, z ∈ C×, v ∈ V and
w ∈W , Y g;p+1(gv , z)w = Y g;p(v , z)w , where for p ∈ Z,
Y g;p(v , z)w = Y g(v , x)w |xn=enlp (z), log x=lp(z)

,

lp(z) = log z + 2πp
√
−1.

The duality property: For u, v ∈ V , w ∈W and w ′ ∈W ′,
there exist aijkl ∈ C, mi ,nj ∈ R, t ∈ N such that the series

〈w ′,Y g;p(u, z1)Y g;p(v , z2)w〉,
〈w ′,Y g;p(v , z2)Y g;p(u, z1)w〉,
〈w ′,Y g;p(Y (u, z1 − z2)v , z2)w〉

are absolutely convergent in the regions |z1| > |z2| > 0,
|z2| > |z1| > 0, |z2| > |z1 − z2| > 0, respectively, to

N∑
i,j,k,l=0

aijklemi lp(z1)enj lp(z2)lp(z1)k lp(z2)l (z1 − z2)−t

where aijkl ,mi ,nj ∈ C and t ∈ Z+.
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Jacobi identity for a component of twisted vertex
operator map

The definition of g-twisted V -modules uses the duality
property for the twisted vertex operator map Y g , not a
Jacobi identity.
But as in the theory of intertwining operator algebras, there
can be a Jacobi identity for suitable coefficients of twisted
vertex operators.
Bakalov, 2015: Gave an associator formula for Y g

0 and
derived from this formula a Jacobi identity for Y g

0 where Y g
0

is given by Y g(u, x)v =
∑k

i=0 Y g
i (u, x)v(log x)i .

Multiplicative Jordan-Chevalley decomposition: g = σe2πiN

where σ is semisimple and N is nilpotent.
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Jacobi identity for a component of twisted vertex
operator map

V =
∐
α∈C/Z V [α] where V [α] is the eigenspace of σ with

the eigenvalue e2πα
√
−1.

For u ∈ V [α], v ∈ V ,

x−1
0 δ

(
x1 − x2

x0

)
Y g

0 (u, x1)Y g
0 (v , x2)

−x−1
0 δ

(
−x2 + x1

x0

)
Y g

0 (v , x2)Y g
0 (u, x1)

= x−1
1 δ

(
x2 + x0

x1

)(
x2 + x0

x1

)a

·

·Y g
0

(
YV

((
1 +

x0

x2

)N
u, x0

)
v , x2

)
, (1)

where a ∈ C such that <{a} ∈ [0,1) and a + Z = α.
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The equivalence between the duality property and the
Jacobi identity

Bakalov stated that one can derive the Jacobi identity from
the definition of twisted module using the duality as the
main axiom. But no proof was given.
H.-Yang: The duality property for Y g and the Jacobi
identity for Y g

0 are equivalent.

The twisted vertex operator map is Y g , not Y g
0 . The goal is

to study Y g , not Y g
0 . For example, the modular invariance

should be for the q-(pseudo-)traces of Y g , not Y g
0 .



Background Twisted modules Associative algebras for g-twisted modules Functors between module categories

The equivalence between the duality property and the
Jacobi identity

Bakalov stated that one can derive the Jacobi identity from
the definition of twisted module using the duality as the
main axiom. But no proof was given.
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g-twisted universal enveloping algebra

In the representation theory of Lie algebras, one of the
most important tools is the universal enveloping algebra of
a Lie algebra. The representation theory of a Lie algebra is
equivalent to the representation theory of its universal
enveloping algebra.
Frenkel-Zhu, 1992: Constructed universal enveloping
algebra U(V ) for a vertex operator algebra V . Any type of
modules (even more general than weak modules) for V is
equivalent to U(V )-modules.



Background Twisted modules Associative algebras for g-twisted modules Functors between module categories

g-twisted universal enveloping algebra

In the representation theory of Lie algebras, one of the
most important tools is the universal enveloping algebra of
a Lie algebra. The representation theory of a Lie algebra is
equivalent to the representation theory of its universal
enveloping algebra.
Frenkel-Zhu, 1992: Constructed universal enveloping
algebra U(V ) for a vertex operator algebra V . Any type of
modules (even more general than weak modules) for V is
equivalent to U(V )-modules.



Background Twisted modules Associative algebras for g-twisted modules Functors between module categories

g-twisted universal enveloping algebra

In the representation theory of Lie algebras, one of the
most important tools is the universal enveloping algebra of
a Lie algebra. The representation theory of a Lie algebra is
equivalent to the representation theory of its universal
enveloping algebra.
Frenkel-Zhu, 1992: Constructed universal enveloping
algebra U(V ) for a vertex operator algebra V . Any type of
modules (even more general than weak modules) for V is
equivalent to U(V )-modules.



Background Twisted modules Associative algebras for g-twisted modules Functors between module categories

g-twisted universal enveloping algebra

Need g-twisted universal enveloping algebra Ug(V ) such
that any type of g-twisted modules is equivalent to
Ug(V )-modules.
H. and Yang: Constructed Ug(V ). Straightforward
generalization of the construction of Frenkel-Zhu.
Take the tensor algebra of the affinization of V with general
powers of the variable and take a topological completion so
that infinite sums are allowed. Then divide this algebra by
all the relations corresponding to the identities that should
hold for any type of g-twisted modules.
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g-twisted zero-mode algebra

In the theory of vertex operator algebras, we are interested
only in (g-twisted) modules with gradings and are lower
bounded with respect to the gradings. For these
(g-twisted) modules, there are lowest weight spaces. In the
case that a (g-twisted) module is irreducible, the lowest
weight space determines the module completely.
We want to construct an associative algebra from the
vertex operator algebra V and an automorphism g of V
such that the lowest weight space of a g-twisted module is
a module for this algebra. Since the action of such an
algebra on the lowest weight space must preserve weights,
such an algebra is called g-twisted zero-mode algebra.
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g-twisted zero-mode algebra

H.-Yang: Constructed such a g-twisted zero-mode algebra
Zg(V ) associated to a vertex operator algebra V and an
automorphism g of V .
Take the weight 0 subalgebra of Ug(V ) and then take the
quotient of this algebra by the ideal generated by elements
of the form uv where u, v ∈ Ug(V ) have weights m and
−m for m ∈ C satisfying <{m} > 0.
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g-twisted Zhu’s algebra

Zhu, 1990: Constructed an associative algebra A(V ) on a
quotient of the vertex operator algebra V with the product
given by the vertex operator map.
Dong-Li-Mason, 1995: Constructed an associative algebra
Ag(V ) on a quotient of the fixed point vertex operator
subalgebra of a vertex operator algebra V under an
automorphism g of V of finite order. The construction of
Dong-Li-Mason does not work in the case that the order of
g is infinite.
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g-twisted Zhu’s algebra

H.-Yang: Constructed Ag(V ) in the case that the order of g
is finite or infinite.
Here we give the definition of an isomorphic algebra ÃgV )
that generalizes the definition of Zhu’s algebra given by H:
For u ∈ V [0] and v ∈ V ,

u •g v = Resyy−1Y
(

(1 + y)Nu,
1

2πi
log(1 + y)

)
v

and for u ∈ V [α] (α 6= 0) and v ∈ V ,

u •g v = 0.
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g-twisted Zhu’s algebra

Let Õg(V ) be the subspace of V spanned by elements of
the form

Resyy−nY
(

(1 + y)Nu,
1

2πi
log(1 + y)

)
v

for n > 1 and u ∈ V [0] and v ∈ V and elements of the form

Resyy−nY
(

(1 + y)α+N−1u,
1

2πi
log(1 + y)

)
v

for n > 0 and u ∈ V [α] (α 6= 0) and v ∈ V .
Let Ãg(V ) = V/Õg(V ).

Conjecture: Zg(V ) and Ãg(V ) are isomorphic. Yang
almost has a proof of this conjecture.
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Conjecture: Zg(V ) and Ãg(V ) are isomorphic. Yang
almost has a proof of this conjecture.



Background Twisted modules Associative algebras for g-twisted modules Functors between module categories

g-twisted Zhu’s algebra
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Conjecture: Zg(V ) and Ãg(V ) are isomorphic. Yang
almost has a proof of this conjecture.



Background Twisted modules Associative algebras for g-twisted modules Functors between module categories

g-twisted Zhu’s algebra
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Functors between module categories

Theorem: Let W be a lower bounded generalized
g-twisted V -module. Let Ωg(W ) be the subspace of W on
which the action of the components of the vertex operators
of negative weights are 0. Then Ωg(V ) is a Zg(V )-module
and also an Ãg(V )-module. Moreover, the Zg(V )-module
structure and the Ãg(V )-module structure on Ωg(W ) are
compatible with the action of g.
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Functors between module categories

Theorem: The functor Ωg from the category of lower
bounded g-twisted generalized V -modules to the category
of graded Zg(V )-modules given by W 7→ Ωg(W ) has a
right inverse, that is, there exists functors Hg from the
categories of graded Zg(V )-modules to the category of
lower bounded g-twisted generalized V -modules such that
Ωg ◦ Hg = 1, where 1 is the identity functors on the
categories of Zg(V )-modules.

The same results hold for Ãg(V ) by replacing Zg(V ) in the
theorem above by Ag(V ).
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The same results hold for Ãg(V ) by replacing Zg(V ) in the
theorem above by Ag(V ).



Background Twisted modules Associative algebras for g-twisted modules Functors between module categories

Functors between module categories

Theorem: The functor Ωg from the category of lower
bounded g-twisted generalized V -modules to the category
of graded Zg(V )-modules given by W 7→ Ωg(W ) has a
right inverse, that is, there exists functors Hg from the
categories of graded Zg(V )-modules to the category of
lower bounded g-twisted generalized V -modules such that
Ωg ◦ Hg = 1, where 1 is the identity functors on the
categories of Zg(V )-modules.
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Functors between module categories

Theorem: The restriction of Ωg to the subcategory of
g-twisted V -modules (i.e., grading-restricted g-twisted
generalized V -modules) and the projection to the lowest
weight subspaces is a functor from this subcategory to the
category of grading-restricted Zg(V )-modules or
Ãg(V )-modules. The restrictions of Hg to the category of
grading-restricted Ãg(V )-modules is the right inverse of the
restriction of Ωg to the category of g-twisted V -modules.
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