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Abstract

We give a general, direct and explicit construction of lower-bounded generalized
twisted modules satisfying a universal property for a grading-restricted vertex (su-
per)algebra V' associated to an automorphism g of V. In particular, when g is the
identity, we obtain lower-bounded generalized V-modules satisfying a universal prop-
erty. Let W be a lower-bounded graded vector space equipped with a set of “generating
twisted fields” and a set of “generator twist fields” satisfying a weak commutativity for
generating twisted fields, a generalized weak commutativity for one generating twisted
field and one generator twist field and some other properties that are relatively easy to
verify. We first prove the convergence and commutativity of products of an arbitrary
number of generating twisted fields, one twist generator field and an arbitrary number
of generating fields for V. Then using the convergence and commutativity, we define a
twisted vertex operator map for W and prove that W equipped with this twisted vertex
operator map is a lower-bounded generalized g-twisted V-module. Using this result,
we give an explicit construction of lower-bounded generalized g-twisted V-modules sat-
isfying a universal property starting from vector spaces graded by weights, Zo-fermion
numbers and g-weights (eigenvalues of ¢g) and real numbers corresponding to the lower
bounds of the weights of the modules to be constructed. In particular, every lower-
bounded generalized g-twisted V-module (every lower-bounded generalized V-module
when ¢ is the identity) is a quotient of such a universal lower-bounded generalized
g-twisted V-module (a universal lower-bounded generalized V-module).

1 Introduction

In the representation theory of associative algebras and Lie algebras, modules satisfying
universal properties (for examples, free modules, Verma modules and so on) in suitable
categories of modules play a fundamental role. Modules in these categories are quotients of
these biggest or universal modules and therefore can be studied using these modules whose
structures are relatively simple to understand.

In the representation theory of vertex (operator) (super)algebras and conformal field
theory, finding a construction of modules satisfying universal properties in suitable categories



of modules has been a long-standing problem. Finding such a construction will provide us
with a powerful tool and will allow us to use the powerful homological algebra techniques
(for example, the construction and applications of resolutions of modules) for the study of
modules for vertex (operator) (super)algebras. To study the fixed-point subalgebra of a
vertex (operator) (super)algebra under a group of automorphisms, we have to construct and
study twisted modules. It is also a long-standing problem in the case that the automorphism
is of finite order to find such a construction of twisted modules satisfying universal properties
in suitable categories of twisted modules.

In this paper, we give a general, direct and explicit construction of lower-bounded gen-
eralized twisted modules satisfying a universal property for a grading-restricted vertex (su-
per)algebra V associated to an automorphism g of V. In particular, in the case that ¢ is the
identity, our construction give a general, direct and explicit construction of lower-bounded
generalized V-modules. Our construction is for an arbitrary automorphism of the algebra.
In particular, in the case that the automorphism of the algebra is of infinite order and does
not act on the algebra semisimply, our construction gives lower-bounded generalized twisted
modules whose twisted vertex operators in general involve logarithm of the variable.

Twisted modules associated to automorphisms of finite order of a vertex operator algebra
were introduced by Frenkel, Lepowsky and Meurman in their construction [FLM1]| [FLM2]
[FLM3] of the moonshine module vertex operator algebra V. Twisted module associated a
general automorphism ¢ of a vertex operator algebra V' were introduced by the author in
[H1]. One of the main conjecture in the representation theory of vertex operator algebras is
that for a suitable vertex operator algebra V' and a finite group G of automorphisms of V', the
category of g-twisted V-modules for all ¢ € G has a natural structure of G-crossed braided
tensor category satisfying additional properties (see [H3]). This conjecture follows from
another stronger conjecture stating that twisted intertwining operators (see [H5]) among
g-twisted V-modules for g € G satisfy associativity, commutativity and modular invariance
property (see also [H3]). The second conjecture corresponds to a construction of orbifold
conformal field theories and its solution will certainly depend on a deep understanding of
twisted V-modules.

Twisted modules for vertex (operator) (supper)algebras have been constructed and stud-
ied in many papers (see for example, [Lel], [FLM2], [Le2|, [FLM3], [D], [DL], [DonLM1],
[DonLM2], [Li], [BDM], [DoyLM1], [DoyLM2], [BHL], [H1], [B], [Y], and the references in
these papers). But these constructions and studies are for special classes of vertex opera-
tor algebras and/or special classes of automorphisms. To study twisted modules, twisted
intertwining operators and the category of twisted modules, we need a general construction
of twisted modules. In principle, twisted modules can be constructed using the the func-
tors constructed in [HY] from categories of modules for the associative algebras introduced
in [DonLM1]| (for automorphisms of V' of finite orders) and in [HY] (for general automor-
phisms) to suitable categories of twisted modules. But this indirect approach is very difficult
to use in general because the abstract functors in [HY] from the categories of modules for
the associative algebras to the categories of suitable twisted modules are not equivalence of
categories. It is therefore important to have a general, direct and explicit construction of



suitable twisted modules satisfying universal properties. As we mentioned above, finding
such a construction is a long-standing problem even in the case that the automorphism is
of finite order or is even the identity. We solve this problem in this paper in the category
of lower-bounded generalized g-twisted V-module for a general automorphism ¢ of a general
grading-restricted vertex (super)algebra V.

The approach used in our construction is the one that the author developed for the first
construction of grading-restricted vertex algebras in [H2]. But the construction of lower-
bounded generalized twisted modules in this paper, especially of those twisted modules
whose twisted vertex operators involving the logarithm of the variable, is much more difficult
than the one in [H2]|, because the twisted vertex operators are multivalued and because we
do not have skew-symmetry for twisted modules (even for modules). Besides twisted vertex
operators, one crucial ingredient in the construction in this paper is the twist vertex operators
introduced and studied in [H6].

Our construction is divided into two steps. We first prove a general construction theorem
which will be very useful also for the constructions of grading-restricted twisted modules,
twisted modules and other types of lower-bounded generalized twisted modules. Let W
be a lower-bounded graded vector space equipped with a set of “generating twisted fields”
and a set of “generator twist fields” satisfying a weak commutativity for generating twisted
fields, a generalized weak commutativity for one generating twisted field and one generator
twist field and some other properties that are relatively easy to verify. We first prove the
convergence and commutativity of products of an arbitrary number of generating twisted
fields, one twist generator field and an arbitrary number of generating fields for V. Then
using the convergence and commutativity, we define a twisted vertex operator map for W
and prove the construction theorem that W equipped with this twisted vertex operator
map is a lower-bounded generalized g-twisted V-module. If W is grading-restricted, we
obtain a grading-restricted twisted module and if in addition the operator Ly (0) acts on
W semisimply, we obtain a twisted module. In the special case that ¢ = 1y, we obtain
lower-bounded generalized modules, grading-restricted generalized modules and modules.

Then using this construction theorem, we give an explicit construction of a lower-bounded
generalized g-twisted V-module M }f] satisfying a universal property starting from a vector
space M graded by weights, Zs-fermion numbers and g-weights (eigenvalues of g) and a
real number B less than the real parts of all weights of homogeneous elements of M. The
real number B is in fact a lower bound of the weights of M j[gg] and, roughly speaking, M

together with the algebra V' gives the generators of M g]]. In particular, every lower-bounded
generalized g-twisted V-module (every lower-bounded generalized V-module when g is the
identity) is a quotient of such a universal lower-bounded generalized g-twisted V-module (a
universal lower-bounded generalized V-module).

The construction and results obtained in this paper can be used to study a number of
problems in the representation theory of vertex (operaor) (super)algebras. We shall discuss
these apllications in future papers. We shall also construct and study examples of twisted
modules for lattice, affine Lie and Virasoro vertex operator algebras in future papers using
the construction and results in this paper.



The formulations and construction in the present paper are based on the formulations
and results in [H6]. We refer the reader to [H6] for the basic definitions of grading-restricted
vertex (super)algebra, generalized twisted modules and variants and twist vertex operator,
conventions on formal and complex variables, and results on twist vertex operators and their
proofs.

This paper is organized as follows: In Section 2, assuming that V' is generated by a set of
fields {¢*(z) }icr and g is an automorphism of V', we introduce our data, a graded vector space
W with an action of g, a set {¢%,(z)}ies of generating twisted fields and a set {1% (x)}aea
of generator twist fields and two operators Ly (0) and Ly (—1), and our assumptions on
these data, including, in particular, a weak commutativity for generating twisted fields and
a generalized weak commutativity for one generating twisted field and one generator twist
field. We also give a number of immediate consequences of these assumptions in this section.
In Section 3, we prove that the weak commutativity and generalized weak commutativity
mentioned above are equivalent to the convergence and commutativity of products of an
arbitrary number of generating twisted fields, one twist generator field and an arbitrary
number of generating fields for V. In Section 4, we define a twisted vertex operator map
Y], for W using convergence and commutativity above and prove our construction theorem
that W equipped with Y{j is a lower-bounded generalized g-twisted V-module. In Section
5, starting from a vector space M graded by weights, Zs-fermion numbers and g-weights
(eigenvalues of g) and a real number B less than the real parts of all weights of homogeneous
elements of M , we construct a lower-bounded generalized g-twisted V-module M }99] and
prove that it satisfies a universal property. We also state in this section the consequence
that every lower-bounded generalized g-twisted V-module is a quotient of a universal lower-
bounded generalized g-twisted V-module.

Acknowledgments The author is grateful to Jason Saied for questions on the construction
of modules for grading-restricted vertex algebras using the approach in [H2].

2 Generating twisted fields and generator twist fields

In this section, we introduce the basic assumptions needed in our construction theorem and
state some immediate consequences.

In the present paper, we fix a grading-restricted vertex superalgebra V' and an automor-
phism g of V. Then V =[] . Py Vil where V19l is the generalized eigenspace for g with
eigenvalue €™ and Py is the subset of {« € C | R(a) € [0,1),€*™ is an eigenvalue of g}.
By Lemma 2.5 in [H6|, there exists an operator £, with the semisimple and nilpotent parts
S, and N, respectively, on V such that g = €29 = ¢?7(Sa+No) and by Proposition 2.6 in
[H6], both €™ and ¢*™s are also automorphisms of V. Generalized eigenvectors for g are
eigenvectors for e*™S with the same eigenvalues and N is a derivation of V (Proposition
2.6 in [H6]).

We first state our assumptions on V.



Assumption 2.1 We assume that V is generated by ¢'(z) = Yy (¢" ,1,z) for i € I, where
¢'(x) or ¢* ;1 for i € I are homogeneous with respect to weights and Zs-fermion numbers and
where ¢’ , is the constant term of ¢'(x) and ¢’ ;1 = lim,_, ¢'(x)1 (see [H2] for more details.)
Fori € I, ¢ |1 is a generalized eigenvector of g with eigenvalue e?™. We also assume that

for i € I, either N;¢" ;1 = 0 or there exists N, (i) € I such that N;¢" ;1 = AN

We denote the weights and the Z,-fermion numbers of ¢'(z) or ¢* ;1 for i € I by wt ¢’
and |¢'|, respectively.
Since ¢'(x) = Yy/(¢" 1, ), we have

627ri89 ¢z (x)e—Qﬂng — 627rio¢i QSZ(ZL’)
and

[Ngv¢i($)] = [NngV(Qbi—llax)]
= YV(Ng¢i—11ax)'

For convenience, we shall use ¢°(x) to denote the 0 vertex operator Yy (0,z) = 0, add 0 to
the index set I and denote the index set with 0 added still by I. Then for ¢ € I, there exists
N, (i) € I such that N,¢' ;1 = qﬁj_\[{(i)l, or equivalently, [N, ¢'(2)] = ¢"4()(2). Since N is
nilpotent, there exists K such that NS (i) = 0.

Next we give the data needed in our construction theorem (Theorem 4.3) in Section 4.

Data 2.2 (a) Let
_ sjla] s;[e]
W= I w'= 10 v

neC,s€Zs,[a)€C/Z neC,s€Zs,a€ Py

be a C x Zy x C/Z-graded vector space such that Wy, = Hsezwepw W[Z][a] =0
when the real part of n is sufficiently negative, where Py is the subset of the set
{a € C|R(a) € [0,1)} such that W[Z][a] # 0 for a € Py.

(b) Let

Gy W — 2= W((x))[log ]
w — Py (2)w = Z Z (¢t ) nrwr " (log z)*

keN neai+7Z

for i € I be a set of linear maps called the generating twisted field maps. Since
Oy (2)w € =W ((x))[log z], we must have (@i}, ), xw = 0 when n — o' is sufficiently
negative and k is sufficiently large. These linear maps correspond to multivalued
analytic maps with the preferred branch ¢Zm9 and labeled branches gbi,[’,? for p € Z from
C* to Hom(W, W).



(c) Let

U Voo > e W ((x))[log 2]

v oy () = Z Z (V5 ) mrvr " (log )"

keN ae Py, nea+Z

for a € A be a set of linear maps called the generator twist field maps such that
% (x)v € x7*W ((x))[log z] for a € Py and v € VI, Since ¢, (z)v € 27*W ((z))[log z]
for v € VI, we must have (Y )nkv = 0 when n — « is sufficiently negative and & is
sufficiently large. These linear maps corresponds to multivalued analytic maps with
preferred branch ¢*° and labeled branches ¥*? for p € Z from C* to Hom(V, W).

(d) Let Ly (0) and Ly (—1) be operators on W.

(e) An action of g on W, denoted still by g, and an operator, still denoted by £, and its

semisimple and nilpotent parts, still denoted by S, and N, respectively, on W such
that g = €2™£s = ¢2™i(SstNo) on W,

These data are assumed to satisfy the following properties:

Assumption 2.3 The space W, the generating twisted field maps ¢y, for i € I, the gener-
ator twist field maps f, for a € A, the operators Lw (0), Lw(—1), g, Ly, Sy and Ny on W
in Data 2.2 have the following properties:

1.

There exist semisimple and nilpotent operators Ly (0)s and LW(O)N on W such that
Lw(0) = Lw(0)s + Lw (0)n. Fori € I, [Lw(0), ¢y (z)] = 2g-diy (z) + (Wt ¢")oiy ().
For a € A, there exists (wtf,) € C and, when Ly (0)ny§, (z) # 0, there exists
Lw(0)n(a) € A such that Ly (0)iy (x) — v (2) Lv (0) = w4y (x) + (Wb iy )y (2) +
P ON@ () “yhere i ON@ (1) = 0 when Ly (0) &, () = 0.

Fori € I, [Lw(=1), ¢}y (z)] = Lol (z) and fora € A, Ly (1), (z) =iy (z) Ly (—1) =
dx¢W( )

For a € A, ¢¥§,(x)1 € W|[z]] and its constant terms lim,_,o ¢, ()1 is homogeneous
with respect to weights, Zo-fermion number and g-weights.

The vector space W is spanned by elements of the form (¢i%)n, 1y - (8 )y iy (V8 a0
foriy,...,ir€l,a€ Aandn, €a* +Z,...,n, €a* +Z, neC, ..., I, €N,
veV.

(i) Fori € I, goi?™ (2)g~" = ¢iP(2). (ii) Fori € I, ¢y (x) = 2N (¢ )o(2)2™s and
fora € A, v&(2) = (W& )o(z)x™Ne where (¢iy)o(x) and (V& )o(z) are the constant
terms of ¢i (x) and Yy, (x), respectively, viewed as power series of logx (with coeffi-
cients being series in powers of x). (iii) For i € I, e*™Sagl, (2)e 2™ = 2™ ¢i (%)
and [Ny, oy (2)] = Ng( )( ). () For a € A, there exists a* € Py such that (¥ )n0l
forne —N—1 are genemlized eigenvectors of g with eigenvalue e* " .
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6. Fori,j € I, there exists M;; € Z such that
(21 — 2) M By (21) Sy (w2) = (21 — 22) M (=)W, (22) 0y (1) (2.1)
7. Fori el and a € A, there exists M;, € Z such that

(w1 — w9)* "M (w1 — w0) N9y (1) (21 — 2) Vo4 (2)
= (=@ + @) Mo (1) I (05) (= + 20) M09 (1) (—n + 20) N0 (222)
For a multivalued analytic function ¢(z) with a preferred branch of z with domain C*,
we use ¢P(e’z) to denote composition of the single-valued analytic function of [,(z) given by

the branch ¢(z) and the analytic map given by [,(z) — [,(2) + a.
We have some immediate consequences:

Proposition 2.4 The space W, the maps ¢y, for i € I, % for a € A, Ly (—1) have the
following properties:

8 ForceC,iel anda € A,

Ly (0) %)(z)e—ch(O) — (Wt e ij&’(ecz)

and

€CL€V(O)¢G%P (Z)G_CLV(O) — ec(wt ¢$V)¢a;p(ecz) '

9. Foriy,...,ip€l,a€ Aandny,....,np € C, ly,....Ix,l eN,n€Z andv € V, we
have

Ly (0) (@ na s+ (D D (W I
k

- Z( iV%/)nLh T ( ljil)”j—lvlj—l'

j=1

(=05 = D@y, + U5+ DO a1+ (W6 6) (G5 ), )

(2 i IR G A R DIV
+ (G s+ (Do

(1= Dt + -+ DDt + (VU)W s + 5 O D)) v
+ (D dns s - (O )it (U5 )na L (0),



and

LW(_l)( %)mh e (QS;IE/)nmlk (¢$V)mlv
k

- Z( %/)m,h T ( Zjil)nj—lalj—l'

j=1

(=3O 1, + O+ Dy 1a01) G Dt (O s (Vg
+ ( %)nlvll T ( %/)nka (_n(d)I(}V)n—l,l + (l + 1)(¢${/)n—1,l+1) v
+ ( a/)"l:ll e ( g{/)nk:lk (wIC/LV)n,lLV<_1)U'

10. For c € C, z € C* satisfying |z| > |c|, i € I and a € A, eclw (=D o (2)eclw(-1) =
WP(2 4 ¢) and etw (Tyap(2)emcbv (=l = yap(z 4 ¢).

11. The operator Ly (—1) has weight 1 and its adjoint Ly (—1)" as an operator on W' has
weight —1. In particular, e*wV'w € W' for z € C and w' € W'.

12. Fori € I, there exists K, N € N such that ¢iy () = > 1o 2 caio (@i Jnpz ™ H(log )

and fori € I andw' € W', (W', @iy, (x)-) has only finitely many terms containing gt
forn € Z,. Forae€ A and vy,...,u,v €V, ¥l (x)Yy (v, 21) - Y (v, 2)v is a poly-
nomial in logx and fora € A, w' € W' and o € Py, (W', ¢, (x)-) as a formal series in
x with coefficients in (VI))*[[logz]] is of the form >, ... n_n An(log z)z™"1 for some

N €N and \, € (VIe))*[[log z]].

Proof. These properties follow immediately from Assumption 2.1, Data 2.2 and Properties
1-7 in Assumption 2.3. |

Remark 2.5 The twist fields 1f;, might look mysterious to the reader but are in fact crucial
in the present paper. The reason why they are important for the construction of twisted
modules (and in particular, modules) is explained in the introduction in [H6]. We repeat
the explanation here. If we start with only generating twisted fields satisfying the weak
commutativity or commutativity, we can still define a twisted vertex operator map but
can only prove the commutativity and weak commutativity. For twisted modules (or even
modules), the associativity is the main property to be verified and is not a consequence of the
weak commutativity or commutativity. If we already have a twisted module, then the twist
vertex operator map studied in [H6] changes the associativity of the twisted vertex operators
to the commutativity involving twisted vertex operators, twist vertex operators and vertex
operators for the algebra. Thus in our construction, by introducing generator twist fields
Yy, and assuming that the commutativity holds for the generating twisted fields, generator
twist fields and generating fields for the algebra V', we are able to prove the associativity and
construct twisted modules using the same method as in the first construction of grading-
restricted vertex algebras in [H2].



3 Convergence and commutativity

The construction theorem in the next section uses the approach developed in [H2]. In
this approach, the twisted vertex operators shall be defined and proved to be well defined
using the correlation functions obtained from the product of the generating twisted fields
¢l (), the generator twist fields 1¢%,(z) and the vertex operators for V. We also need the
commutativity of these correlation functions. Therefore to use this approach, we first have
to prove the convergence and commutativity of these products. In this section, we prove
these properties.

We first give the convergence and commutativity for ¢i,. In fact, we show that the
convergence and commutativity for ¢%, are equivalent to Property 6 in Assumption 2.3.

Theorem 3.1 Let W =[]
Data 2.2 and let

n€C.sCTn.0eC) T W;Z}[a] be a C X Zy x C/Z-graded vector space as in

Gl : W = 27" W ((x))[log ]
w i Gy (2)w
fori € I be a set of linear maps as in Data 2.2. Assume that they satisfy the parts for ¢i,

for i € I in Properties 1, 2, 5 in Assumption 2.3. Then Property 6 in Assumption 2.3 is
equivalent to the following properties:

13. Forw' e W, w e W and iy,...,1;, € I, the series
(W', " (21) - O (z6)w)

is absolutely convergent in the region |z;| > --- > |z| > 0. Moreover, there exists a
multivalued analytic function of the form

N
S foenen (B )z ez (log z)™ - (log )™,

n1,...,nE=0

denoted by ‘ ‘

F({w', ¢y (21) - - - oy (z)w)),
where N € N and fo,..n, (21, .., 2K) forny,--- ;ng = 0,..., N are rational functions
of z1,...,2z, with the only possible poles z; = 0 for ¢ = 1,...,k, z; — z; = 0 for
1,j=1,...,k, i # j, such that its sum is equal to the branch

FP((w', ¢y (21) -~ i (1))

N
= N e (e ) b (1 () (4 ()
ni,...,np=0
of F({w', ¢, (21) - - - ¢tk (2 )w)) i the region given by |z1| > --- > | 2| > 0. In addition,
the orders of the pole z; = 0 of the rational functions fu,..n, (21, .., 2K) have a lower
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bound independent of ¢" for i # i and w'; the orders of the pole z; = z; of the rational

functions fp,..n, (21, ..., 2k) have a lower bound independent of ¢ for | # i,j, w and

w'.

14. ForweW,w e W' iy,iy,i €1,
FP((w', ¢if (21)855 (22)w)) = (=) W2 FP (0! 832 (20) B3y (21 ). (3.1)

Proof. 'The proof that Properties 13 and 14 implies Property 6 in Assumption 2.3 is com-
pletely the same as the proof of Proposition 3.7 in [H6]. The proof that Property 6 in
Assumption 2.3 implies Property 13 is completely the same as the proof of Theorem 3.10 in
[H6]. We refer the reader to those proofs in [H6].

Propertiy 14 follows immediately from Property 13 in the case k¥ = 2 and (2.1). Thus
Property 6 in Assumption 2.3 also implies Property 14. |

The result below is the most general convergence result and the commutativity involving
generator twist fields. We in fact prove that these convergence and commutativity properties
are equivalent to Property 7 in Assumption 2.3 and thus by Theorem 3.1, together with the
convergence and commutativity properties in Theorem 3.1, are equivalent to Properties 6
and 7 in Assumption 2.3.

Theorem 3.2 Let W = [[,.cc sez, accyz W[ii][a] be a C X Zy x C/Z-graded vector space as in
Data 2.2 and let

Gl W — 2= W((z))[log 7]
w = Py (x)w
forie I and
U V= Y o W((x))[log 2]

a€ Py
v Oy (2)v

for a € A be linear maps as in Data 2.2. Assume that they satisfy Properties 1-6 in As-
sumption 2.3. Then Property 7 is equivalent to the following properties:

15. Forw' e W', v e VIl and iy, ... ip €1, a € A, the series
(W', " (1) - - S (2 )™ (2)§™+ (2 - - 6 (2h40)0)
is absolutely convergent in the region |z1| > -+ > |zk| > |2| > |zkg1| > -+ > |zkp| > 0.
Moreover, there exists a multivalued analytic function of the form

N

Z fnl---nan(Zl; R 2 Z)'

N1,y 1,n=0

Sz = 2) M (e — 2) ez (log (21 — 2))™ - - (log (2 — 2))"H (log 2)",
(3.2)

10



denoted by

F({w', @4 (21) - 5 (25 (2) 054 (zig1) -+ ™ (20p0)0)),

where N € N and fr,.ne (215 -5 Zogt, 2) for ny, -+ ,ngq,n = 0,..., N are rational
functz’ons of z1, .. zkH, z with the only possible poles z; =0 fori=1,...,k+1, 2 =0,
2 — 2 = Ofm“z J = k41, 1# 7, zz—2=0 fori=1,...,k+1, such that its

sum s equal to the bmnch
FP((w', ¢y (21) - - 03 ()i (2) 8™ (2 1) - - 0 (21 10)0))
== Z fnl"'nk+ln(zl7 Ce 7Zk:+l)'

. e—aillp(zl—z) . e—aikﬂlp(zk+z—z)€—alp(z)(lp(zl o Z))m . (lp(zk—H . Z))nk“(lp(z))n
(3.3)

of (3.2) in the region given by |z1| > -+ > |zk| > |z] > |z > -+ > |zra] > 0,
larg(z; — 2) —argz| < § fori = 1,...,k and |arg(z; — 2) —argz| < § fori =
k+1,....,k+1. In addition, the orders of the pole z; = 0 of the rational functions
Jovemgen (215 - -5 2oy, 2) have a lower bound independent of vy for ¢ # j, w and w';
the orders of the pole z = 0 of the rational functions fn, .., n(21,- .., 2641, 2) have
a lower bound independent of vy, ..., vk and w'; the orders of the pole z; = 2z, of
the rational functions fnl---nk+ln(21, ooy Zktl, 2) have a lower bound independent of v,
for ¢ # j,m, v, w and w'; the orders of the pole z; = z of the rational functions
Jormpon (215 - -5 2oyt 2) have a lower bound independent of vy for ¢ # j, v and w'.

16. ForveV,w' eW' iel, ac€ A,
FP((w', $iy (2095 (22)0)) = (=)W EP (w4 (22) ' (20)0). (3.4)

In particular, when Properties 1-5 in Assumption 2.3 hold, Properties 6 and 7 in Assumption
2.8 are equivalent to Properties 13 and 14 in Theorem 3.1 and Properties 15 and 16.

Proof. Assume that Properties 15 and 16 hold. For w’ € W’ and v € V', by Property 5 in
Assumption 2.3,

(W', ¢y (U7 (z2)0) = (W', e N (g1 ) (1) e NP (20)0)

T

) (W, Ny, -+ Ny (S )b(20)] -+ [P (20)0)
St B )BE (22)0) (1(21)), (3.5)

11



where, in our notation, for j € I, (¢},)8(21) denotes the p-th branch of (¢ )o(21). By

Property 15, the left-hand side of (3.5) is absolutely convergent in the region given by
|z1] > |22| > 0 and |arg(z; — 22) —arg 21| < § to

Z Qgazy e OB ent ) (1 (2 — 29))F(1(22)),
7,k,l,q=0

(3.6)

where t,m, € Z for ¢ =0,...,N and n; € C for j =0,..., N. But the expansion of (3.6) in

the region given by |z1| > |22| > 0 and |arg(z; — 23) — arg z1| < § as a power series in [,(z;)
is

k k—r
Z a"]]k‘lzl —(ait+mg)lp(z1—22) ”le(z2) 22 lz ( ) (log (1 — é)) (lp(zl))r
k,j,0,q=0

21
r=

(ai+m z1—22) Nilp(z k Z b r
= ZZ Z aqjklzl it q)lp( 1= 2)6 le( 2)(lp(22))l(r) (log (1 - _2)> (lp(zl)) 9

(3.7)

k—r
where (log (1 — %)) is understood as the branch obtained by using the expansion in

nonnegative powers of 2. Comparing (3.6) and (3.7) and using Proposition 2.1 in [H4] (see

also Proposition 7.8 in [HLZ] in the case that «; and n; are real numbers), we obtain

i @O o)

al k Z b
=2 Z Gqibi *C”*mq”p(“—Z”e"ﬂp(”)<lp<zQ>>l(T) <log (1 - —)) (38)
k=r

z
7,0,q=0 1

for r € N and for r > N, both sides of (3.8) are 0. Then in the region given by |z1| > |z2] > 0

12



and |arg(z; — z) —arg z;| < I,
<w/7elp(zl—zg)./\/’g¢€;§(zl>€—lp(z1—zz)/\fg¢;[§/l’(22)v>
= (w', elr(z1=22)Ng o—lp(21) Ny (QS%A/)g(Zl)Glp(zl)Nge_lp(zl_ZZ)Ng Uy (22)0)

_ (w/,e(log(l—%)>Ng(¢i )g(zl)e—(bg(l—%))Nw%P(ZQM

23 % (os (1 - —)) (o (R T (e e
= 3 S i) (s (1- 2) )

N N N
=330 D (W aggz e b ) ) ()

)62 6(-2)

N N
= Z Z a/qjklZl*tef(ai+m4)lp(zlfz2)enij(ZQ)(lp(ZQ))l.
k k—r r
(S0 (e 0-2)) o e(c-2)))
r=1 r 1 <1

N N
=303 aggurpte e el (g ().

k=1 4,1,q=0
29 22 "
(e (=2)) - (2 (0-2))
21 21
N
= 3 agute e E e G () (o)) (3.9)
j,l,qu

On the other hand, in the region given by |z3| > |21| > 0 and |arg(z; — 22) — arg z»| < 7,

(_1)|¢i|\¢a‘ <"LU/, ¢%p(z2)elp(zg—z1)Ngewi g¢i(zl)e—m'/\/ge—lp(zg—zl)/\/gv>
= (_1>\¢>i\lw“| (W', %I;/P(Zz)e(lp(zzfm)wi)f\fg ¢i(Zl)ef(lp(mfznﬂi)/\fgw

k
= Z %(ZP(ZQ —z)+ Wi)k(—l)wi”wal(w’, VI ()N, -+, NG, ¢ (21)] - - - Ju)
keN
= %(lp(zg —z)+ Wi)k(—l)wi”wal(w’, w%p(@)gﬁ/\/;(i);p(zl)w' (3.10)
keN

13



By Property 5 in Assumption 2.3 and (3.8), in the region given by |z1| > |23] > 0 and
|arg(z; — 22) — arg z1| < 5, we have

Nk )5 a;
(! Gn? P (1) (2 )0)

k(; a:
= (w!, e N (Gl )P ()N g0 )0

=S S eyt (N W, (6 D)) 10 ()

n!
neN
—L)" NG a
= 3 eyt 6 O (2)e)
neN ’
—1)k(k +n)! nN N o
= %(ZP(Z]_)) Z Z aq]slzl te ( 1“1‘ q)lp( 1 2)6 le( 2)(lp(22))l
neN ) s=k+n j,l,q=0

s—(k+n)
S z9
. 1 1 - =
(karn) (Og( Zl))

]{
= Z Z Z +n) —Qgj % —te~ (ai+mq)lp(z1—z2)6njlp(z2)(lp(ZQ))l.

neN s=k+n j,1,q=0
s—(k+n)
S Z2
. l "1 1——= . 11
(Hn)(p(zl» (10 (1-2)) (3.11)

(=) ! 8P (29) e O (1)) (3.12)

and the left-hand side of (3.11) converges absolutely to the same branch of a multivalued
analytic function in different regions. Then we see from (3.11) that in the region given by
22| > |21] > 0 and |arg(z; — 22) — arg 23| < 7, (3.12) must converge absolutely to

k+n —t _—(a;+m z1—22) ,njlp(z
> Z Z Qg e LG E E) (] ()

neN s=k+n j,l,g=0

. (k j n) (L (20)" <1og <1 - z—j»s_mm . (3.13)

By Property 16,
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Thus the right-hand side of (3.10) is equal to

/{:
ZZ Z Z k' '—i-n aqjslthe*(aﬁmq)lp(nfzg)enjlp(m)(lp<22))l.
n

keN neN s=k+n 7,l,q=0

: ksn (Ly(z2 — 21) + 7)) (1,(21))" ( log 1_? ~(k+n
+ : s=(ktn)

N s
= D0 D aguae T ) ()1

j?87l7q:0 T:0

() <Z (1)t =+ m‘)’“(lp@l)f‘k) (s (1-2))

fry Z a/qulZ]_ Z+mll)ll7(zl ZQ)enij(ZQ)(lp<z2))l.

7,8,0,q=0
*\ (s s z o
> )(zp<zl> ~(tea = 20+ ) (1o (1 2))
r=0 " “1
— Z aqjslz1 (ait+mg)lp(z1— 22)e”jlp(22)(lp<22)>l.
7,8,0,q=0
. 22 ’
: (lp(zl) — (Ip(22 — z1) + i) + log <1 — z_>>
1
N
= 3 aguile @b () (314
5b,q=0
From (3.9) and the calculations from (3.10) to (3.14), we see that if we choose M;, € Z
to be larger than m, for ¢ =0,..., N, we have

e(ai+Mia)lp(Z1 77;2) <,u)/7 elp(Z1 722)/\/’5] (b’%(zl)eflp(Z17Z2)Ngw‘l;z[§/p(Z2)v>
= D7 aguri (s = 20) e (1 ()
j:lquO
— (ai+Mia)lp(22—Z1)em'(oci-l—Mia)(_1)|¢i||7/)“|,
<,w w ( ) p(z2— zl)/\fg i, g¢i(Zl)e—ﬂiNge—lp(ZQ—Zl)NgU> (315)

The formula (3.15) for all w’ € W’ and v € V is equivalent to the formal identity (2.2).
Next we prove that Property 7 in Assumption 2.3 implies Properties 15 and 16. By (b)
in Data 2.2 and Property 12 in Proposition 2.4, there exist Ny, Ny € Z and K € N such that

(W', oy ( Z Z (G Jai tnpw)e @ (log 2)"

n=N; k=1

15



for w € W and w’ € W’. Then for w’ € W and v € V,

(21 — @) Mo (' (21 — 22) N0 B}y (21) (1 — 22) N0y (2)0)

€ C((1 ", 22))[log 7],

<l’2 _ xl)ai+Mia€7ri(ai+Mia)(_1)|¢i||wa‘<w/7 ¢$V(x2)(x2 — x1>Ng€ﬂiNg¢i(I1)e_WiNg (ZL‘Q —_ xl)_Nng>

€ C((w1,2;"))log 72,

where we use C((z,",12)) (C((w1,75"))) to denote the ring of Laurent series in x; and
having only finitely many terms in positive powers of z; and negative powers of xs (finitely
many terms in negative powers of x; and positive powers of z3). But by (2.2) these two

formal series are equal. So they must belong to
(C[ZI?1, xl_la T2, :U2_1] [lOg L1, log .’172]-

This formal series can be written as

N
S by (s — a2) ey (log ()’

J»t,g=0

for b, € C, t € N, my € Z such that m, < M, n; € C so that
(21 — @) Mo (21 — 22Ny (1) (1 — 2) Ny (22)0)

N
= 3" byt (a1 — o)™ (log ()
j,l,q:0

= (29 — xl)ai‘*‘Mmem(arFMm)(_1)|¢i||¢“|.

(W' Py () (2 — 21)Noe™No @ (1) e TN (2 — 1) Now).
Thus
FP((w, (21 — 22)Mo @iy (21) (21 — 22) Noubfy (22)v))

N
— Z byjizy e Citmaln(zi=22) gnsln (2) (] (7))}
J,l,q=0

— (— 1) PP, i (22) (22 — 20 )TN ()N (2 — 24) Now)).

16
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Using Part (iii) of Property 5 in Assumption 2.3, we obtain

(w', 35(21) Cvlﬂp(ZQ)W

g <wl’ e_lp(zl_ZQ)Ngelp(zl_ZQ)NQQS’%(Z].)e_lp(zl_ZQ)NQelp(zl_ZQ)Ng¢%p(22)v>
/ /_/% (z1—22) (Z1 ZQ)N a;p
(21 = 22))* (W', [N, -+ [N, er 172 No g (2 ) e 7] Jow (22)0)
seN
p(21 = 20))° (W', €N NG NG, G (21)] - - Jem Ny (2, )0)
seN
(1) 30
= 3 (e — ) N O (2o (), (3.17)
s=0 ’

By (3.16), the right-hand side of (3.17) is absolutely convergent in the region given by
|z1] > |22| > 0 and |arg(z; — 22) —arg z1| < 7§ to

Z agiaizy e~ Ml BB R (1 (2 — 25))° (1 (22)) (3.18)

7,8,0,q=0

for some a,;4 € C.
On the other hand, by Part (iii) of Property 5 in Assumption 2.3,

(=) P (z2) 47 (1))
= (_1)|¢>"H’¢1“\ <w/7 1/}%}’(22)6—7%./\/9e—lp(zz—m)./\/g elp(z2=21)Ng o miNg

. QS%J(Zl)e_MNge_lp(ZQ_Zl)Ngelp(ZQ_zl)Nqem'/\/gv>

= (_;)S(lp(@ — 1) + i) (=1) .

s

W P ()N, - NG, elr (22 Ne g TiNG iR (Yo mmiNg o ~ln (22N ] L y)
=2 <_s—1!)s(lp(22 —z1)+ Wi)s(—l)WIWI'

S

), @Z,g&z’(@)elp(zz—m)f\/gem/\/g NG, NG, vl (21)] - - .]e—que—Zp(zQ—zl)NqU>

-3 = 2 i

. (_1)‘¢i‘|wa|<w/7 wla/i;/p(ZZ)elp(ZQ—Zl)Ng67TiNg¢a//;‘]S(i);p(Zl)e—WiNge_lp(ZQ—Zl)NgU>‘ (319)
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By (3.16),
(_1>‘¢iH,¢}a‘ <U)/, ¢%;p(22)elp(z2—z1)Ngewi g¢/V\V/'gs(i)m(Zl)e—wi./\/ge—lp(zz—zl)./\/gv>

is absolutely convergent in the region given by |z > |21| > 0 and | arg(z1 — 22) —arg zs| < §
to
NE(3); _ a
Fr((w', (21— 2o () (21 = 22) 00y (2)0).
Thus the right-hand side of (3.19) is absolutely convergent in the region given by |zo| >
|z1] > 0 and |arg(z; — 22) — arg 23| < 7 to (3.18). In particular, we have proved Property
6 in the case k = 1 and [ = 0 and also (3.4). By Proposition 3.1, (3.1) also holds. Thus
Property 16 holds.
We still need to prove Property 15 for general k and [. For 7,5 € I,

(1 — “")N"%v(xl)(iﬁl — ) No (g — YN0 @l (20) (g — ) N
7“+5 o »
-y Bz ,4.3, (log(ay — )" (log(ws — )G’ (x1) it () (3.20)

r,s€N

Since the right-hand side of (3.20) is in fact a finite sum, there exists N;; € Z, such that
(w1 — 22)™ (21 — 2)No iy (1) (1 — ) N7 (0 — 2)No ], () (g — )N

=3 EU gy — ) (log (2 — )" (s — ) 6O )P ()

rls!
r,seEN
(_1)T+S r s
= 3 S og(er — )Y (los(a — )"
r,seN .

(=) gy — ) 63 () O (1)
= (21— 22)™V (w2 — 2N ], () (w3 — 2) Mo (1 — )o@y (1) (21 — )Mo (3.21)

For general k,l € N, consider the series

k+l l
H(Iq — ) iatMige H (x — Ik+m)ai’“+m+Mik+m“em(aik+m+Mik+m“)-
q:l m=1
(s (21— 2N gy (a0) (o — 2) TN (g — ) () (o — 2) Vo
i (1) (@ = wpn N e NG (g0 )e TN (2 — ) TN
(@ = w7 NG () e TN (1 — agy) Now), (3.22)

where v € V and w’ € W’. Using (2.2), we see that (3.22) is equal to

k+1 l
H(xq — x)alq""qua H (gjk+m — gj)alk-&-m'i' tk+m@.
q=1 m=1

(', (@1 — 2y () (@r — 2) V0 (g — )Moy ()
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-(k—er@MJ—me“%mﬂxmﬂ—xr%-

(@ — )M St (@) (T — @) oW (2)v), (3.23)

By (c) in Data 2.2, (3.23) has only finitely many negative integral powers in = and finitely
many nonnegative integral power terms in log z. Using (2.2) again, we see that (3.22) is also
equal to

k+l1 l
H(x — xq)aiq+Miqaem(aiq+Miq“) H T — mk+m)0‘ik+m+Mik+m”@m(o‘ik+m+Mik+m“).
q=1 m=
(! Py () (@ — 2NN (e N (2 — 1) N
@ )TN (e ()

. (93 _ :B’H_l)/\/gem g¢lk+1 ($k+1)6—7riNg (93 _ :B’H_l)—/\/'g'
(@ =z No gyt (g a)e TN (2 — apgg) Now), (3.24)

By (c) in Data 2.2 and Property 12 in Proposition 2.4, (3.24) has only finitely many positive
integral power terms in x and finitely many nonnegative integral power terms in log z. Thus
(3.22), (3.23) and (3.24) are a Laurent polynomial in x and a polynomial in logz. In
particular,

(w' (21 — )05 (1) (w1 — 2) ™0 - (g — 2oy ()

Aak — 1) N (@ — 2V () (Trs — 7) N

(g — 2V O () (wrr — ) N0 (2)0) (3.25)
is equal to this polynomial in z, ! and logz with series in @y,..., 2y as coefficients
multiplied by

k+1 !
[ (g — @) (st Miae) T (@ = wpygn)” @em T Mingme) 7T inn H i ma),
q:l m=1

The coefficients of this polynomial in x, 7! and log x are given by the coefficients of (3.23)
in powers of z and logz. These coefficients are finite sums of products of (finite) linear
combinations of powers of x1, ..., Tk, logzy, ..., log iy and series of the form

NI NIEHL(; a
(W gt M@)oyt (@) (08 0)

for j1,...,Jk € Ny r € C and s € N. By Property 13 in Theorem 3.1, we see that these
coeflicients with zj and log z, substituted by e"v(za) and l,(%,), respectively, are absolutely
convergent in the region |z;| > - -+ > |zx| > 0 to analytic functions of the form in Property
13 in Theorem 3.1 with & there replaced by & + . Thus (3.25) with z7, 2", log z, and log x
substituted by em»(a) eme(2) [ (2} and [,(2), respectively, is absolutely convergent in the
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region |z1| > -+ > |z > |2| > |zk41] > - > |2k > 0 to an analytic function of the form
(3.3), except that there are no factors of the forms (I,(z1 — 2))™, ..., ({,(2k+ — 2))™+. But

(', o (21) - S (@)U () (zian) - S (204)) (3.26)

is a linear combination of series of the form

<w/7 elp(zliz)'/\/’ggb;}/;p(zl)eilp(zliz)'/\/g “ .. elp(Zk*Z)NgQﬁ%p(zk)elp(Zk*Z)Ng.
. w;{;/p(z)elp(zfzkﬂj\/g ™ Ny ¢%/+1;P<Zk+l)effrij\/geflp(zfzkﬂ./\/'g'

— ; % H —i — —
R elp(z Zk+lNge7”Ng¢V’[€/+l p(zk-i-l)e mNge Ip(z 2k+lNgU>

with nonnegative powers of [,,(z1 —2), . .., [,(zr+—2) as coefficients. Thus (3.26) is absolutely
convergent in the region given by |z1| > -+ > |zx| > |2| > |zgeqa] > -+ > |z > 0,
|arg(z; —z) —argz| < S fori=1,...,kand |arg(z; —2) —argz| < S fori =k +1,... k+1
to an analytic function of the form (3.3). The remaining parts of Property 6 in Proposition
2.3 follows immediately from the proof above. |

We have the following most general commutativity which follows immediately from Prop-
erty 15 in Theorem 3.2, Property 14 in Theorem 3.1 and Property 16 in Theorem 3.2:

Corollary 3.3 Assume that Properties 1-7 in Assumption 2.8 hold. Then for v e V, w' €
V' and o € Sy,

FP((w', p1(21) - pr(2)v)) = £FP (W', 00 1) (26(1)) * + * Poi) (2o(k)) V),

where one of ¢ for 1 =1,...,k is %P for some a € A and the others are in {¢*? | i € I}
and the sign £ is uniquely determined by o and |p1], ..., |¢k|-

4 A construction theorem

In this section, we construct a g-twisted V-module from the data in Data 2.2 satisfying
Assumption 2.3.

First we need to define a twisted vertex operator map. Since we shall define the branches
labeled by p € Z of the twisted vertex operator map instead of defining the formal variable
twisted vertex operator map, we need to show that these branches labeled by p € Z determine
a formal variable map uniquely. So we first prove the following lemma:

Lemma 4.1 Let ¢ be a multwalued analytic map with preferred branch #° from C* to
Hom(W, W) and ¢? for p € Z are labeled branches of ¢. If there exists wt¢ € %Z such
that

[L4(0), ()] = 78 () + (w1 )?(2),
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then we have an expansion

=D > b TIO((2)) (4.1)

neC keN

where ¢p . € Hom(W, W) for n € C and k € N is homogeneous of weight wt¢ —n — 1. In
particular, we obtain a formal series

ZZ%WS "(logx)" € W{x}[logz].

neC keN

Moreover, for w € W, there exist N, € R and K, ,, € N for n € C such that

Knw
= D> Gupwe IO (2))F, (4.2)
R(n)>Nyw k=0

and for w' € w', there exist N,y € R such that

(v’ Z D (W g )el IO (1 (2)F, (4.3)

(n)<N,,, k€N

Proof. First by Property 1 in Assumption 2.3, Ly, (0) can be decomposed as the sum of its
semisimple part Ly (0)s and its nilpotent part Ly (0)y. From the commutator formula for

Ly (0) and ¢P(z), we see that for ¢ € C,
(O)(bp(Z)ech%V(O) — ec(wt d))(bp(ecZ)'
In particular, taking ¢ = —[,(z), we obtain
(2 >_€*lp(z)(wt¢ Ip(2) Ly (0)¢P( ) —lp(2) Ly (0)
eI (I0) o)Ly (05 by (DL O) 4p (1)) Ly (O =o)Ly (05
For n € C and w € Wy,

() Ly O)n - ~lp(2) Ly (0)

(wt ¢)7n71+m¢p(1)6

is in fact a polynomial in [,(2) with coefficients in Wit ¢)—n—1+m], where for r € C, we use
7, to denote the projection from W to Wj,. Let K, ., be the degree of this polynomial in
l,(z) and let ¢, ,w € W for k € N be the coefficient of the k-th power of /,(z) in

elp(Z)L‘g/V(O)Nﬂ-(Wt ¢)_n_1+m¢l’(1)e*lp(z)Lgv(O)Nw.

We obtain ¢, € Hom(W, W) of weight wt ¢ —n — 1 such that

Kn,w
N sl ()" = bR ON TP (1)e O Oy,
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Then for n € Z and w € W,

KTL w

e~ () (Wt ) ol Z¢ we ) W(O)Sw(l ()"

_ ()L <0)s6p<z>L <0>N7r (1) O)n =o)Ly O)s

(wt ¢)7n71+m¢
Thus for w € W,

PP (2)w = e~ ()Wt ) Jlp(2) Ly (0)s pln (2 N¢p( Je ~lp(2) LYy (O)n ,~ln(2) LYy (0)s
— Ze—lp(z)(wtab Ip(2) Ly (0)s oo (2) LYy (O)NW(Wt¢)7n71+m¢p( )e —lp(2) Ly (O)N o =1p(2) Ly (0)s 4
neC
K’I’L’LU
_ZZ ()Wt 8) gl () 9) o (ILiy s )Lng)sw(lp(z))k
neC k=0
Kn,w
=Y > Gupwet IO (2))E, (4.4)
neZ k=0

Since W is lower bounded with respect to the weights and the weight of ¢,,  is wt ¢ —n — 1,
we obtain (4.2) from (4.4) and we also have (4.3). Since nonhomogeneous elements of W
are finite sums of homogeneous elements of W, (4.1), (4.2) and (4.3) also holds for general
weW. N

The vertex operator map we want to define is a linear map
Yii VoW — W{z}logz],
u®@w — Y (u, z)w. (4.5)
Such a map gives a multivalued analytic map (denoted using the same notation)
Yy, : C* — Hom(V @ W, W),
2= Y (L 2) ru®@w e Y (u, 2)w
with labeled branches
(Yi2)P : C* — Hom(V @ W, W),
2o (VP(2) s u@w s (V) (u, 2w
for p € Z. Conversely, by Lemma 4.1 such a multivalued analytic map with labeled branches
also determines a linear map of the form (4.5). Thus to define a twisted vertex operator
map, we need only define (Y7)?.
We first give the motivation of our definition. The idea is in fact the same as in [H2]. We

define (Y3)?(¢' 11, 2)w = ¢ (2)w for p € Z, i € I and w € W. The vertex operator map
should satisfy the duality property. In particular, we should have

FP((w', Y (6" (&1) -+ 0™ (€)1, 2)w)) = FP({w', 6 (&1 + 2) - O (G + 2)w))  (4.6)
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for i1,...,ix € I, w € W and w' € W’. Note that ¢ (&),...,¢"(&,) are single-valued
analytic functions in &1, ..., &, respectively. Also by Property 13 in Theorem 3.1, the right-
hand side of (4.6) is a single-valued analytic function of &,...,& when & + z # 0 for
t=1,...k &#E fori,j=1,...  kand i # j.

Motivated by (4.6), we define the vertex operator map as follows: For w' € W' w € W,
i1y .oyip € 1,my, ... ,my € Z, we define (Y}],)P by

(W', (V) (0, -+~ b, 1, 2)w)
ZReSazo---ReSsk:oﬁl G EP (W i (€1 + 2) - O (G + 2)w)). (4.7)

Since there might be relations among elements of the form qbﬁ}u ® -gbﬁ;;kl, we first have to
show that the definition above indeed gives a well-defined map from C* to Hom(V @ W, W).
Let ¢° be the map from C* to Hom(V,V) given by ¢°(z) = 1y. Let wt¢® = 0. Then
Properties 1-7 in Assumption 2.3 and Properties 8-12 in Proposition 2.4 still hold for ¢?,
iel=1U {0}. Then any relation among such elements can always be written as

M
M st
Z)‘ugbnllu T (brzul =0
1 k
pn=1

for some k € Z,, i € I and mj € Z for p=1,...,M, j =1,...,k, where ¢fl‘f¢;§5§1
for u=1,..., M either all belong to V° or all belong to V1, that is, |¢Zmlf;f| +t |¢:§“1§| for
iw=1,..., M are either all even or are all odd. In particular, the parities of |gz5:;1;¥ |+ -+ |¢i§;‘|
are independent of p. Since the parity |¢jfﬁ;| forpu=1,...,M,r=1,... k are equal to the

parity |¢'" |, we see that the parities of [¢™| + - - - 4 |¢% | are independent of .

Lemma 4.2 [f
Z )\u¢“ “f 1=0,

then
M I3 W - p
> NuResg—q- - Resg—o&y" -+ & FP((w, ¢y (&1 + 2) -+ oy (& + 2)w)) =0 (4.8)
pn=1

forw e W and w' € W',

Proof. Since V is generated by ¢'(z) for i € I, by Property 4 in Assumption 2.3, we can
take

w = (¢W)n1 a1 (¢W)m ql<¢W)7L q(bajlllill T nm]‘

Since this element is a coefficient of
S (C1) -+ D (PR (S (Gria) -+ ™ ()T,
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we first prove

M
Z)‘MRes&zo oo Resgkzogf’lf . ;”fi
- PP((u, %5;(51 +2) gﬁi};(fk + 2)B0 (G - -+ G () (O™ () - - - ™ () 1)) (: O')
4.9
We have

m
mk‘

Resg, =0 - - - Resg, = 051
P, i (6 + 2) - By (G + 20T (C) - G (@ (O (G -+ 7 (G)1))

kE m k
:HH(_DW#‘WS‘H(_l)Wﬁ'WWReS&:O ‘Rese, o€ -+ €%
r=1s=1 r=1
FP((w', é1(G) - 0l ()W (O™ (Gn) -+ 7 (GO (&1 + 2) -+ 6% (& + 2)1))
_H 1y (#]+ +(¢”“DW( y (8 *\“WW'R%&:O ‘Resg,_o&]"t - &
: F (e ! ¢l (G — 2) - B (G — )W (¢ — 2)-
(G = 2) e I (G — 2)0 (&) - 9 (&)1))
_ﬁ (o ot oty (fo -+ fo'* oy,
-F (WD W (G — 2) - ¢l (G — )W (¢ — 2)-
P (Gt = 2) O (G = )y Dk 1)),

Recalling that |¢ | + - - - 4 |¢% | are independent of 4, we obtain

M
Z AuResg —o - - - Resg, — 0§ 1 mk

1
1

(! (€4 2) - G (& + 2 (G) - Bl (U (O (Ga) -+ 67 (G)1))
TT- 0 (oot gy (o sl v

NE

1s

“w =1
PP TV G (G 2) - 0 (G — )W (C = 2)-
(G = 2) 7 (G = 2By - B 1))

ey (6 e Do (sl e,

24



- <<w W G (G = 2) - B (G — 2 (C — 2

. ¢jl+1(<l+1 — Z) ¢]7ﬂ — (Z )\M(bh s qb:gg 1) >>

=0,

proving (4.9).
For any fixed z,&1,...,&,&, the left-hand side of (4.9) can be expanded in the region
2l 16l - 1al 1l > Gl > - > [Gn] as

Z Z/\ Res¢, —o -Resszofin;f e ZLZ-

PP, i (6 + 2) - B (G + 2)(G) - - Bl (G () Bl - gim 1))
<l nl+1—1 Cmnmfl. (410)

By (4.9), the Laurent series (4.10) in (41, ...,y is also 0 and thus its coefficients are all 0.
So we obtain

M
mi
Z)\NReS&:o -Resg, = 051 : :

FP((w, G (€04 2) - b (6 + 2O () - Dl (G (6) Jlad g 1))
—0. (4.11)

By Assumption 2.1, gbﬁflfl .-~ ¢Im 1 is a generalized eigenvector for g with the eigenvalue

e2mi(e”t14+-+a7™) " Then there exists N, K € N such that the left-hand side of (4.11) can be
expanded when ¢ is sufficiently small but not 0 as

K

M
Z Z Z /\MReS&:O .. Resgkzog?ﬁf . ];n‘,:

=0 peali+l 4o jaim + N—N #=1

PP, G (& + 2) - b (& + 2) B (G) - B (C) (U ng s gl 1))ET (€)1,
(4.12)

By (4.11) and the fact that (—a@+1 —--- —a/m — N +N) x {1,..., K} is a unique expansion
set (see Proposition 2.1 in [H4]), the expansion coefficients of (4.12) must be 0, that is,

M
Z)‘MRGS& - Resg, — 0§1 . m’“

PP, (€ + 2) -~ By (G + 2) B (C1) - - Ol (Q) (Wi g B -+~ B 1))
= 0. (4.13)
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By Data 2.2, there exists IV}, K; € N such that the left-hand side of (4.13) can be expanded
when || is sufficiently small but not 0 as

K M .
> > Y- AResgo--Resgof) g

0=0 n;cadi +N,—N p=1
FP((0 G (61 +2) - O3 (6 + 2B (C) - O (Gon) (O D (U g - G2 1))
i e(fmfl)lp(Cz)(lp(Q))qz. (4.14)

By (4.13), (4.14) and the fact that (—a’t — N; + N) x {1,..., K;} is a unique expansion set
(again see Proposition 2.1 in [H4]), the expansion coefficients of (4.14) must be 0, that is,

M
ZAuReS& -+ Resg, = 051 ' mk

PP ol (& 4 2) - ol (& + 2)-
B - B (G ) (B Vs (D g B - i 1))

=0.
Continuing this process repeatedly for qb{j/’l(Cl_l), ., ¢0(C1), we obtain (4.8). |

From this lemma, we see that (Y}],)? and thus the vertex operator map Y{j, are well
defined.

The following result is our construction theorem:

Theorem 4.3 The pair (W,Y,) is a lower-bounded generalized g-twisted V-module gener-
ated by (V& )pxv fora € A, n € a+Z, k€ N, v e Vel and a € Py. Moreover, this is the
unique lower-bounded generalized g-twisted V -module structure on W generated by (¥ )n kv
forac A,nca+7Z, keN, ve Ve and a € Py such that Yy (¢° 11, 2) = ¢y (2) fori € 1.

Proof. The proof of this theorem is similar to the proof of Theorem 3.5 in [H2] but is more
complicated because the twisted vertex operator map is multivalued. We refer the reader to
[H6] for the definition of lower-bounded generalized g-twisted V-module.

The identity property follow from of the definition of Yi7,.

Let Lj,(0)" be the adjoint operator of L, (0). For w' € W', w € W, iy,... i, € I and
nl,...,nkEZ, q1,---,q € N, c e C,

(w', e OV )P (0 - ¢i’“ 1,2)e" v Ow)

— <€CL€V(0), (Yg) ( ny Zk 1 Z)@ CL!%V(O) >

= Resg,—0 - - Resg, o8] - ”’“Fp( ok O (& + 2) - - O (& + 2)e W Oy))

= Rese,oq++ Resg o™ -+ €14 PP((0 O (6 21 6s + 9O

= Rese,—o - - - Resg, o] - - - & at™ ¢i1+---wt¢>ik)Fp(<w', Git(a&y + az) - -- i (aky, + az)w))
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an Wt ¢+ wt Ptk —k— np—-—ng

PP, ¢y (G + az) -+ g (G + az)w))
= (w', (YVgV)p(eCLV(O)gbiLl1 g 1 az)w)).
This formula is equivalent to the L(0)-commutator formula.

From Property 2 in Assumption 2.3 and the definition of (Y}],)?, we obtain the L(—1)-
commutator formula

OGP0 -+ 05 1,2) = [ (1), (VP68 -+~ 0351, )]

= Res¢ =0 - - - Resg, = 01!

Let {e,}nez be a homogeneous basis of W and {e] },.cz its dual basis in W’. Then we
have

(W', ()P (03, - ¢“‘ 1 Zl)(Yg) (&7, - o, 1 Zz)w>
=) gt Loz)en)(en, (V)P (o0, - dn, 1, z2)w)
neZ
=) Res—---Resg—o(i" -+~ (" Resg —o - - Resg o™ - -~ -
nez
FP((0, ¢ (Gt 21) - - i (G + Zl)€n>)Fp(< ;w ¢j1 (&1 4 22) - D1y (& + 22)w))
= Res¢,—o - - - Res¢, 01" -+ - (¥ Resg, —o - - - Resg,—o&1™ -+ - &
Y FP(w i (G 1) - b (G + 21)en)) FP((€, Gl (6 4 22) -+ 614 (& + 22)w)).
ne”Z
(4.15)
By Property 13 in Theorem 3.1, when |z;| >« -+ > |z > 0,
D PP 6 (1) - b (ze)en) ) FP (€, Sl (2h11) - O3 (zii)w))
ne”L
=D (W (z1) - G (z)en) (€ S (2ha1) - -~ Bl (zsr)w)
nez
= (v, ¢W(21) ¢%/(Zk)¢%(zk+l) i '¢%(2k+l)w> (4.16)
is absolutely convergent to the analytic function
FP((w', @ (21) - it (z) 9y (21) - - Ol (i) w)) (4.17)
in z1,...,2g. On the other hand, also by Property 13 in Theorem 3.1, there is a unique ex-
pansion of this branch of a multivalued function in the region |z1|, ..., |zk| > |zks1l, - - |2ka] >
0,2 #zjfori#j,1,7=1,...,kandi,j =k+1,...,k+ 1 such that each term is a product
of two analytic functions of the same form, one in z1,..., zx and the other in 21, ..., 2x4-
Since the left-hand side of (4.16) is a series of the same form and is absolutely convergent
in the region |z1| > -+ > |z4| > 0 to (4.17), it must be absolutely convergent in the
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larger region |21|,...,|2k] > |Zkt1ls---, 2| > 0, 23 # 25 for @ # j, 4,5 = 1,...,k and
i,j=k+1,....k+1to (4.17).
Substituting (; 4+ z; for z; for i = 1,... k and §; + 2, for 2,4, for j =1,...,[, we see that

Y FP( i (G 2) - g (G 21)en)) FP (e 1 (6n + 22) -+ i (6 + 22)w))
neZ

is absolutely convergent to
FP((w, 31 (G 4 20) - 03 (G + 20) o (€0 + 22) -+ Dy (& + 22)w))

when |G+ 21],. .., |G+ 21| > [&+ 2], .., [§+22] >0, # ford,j=1,... kand § #&;
for i,7 =1,...,1. When |z1| > |22] > 0, we can always find sufficiently small neighborhood
of 0 such that when (1,...,(x, &1, ..., & are in this neighborhood, |(; + 21, ..., [(x + 21| >
&1 + 22|, ..., |& + 22| > 0 holds. Thus we see that when |z1| > |z2| > 0, the right-hand side
of (4.15) is absolutely convergent to

Resc,—o - - - Resg,—olT™ - - - (¥ Resg,—o - - - Resg €™ - - - &

FP((w, ¢ (G 21) - O (G + 20) Gy (€14 22) - - Ol (& + 22)w)). (4.18)
From the explicit expression of
FP((w', 34 (G + 21) -+ 0 (G + 20) 0y (61 + 2) -+~ Ol (6 + 2)w))

(see Property 13 in Theorem 3.1), it is clear that (4.18) is an analytic function in z; and 2o
of the form

N
D e I ()R (29) (21— 2) (4.19)
i,7,k,1=0
In particular, the left-hand side of (4.15), that is,
(', (V)P (on, - 0 1 20) (Vi )P (00, -+ 07, 1, 22)w), (4.20)

is absolutely convergent in the region |2z1| > |z2| > 0 to this analytic function.

We have proved that the product of two vertex operators is convergent to an analytic
function of the form (4.19), or equivalently, the corresponding branch of a multivalued func-
tion with preferred branch of the form

N

f(Zh ZQ) = Z aijklZ{niZ;Lj (10g21)k(10g22)l(21 — 22>_t.
,5,k,1=0

We are ready to prove the commutativity. The calculation above also shows that

(W', (Y (o, - o, 1, 22) (V)P (00, - 0l 1, 21 )w) (4.21)
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is absolutely convergent to the rational function
ReS£1:0 PR Resélzoginl ... gzvrllReSCl:O PR ReSCk:OC]ijl PR :k.

- FP((w, ¢%(§1 + 29) - ¢{41/(§l + 22)¢§41/(C1 +21) Zv'f/@k + Zl)w>(>7 )
4.22

in the regions |z3| > |z;| > 0, respectively. By Property 14 in Theorem 3.1, the analytic
functions (4.18) and (4.22) multiplied by

k1

HH(_l)WTIWSI _ (_1)\¢i31~--¢;kk1|\¢i,%l~~-¢ia,1|

r=1s=1

are equal. Thus (4.20) and (4.21) multiplied by the sign (—1)‘#}1""f’;kkl”(f’%l'“(f’%zl' are abso-
lutely convergent in the regions |z1]| > |22 > 0 and |z3] > |21| > 0, respectively, to a common
analytic function of the form (4.19).

We now prove the associativity. For iq,...,1,71,...,50 € I, my,...,my € Z, v € V and
v' € V', using the expansion of ¢ (&), ..., ¢" (&) and the definition of (Y{%)?, we have

(W', (Y (¢" (1) - ™ (2) b, - O, 1, 2)w)

= D (W (RSO, - g L 2w T P
P15 PR EL
— Z Resc,—o - - - Resg—oCP - - - (P*Rese,—o - - - Rese, o€ -+ - &M
P15 PREL
FP((w, o (G 2) - 0 (G + 2) B (60 4 2) - i (& + 2)w)) P P
(4.23)
We now expand
FP((w', ¢y (G + 2) - 0 (G + 2)03 (€1 + 2) -~ i (& + 2)w))
as a Laurent series
S Al G & )G
leZ

in ; in the region |z, |G|, -, [Ceo1] > |Ck| > |&1],- -, |&], where fi(Ciy ooy Ceot, &y, &, 2)
are analytic functions in (3, ...,(x_1, &1, ...,& and 2. Then in the region that the Laurent
series expansion holds, we have

ZR‘GSCkZUC}Sk (Z fl(Ch s 7Ck717 517 v 75[7 Z)Ck_l_1> Z]:pkil

PLEZ IEZ

= Z fpk(<17 v 7(]6717 617 <. 7&7 Z>Zk_pk_1
PLEZ
= FP((w', ¢4 (G 4 2) - 0y (Gt + 2) 0 (21 + 2)605 (€0 + 2) - o (& + 2)w)).
(4.24)
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Repeating this step for the variables (j_1, ..., (i, we see that the right-hand side of (4.23) is
equal to the expansion of

Resg —o -+ Resg o] -+ §" FP((w', 0y (21 + 2) - 0l (21 + 2)03p (€1 + 2) -+~ 0y (& + 2)w))

(4.25)
as a Laurent series in zj ...,z in the region |z| > |z1] > -+ > |z| > 0. Thus the left-
hand side of (4.23) is absolutely convergent to (4.25) in the region for this Laurent series
expansion, that is, in the region |z| > |z;| > -+ > |z| > 0,

<W'7(ngv)p(¢“(21) ' "¢i’“(Zk) e O, L 2)w)
= Resg,—o - - - Resg,—o&1™ s

PP ((w W(Z1+Z) SO (2 + 2T (6 4 2) - By (G + 2)w)). (4.26)

On the other hand, we have

(W', (Vi) (Vy ( : ¢Zk121—22) 1'-- j1122)w>
= (W, (Y (en, 22)w) (el Yo (0, -+ ¢k 1, 21 — 20) 608 -+~ ¢l 1)
nez
= Z Pen, zo)w)Rese =g - - - Res¢, o™ -+ - (1F
nez
R((€n, ¢ (Gt 21— 22) - O (Go+ 21— 22)80, - o 1)), (4.27)
where we have used the definition of Yy in [H2]. But by (4.26), in the region |z| > |¢1 +
21—z > > |G+ 2 — 2] >0, [arg(Gr +21) —argz| < §, ..., [arg(¢ +21) —arg 2| < 7,
we have
Z<w/7 (Y )P (en, z2)w)(el,, 0" (G + 21 — 22) -+ - ™ (G + 21 — 22) 7%1 e %11>
nez

= (', (Y}, )p(¢i1(<1 + 21— 22) (e 2 — 2) @, - B 1, z0)w)
= Resg,—0 - - - Resg, =061 i
CFP((w, @ (Gt 21) - - 0 (G + 20) 80 (&1 + 22) - B3 (& + 22)w)). (4.28)

The right-hand side of (4.28) is an analytic function in (i, ..., (x, 21 and z; of the form

N

> firwiingomn (CL 4 215+, G + 21, 22)

81 5ee eyl 58yM7 e e, g, =0

e (k)
el (Gta) iy be(Gheba) orilp (22) (Lp(C+20))™ - (GG A+ 21)) " (L (22))",
where lezknnnkn(Cl -+ AT Ck + 21, %1, 22) for il, c. ,ik,i,nl, oy N, N = 0, c. ,N are

rational functions in (i, ..., (k, 21, 22 with the only possible poles (; — (; = 0 for 7 # j and
(i+21 — 29 = 0. There is a unique expansion of such an analytic function in the region |z| >
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|Cl+21_22|7 R |Ck+Zl_Z2| > 07 |arg(gk+z1)_arg22| < %» SRR | arg(§1+zl) —arg22| < ga
G # (i fori#3j,4,5=1,...,k, such that each term is a product of two analytic functions,
one being analytic in zy of the form

M
D bige ) (1, (29))1
J,q=0
and the other being a rational function in (; + 23 — 29, ...,(x + 21 — 22 and z; with the only
possible poles (; — (; = 0 for ¢ # j and ¢; + 21 — 2z, = 0. Since

Z(U/, (YV?/)p(ena 22>w>R(<efm qbil(Cl + 21— 22) T ¢Zk (Ck’ + 21— 22) f’}u e Z]l’”l))
nez

is a series of the same form and is equal to the left-hand side of (4.28) in the region |z5| >
|G +21— 22| > -+ > [(p+21— 22| > 0, it must be absolutely convergent to the right-hand side
of (4.28) in the larger region |zo| > [(1+21— 22, ..., [Ck+ 21— 22| > 0, | arg((p+21) —arg 29| <
5o, larg(Cr + 21) — arg 2| < §,. Therefore we obtain

> (W, (V)P (en, z2)w) R((€),, 6™ (G + 21 — 22) -+ ™ (G + 21 — 22) 803, - -+ 014, 1))
nez
— Rese,q - - Resg_of" -+
PP 03 (G 21) - ik (G + 20) 0 (61 4 22) -+ G (& + 22)w)). (4.29)
in the region |z > |(1 + 21 — 22, ..., |(k + 21 — 22| > 0. Thus when |z2| > |21 — 23] > 0, the
right-hand side of (4.27) is absolutely convergent to
Res¢,—o - - - Resg ol -+ - (M Rese, g - - - Resg, o€ -+ - &M

CFP((wW, @i (G A 21) - - 0 (Cr 4 20) 0 (61 + 22) -~ Pl (& + 22)w)),

which has been proved above to be equal to the left hand side of (4.15) in the region |z1| >
|22] > 0. The associativity is proved.

To prove the uniqueness, we need only show that any twisted V-module structure on W
must have the vertex operator map defined by (4.7). But this is clear from the motivation
that we have discussed before the definition (4.7) of the vertex operator map Y. |

my
l

We shall say that the twisted vertex operator map Y;], is generated by the twisted fields
¢'(z) for i € I. The g-twisted V-module (W,Y;},) is in fact generated by the coefficients of
Yy (x)v fora € Aand v e V.

Remark 4.4 In this paper, we formulate and prove all our results for lower-bounded gen-
eralized twisted modules mainly because the explicit construction in the next section gives
in general only such twisted modules. But Theorem 4.3 can be used to construct all dif-
ferent classes of twisted modules. If homogeneous subspaces of W are finite dimensional,
we obtain a grading-restricted generalized g-twisted V-module. If in addition Ly (0) acts
on W semisimply, we obtain a g-twisted V-module. In the special case that ¢ = 1y, Theo-
rem 4.3 can be used to construct lower-bounded generalized V-modules, grading-restricted
generalized V-modules and V-modules.
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5 An explicit construction of lower-bounded general-
ized twisted modules satisfying a universal property

In this section, we give an explicit construction of lower-bounded generalized g-twisted V-
modules satisfying a universal property. As a consequence, every lower-bounded generalized
g-twisted V-module is the quotient of such a universal lower-bounded generalized g-twisted
V-module.

We still assume in this section that V' and g satisfy Assumption 2.1. But we do not
assume that we have the space, fields and operators in Data 2.2. In particular, we do not
assume that Assumption 2.3 holds.

Let '

vl = T cMNi¢ 1@ tClt,t!] @ CLo® CL,,
i€l,keN
where Ly and L_; are fixed abstract basis elements of a vector space CLy & CL_;. Let
T(\A/dgg]) be the tensor algebra of \A/(;g] and let

Sha(@) = D (a6l 1) @12 € 2=V [z, 27 ]]log ]
¢ neai+Z
for i € I. Then ¢i7[9] (x) for i € I can be viewed as formal series of operators on T(f/f}).
o

Also Ly and L_; can be viewed as operators on T(\A/dgg]). We shall use L, (0) and L (—1)
o %

to denote the operators corresponding to Ly and L_1, respectively.

For 4,7 € I, we can always find M;; € Z, such that xyi’jYV(qﬁi_ll,xo)¢];11 is a power
series in zy. For each pair ¢, 7 € I, we choose M; ; to be the smallest of such positive integers.
Let J (f/(gg]) be the ideal of T(‘A/(gg]) generated by the coefficients of the formal series

(01 = 229800 (20) 60 (22) = (=)W s = 22007 02) 1 1),

i i d iy g
L0¢V£g] (z) — ¢V¢[gl(x)L0 - f/f](‘r) — (wt ¢') %91(90)7

j
OrLg]
Ve

L—ld)@g] (z) — ¢V¢£g] ()L — £¢V$9J (z)

for i,j € I, where the tensor product symbol ® is omitted. Let U(‘A/(ig}) = T(VJQ})/J(VJQ]).
Then gbiﬂg] (x), L
o

7l (0) and L%Eg] (—1) can be viewed as formal series of operators and oper-

ators on U (Vf]) satisfying the weak commutativity

(1 — I2)M”¢§7d£g} (Jfl)ﬁb%gg} (w) = (= 1)1 (&, — I2)M”¢%£g} ($2)¢§7¢£g] (r1),  (5.1)

the L(0)-commutator formula

A , d . o
Ly (0) %{91(96) - ¢§7d£g] (m)Lngg] (0) = T i;f](ff) + (wt ¢') ?/dggl(x) (5.2)
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and the L(—1)-commutator formula

. . d .
Lvdggl(—l)éﬁingg] (x) — (b?/f] (x)Lngg](—l) = %Gbi;qgg] (@). (5.3)

Let M be a Zy-graded vector space (graded by Zs-fermion numbers). Assume that g
acts on M and there is an operator Ly (0) on M. If M is finite dimensional, then there
exist operators L,, S;, N, such that on M, g = ¢*™9 and S, and N, are the semisimple
and nilpotent, respectively, parts of £,. In this case, M is also a direct sum of generalized
eigenspaces for the operator L;(0) and Lj;(0) can be decomposed as the sum of its semisim-
ple part L;(0)s and nilpotent part Lj,(0)y. Moreover, the real parts of the eigenvalues of
L(0) has a lower bound. In the case that M is infinite dimensional, we assume that all of
these properties for g and Ly, (0) hold. We call the eigenvalue of a generalized eigenvector
w € M for Ly (0) the weight of w and denote it by wtw. Let {w},ca be a basis of M con-
sisting of vectors homogeneous in weights, Zy-fermion numbers and g-weights (eigenvalues
of g) such that for a € A, either Ly/(0)yw® = 0 or there exists Ly (0)y(a) € A such that
La(0)yw® = wh©n(@)  For simplicity, when Lj;(0)yw® = 0, we shall use w7 ©~(@) tq
denote 0. Then for a € A, we always have Ly (0)yw® = wrO~@ For g € A, let a® € C
such that R(a®) € [0,1) and e?™@" is the eigenvalue of g for the generalized eigenvector w®.

Let

ME =TT vV, @ (M @ t°Clt,t™']) @ Vil

acePy

Then MU is a left U(‘A/qig])—module. In particular, gzﬁ?/[g] (), Liia(0) and Lv[g]( 1) act on
¢ ¢

M) such that (5.1), (5.2) and (5.3) hold for these operators. We shall denote their actions
on MU by ¢i_ 10 (2), L (0) and Lz (=1). The actions of g, €™ and Ny on V and M

induce actions of g, €™ and N, on M lo],

Fori € I, let K* € N such that N/ *'¢" ;1 = 0 and we denote the actions of the elements
ﬁc—lgk(Ng’“qbi_ll) @t"forn € a+Zand k=0,...,K" of U(V[g]) on M by (¢%1g) Jnk- For
a €A, o€ Pyandn € a+ 7Z, w* ®t" can be viewed as a linear map from V[a to M.

We extend this map to a map from V to M) by mapping VI to 0 for o # . We shall
denote thls map by (fng[g Jno- In general, for n € a +Z and k € N, we denote the linear

(?/Ja w)noNpv from Vil to MU by (V%) )nk and extend it to a linear map
from V to M in the same way. Then M M9 s spanned by elements of the form

(gbi’]\lﬂg])”lvkl o (qbi’]\lj[g])nz,kz (LM[Q] (m))q)(¢gﬂj[g])n,kv; (5.4)

foriy,....i€l,mi €a*+Z, ... me€a+7Z,0<k <K"* .. 0<k<Ki'm=0 -1,
geNacAneca+Z,0<k<K,veVll ac P, where K eN satlsfylngj\/;(“v =0.
We already know that M is graded by eigenvalues of Ly (0). For the element (5.4) with
homogeneous v, we define its weight to be

wtot —ng — 14+ —ny—1—m+wtw* —n—1+wto.
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Then ul
Arlel — 17l
MY =TT My,

neC

where M, [[g]] is the subspace of Ml consisting of elements of weight n.

For ¢ € I, we have the formal series of operators on MU

M[g] Z Z M[g nk$_n_1(10g $)k

k=0 nea’+7Z

= Y (@M@

neat+7

= (a9 1) ® (2) . 710 <£) . (5.5)

Recall that qbl () is in fact the action of gbl () on MU, For v € V, there exists K¥ € N
such that VX *'v = 0. Fora € A and v € V[o‘] let

Yol (z)v = Z Z (%ij)n kUL (log x)
k=0 n€a-+7
= Z (w® @tz Nopg ™1
nea+z

ey e

It is a series in « with coefficients in M9, Then Vi, /() is a formal series with coefficients
in Hom(V, M) ).

Let B € R such that B < R(wtw) for any generalized eigenvector w € M of Ly (0). Such
B exists because the real parts of the eigenvalues of Lj;(0) is lower bounded. Let Jz(M9)) be
the U (Vf])—submodule of MU generated by elements of the following forms: (i) (@/J%ﬂg])mgl
fora € A, and n ¢ —N — 1; () (5.4) for iy,....5, € I, ny € " +Z,...,n € a" + Z,
0<k <K, 0<k<Ktm=0-lacAncatZ 0<k<K veVe acPy
such that

Rwtp" —ny =1+ +¢"—n—1—m+wtw* —n—1+wtv) < B.

Consider the quotient U (‘A/(gg])—module M) /J B(M 91y, Since J B(M 91 is spanned by homoge-

neous elements, M /J B(]T/f 91} is also graded. In addition, M) /J B(]\Z 91 is lower bounded
with respect to the weight grading with a lower bound B. We shall still use the same nota-
tions to denote the elements of this quotient and operators on this quotient. Then in this
quotient (Y% )nol =0fora€ A andn ¢ —N — 1.

34



Foriel,ae A;ne Cand k € N, by (5.2)
wt ((¢@M[g])n7k(¢?\~4[g})_1701) =wto' —n—1+wtw’

Since B is a lower bound of the real parts of the weights of M[g]/JB(]T/[/[g]) and

(@) € a7 (MY 75 (0) ) [z, 27Y])

we have '
(¢Z’]\Z[ ])n k( gj\‘/['[g])fl O]- =0

when wt (¢4 )y sw® = o’ +m where m € Z and m > wt ¢’ — 1+ R(wtw?) — B — R(a’).
For i € I and a € A, let M;, € Z, be the smallest of m € Z such that m > wt ¢’ — 1 +
R(wtw®) — B — R(a’). Then

wm-s-Mi,agbiM[g] (x) <¢QM[9] )_1701

is a powers series in x with polynomials in log x as coefficients. Also for a € A and v € V/,
zp%ﬂg] (x)v has only finitely many terms with negative real parts of powers of z. In particular,

fori eI, a€e Aandve Vel
(21 — 2) FMin () — $2)N9¢3mq1( (1 — xz)ngwimg] (z2)v

— (=)l (= gy 4 g ) M Pl (T2) (=22 + 21 )N (1) (— g + 1) Now, (5.7)
in z; and z» are well defined as a formal series with coefﬁcients in M) / JB(M 9. Let

(M[g /(M g])) be the U(V[g) submodule of M[g]/JB( 91} generated by the coefficients

of the formal series (5.7) for i € I, a € A and v € VI° and the coefficients of the formal
series

d a
L]T/f[.q] (O)¢9M[g](x)v - 1/J?W[g] (x)LV(())U - ‘T% X’/j[g] (x)v - (Wt w“)%ﬁ% ( ) @bﬁé]O)N ( )Ua

a a d a
Lz (= )7/] ( Jv 1/’]\7[5;] (z)Ly(—1)v — A M[g]( T)v
for a € A and v € V. We then have a quotient U(V[g]) module
Mg = (M J(M))/7(M9 ] 15(MY)).

Again, we shall use the same notations for the elements of M9 to denote the corresponding
elements of M ] We shall use ¢Z ( ) ‘L[g]( )> L77101(0) and L7q (—1) to denote the series
B B B

of operators and the operators on M j[Bg] induced from the corresponding series of operators
and operators on M MU, Since J (M M /Jp(M 9])) is spanned by homogeneous elements, the
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quotient ]\//Tg] (M, [g]/JB(M[g]))/J(M[g /JB( 91) is also graded and is lower bounded with
respect to the weight grading with a lower bound B. Moreover, in M ][Bg], we have

(z1 — $2)M”¢2@1 (fl)ﬁbjﬁg] (02) = (=111 (2, — 172)M”¢jﬁg] ($2)¢3@q] (1), (5.8)
. d . o
Lt 10 )¢Ag]( ) — (ZSZ]/W\[BQ] (@Lﬁg] (0) = x@ﬁﬁzﬁg (@) + (Wt ¢1)¢3\7}[§;J (@), (5.9)
. . d .
Lﬂg](_l)#\qu] () — ¢§7d£g] (#) Lz (1) = il (x), (5.10)
(a1 — ) Moo (2 — fﬁz)NgWﬁg] (@1)(z1 — $2)_NQ¢X//}]{§;J($2)U

= (=) =y + $1)ai+M"’“¢§7§1 (22) (=5 + 21)7¢ (1) (—2s + 21) Mow,  (5.11)

a d a a a
L O ()0 — 6 ()L (O = - (2) 4 (wt i () + 0220 0), (5.12)
a a d a
Lo (—1W@[§] (@)v — Vit () Ly (-1)v = 72 Vit (x)v. (5.13)
By (5.9), (5.10), (5.12) and (5.13), we see that ]/\4\][39] is spanned by elements of the form
(Qb%l/l\g;])m,m e (¢%g1)m,kz(¢;7gﬂn,k“ (5.14)

We now have the following main result giving an explicit construction of lower-bounded
generalized g-twisted V-modules:

Theorem 5.1 The twisted fields ¢i]‘7[g] for i € I generate a twisted vertex operator map
B

Yi[g] VoMY — M9z} og ]

such that (]\7][;,7], Yj\%[g]) 15 a lower-bounded generalized g-twisted V-module. Moreover, this is
B

the unique generalized g-twisted V -module structure on ]\/4\][39] generated by the coefficients of
(w%[g])( x)v fora € A andv €V such that Yg g (041, 2) = ¢iﬁlg](z) foriel.
B B

Proof. The space M g] is graded by weights, Zs-fermion numbers and is a direct sum of

generalized eigenspaces of an action of g. By construction, (M ][Bg])[n] = 0 when R(n) < B.

We already have the linear maps ¢' ., Y% . L—(0) and L—(—1). We need only verify
MB MB MB MB

Properties 1-7 in Assumption 2.3.
By (5.9) and (5.12), Property 1 in Assumption 2.3 holds.
By (5.10) and (5.13), Property 2 in Assumption 2.3 holds.
By the definition of M ][gg], Property 3 in Assumption 2.3 holds.
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By the definition of M ][39]7 Property 4 in Assumption 2.3 holds.
For i € I and p € Z, by (5.5) and the definition of the actions of g, €™ and N, on
M ][5], we have

; S 2 : e t . .
i;p+1 — TSy 2miN, —1 Ny 1 - ComiN —2miS
g Z/\/[gg’] (2)g™" = P ((6 pe1(2) 19°,1) ® el ¥ ) (;>> e 2miNg o —2miS,

e®lpt1(z

— (e U@z misy i 1) @ L1 G)
V4

e lp+1(2)

. ; taz t
_(—(pr1(2)—2Ti)Ny i — 2 P
— (6 p+1 g¢711> ® @oci(lp+1(7«’)*27”'),Z g <Z)

o t
()N -1 v
= (e7"(Wog) @ ) 0 (z)

= CbM[q]( )

This is Part (i) of Property 5 in Assumption 2.3. Part (ii) of Property 5 in Assumption 2.3
follows immediately from (5.5), (5.6) and the definition of the action of N, on M, ][_g?}. Part
(iii) of Property 5 in Assumption 2.3 follows immediately from the definition of the actions
of €S and N, on MY and Assumption 2.1. For a € A and n € —N — 1, since w® is a
generalized eigenvector of g with eigenvalue e?™" by the definition of the action of g on
M ][Bg], (Y )nol is a generalized eigenvector of g Wlth eigenvalue €?™®". This is Part (iv) of
Property 5 in Assumption 2.3.

Property 6 in Assumption 2.3 in our case is in fact (5.8).

Property 7 in Assumption 2.3 in our case is in fact (5.11).

Since the space M\ 9] equipped with qu[g], @Z)A[g], ( ) and L gl 1(—1) satisfies Proper-

ties 1-7 in Assumption 2.3, by Theorem 4. 3 we have a unlque generahzed g-twisted V-module
structure on M };’] generated by the coefficients of ( M[g])( x)v for a € A and v € V such that
B

A[g](gzﬁ’ 1,2)= gbﬁg] (2) for i € I. |

Now we prove a universal property of the generalized g-twisted V-module M j[gg] con-
structed in Theorem 5.1.

Theorem 5.2 Let (W,Y}],) be a lower-bounded generalized g-twisted V-module and My a
Zy-graded subspace of W invariant under the actions of g, Sy, Ny, Lw(0), Lw(0)s and
Lw(0)y. Let B € R such that Wi,) = 0 when R(n) < B. Assume that there is a linear map
f M — My preserving the Zo-fermion number grading and commuting with the actions

of g, Sy, Ny, Lw(0) (LJT/I\][;’] (0)), Lw(0)s (LJT/I\][;” (0)s) and Ly (0)y (L]/\Zgg] (0)n). Then there

exists a unique module map f M\g’] — W such that f|M = f. If f is surjective and (W, Y3)
is generated by the coefficients of (Y9)r (wo, z)v for wy € My and v € V', where (YW, is
the twist vertex operator map obtained from Yy, (see [H6]), then f is surjective.
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Proof. Note that M l[gg] is spanned by elements of the form (5.14). We define f by

f(( Zi[g])m,kl T (Qﬁ%g]>nz,kl (wg\[g])n kv)

(Yg )m 161(92511 1) (Yg )nl k‘z(qs” 1)((Yg)%v)n,k(f(wa)>v

for iy,....,55 € I,y €a"+7Z,....my € +7Z, ki,....kieN,a€ A, a € Py,nea+,
k€ Nandv € VIl wherefori € I, n € @' +Z and k € N, (Y}3),1(¢" ;1) is the coefficient of
z7" (log z)" in the series Y3, (¢" ;1,z) and fora € A, n € Cand k € N, (Y9) [V )i (f(w®))
is the coefficient of z7""!(log z)"* in the series (Y)W (f(w®),z).
We first need to show that f is well defined. By the construction of M }99], we see that
the only relations among elements of the form (Qﬁl\[g})m,kl e ’]\l/[[ Dk (z/JAg])n xU are the
B

following;: (wA[g Jnol =0 fora e A, n e N— ( %}[g})m ey ( 3\14[ Dk (wA[g])n U =0

B
when the real part of its weight is less than B; the coefficients of (5. 85? (5.13); the relations
among v € V. These relations also hold for elements of the form

(Vi) (8211) - (Y D (21 1) (Y )i i (f () )0

of W because W is a lower-bounded generalized g-twisted V-module such that Wy, = 0
when R(n) < B, because the choices of M; ; for i,j € I and M;, for i € I and a € A depend
only on ¢' and ¢/ and on ¢!, wtw® = wt (w‘i\ 1)-101 and B, respectively, and because f

commutes with all the operators on M and MO Thus f is indeed 1 Well defined.

By the definition of f, it is a module map and f |p = f. Since M Bg is determined uniquely
by M, f is unique.

If f is surjective and (W,Y}) is generated by the coefficients of (Y9)[V+ (wo,z)v for
wy € My and v € V, then (W, Y}7) is in fact generated by (Y9){V1 (f(w), x)v for w € M and

v € V. Since f is a module map, we obtain f(]\/ig’}) =W. |

Finally we have the following immediate consequence:

Corollary 5.3 Let (W,Yy) be a lower-bounded generalized g-twisted V-module generated by
the coefficients of (Y9){\y (w, x)v for w € M, where (Y9)V, is the twist vertex operator map
obtained from Yy, (see [H6]) and M is a Zy-graded subspace of W invariant under the actions
of g, Sg, Ny, Lw(0), Lw(0)s and Ly (0)n. Let B € R such that Wi,y = 0 when R(n) < B.
Then there is a generalized g-twisted V -submodule J of J\/f\g] such that W 1is equivalent as a
lower-bounded generalized g-twisted V-module to the quotient module J\/J\g]/J.
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