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Abstract

We study the general twisted intertwining operators (intertwining operators among
twisted modules) for a vertex operator algebra V . We give the skew-symmetry and
contragredient isomorphisms between spaces of twisted intertwining operators and also
prove some other properties of twisted intertwining operators. Using twisted intertwin-
ing operators, we introduce a notion of P (z)-tensor product of two objects for z ∈ C×
in a category of suitable g-twisted V -modules for g in a group of automorphisms of V
and give a construction of such a P (z)-tensor product under suitable assumptions. We
also construct G-crossed commutativity isomorphisms and G-crossed braiding isomor-
phisms. We formulate a P (z)-compatibility condition and a P (z)-grading-restriction
condition and use these conditions to give another construction of the P (z)-tensor
product.

1 Introduction

Modular tensor categories associated to conformal field theories were discovered first in
physics by Moore and Seiberg [MS]. In [T1], Turaev formulated a precise notion of modular
tensor category based on his joint work [RT] with Reshetikhin on the construction of quantum
invariants of three manifolds using representations of quantum groups. In [H6], the second
author proved the following theorem:

Theorem 1.1 Let V be a simple vertex operator algebra staisfying the following conditions:

1. For n < 0, V(n) = 0 and V(0) = C1 and as a V -module, V is equivalent to its contra-
gredient V -module V ′ (or equivalently, there exists a nondegenerate invariant bilinear
form on V ).

2. Every lower-bounded (generalized) V -module is completely reducible.

3. V is C2-cofinite.

Then the category of V -modules has a natural structure of modular tensor category in the
sense of Turaev [T1].
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The proof of Theorem 1.1 was based on the results obtained by Lepowsky and the second
author in [HL2], [HL3], [HL4] and the results obtained by the second author in [H1], [H3],
[H4], [H5].

It is natural to expect that Theorem 1.1 has generalizations in two-dimensional orb-
ifold conformal field theory. Two-dimensional orbifold conformal field theories are two-
dimensional conformal field theories constructed from known theories and their automor-
phisms. The first example of two-dimensional orbifold conformal field theories is the the
moonshine module constructed by Frenkel, Lepowsky and Meurman [FLM1] [FLM2] [FLM3]
in mathematics. In string theory, the systematic study of two-dimensional orbifold confor-
mal field theories was started by Dixon, Harvey, Vafa and Witten [DHVW1] [DHVW2]. See
[H14] for an exposition on general results, conjectures and open problems in the construction
of two-dimensional orbifold conformal field theories using the approach of the representation
theory of vertex operator algebras.

In [K3], Kirillov Jr. stated that the category of g-twisted modules for a vertex operator
algebra V for g in a finite subgroup G of the automorphism group of V is a G-equivariant
fusion category (G-crossed braided (tensor) category in the sense of Turaev [T2]). For general
V , this is certainly not true. The vertex operator algebra V must satisfy certain conditions.
Here is a precise conjecture formulated by the second author in [H9]:

Conjecture 1.2 Let V be a vertex operator satisfying the three conditions in Theorem 1.1
and let G be a finite group of automorphisms of V . Then the category of g-twisted V -modules
for all g ∈ G is a G-crossed braided tensor category.

We also conjecture that the category of g-twisted V -modules for all g ∈ G is a G-crossed
modular tensor category in a suiable sense. Since the definitions of G-crossed modular
tensor category in [K3] and [T2] are different, more work needs to be done to find out which
definition is the correct one for the category of twisted modules for a vertex operator algebra.
But we do believe that this stronger G-crossed modular tensor category conjecture should
be true in a suitable sense.

In the case that G is trivial (the group containing only the identity), Conjecture 1.2
and even the stronger G-crossed modular tensor category conjecture is true by Theorem
1.1. Thus the G-crossed modular tensor category conjecture is a natural generalization of
Theorem 1.1 to the category of category of g-twisted V -modules for g ∈ G.

In the case that the fixed point subalgebra V G of V under G satisfies the conditions in
Theorem 1.1 above, the category of V G-modules is a modular tensor category. In this case,
Conjecture 1.2 can be proved using the modular tensor category structure on the category
of V G-modules and the results on tensor categories by Kirillov Jr. [K1] [K2] [K3] and Müger
[Mü1] [Mü2]. In the special case that G is a finite cyclic group and V satisfies the conditions
in Theorem 1.1, Carnahan-Miyamoto [CM] proved that V G also satisfies the conditions in
Theorem 1.1. In the case that G is a finite cyclic group and V is in addition a holomorphic
vertex operator algebra (meaning that the only irreducible V -module is V itself), Conjecture
1.2 can be obtained as a consequence of the results of van Ekeren-Möller-Scheithauer [EMS]
and Möller [Mö] on the modular tensor category of V G-modules. Assuming that G is a
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finite group containing the parity involution and that the category of grading-restricted V G-
modules has a natrual structure of vertex tensor category structure in the sense of [HL1],
McRae [Mc] constructed a nonsemisimple G-crossed braided tensor category structure on
the category of grading-restricted (generalized) g-twisted V -modules.

For general finite group G, the conjecture that the fixed point subalgebra V G of V under
G also satisfies the conditions in Theorem 1.1 is still open and seems to be a difficult problem.
On the other hand, using twisted modules and twisted intertwining operators to construct
G-crossed braided tensor categories seems to be a more conceptual and direct approach. If
this approach works, we expect that the category of V G-modules can also be studied using
the G-crossed braided tensor category structure on the category of twisted V -modules.

In the case that the vertex operator algebra V does not satisfy the three conditions in
Theorem 1.1 and/or the group G is not finite, it is not even clear what should be the precise
conjecture. This was proposed as an open problem in [H9].

In the present paper, we prove some initial results in a long term program to prove the
conjecture and to solve the open problem above. We introduce a more general notion of
twisted intertwining operator than the one introduced by the second author in [H8]. In [H8],
the correlation functions obtained from the products and iterates of a twisted intertwining
operators and twisted vertex operators are required to be of a special explicit form. But for
a twisted intertwining operator in this paper, such correlation functions are not required to
have such an explicit form.

As in [H8], we prove some basic properties and construct the skew-symmetry and con-
tragredient isomorphsims for our general twisted intertwining operators. Using such general
twisted intertwining operators, we introduce a notion of P (z)-tensor product of two twisted
modules for z ∈ C× and give a construction of such a P (z)-tensor product under suitable as-
sumptions. We also prove a result showing that under suitable conditions, these assumptions
are satisfied.

We need P (z)-tensor products for z ∈ C× because we would like to construct G-crossed
vertex tensor categories in the future, not just G-crossed braided tensor categories. Also
note that to give the correct notion of P (z)-tensor product of twisted modules, we need to
use the most general twisted intertwining operators. If we use only certain special set of
twisted intertwining operators as in [H8] to define and construct the P (z)-tensor products,
we would obtain submodules of the correct P (z)-tensor products.

We note that in the untwisted case, a P (z)-compatibility condition and a P (z)-grading-
restriction condition (see [HL4] and [HLZ3]) play an important role in the proof of associa-
tivity (operator product expansion) of intertwining operators and in the construction of the
associativity isomorphisms for the vertex tensor category structure (see [H1] and [HLZ5]). In
this paper, we also formulate a P (z)-compatibility condition and a P (z)-grading-restriction
condition and use these conditions to give another construction of the P (z)-tensor product.
In the untwisted case, the P (z)-compatibility condition is formulated using a formula ob-
tained from the Jacobi identity in the definition of intertwining operators (see [HL4] and
[HLZ3]). But since in general we do not have a Jacobi identity that can be used as the main
axioms in the definition of twisted intertwining operators, our formulation of this condition
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and the construction of tensor products using this condition are complex analytic and are
very different from the the formulation and construction in [HL4] and [HLZ3]. We expect
that these two conditions will play the same important role in the future proof of the con-
jectured associativity of twisted intertwining operators formulated in [H14] (where twisted
intertwining operators should be replaced by the most general twisted intertwining operators
introduced in this paper).

This paper is organized as follows: In Section 2, we recall the definitions of (general-
ized) twisted module, lower-bounded (generalized) twisted module and grading-restricted
(generalized) twisted module. We then introduce the general notion of twisted intertwining
operator mentioned above. In Section 3, we give the skew-symmetry and contragredient
isomorphisms for these general twisted intertwining operators. We introduce the notion of
P (z)-tensor product and give a construction under suitable assumptions in Section 4. We
prove a result showing that under suitable conditions, these assumptions are satisfied. We
also construct G-crossed commutativity isomorphisms and G-crossed braiding isomorphisms
in this section. We give the P (z)-compatibility condition and P (z)-grading-restriction con-
dition and give another construction of the P (z)-tensor product in Section 5.

2 Twisted modules and twisted intertwining operators

We first recall in this section the notion of (generalized) twisted module from [H7]. We then
introduce a notion of twisted intertwining operators more general than the one in [H8]. We
also give some basic results on such twisted intertwining operators.

For z ∈ C× and p ∈ Z, we shall use the notation lp(z) = log |z| + i arg z + 2πpi, where
0 ≤ arg z < 2π. We shall also use the notation log z = l0(z) = log |z| + i arg z. For a vector
space U , p ∈ Z and a formal series

f(x) =
K∑
k=0

∑
n∈C

an,kx
n(log x)k,

where an,k ∈ U , the series

fp(z) =
K∑
k=0

∑
n∈C

an,ke
nlp(z)(lp(z))k

is called the p-th analytic branch of f(x). We also denote f 0(z) simply by f(z).
Let g be an automorphism of V . We recall the definition of generalized g-twisted V -

module first introduced in [H7]. For simplicity, we shall omit the word “generalized” as
in [H8]. In particular, in this paper, the vertex operator map for a g-twisted V -module in
general contain the logarithm of the variable and the operator L(0) in general does not have
to act semisimply.
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Definition 2.1 A g-twisted V -module is a C×C/Z-graded vector spaceW =
∐

n∈C,α∈C/ZW
[α]
[n]

(graded by weights and g-weights) equipped with a linear map

Y g
W : V ⊗W → W{x}[log x],

v ⊗ w 7→ Y g
W (v, x)w

satisfying the following conditions:

1. The equivariance property: For p ∈ Z, z ∈ C×, v ∈ V and w ∈ W ,

(Y g
W )p+1(gv, z)w = (Y g

W )p(v, z)w,

where for p ∈ Z, (Y g
W )p(v, z) is the p-th analytic branch of Y g

W (v, x).

2. The identity property: For w ∈ W , Y g
W (1, x)w = w.

3. The duality property: For any u, v ∈ V , w ∈ W and w′ ∈ W ′, there exists a maximally-
extended multivalued analytic function with preferred branch of the form

f(z1, z2) =
N∑

i,j,k,l=0

aijklz
mi
1 z

nj
2 (logz1)k(logz2)l(z1 − z2)−t

for N ∈ N, m1, . . . ,mN , n1, . . . , nN ∈ C and t ∈ Z+, such that the series

〈w′, (Y g
W )p(u, z1)(Y g

W )p(v, z2)w〉 =
∑
n∈C

〈w′, (Y g
W )p(u, z1)πn(Y g

W )p(v, z2)w〉,

〈w′, (Y g
W )p(v, z2)(Y g

W )p(u, z1)w〉 =
∑
n∈C

〈w′, (Y g
W )p(v, z2)πn(Y g

W )p(u, z1)w〉,

〈w′, (Y g
W )p(YV (u, z1 − z2)v, z2)w〉 =

∑
n∈C

〈w′, (Y g
W )p(πnYV (u, z1 − z2)v, z2)w〉

are absolutely convergent on the regions |z1| > |z2| > 0, |z2| > |z1| > 0, |z2| > |z1−z2| >
0, respectively, and their sums are equal to the branch

fp,p(z1, z2) =
N∑

i,j,k,l=0

aijkle
milp(z1)enj lp(z2)lp(z1)klp(z2)l(z1 − z2)−t

of f(z1, z2) on the region |z1| > |z2| > 0, the region |z2| > |z1| > 0, the region given by
|z2| > |z1 − z2| > 0 and | arg z1 − arg z2| < π

2
, respectively.

4. The L(0)-grading condition and g-grading condition: Let LgW (0) = ResxxY
g
W (ω, x).

Then for n ∈ C and α ∈ C/Z, w ∈ W [α]
[n] , there exist K,Λ ∈ Z+ such that (LgW (0) −

n)Kw = (g − e2παi)Λw = 0. Moreover, gY g
W (u, x)w = Y g

W (gu, x)gw for u ∈ V and
w ∈ W .
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5. The L(−1)-derivative property: For v ∈ V ,

d

dx
Y g
W (v, x) = Y g

W (LV (−1)v, x).

A lower-bounded g-twisted V -module is a g-twisted V -module W such that for each n ∈ C,
W[n+l] = 0 for sufficiently negative real number l. A g-twisted V -module W is said to be
grading-restricted if it is lower bounded and for each n ∈ C, dimW[n] <∞.

For simplicity, we shall sometimes omit the subscript W to denote the twisted vertex
operator map Y g

W by Y g.
Let (W,Y g

W ) be a g-twisted V -module. Let h be an automorphism of V . We recall the
hgh−1-twisted V -module (W,φh(Y

g
W )) (see for example [H8]). Let

φh(Y
g
W ) : V ×W → W{x}[logx]

v ⊗ w 7→ φh(Y
g)(v, x)w

be the linear map defined by

φh(Y
g
W )(v, x)w = Y g

W (h−1v, x)w.

Then the pair (W,φh(Y
g
W )) is an hgh−1-twisted V -module. We shall denote the hgh−1-twisted

V -module in the proposition above by φh(W ).
Note that when h = g, we obtain a g-twisted module φg(W ) for which the twisted vertex

operator is given by
φg(Y

g
W )(v, x)w = Y g

W (g−1v, x)w.

But this g-twisted V -module is equivalent to the original g-twisted module W . The equiva-
lence is given by g−1 : W → W since we have

g−1Y g
W (v, x)g = Y g

W (g−1v, x)w

for v ∈ V . By the equivariance property, we have (Y g
W )p(g−1v, x) = (Y g

W )p+1(v, x) and, if

Y g
W (v, x)w =

K∑
k=0

∑
n∈C

(Y g
W )n,k(v)x−n−1(log x)k

for v ∈ V and w ∈ W , we have

Y g
W (g−1v, x)w =

K∑
k=0

∑
n∈C

(Y g
W )n,k(v)e2πinx−n−1(log x+ 2πi)k.

We also recall contragredient twisted V -modules (see for example [H8]). Let (W,Y g
W ) be

a g-twisted V -module relative to G. Let W ′ be the graded dual of W . Define a linear map

(Y g
W )′ : V ⊗W ′ → W ′{x}[logx],
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v ⊗ w′ 7→ (Y g
W )′(v, x)w′

by
〈(Y g

W )′(v, x)w′, w〉 = 〈w′, Y g
W (exL(1)(−x−2)L(0)v, x−1)w〉

for v ∈ V , w ∈ W and w′ ∈ W ′. Then the pair (W ′, (Y g
W )′) is a g−1-twisted V -module.

Let M2 = {(z1, z2) ∈ C2 | z1 6= 0, z2 6= 0, z1 6= z2}. Let f(z1, z2) be a maximally
extended multivalued analytic function onM2 with a preferred single-valued branch f e(z1, z2)
on the simply-connected region M2

0 given by cutting M2 along the positive real lines in the
z1-, z2- and (z1 − z2)-planes, that is, the sets

{(z1, z2) ∈M2 | z1 ∈ R+},
{(z1, z2) ∈M2 | z2 ∈ R+},
{(z1, z2) ∈M2 | z1 − z2 ∈ R+},

with these sets attached to the upper half z1-, z2- and (z1 − z2)-planes. Note that given any
point (z0

1 , z
0
2) ∈ M2 and any loop γ based at (z0

1 , z
0
2), we obtain from the preferred branch

of f(z1, z2) another single-valued branch by going around γ. The resulting single-valued
branch depends only on the homotopy class of the loop and is independent of the choices
of the base point. Thus we obtain a right action of the fundamental group of M2 on the
set of single-valued branches of f(z1, z2). Note that M2 is homotopically equivalent to the
configuration space

F3(C) = {(z1, z2, z3) ∈ C3 | zi 6= zj, i 6= j}.
So the fundamental group of M2 is in fact the pure braid group PB3 and has three generators
b12, b13 and b23, which are given as follows: Choose the base point to be (−3,−2). Then the
generator b12 is the homotopy class of the loop given by letting z1 go counterclockwise around
the circle of radius 1 centered at −2 (see Figure 1). The generator b23 is the homotopy class

Figure 1: The loop for b12

of the loop given by letting z2 go counterclockwise around the circle of radius 2 centered
at 0 (see Figure 2). The generator b13 is the homotopy class of the loop given by letting
z1 go around first the lower half circle of radius 3 centered at 0 counterclockwise, then the
upper half circle of radius 2 centered at 1 counterclockwise and finally the lower half circle
of radius 1 centered at −2 clockwise (see Figure 3). We know that the pure braid group PB3

is isomorphic to the group generated by b12, b13, b23 with the relations

b13b12b23 = b12b23b13 = b23b13b12.
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Figure 2: The loop for b23

Figure 3: The loop for b13

See [D] for more detailed discussions on M2, its fundamental group, the pure braid groups
and multivalued functions on M2.

For a ∈ PB3, we denote the single-valued branch of f(z1, z2) obtained by applying a to
f e(z1, z2) by fa(z1, z2).

Let δ = (δ1, . . . , δn), where δi ∈ {0,∞}, i = 1, . . . , n. Suppose f(z1, . . . , zn) is a multi-
valued analytic function defined on an open region Ω of Cn. We say (z1, . . . , zn) = δ is a
component-isolated singularity of f(z1, . . . , zn) if there exists r ∈ Rn

+ such that ∆×(δ, r) ⊂ Ω.
Let A ∈ GL(n,C) and β ∈ Cn (written as a row vector). Then ζ1, . . . , ζn given by

(ζ1, . . . , ζn) = (z1, . . . , zn)A− β

are also independent variables. Define

g(ζ1, . . . , ζn) = f
(
(ζ1, . . . , ζn)A−1 + βA−1

)
. (2.1)
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For δ ∈ (C ∪ {∞})n, we say that (ζ1, . . . , ζn) = δ is a component-isolated sigularity of
f(z1, . . . , zn) if (ζ1, . . . , ζn) = δ is a component-isolated singularity of g(ζ1, . . . , ζn).

Remark 2.2 Notice that (ζ1, . . . , ζn)(= (z1, . . . , zn)A− β) = δ being a component-isolated
singularity of a function is not equivalent to (z1, . . . , zn) = δA−1 +βA−1 being a component-
isolated singularity of the same function. This is because we have different sets of independent
variables. For example, consider f(z1, z2) = 1

z1−z2 . Since (ζ1, ζ2) = (0, 0) is a component-
isolated singularity of the function g(ζ1, ζ2) = 1/ζ1, we also say that (z1− z2, z2) = (0, 0) is a
component-isolated singularity of f(z1, z2). In this case, z1− z2 and z2 are independent vari-
ables. However, (z1, z2) = (0, 0) is clearly not a component-isolated singularity of f(z1, z2).
In this case, the independent variables are z1 and z2.

Definition 2.3 Let f(z1, . . . , zn) be a multi-valued analytic function defined on an open
region of Cn. Let δ = (δ, . . . , δn) ∈ {0,∞}n. Suppose (z1, . . . , zn) = δ is a component-isolated
singularity of f(z1, . . . , zn). Let {f b(z1, . . . , zn)}b∈B be the set of all single valued branches
of f(z1, . . . , zn) near δ with cuts at zi ∈ R+. Then for each b ∈ B, there exists rb ∈ Rn

+

such that f b(z1, . . . , zn) is analytic on ∆×(δ, rb). We say that (z1, . . . , zn) = δ is a regular

singularity of f(z1, . . . , zn) if there exists K ∈ N, Di = ∪Nij=1r
(i)
j + N (or Di = ∪Nij=1r

(i)
j − N)

where r
(i)
1 , . . . , r

(i)
Ni
∈ C for δi = 0 (or δi =∞), and α

(b)
a1,j1;...;an,jn

∈ C, such that on the region
∆×(δ, rb), the right-hand-side of the following equation is absolutely convergent, and

f b(z1, . . . , zn) =
n∑
i=1

∑
ai∈Di

K∑
j1,...,jn=0

α
(b)
a1,j2;...;an,jn

za11 (log z1)j1 · · · zann (log zn)jn . (2.2)

If K = 0 and Di = −n(i) + N in the case δi = 0 and Di = n(i) − N in the case δi = ∞ for
i = 1, . . . , n in ((2.2)), where n(i) ∈ Z+ for i ∈ I ⊂ {1, . . . , n} and n(i) = 0 for i 6= I, we say
that zi = δi for i ∈ I are poles of f(z1, . . . , zn). If n(i) ∈ Z+ for i ∈ I ⊂ {1, . . . , n}, δi = 0 are
the smallest and such that (2.2) holds, we call ni the orders of the poles zi = δi, respectively,
for i ∈ I. Let A ∈ GL(n,C) and β ∈ Cn be the same as above. We say that (ζ1, . . . , ζn) = δ is
a regular singularity of f(z1, . . . , zn) if (ζ1, . . . , ζn) = δ is a regular singularity of g(ζ1, . . . , ζn),
where g(ζ1, . . . , ζn) is give by (2.1). We say that ζi = δi for i ∈ I are poles of f(z1, . . . , zn)
with orders ni, respectively, if ζi = δi for i ∈ I are poles of g(ζ1, . . . , ζn) with orders ni,
respectively.

Remark 2.4 Let f(z1, . . . , zn) and g(z1, . . . , zn) be multivalued analytic functions with
preferred branches defined on an open region. Then λf(z1, . . . , zn) + µg(z1, . . . , zn) for
λ, µ ∈ C and f(z1, . . . , zn)g(z1, . . . , zn) are well defined using the preferred branches and
are also multivalued analytic functions on the same region with preferred branches. If
(ζ1, . . . , ζn) = ((z1, . . . , zn)A − β =)δ is a regular singular point of both f(z1, . . . , zn) and
g(z1, . . . , zn), then it is also a regular singular point for λf(z1, . . . , zn) + µg(z1, . . . , zn) and
f(z1, . . . , zn)g(z1, . . . , zn). Therefore, the set of multivalued analytic functions on the same
region with a preferred branch such that (ζ1, . . . , ζn) = δ is a regular singular point form a
commutative associative algebra over C.
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We also need the region

Mn = {(z1, . . . , zn) ∈ Cn | zi 6= 0, zi 6= zj, i 6= j}

for n ∈ Z+.

Definition 2.5 Let g1, g2, g3 be automorphisms of V and let W1, W2 and W3 be g1-, g2-
and g3-twisted V -modules, respectively. A twisted intertwining operator of type

(
W3

W1W2

)
is a

linear map

Y : W1 ⊗W2 → W3{x}[log x]

w1 ⊗ w2 7→ Y(w1, x)w2 =
K∑
k=0

∑
n∈C

Yn,k(w1)w2x
−n−1(log x)k

satisfying the following conditions:

1. The lower truncation property: For w1 ∈ W1 and w2 ∈ W2, n ∈ C and k = 0, . . . , K,
Yn+l,k(w1)w2 = 0 for l ∈ N sufficiently large.

2. The duality property: For u ∈ V , w1 ∈ W1, w2 ∈ W2 and w′3 ∈ W ′
3, there exists a

maximally extended multivalued analytic function f(z1, z2;u,w1, w2, w
′
3) on M2 with

a preferred single-valued branch f e(z1, z2;u,w1, w2, w
′
3) on M2

0 such that the series

〈w′3, Y
g3
W3

(u, z1)Y(w1, z2)w2〉 =
∑
n∈C

〈w′3, Y
g3
W3

(u, z1)πnY(w1, z2)w2〉, (2.3)

〈w′3,Y(w1, z2)Y g2
W2

(u, z1)w2〉 =
∑
n∈C

〈w′3,Y(w1, z2)πnY
g2
W2

(u, z1)w2〉, (2.4)

〈w′3,Y(Y g1
W1

(u, z1 − z2)w1, z2)w2〉 =
∑
n∈C

〈w′3,Y(πnY
g1
W1

(u, z1 − z2)w1, z2)w2〉 (2.5)

are absolutely convergent on the regions |z1| > |z2| > 0, |z2| > |z1| > 0, |z2| >
|z1 − z2| > 0, respectively. Moreover, their sums are equal to f e(z1, z2;u,w1, w2, w

′
3)

on the region given by |z1| > |z2| > 0 and | arg(z1 − z2) − arg z1| < π
2
, the region

given by |z2| > |z1| > 0 and −3π
2
< arg(z1 − z2) − arg z2 < −π

2
, the region given by

|z2| > |z1 − z2| > 0 and | arg z1 − arg z2| < π
2
, respectively.

3. The convergence and analytic extension for products with more than one twisted vertex
operators: For k ∈ N+ 3, u1, . . . , uk−1 ∈ V , w1 ∈ W1, w2 ∈ W2 and w′3 ∈ W ′

3, the series

〈w′3, Y
g3
W3

(u1, z1) · · ·Y g3
W3

(uk−1, zk−1)Y(w1, zk)w2〉

=
∑

n1,...,nk−1∈C

〈w′3, Y
g3
W3

(u1, z1)πn1 · · · πnk−2
Y g3
W3

(uk−1, zk−1)πk−1Y(w1, z2)w2〉

is absolutely convergent on the region |z1| > · · · > |zk| > 0 and can be maxi-
mally extended to a multivalued analytic function on the region Mk such that all
the component-isolated singularities of this function are regular.
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4. The L(−1)-derivative property:

d

dx
Y(w1, x) = Y(L(−1)w1, x).

Remark 2.6 For simplicity, in the duality property in Definition 2.5, we use only the pre-
ferred branches of the twisted intertwining operator and the twisted vertex operators. One
can derive what the products and iterates of other branches of a twisted intertwining op-
erator converge to using the actions of the elements of PB3 on the single-valued branch
f e(z1, z2;u,w1, w2, w

′
3) of the multivalued function f(z1, z2;u,w1, w2, w

′
3) in the definition.

Let Y be a twisted intertwining operator of type
(

W3

W1W2

)
. For any p1, p2, p12 ∈ Z, the series

〈w′3, (Y
g3
W3

)p1(u, z1)Yp2(w1, z2)w2〉 =
∑
n∈C

〈w′3, (Y
g3
W3

)p1(u, z1)πnYp2(w1, z2)w2〉, (2.6)

〈w′3,Yp2(w1, z2)(Y g2
W2

)p1(u, z1)w2〉 =
∑
n∈C

〈w′3,Yp2(w1, z2)πn(Y g2
W2

)p1(u, z1)w2〉, (2.7)

〈w′3,Yp2((Y
g1
W1

)p12(u, z1 − z2)w1, z2)w2〉 =
∑
n∈C

〈w′3,Yp2(πn(Y g1
W1

)p12(u, z1 − z2)w1, z2)w2〉 (2.8)

are absolutely convergent on the regions |z1| > |z2| > 0, |z2| > |z1| > 0, |z2| > |z1 − z2| > 0,
respectively. Moreover, their sums are equal to the branches

f (b13b12)p1b
p2
23 (z1, z2;u,w1, w2, w

′
3),

f (b12b23)p2b
p1
13 (z1, z2;u,w1, w2, w

′
3),

f (b23b13)p2b
p12
12 (z1, z2;u,w1, w2, w

′
3),

respectively, of f(z1, z2;u,w1, w2, w
′
3) on the region given by |z1| > |z2| > 0 and | arg(z1 −

z2)− arg z1| < π
2
, the region given by |z2| > |z1| > 0 and −3π

2
< arg(z1 − z2)− arg z2 < −π

2
,

the region given by |z2| > |z1 − z2| > 0 and | arg z1 − arg z2| < π
2
, respectively. See [D] for

more details.

Proposition 2.7 Let g1, g2, g3 be automorphisms of V , W1, W2, W3 g1-, g2-, g3-twisted
generalized V -modules and Y a twisted intertwining operator of type

(
W3

W1W2

)
. Assume that

the map u 7→ Y g3
W3

(u, x) is injective and Y is surjective in the sense that the coefficients of
the series Y(w1, x)w2 for w1 ∈ W1, w2 ∈ W2 span W3. Then g3 = g1g2.

Proof. By the definition of twisted intertwining operator, for u ∈ V , w1 ∈ W1, w2 ∈ W2 and
w′3 ∈ W ′

3, there exists a multivalued analytic function f(z1, z2;u,w1, w2, w
′
3) on M2 with a

preferred single-valued branch f e(z1, z2;u,w1, w2, w
′
3) on M2

0 such that (2.3), (2.4) and (2.5)
are absolutely convergent to f e(z1, z2;u,w1, w2, w

′
3) on the corresponding regions in given in

Defintion 2.5. In particular, on the region |z1| > |z2| > 0, | arg(z1 − z2) − arg z1| < π
2

the
sum of the series 〈w′3, Y

g3
W3

(g3u, z1)Y(w1, z2)w2〉 is equal to f e(z1, z2; g3u,w1, w2, w
′
3). By the

equivariance property for W3,

〈w′3, Y
g3
W3

(g3u, z1)Y(w1, z2)w2〉 = 〈w′3, (Y
g3
W3

)−1(u, z1)Y(w1, z2)w2〉, (2.9)
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where as above (Y g3
W3

)−1 is the (−1)-th branch of the twisted vertex operator map Y g3
W3

. But
the right-hand side of (2.9) can be obtained from 〈w′3, Y

g3
W3

(u, z1)Y(w1, z2)w2〉 on the region
|z1| > |z2| > 0, | arg(z1− z2)− arg z1| < π

2
by letting z1 go around clockwise a circle of radius

larger than |z2|. The homotopy class of such a circle is equal to (b13b12)−1. So (2.9) gives

f e(z1, z2; g3u,w1, w2, w
′
3) = f (b13b12)−1

(z1, z2;u,w1, w2, w
′
3)

or equivalently

f b13b12(z1, z2; g3u,w1, w2, w
′
3) = f e(z1, z2;u,w1, w2, w

′
3). (2.10)

Similarly, on the region |z2| > |z1| > 0, −3π
2
< arg(z1− z2)− arg z2 < −π

2
, the sum of the

series 〈w′3,Y(w1, z2)Y g2
W3

(g2u, z1)w2〉 is equal to f e(z1, z2; g3u,w1, w2, w
′
3). By the equivariance

property for W2,

〈w′3,Y(w1, z2)Y g2
W3

(g2u, z1)w2〉 = 〈w′3,Y(w1, z2)(Y g2
W2

)−1(u, z1)w2〉, (2.11)

where (Y g2
W2

)−1 is the (−1)-th branch of the twisted vertex operator map Y g2
W2

. The right-hand
side of (2.11) can be obtained from 〈w′3,Y(w1, z2)Y g2

W3
(u, z1)w2〉 on the region |z2| > |z1| > 0,

−3π
2
< arg(z1 − z2) − arg z2 < −π

2
by letting z1 go around clockwise a circle of radius less

than |z2|. Such a circle as a loop must have a base point in the region |z2| > |z1| > 0, −3π
2
<

arg(z1 − z2)− arg z2 < −π
2
. But there is a canonical isomorphism between the fundamental

group of M2 with such a base point and PB3 which has a base point (−3,−2). To see how the
loop given by the circle above acts on the single-valued branches of f(z1, z2;u,w1, w2, w

′
3),

we need to find the element of PB3 corresponding to this loop. We choose the following
loop γ based at (−3,−2): The first part γ1 of γ is the lower half circle centered at −1 with
radius 1 from −3 to −1 for z1 and trivial ofor z2 (meaning z2 is always equal to −2). The
second part γ2 is the counterclockwise circle centered at 0 with radius 1 based at −1 for z1

and trivial for z2. The third part γ3 = γ−1
1 is also the the lower half circle centered at −1

with radius 1 but from −1 to −3 for z1 and trivial for z2. It is clear that γ is homotopically
equivalent to the loop given in Figure 3. Then we have b13 = [γ] = [γ1][γ2][γ1]−1, where [γ]
for a path γ means its homotopy class. Equivalently, we have [γ2] = [γ1]−1b13[γ1]. When we
let z1 go from −1 to −3 along γ−1

1 , since γ−1
1 passes the cut along the positive real line in

the z1 − z2-plane, the single-valued branch f e(z1, z2;u,w1, w2, w
′
3) is changed to the single-

valued branch f b
−1
12 (z1, z2;u,w1, w2, w

′
3). Similarly, when we let z1 go from −1 to −3 along

γ1, f b(z1, z2;u,w1, w2, w
′
3) is changed to the single-valued branch f bb12(z1, z2;u,w1, w2, w

′
3) for

any b ∈ PB3. Thus when we let z1 go around the loop γ2, f e(z1, z2;u,w1, w2, w
′
3) is changed

to f b
−1
12 b13b12(z1, z2;u,w1, w2, w

′
3), that is,

f [γ2](z1, z2;u,w1, w2, w
′
3) = f b

−1
12 b13b12(z1, z2;u,w1, w2, w

′
3).

Note that the circle γ−1
2 is exactly the circle we use to obtain the right-hand side of (2.11)

from 〈w′3,Y(w1, z2)Y g2
W3

(u, z1)w2〉 on the region |z2| > |z1| > 0, −3π
2
< arg(z1− z2)− arg z2 <

−π
2
. So the right-hand side of (2.11) is equal to

f [γ−1
2 ](z1, z2;u,w1, w2, w

′
3) = f b

−1
12 b
−1
13 b12(z1, z2;u,w1, w2, w

′
3).
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But the sum of the left-hand side of (2.11) is equal to f e(z1, z2; g2u,w1, w2, w
′
3). So we obtain

f e(z1, z2; g2u,w1, w2, w
′
3) = f b

−1
12 b
−1
13 b12(z1, z2;u,w1, w2, w

′
3)

or equivalently

f b
−1
12 b13b12(z1, z2; g2u,w1, w2, w

′
3) = f e(z1, z2;u,w1, w2, w

′
3). (2.12)

Similarly we also have

f b12(z1, z2; g1u,w1, w2, w
′
3) = f e(z1, z2;u,w1, w2, w

′
3). (2.13)

Using the right action of PB3 on the set of single-valued branches of the multivalued analytic
function f(z1, z2;u,w1, w2, w

′
3), for b ∈ PB3, we obtain from (2.13)

f b12b(z1, z2; g2u,w1, w2, w
′
3) = f b(z1, z2;u,w1, w2, w

′
3). (2.14)

From (2.10), (2.12) and (2.14), we have

f b13b12(z1, z2; g3u,w1, w2, w
′
3) = f e(z1, z2;u,w1, w2, w

′
3)

= f b
−1
12 b13b12(z1, z2; g2u,w1, w2, w

′
3)

= f b12(b−1
12 b13b12)(z1, z2; g1g2u,w1, w2, w

′
3)

= f b13b12(z1, z2; g1g2u,w1, w2, w
′
3) (2.15)

When |z1| > |z2| > 0 and | arg(z1−z2)−arg z1| < π
2
, the left- and right-hand sides of (2.15) are

equal to the sum of 〈w′3, (Y
g3
W3

)1(g3u, z1)Y(w1, z2)w2〉 and 〈w′3, (Y
g3
W3

)1(g1g2u, z1)Y(w1, z2)w2〉,
respectively. Therefore, we obtain

〈w′3, (Y
g3
W3

)1(g1g2u− g3u, z1)Y(w1, z2)w2〉 = 0 (2.16)

for w1 ∈ W1, w2 ∈ W2, w3 ∈ W ′
3. Since Y is surjective in the sense above and w′3 is arbitrary,

(2.16) implies (Y g3
W3

)1(g1g2u− g3u, z1) = 0. But the map given by v → Y g3
W3

(v, x) is injective,
we obtain g1g2u− g3u = 0 for u ∈ V . So we have g3 = g1g2.

3 Skew-symmetry and contragredient isomorphisms

Let g1, g2 be automorphisms of V , W1, W2 and W3 g1-, g2- and g1g2-twisted V -modules and
Y a twisted intertwining operator of type

(
W3

W1W2

)
. We define linear maps

Ω±(Y) : W2 ⊗W1 → W3{x}[log x]

w2 ⊗ w1 7→ Ω±(Y)(w2, x)w1

by

Ω±(Y)(w2, x)w1 = exL(−1)Y(w1, y)w2

∣∣∣∣
yn=e±nπixn, log y=log x±πi

(3.1)
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for w1 ∈ W1 and w2 ∈ W2. Note that we can also define Ωp for p ∈ Z by changing ± in the
right-hand side of (3.1) to +p. But we will not discuss Ωp in this paper.

From the definition (3.1), for p ∈ Z, w1 ∈ W1, w2 ∈ W2 and z ∈ C×,

Ω±(Y)p(w2, z)w1 = Ω±(Y)(w2, x)w1

∣∣∣∣
xn=enlp(z), log x=lp(z)

=

(
exL(−1)Y(w1, y)w2

∣∣∣∣
yn=e±nπixn, log y=log x±πi

)∣∣∣∣
xn=enlp(z), log x=lp(z)

= ezL(−1)Y(w1, y)w2

∣∣∣∣
yn=en(lp(z)±πi), log y=lp(z)±πi

.

When arg z < π and arg z ≥ π, arg(−z) = arg z + π and arg(−z) = arg z − π, respectively.
Hence

ezL(−1)Y(w1, y)w2

∣∣∣∣
yn=en(lp(z)+πi), log y=lp(z)+πi

= ezL(−1)Yp(w1,−z)w2

when arg z < π and

ezL(−1)Y(w1, y)w2

∣∣∣∣
yn=en(lp(z)−πi), log y=lp(z)−πi

= ezL(−1)Yp(w1,−z)w2

when arg z ≥ π. In particular, for w1 ∈ W1, w2 ∈ W2 and z ∈ C× satisfying arg z < π and
arg z ≥ π, we have

Ω+(Y)p(w2, z)w1 = ezL(−1)Yp(w1,−z)w2 (3.2)

and
Ω−(Y)p(w2, z)w1 = ezL(−1)Yp(w1,−z)w2, (3.3)

respectively.

Theorem 3.1 The linear maps Ω+(Y) and Ω−(Y) are twisted intertwining operators of types(
W3

W2φg−1
2

(W1)

)
and

(
W3

φg1 (W2)W1

)
, respectively (recall the definition of φg for an automorphism g

of V in Section 3).

Proof. The main difference between the proof here and the proof of Theorem 5.1 in [H8] is
that here we cannot use the explicit form of the correlation functions in [H8] obtained from
the products and iterates of a twisted intertwining operators and twisted vertex operators.
So our proof here is much more complicated and involves some technical convergence and
analytic extension results, even though the idea is the same as in the proof of Theorem 5.1
in [H8].

Let u ∈ V , w1 ∈ W1, w2 ∈ W2 and w′3 ∈ W ′
3. As in the proof of Theorem 5.1 in [H8], we

use f(z1, z2;u,w1, w2, w
′
3) to denote the multivalued analytic function in the duality prop-

erty for the twisted intertwining operator Y with the preferred branch f e(z1, z2;u,w1, w2, w
′
3).

Note that f(z1, z2;u,w1, w2, w
′
3) in [H8] is of the particular form in the definition of twisted
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intertwining operator there. But in this proof, it is a maximally-extended multivalued ana-
lytic function on M2 with regular singular points at z1, z2 = 0 and z1− z2 = 0 and in general
might not have the special form in [H8].

Define
g±(z1, z2;u,w2, w1, w

′
3) = f(z1 − z2,−z2;u,w1, w2, e

z2L′(1)w′3) (3.4)

and choose the preferred branch ge±(z1, z2;u,w2, w1, w
′
3) of g±(z1, z2;u,w2, w1, w

′
3) as follows:

On the subregion |z1| > |z2| > 0, | arg(z1 − z2) − arg z1| < π
2

and arg z2 < π (for Ω+) or
arg z2 ≥ π (for Ω−) of M2

0 , let

ge±(z1, z2;u,w2, w1, w
′
3) = f e(z1 − z2,−z2;u,w1, w2, e

z2L′(1)w′3). (3.5)

For general (z1, z2) ∈M2
0 , we define ge±(z1, z2;u,w2, w1, w

′
3) to be the unique analytic exten-

sion on M2
0 .

When |z1| > |z2| > 0, | arg(z1 − z2) − arg z1| < π
2

and arg z2 < π (for Ω+) or arg z2 ≥ π
(for Ω−), from (3.2) and (3.3) and the L(−1)-derivative property for Y g3

W3
, we have

〈w′3, Y
g3
W3

(u, z1)Ω±(Y)(w2, z2)w1〉

= 〈w′3, Y
g3
W3

(u, x1)Ω±(Y)(w2, x2)w1〉
∣∣∣
xn1 =en log z1 ,log x1=log z1,xn2 =en log z2 ,log x2=log z2

= 〈w′3, Y
g3
W3

(u, x1)e−yL(−1)Y(w1, y)w2〉
∣∣∣
xn1 =en log z1 ,log x1=log z1,yn=en log(−z2),log y=log(−z2)

= 〈ez2L′(1)w′3, (Y
g3
W3

)(u, x1 + y)Y(w1, y)w2〉
∣∣∣
xn1 =en log z1 ,log x1=log z1,yn=en log(−z2),log y=log(−z2)

.

(3.6)

We first prove that the right-hand side of (3.6) is absolutely convergent on the region |z1| >
|z2| > 0 and is convergent to f e(z1, z2;u,w1, w2, w

′
3) on the region |z1| > |z2| > 0, | arg(z1 −

z2) − arg z1| < π
2

. The proof is in fact the same as the proof that the right-hand side of
(9.170) in [HLZ5] is absolutely convergent in the region |z2| > |z0| > 0. Here we give a
slightly different proof.

We can always take u ∈ V , w1 ∈ W1, w2 ∈ W2 and ez2L
′(1)w′3 ∈ W ′

3 to be homogeneous.
Let ∆ = −wt ez2L

′(1)w′3 + wtu+ wtw1 + wtw2. Let

D = {n ∈ C | there exist i, j ∈ N, such that 〈ez2L′(1)w′3,
(
Y g3
W3

)
∆−n−2,j

(u)Yn,i (w1)w2〉 6= 0}

and M,N ∈ N such that
(
Y g3
W3

)
m,j

(u) = 0 for m ∈ C, j > M and Yn,i(w1) = 0 for i > N .

Then by the lower truncation property of Y , the fact that u is a finite sum of generalized
eigenvectors of g3 and the equivariance property of the g3-twisted module W3, we know that
there exist a finite subset A of C/Z and Rµ ∈ µ for each µ ∈ A such that

D ⊂
⋃
µ∈A

(Rµ − N) . (3.7)

Let
an,j,i =

〈
ez2L

′(1)w′3,
(
Y g3
W3

)
∆−n−2,j

(u) (Y)n,i (w1)w2

〉
∈ C
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for n ∈ D, 0 ≤ j ≤ M and 0 ≤ n ≤ N . Then, by the convergence of (2.3), the L(−1)-
derivative properties for Y g3

W3
and Y , and Proposition 7.9 in [HLZ4], we know that the triple

series

∑
n∈D

M∑
j=0

N∑
i=0

an,j,ie
(−∆+n+1) log z1(log z1)je(−n−1) log z2(log z2)i (3.8)

is absolutely convergent on the region given by |z1| > |z2| > 0 and is convergent on the
region |z1| > |z2| > 0, | arg(z1 − z2)− arg z1| < π

2
to

f e(z1, z2;u,w1, w2, e
z2L′(1)w′3) = 〈ez2L′(1)w′3, Y

g3
W3

(u, z1)Y(w1, z2)w2〉. (3.9)

For n ∈ D, j = 0, . . . ,M , k ∈ Z≥0, s = 0, . . . , j, let bn,j,k,s ∈ C be the numbers defined in
(A.6). Then

∑
m∈D−N

M∑
s=0

N∑
i=0

 M∑
j=s

∑
n−k=m
n∈D,k∈N

an,j,ibn,j,k,s

 e(−∆+m+1) log z1(log z1)se(−m−1) log(−z2)(log(−z2))i

is equal to the right-hand side of (3.6) and, by Lemma A.1, is absolutely convergent on the
region |z1| > |z2| > 0 and is convergent to f e(z1 − z2,−z2;u,w1, w2, e

z2L′(1)w′3) on the region
|z1| > |z2| > 0, | arg z1 − arg(z1 − z2)| < π

2
.

Now it is easy to see that the left-hand side of (3.6) is absolutely convergent on the region
|z1| > |z2| > 0 and its sum is equal to ge±(z1, z2;u,w1, w2, w

′
3) on the region |z1| > |z2| > 0,

| arg z1 − arg(z1 − z2)| < π
2
. In fact, we know that the left-hand side of (3.6) as a series is

equal to the right-hand side of (3.6) on the region |z1| > |z2| > 0, | arg(z1− z2)− arg z1| < π
2

and arg z2 < π (for Ω+) or arg z2 ≥ π (for Ω−). But we have just proved that the right-hand
side of (3.6) is absolutely convergent on the larger region |z1| > |z2| > 0. The left-hand side
of (3.6) is also a series of the same form as (3.8). In particular, its absolute convergence on
the smaller region |z1| > |z2| > 0, | arg(z1 − z2) − arg z1| < π

2
and arg z2 < π (for Ω+) or

arg z2 ≥ π (for Ω−) implies its absolute convergence on the larger region |z1| > |z2| > 0.
On the region |z1| > |z2| > 0, | arg(z1 − z2) − arg z1| < π

2
and arg z2 < π (for Ω+)

or arg z2 ≥ π (for Ω−), by (3.6) and the discussion above, the left-hand side of (3.6) is
convergent to f e(z1 − z2,−z2;u,w1, w2, e

z2L′(1)w′3), which in turn is by definition equal to
ge±(z1, z2;u,w1, w2, w

′
3) on the same region. We know that the left-hand side of (3.6) on the

region given by |z1| > |z2| > 0 and | arg(z1 − z2) − arg z1| < π
2

with cuts along the positive
real lines on the z1- and z2-planes is convergent to the analytic extension of the sum of the
left-hand side of (3.6) on the smaller region |z1| > |z2| > 0, | arg(z1 − z2) − arg z1| < π

2

and arg z2 < π (for Ω+) or arg z2 ≥ π (for Ω−). Also, by definition, ge±(z1, z2;u,w1, w2, w
′
3)

on M2
0 is obtained by analytically extending ge±(z1, z2;u,w1, w2, w

′
3) on the smaller region

|z1| > |z2| > 0, | arg(z1−z2)−arg z1| < π
2

and arg z2 < π (for Ω+) or arg z2 ≥ π (for Ω−). Thus
the left-hand side of (3.6) on the region given by |z1| > |z2| > 0 and | arg(z1−z2)−arg z1| < π

2

is absolutely convergent to ge±(z1, z2;u,w1, w2, w
′
3) on M2

0 .
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Generalizing the proof of the convergence of (3.6) above, we can prove that

〈w′3, Y
g3
W3

(u1, z1) · · ·Y g3
W3

(uk−1, zk−1)Ω±(Y)(w2, zk)w1〉 (3.10)

is absolutely convergent on the region |z1| > · · · > |zk| > 0 and can be maximally extended to
a multivalued analytic function on the region Mk for k ∈ N + 3, u1, . . . , uk−1 ∈ V , w1 ∈ W1,
w2 ∈ W2 and w′3 ∈ W ′

3. In fact, generalizing (3.6), we see that (3.10) is equal to

〈ez2L′(1)w′3, (Y
g3
W3

)(u1, x1 + y) · · · (Y g3
W3

)(uk−1, xk−1 + y)·

· Y(w1, y)w2〉
∣∣∣
xni =en log zi ,log xi=log zi,i=1,...,k−1,yn=en log(−zk),log y=log(−zk)

. (3.11)

From Definition 2.1, we see that the convergence and analytic extension of (3.11) on the
region |z1| > · · · > |zk| > 0 is equivalent to the convergence and analytic extension of∏

1≤i<j≤k−1

(zi − zj)Mij〈ez2L′(1)w′3, (Y
g3
W3

)(u1, x1 + y) · · · (Y g3
W3

)(uk−1, xk−1 + y)·

· Y(w1, y)w2〉
∣∣∣
xni =en log zi ,log xi=log zi,i=1,...,k−1,yn=en log(−zk),log y=log(−zk)

(3.12)

on the region |zi| > |zk| > 0 for i = 1, . . . , k − 1, zi 6= zj for i 6= j, where Mij ∈ Z+ for
i 6= j satisfy xMijYV (ui, x)uj ∈ V [[x]]. Note that Lemma A.1 can be generalized to the case
of more than two variables for a series of the form (3.12). Using the convergence of products
with more than one twisted vertex operators for the twisted intertwining operator Y and
this generalization of Lemma A.1, we see that (3.12) is absolutely convergent on the region
|zi| > |zk| > 0 for i = 1, . . . , k − 1, zi 6= zj for i 6= j and its sum has analytic extension on
the region Mk. Thus (3.10) is absolutely convergent on the region |z1| > · · · > |zk| > 0 and
its sum has maximal analytic extension on the region Mk.

When |z2| > |z1| > 0 and arg z2 ≥ π,

〈w′3,Ω−(Y)(w2, z2)Y g1
W1

(u, z1)w1〉
= 〈w′3, ez2L(−1)Y(Y g1

W1
(u, z1)w1,−z2)w2〉

= 〈ez2L′(1)w′3,Y(Y g1
W1

(u, (z1 − z2)− (−z2))w1,−z2)w2〉 (3.13)

converges absolutely and if in addition, | arg(z1 − z2)− arg(−z2)| < π
2
, its sum is equal to

f e(z1 − z2,−z2;u,w1, w2, e
z2L′(1)w′3). (3.14)

Note that by definition, (3.14) is a single-valued analytic function on the set M̃2
0 given by

cutting M2 along the postive real line in the z1- and (z1− z2)-planes and along the negative
real line in the z2-plane, with these positive real lines in the z1- and (z1−z2)-planes attached
to the upper half z1- and (z1− z2)-planes and the negative real line in the z2-plane attached
to the lower half z2-plane. Then the subset{

(z1, z2) ∈M2
0

∣∣∣ |z2| > |z1| > 0, arg z2 ≥ π, | arg(z1 − z2)− arg(−z2)| < π

2

}
(3.15)
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of M̃2
0 is also a subset of M2

0 . But on the subset of M2
0 given by |z1| > |z2| > 0, arg z2 ≥ π,

by definition, (3.14) is equal to ge−(z1, z2;u,w2, w1, w
′
3). Since ge−(z1, z2;u,w2, w1, w

′
3) on

M2
0 is obtained by analytic extension, we see that (3.14) is equal to ge−(z1, z2;u,w2, w1, w

′
3)

also on the subset (3.15). Thus the left-hand side of (3.13) is absolutely convergent to
ge−(z1, z2;u,w2, w1, w

′
3) when |z2| > |z1| > 0, | arg(z1 − z2) − arg(−z2)| < π

2
and arg z2 ≥ π.

Since ge−(z1, z2;u,w2, w1, w
′
3) and the sum of (3.13) are both analytic extensions of their

restrictions on the subset given by |z2| > |z1| > 0, | arg(z1−z2)−arg(−z2)| < π
2

and arg z2 ≥
π, we see that the left-hand side of (3.13) is absolutely convergent to ge−(z1, z2;u,w2, w1, w

′
3)

when |z2| > |z1| > 0 and | arg(z1 − z2) − arg(−z2)| < π
2
. But when arg z2 ≥ π, arg(−z2) =

arg z2 − π. Hence in this case, the inequality | arg(z1 − z2)− arg(−z2)| < π
2

becomes −3π
2
<

arg(z1−z2)−arg z2 < −π
2
. Also both the left-hand side of (3.13) and ge−(z1, z2;u,w2, w1, w

′
3)

are single valued analytic functions in z1 and z2 with cuts at z1 ∈ R+ and z2 ∈ R+. Thus
when |z2| > |z1| > 0 and −3π

2
< arg(z1 − z2) − arg z2 < −π

2
, the left-hand side of (3.13) is

absolutely convergent to ge−(z1, z2;u,w2, w1, w
′
3).

Next we discuss the iterate of Ω−(Y) and the twisted vertex operator map φg1(Y
g2
W2

).
When |z2| > |z1 − z2| > 0 and arg z2 ≥ π,

〈w′3,Ω−(Y)(φg1(Y
g2
W2

)(u, z1 − z2)w2, z2)w1〉
= 〈w′3,Ω−(Y)((Y g2

W2
)(g−1

1 u, z1 − z2)w2, z2)w1〉
= 〈w′3, ez2L(−1)Y(w1,−z2)(Y g2

W2
)(g−1

1 u, z1 − z2)w2〉
= 〈ez2L′(1)w′3,Y(w1,−z2)(Y g2

W2
)(g−1

1 u, z1 − z2)w2〉, (3.16)

converges absolutely and if in addition, −3π
2
< arg z1 − arg(−z2) < −π

2
, its sum is equal

to f e(z1 − z2,−z2; g−1
1 u,w1, w2, e

z2L′(1)w′3). Note that the proofs of Lemmas 4.5 and 4.6
in [H8] do not use the explicit form of the multivalued analytic functions in the duality
property of the twisted intertwining operators introduced in [H8]. Then the same proof of

Lemma 4.5 in [H8] shows that the sum of the right-hand side of (3.16) is equal to f b
−1
12 (z1 −

z2,−z2; g−1
1 u,w1, w2, e

z2L′(1)w′3) when |z2| > |z1 − z2| > 0, arg z2 ≥ π and π
2
< arg z1 −

arg(−z2) < 3π
2

. The same proof of (4.4) in Lemma 4.6 in [H8] shows that

f b
−1
12 (z1 − z2,−z2; g−1

1 u,w1, w2, e
z2L′(1)w′3) = f e(z1 − z2,−z2;u,w1, w2, e

z2L′(1)w′3).

Since when arg z2 ≥ π, arg(−z2) = arg z2 − π and π
2
< arg z1 − arg(−z2) < 3π

2
becomes

| arg z1 − arg z2| < π
2
, we see that the sum of the right-hand side of (3.16) is equal to (3.14)

when |z2| > |z1 − z2| > 0, arg z2 ≥ π and | arg z1 − arg z2| < π
2
.

We now use the same argument as above to finish the proof in this case. The subset{
(z1, z2) ∈M2

0

∣∣∣ |z2| > |z1 − z2| > 0, arg z2 ≥ π, | arg(z1)− arg z2| <
π

2

}
(3.17)

of M̃2
0 is also a subset of M2

0 . By definition, on the subset of M2
0 given by |z1| > |z2| >

0, arg z2 ≥ π, (3.14) is equal to ge−(z1, z2;u,w2, w1, w
′
3). Since ge−(z1, z2;u,w2, w1, w

′
3) on

M2
0 is obtained by analytic extension, we see that (3.14) is equal to ge−(z1, z2;u,w2, w1, w

′
3)
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also on the subset (3.17). Thus the left-hand side of (3.16) is absolutely convergent to
ge−(z1, z2;u,w2, w1, w

′
3) when |z2| > |z1 − z2| > 0, | arg z1 − arg z2| < π

2
and arg z2 ≥ π.

Since ge−(z1, z2;u,w2, w1, w
′
3) and the sum of (3.16) are both analytic extensions of their

restrictions on the subset given by |z2| > |z1 − z2| > 0, | arg z1 − arg z2| < π
2

and arg z2 ≥ π,
we see that the left-hand side of (3.16) is absolutely convergent to ge−(z1, z2;u,w2, w1, w

′
3)

when |z2| > |z1 − z2| > 0 and | arg z1 − arg z2| < π
2
.

We still need to prove the two other cases for Ω+(Y). When |z2| > |z1| > 0 and arg z2 < π,

〈w′3,Ω+(Y)(w2, z2)φg−1
2

(Y g1
W1

)(u, z1)w1〉

= 〈w′3, ez2L(−1)Y(φg−1
2

(Y g1
W1

)(u, z1)w1,−z2)w2〉

= 〈ez2L′(1)w′3,Y((Y g1
W1

)(g2u, z1)w1,−z2)w2〉 (3.18)

converges absolutely and if in addition, | arg(z1 − z2)− arg(−z2)| < π
2
, its sum is equal to

f e(z1 − z2,−z2; g2u,w1, w2, e
z2L′(1)w′3). (3.19)

The subset{
(z1, z2) ∈M2

0

∣∣∣ |z2| > |z1| > 0, arg z2 < π, | arg(z1 − z2)− arg(−z2)| < π

2

}
(3.20)

of M̃2
0 is also a subset of M2

0 . By definition, on the subset of M2
0 given by |z1| > |z2| > 0,

arg z2 < π, (3.19) is equal to ge+(z1, z2; g2u,w2, w1, w
′
3). Since ge+(z1, z2; g2u,w2, w1, w

′
3) on M2

0

is obtained by analytic extension, (3.19) is equal to ge+(z1, z2; g2u,w2, w1, w
′
3) also on the sub-

set (3.20). Thus the left-hand side of (3.18) is absolutely convergent to ge+(z1, z2; g2u,w2, w1, w
′
3)

when |z2| > |z1| > 0, | arg(z1−z2)−arg(−z2)| < π
2

and arg z2 < π. Since ge+(z1, z2; g2u,w2, w1, w
′
3)

and the sum of (3.18) are both analytic extensions of their restrictions on the subset
given by |z2| > |z1| > 0, | arg(z1 − z2) − arg(−z2)| < π

2
and arg z2 < π, the left-hand

side of (3.18) is absolutely convergent to ge+(z1, z2; g2u,w2, w1, w
′
3) when |z2| > |z1| > 0,

| arg(z1 − z2)− arg(−z2)| < π
2
.

The same proof as that of (4.5) in Lemma 4.6 in [H8] gives

ge+(z1, z2; g2u,w1, w2, w
′
3) = g

b−1
13

+ (z1, z2;u,w1, w2, w
′
3), (3.21)

since arg z1 < π, arg(−z2) = arg z2 + π and the inequality | arg(z1 − z2) − arg(−z2)| < π
2

becomes π
2
< arg(z1 − z2) − arg z2 <

3π
2

. Also, the same proof as that of Lemma 4.5 in
[H8] shows that when when |z2| > |z1| > 0 and π

2
< arg(z1 − z2) − arg z2 <

3π
2

, the sum of
left-hand side of (3.18) is equal to ge+(z1, z2;u,w2, w1, w

′
3).

Finally, we discuss the iterate of Ω+(Y) and the twisted vertex operator map Y g2
W2

. When
|z2| > |z1 − z2| > 0 and arg z2 < π,

〈w′3,Ω+(Y)((Y g2
W2

)(u, z1 − z2)w2, z2)w1〉
= 〈w′3, ez2L(−1)Y(w1,−z2)(Y g2

W2
)(u, z1 − z2)w2〉

= 〈ez2L′(1)w′3,Y(w1,−z2)(Y g2
W2

)(u, z1 − z2)w2〉 (3.22)
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converges absolutely and if in addition, −3π
2
< arg z1 − arg(−z2) < −π

2
, its sum is equal to

(3.14). The subset{
(z1, z2) ∈M2

0

∣∣∣ |z2| > |z1 − z2| > 0, arg z2 < π,−3π

2
< arg z1 − arg(−z2) < −π

2

}
(3.23)

of M̃2
0 is also a subset of M2

0 . As we have discussed above, on the subset of M2
0 given by |z1| >

|z2| > 0, arg z2 < π, (3.14) is equal to ge+(z1, z2;u,w2, w1, w
′
3). Since ge+(z1, z2;u,w2, w1, w

′
3)

on M2
0 is obtained by analytic extension, (3.14) is equal to ge+(z1, z2;u,w2, w1, w

′
3) also on the

subset (3.23). Thus the left-hand side of (3.22) is absolutely convergent to ge+(z1, z2;u,w2, w1, w
′
3)

when |z2| > |z1 − z2| > 0, −3π
2

< arg z1 − arg(−z2) < −π
2

and arg z2 < π. Since
ge+(z1, z2;u,w2, w1, w

′
3) and the sum of (3.18) are both analytic extensions of their restric-

tions on the subset given by |z2| > |z1 − z2| > 0, −3π
2
< arg z1 − arg(−z2) < −π

2
and

arg z2 < π, the left-hand side of (3.22) is absolutely convergent to ge+(z1, z2;u,w2, w1, w
′
3)

when |z2| > |z1 − z2| > 0 and −3π
2
< arg z1 − arg(−z2) < −π

2
.

Let VW3
W1W2

be the space of twisted intertwining operators of type
(

W3

W1W2

)
. Then we have:

Corollary 3.2 The maps Ω+ : VW3
W1W2

→ VW3

W2φg−1
2

(W1) and Ω− : VW3
W1W2

→ VW3

φg1 (W2)W1
are lin-

ear isomorphisms. In particular, VW3
W1W2

, VW3

φg1 (W2)W1
and VW3

W2φg−1
2

(W1) are linearly isomorphic.

Proof. It is clear that Ω+ and Ω− are inverse of each other.

The linear isomorphisms Ω+ and Ω− are called the skew-symmetry isomorphisms.
Let g1, g2 be automorphisms of V , W1, W2 and W3 g1-, g2- and g1g2-twisted V -modules

and Y a twisted intertwining operator of type
(

W3

W1W2

)
. We define linear maps

A±(Y) : W1 ⊗W ′
3 → W ′

2{x}[log x]

w1 ⊗ w′3 7→ A±(Y)(w1, x)w′3

by

〈A±(Y)(w1, x)w′3, w2〉 = 〈w′3,Y(exL(1)e±πiL(0)(x−L(0))2w1, x
−1)w2〉 (3.24)

for w1 ∈ W1 and w2 ∈ W2 and w′3 ∈ W ′
3. Similarly to Ωp for p ∈ Z, we can also define Ap for

p ∈ Z by replacing ± in (3.24) by +p. But we will also not discuss Ap in this paper.
Let (W,Y g

W ) be a g-twisted V -module. When W1 = V , W2 = W3 = W and Y = Y g
W , by

definition, A+(Y g
W ) = A−(Y g

W ) = (Y g
W )′ (see Section 4).

Let LsW1
(0) be the semisimple part of LW1(0). From the definition (3.24), for p ∈ Z,

w1 ∈ W1, w2 ∈ W2, w′3 ∈ W ′
3 and z ∈ C×, we have

〈A±(Y)p(w1, z)w
′
3, w2〉

= 〈A±(Y)p(w1, x)w′3, w2〉
∣∣∣∣
xn=enlp(z), log x=lp(z)
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= 〈w′3,Y(exLW1
(1)e±πiLW1

(0)(x−LW1
(0))2w1, x

−1)w2〉
∣∣∣∣
xn=enlp(z), log x=lp(z)

= 〈w′3,Y(exLW1
(1)e±πiLW1

(0)(x−L
s
W1

(0))2·

· (e−(LW1
(0)−LsW1

(0)) log x)2w1, x
−1)w2〉

∣∣∣∣
xn=enlp(z), log x=lp(z)

= 〈w′3,Y(ezLW1
(1)e±πiLW1

(0)(e−lp(z)LsW1
(0))2·

· (e−(LW1
(0)−LsW1

(0))lp(z))2w1, y)w2〉
∣∣∣∣
yn=e−nlp(z), log y=−lp(z)

= 〈w′3,Y(ezLW1
(1)e±πiLW1

(0)e−2lp(z)LW1
(0)w1, y)w2〉

∣∣∣∣
yn=e−nlp(z), log y=−lp(z)

. (3.25)

When arg z = 0, arg z−1 = arg z = 0 and −lp(z) = l−p(z
−1). When arg z 6= 0, arg z−1 =

− arg z + 2π and −lp(z) = l−p−1(z−1). Hence when arg z = 0, the right-hand side of (3.25)
is equal to

〈w′3,Y(ezLW1
(1)e±πiLW1

(0)e2l−p(z−1)LW1
(0)w1, y)w2〉

∣∣∣∣
yn=enl−p(z

−1), log y=l−p(z−1)

= 〈w′3,Y−p(ezLW1
(1)e±πiLW1

(0)e2l−p(z−1)LW1
(0)w1, z

−1)w2〉 (3.26)

and when arg z 6= 0, it is equal to

〈w′3,Y(ezLW1
(1)e±πiLW1

(0)e2l−p−1(z−1)LW1
(0)w1, y)w2〉

∣∣∣∣
yn=enl−p−1(z

−1), log y=l−p−1(z−1)

= 〈w′3,Y−p−1(ezLW1
(1)e±πiLW1

(0)e2l−p−1(z−1)LW1
(0)w1, z

−1)w2〉. (3.27)

From (3.25)–(3.27), for w1 ∈ W1, w2 ∈ W2, w′3 ∈ W ′
3 and z ∈ C×, we have

〈A±(Y)p(w1, z)w
′
3, w2〉 = 〈w′3,Y−p(ezLW1

(1)e±πiLW1
(0)e2l−p(z−1)LW1

(0)w1, z
−1)w2〉 (3.28)

when arg z = 0 and

〈A±(Y)p(w1, z)w
′
3, w2〉 = 〈w′3,Y−p−1(ezLW1

(1)e±πiLW1
(0)e2l−p−1(z−1)LW1

(0)w1, z
−1)w2〉 (3.29)

when arg z 6= 0.

Theorem 3.3 The linear maps A+(Y) and A−(Y) are twisted intertwining operators of

types
(φg1 (W ′2)

W1W ′3

)
and

(
W ′2

W1φg−1
1

(W ′3)

)
, respectively.

Proof. The proof of this result is also essentially the same as the proof of Theorem 6.1
in [H8]. But the proof here is much more complicated because the correlation functions
involved are not of the explicitly form as in [H8]. As in [H8], we need only prove the duality
property.
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We first give the multivalued analytic functions with preferred branches in the duality
property. We shall denote these multivalued analytic functions for A+(Y) and A−(Y) by
h+(z1, z2;u,w1, w2, w

′
3) and h−(z1, z2;u,w1, w2, w

′
3), respectively. Let f(z1, z2;u,w1, w2, w

′
3)

be the multivalued analytic function with the preferred branch f e(z1, z2;u,w1, w2, w
′
3) in the

duality property for the twisted intertwining operator Y . Define

h±(z1, z2;u,w2, w1, w
′
3) = f(z−1

1 , z−1
2 ; ez1LV (1)(−z2

1)−LV (0)u, ez2LW1
(1)(−z2

2)−LW1
(0)w1, w2, w

′
3)

(3.30)
and choose the preferred branch he±(z1, z2;u,w2, w1, w

′
3) of h±(z1, z2;u,w2, w1, w

′
3) as follows:

On the subregion |z1| > |z2| > 0, | arg(z1 − z2) − arg z1| < π
2

and arg(z1 − z2) < π (for A+)
or arg(z1 − z2) ≥ π (for A−) of M2

0 , let

he±(z1, z2;u,w2, w1, w
′
3)

= f
b−1
13 b
−1
23 (z−1

1 , z−1
2 ; ez

−1LV (1)(−z2
1)−LV (0)u, ez2LW1

(1)e±πiLW1
(0)e−2 log(z2)LW1

(0)w1, w2, w
′
3).

(3.31)

For general (z1, z2) ∈M2
0 , we define he±(z1, z2;u,w2, w1, w

′
3) to be the unique analytic exten-

sion on M2
0 .

Let u ∈ V , w1 ∈ W1, w2 ∈ W2 and w′3 ∈ W ′
3. We consider z1, z2 ∈ C satisfying |z−1

2 | >
|z−1

1 | > 0 (or equivalently |z1| > |z2| > 0) and arg z1, arg z2 6= 0. Since |z−1
2 | > |z−1

1 | > 0 and
arg z1, arg z2 6= 0, from (3.29), (Y g2

W2
)′ = A+(Y g2

W2
) and the duality property for Y , we know

that

〈w′3,Y(ez2LW1
(1)eπiLW1

(0)e−2 log(z2)LW1
(0)w1, z

−1
2 )Y g2

W2
(ez1LV (1)(−z−2

1 )LV (0)g−1
1 u, z−1

1 )w2〉 (3.32)

is absolutely convergent and if in addition, −3π
2
< arg(z−1

1 − z−1
2 )− arg z−1

2 < −π
2
, its sum is

equal to

f e(z−1
1 , z−1

2 ; ez1LV (1)(−z−2
1 )LV (0)g−1

1 u, ez2LW1
(1)eπiLW1

(0)e−2 log(z2)LW1
(0)w1, w2, w

′
3)

= f e(z−1
1 , z−1

2 ; g−1
1 ez1LV (1)(−z−2

1 )LV (0)u, ez2LW1
(1)eπiLW1

(0)e−2 log(z2)LW1
(0)w1, w2, w

′
3). (3.33)

We know that

〈φg1((Y
g2
W2

)′)(u, z1)A+(Y)(w1, z2)w′3, w2〉
= 〈((Y g2

W2
)′)(g−1

1 u, z1)A+(Y)(w1, z2)w′3, w2〉
= 〈w′3,Y−1(ez2LW1

(1)eπiLW1
(0)e−2 log(z2)LW1

(0)w1, z
−1
2 )·

· (Y g2
W2

)−1(ez1LV (1)(−z−2
1 )LV (0)g−1

1 u, z−1
1 )w2〉 (3.34)

can be obtained using the multivalued analytic function (3.30) on the region |z−1
2 | > |z−1

1 | > 0
starting from the value given by (3.32) by letting z−1

1 go around 0 clockwise once (corre-
sponding to b−1

13 ), then letting z−1
2 go around 0 clockwise once (corresponding to b−1

23 b
−1
12 ).

Then (3.34) also converges absolutely on the region |z−1
2 | > |z−1

1 | > 0 and if in addition,
−3π

2
< arg(z−1

1 − z−1
2 )− arg z−1

2 < −π
2
, its sum is equal to

f b
−1
13 b
−1
23 b
−1
12 (z−1

1 , z−1
2 ; g−1

1 ez1LV (1)(−z−2
1 )LV (0)u, ez2LW1

(1)eπiLW1
(0)e−2 log(z2)LW1

(0)w1, w2, w
′
3)
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= f b
−1
12 b
−1
13 b
−1
23 (z−1

1 , z−1
2 ; g−1

1 ez1LV (1)(−z−2
1 )LV (0)u, ez2LW1

(1)eπiLW1
(0)e−2 log(z2)LW1

(0)w1, w2, w
′
3).

(3.35)

Using the equivariance property forW1 and the convergence of (2.5) to f e(z1, z2;u,w1, w2, w
′
3)

on the region |z2| > |z1 − z2| > 0, | arg z1 − arg z2| < π
2
, we have

f e(z1, z2; g−1
1 u,w1, w2, w

′
3) = f b12(z1, z2;u,w1, w2, w

′
3).

Applying b ∈ PB3 to both sides of this equality, we obtain

f b(z1, z2; g−1
1 u,w1, w2, w

′
3) = f b12b(z1, z2;u,w1, w2, w

′
3) (3.36)

for b ∈ PB3. By (3.36) with b = b−1
12 b
−1
13 b
−1
23 , we see that (3.35) is equal to

f b
−1
13 b
−1
23 (z−1

1 , z−1
2 ; ez1LV (1)(−z−2

1 )LV (0)u, ez2LW1
(1)eπiLW1

(0)e2 log(z−1
2 )LW1

(0)w1, w2, w
′
3), (3.37)

which by definition, is equal to he+(z1, z2;u,w2, w1, w
′
3) when |z1| > |z2| > 0, | arg(z1 − z2)−

arg z1| < π
2

and arg(z1 − z2) < π.
On the other hand, we have

arg(z−1
1 − z−1

2 ) = arg

(
z1 − z2

−z1z2

)
= arg(z1 − z2)− arg z1 − arg z2 + (2q + 1)π (3.38)

for some q ∈ Z. But for any z ∈ C, we have 0 ≤ arg z < 2π. In particular, we have

0 ≤ arg(z1 − z2)− arg z1 − arg z2 + (2q + 1)π < 2π.

Since we also have 0 ≤ arg z2 < 2π, we obtain

−π − 2qπ ≤ arg(z1 − z2)− arg z1 < π − 2qπ. (3.39)

Therefore when | arg(z1 − z2)− arg z1| < π
2
, we must have q = 0 and thus

arg(z−1
1 − z−1

2 ) = arg(z1 − z2)− arg z1 − arg z2 + π.

Also when arg z1, arg z2 6= 0, we have arg z−1
1 = − arg z1 + 2π, arg z−1

2 = − arg z2 + 2π.
Therefore when arg z1, arg z2 6= 0 and | arg(z1 − z2)− arg z1| < π

2
, we have

−3π

2
< arg(z−1

1 − z−1
2 )− arg z−1

2 = arg(z1 − z2)− arg z1 − π < −
π

2
.

Thus when |z1| > |z2| > 0, arg z1, arg z2 6= 0, | arg(z1−z2)−arg z1| < π
2

and arg(z1−z2) < π,
the series (3.34) is absolutely convergent to he+(z1, z2;u,w2, w1, w

′
3). Since both the sum of the

left-hand side of (3.34) and he+(z1, z2;u,w2, w1, w
′
3) are analytic extensions of their restrictions

on the subset given by |z1| > |z2| > 0, arg z1, arg z2 6= 0, | arg(z1 − z2) − arg z1| < π
2

and
arg(z1 − z2) < π, the sum of the left-hand side of (3.34) is equal to he+(z1, z2;u,w2, w1, w

′
3)

when |z1| > |z2| > 0 and | arg(z1 − z2)− arg z1| < π
2
.
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Generalizing the convergence and analytic extension of (3.34) above, we can prove that

〈φg1((Y
g2
W2

)′)(u1, z1) · · ·φg1((Y
g2
W2

)′)(uk−1, zk−1)A+(Y)(w1, zk)w
′
3, w2〉 (3.40)

is absolutely convergent on the region |z1| > · · · > |zk| > 0 and its sum can be maximally
extended to a multivalued analytic function on the region Mk for k ∈ Z+ + 3, u1, . . . , uk−1 ∈
V , w1 ∈ W1, w2 ∈ W2 and w′3 ∈ W ′

3. In fact, the same calculations as in (3.34) shows that
(3.40) is equal to

〈w′3,Y−1(ezkLW1
(1)eπiLW1

(0)e−2 log(zk)LW1
(0)w1, z

−1
k )·

· (Y g2
W2

)−1(ezk−1LV (1)(−z−2
k−1)LV (0)g−1

1 uk−1, z
−1
k−1)·

· · · (Y g2
W2

)−1(ez1LV (1)(−z−2
1 )LV (0)g−1

1 u1, z
−1
1 )w2〉 (3.41)

From the duality properties in Definitions 2.1 and 2.5, we see that∏
1≤i<j≤k−1

(z−1
i − z−1

j )Mij〈w′3, (Y
g2
W2

)−1(ezk−1LV (1)(−z−2
k−1)LV (0)g−1

1 uk−1, z
−1
k−1)·

· · · (Y g2
W2

)−1(ez1LV (1)(−z−2
1 )LV (0)g−1

1 u1, z
−1
1 )·

· Y−1(ezkLW1
(1)eπiLW1

(0)e−2 log(zk)LW1
(0)w1, z

−1
k )w2〉 (3.42)

is absolutely convergent on the region |z−1
i | > |z−1

k | > 0 for i = 1, . . . , k − 1, z−1
i 6= z−1

j for
i 6= j, and its sum can be analytically extended to a maximal multivalued analytic function
on

{(z1, . . . , zk) ∈ Ck | zi 6= zk, i = 1, . . . , k − 1},

where Mij ∈ Z+ for i 6= j satisfy xMijYV (ui, x)uj ∈ V [[x]]. Using the duality property in
Definition 2.5 repeatedly, we see that∏

1≤i<j≤k−1

(z−1
i − z−1

j )Mij〈w′3,Y−1(ezkLW1
(1)eπiLW1

(0)e−2 log(zk)LW1
(0)w1, z

−1
k )·

· (Y g2
W2

)−1(ezk−1LV (1)(−z−2
k−1)LV (0)g−1

1 uk−1, z
−1
k−1)·

· · · (Y g2
W2

)−1(ez1LV (1)(−z−2
1 )LV (0)g−1

1 u1, z
−1
1 )w2〉 (3.43)

is absolutely convergent on the region |z−1
i | < |z−1

k | > 0 for i = 1, . . . , k − 1, z−1
i 6= z−1

j for
i 6= j, and its sum can be analytically extended to a maximal multivalued analytic function
on

{(z1, . . . , zk) ∈ Ck | zi 6= zk, i = 1, . . . , k − 1}.

Thus (3.41) and consequently (3.40) is absolutely convergent on the region |z1| > · · · >
|zk| > 0 and its sum has a maximal analytic extension on the region Mk.

Next we consider the product of A+(Y) and the twisted vertex operator (Y g2
W3

)′. Let u, w1,
w2 and w′3 be the same as above. When |z−1

1 | > |z−1
2 | > 0 (or equivalently |z2| > |z1| > 0),

〈w′3, Y
g2
W2

(ez1LV (1)(−z−2
1 )LV (0)u, z−1

1 )Y(ez2LW1
(1)eπiLW1

(0)e−2 log(z2)LW1
(0)w1, z

−1
2 )w2〉 (3.44)
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converges absolutely and if in addition, | arg(z−1
1 − z−1

2 )− arg z−1
1 | < π

2
, its sum is equal to

f e(z−1
1 , z−1

2 ; ez1LV (1)(−z−2
1 )LV (0)u, ez2LW1

(1)eπiLW1
(0)e−2 log(z2)LW1

(0)w1, w2, w
′
3). (3.45)

We know that when arg z1, arg z2 6= 0,

〈A+(Y)(w1, z2)(Y g2
W2

)′(u, z1)w′3, w2〉
= 〈w′3, (Y

g2
W2

)−1(ez1LV (1)(−z−2
1 )LV (0)u, z−1

1 )·
· Y−1(ez2LW1

(1)eπiLW1
(0)e−2 log(z2)LW1

(0)w1, z
−1
2 )w2〉 (3.46)

can be obtained using the multivalued analytic function (3.30) on the region |z−1
1 | > |z−1

2 | > 0
starting from the value given by (3.44) by letting z−1

2 go around 0 clockwise once (corre-
sponding to b−1

23 ), then letting z−1
1 go around 0 clockwise once (corresponding to b−1

12 b
−1
13 ).

Then (3.46) also converges absolutely and if in addition, | arg(z−1
1 − z−1

2 )− arg z−1
1 | < π

2
, its

sum is equal to

f b
−1
23 b
−1
12 b
−1
13 (z−1

1 , z−1
2 ; ez1LV (1)(−z−2

1 )LV (0)u, ez2LW1
(1)eπiLW1

(0)e−2 log(z2)LW1
(0)w1, w2, w

′
3)

= f b
−1
13 b
−1
23 b
−1
12 (z−1

1 , z−1
2 ; ez1LV (1)(−z−2

1 )LV (0)u, ez2LW1
(1)eπiLW1

(0)e−2 log(z2)LW1
(0)w1, w2, w

′
3).

(3.47)

When −3π
2
< arg(z1 − z2)− arg z2 < −π

2
, we have

−π
2
< arg(z1 − z2)− arg z2 + π <

π

2
.

In the case arg z1 6= 0, by (3.38) and arg z−1
1 = − arg z1 + 2π, we obtain

−π
2

+ 2(q − 1)π < arg(z−1
1 − z−1

2 )− arg z−1
1 <

π

2
+ 2(q − 1)π.

When 0 ≤ arg(z−1
1 − z−1

2 ), arg z−1
1 < π, we have

−π < arg(z−1
1 − z−1

2 )− arg z−1
1 < π.

So in this case, q = 1. Since in this case,

−π
2
< arg(z−1

1 − z−1
2 )− arg z−1

1 <
π

2
,

we see that the sum of (3.46) is equal to (3.47). Using analytic extension, we see that when
|z2| > |z1| > 0 and −3π

2
< arg(z1 − z2)− arg z2 < −π

2
, the sum of (3.46) is equal to (3.47).

On the region |z2| > |z1| > 0, (3.47) is in fact equal to he+(z1, z2;u,w2, w1, w
′
3). This can be

seen as follows: On the intersection ofM2
0 and the region |z2| > |z1| > 0, he+(z1, z2;u,w2, w1, w

′
3)

is obtained by analytically extending (3.30) defined on the intersection of the region |z1| >
|z2| > 0, 0 ≤ arg(z−1

1 − z−1
2 ) < π and M2

0 . We need to find what is this analytic extension.
Let ξ, ζ ∈ −R+ satisfying ξ < ζ < 0. Then we have |ξ| > |ζ| > 0 and, by definition,

he+(ξ, ζ;u,w2, w1, w
′
3)
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= f b
−1
13 b
−1
23 (ξ−1, ζ−1; eξ

−1LV (1)(−ξ2)−LV (0)u, eζLW1
(1)e±πiLW1

(0)e−2 log(ζ)LW1
(0)w1, w2, w

′
3).

Let γ = (γ1, γ2) be the path from (ξ, ζ) to (ζ, ξ) given by the upper half circle γ1 centered at
ξ+ζ

2
with radius −ξ+ζ

2
from ξ to ζ and the lower half circle γ2 centered at ξ+ζ

2
with radius −ξ+ζ

2

from ζ to ξ. It is clear that γ is a continuous path in M2
0 . So he+(ζ, ξ;u,w2, w1, w

′
3) is obtained

by analytically extending the value he+(ξ, ζ;u,w2, w1, w
′
3) along γ. On the other hand, γ gives

a path γ′ = (γ−1
2 , γ−1

1 ) from (ζ−1, ξ−1) to (ξ−1, ζ−1). But γ′ is not a continuous path in M2
0

because when (z1, z2) goes from (ζ−1, ξ−1) to (ξ−1, ζ−1) along the path γ′, z1− z2 crosses the
positive real line clockwise. Crossing the positive real line clockwise corresponds to changing
the branch by an action of b−1

12 . Thus on the intersection of the region |z2| > |z1| > 0 and
M2

0 , we must have

he+(z1, z2;u,w2, w1, w
′
3)

= f b
−1
13 b
−1
23 b
−1
12 (z−1

1 , z−1
2 ; ez

−1
1 LV (1)(−z2

1)−LV (0)u, ez2LW1
(1)e±πiLW1

(0)e−2 log(z2)LW1
(0)w1, w2, w

′
3).

(3.48)

Since when |z2| > |z2| > 0 and | arg(z−1
1 − z−1

2 ) − arg z−1
1 | < π

2
, the sum of (3.46) is

equal to (3.47), that is, the right-hand side of (3.48), the sum of (3.46) is indeed equal
to he+(z1, z2;u,w2, w1, w

′
3).

We can prove the absolute convergence of

〈(Y g2
W2

)′)(u, z1)A−(Y)p2(w1, z2)w′3, w2〉

and
〈A−(Y)p2(w1, z2)φg−1

1
((Y g2

W3
)′)p1(u, z1)w′3, w2〉

in the corresponding regions to he−(z1, z2;u,w2, w1, w
′
3) similarly by generalizing the proofs

in [H8] using the same method above for A−(Y). Here we omit the details.
Finally we study the iterate of A±(Y) and the twisted vertex operator Y g1

W1
. When

arg z2 6= 0, from (3.29), we have

〈A±(Y)(Y g1
W1

(u, z1 − z2)w1, z2)w′3, w2〉
= 〈w′3,Y−1(ez2LW1

(1)e±πiLW1
(0)e−2 log(z2)LW1

(0)Y g1
W1

(u, z1 − z2)w1, z
−1
2 )w2〉. (3.49)

As in [H8], we have in the region |z2| > |z1 − z2| > 0

ez2LW1
(1)e±πiLW1

(0)e−2 log(z2)LW1
(0)Y g1

W1
(u, z1 − z2)w1

= Y g1
W1

(
ez1LV (1)(−z−2

1 )LV (0)u,
xx0

(x2 + x0)x2

) ∣∣∣∣xn0 =enlp12 (z1−z2), log x0=log(z1−z2), xn2 =en log(z2)

log x2=lp2 (z2), xn=e±nπi, log x=±πi

·

· ez2LW1
(1)e±πiLW1

(0)e−2 log(z2)LW1
(0)w1. (3.50)

As in the proof of the first part of Theorem 3.1, we see that

Y−1

(
Y g1
W1

(
ez1LV (1)(−z−2

1 )LV (0)u,
xx0

(x2 + x0)x2

) ∣∣∣∣xn0 =enlp12 (z1−z2), log x0=log(z1−z2), xn2 =en log(z2)

log x2=lp2 (z2), xn=e±nπi, log x=±πi

·
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· ez2LW1
(1)e±πiLW1

(0)e−2 log(z2)LW1
(0)w1, z

−1
2

)

is an iterated series obtained by expanding one variable inside the series obtained from
the iterate of Y−1 and Y g1

W1
. Using the same method as in the proof of the first part of

Theorem 3.1, we can prove that the corresponding multiple series is absolutely convergent.
In particular, we can calculate the sum of the series using any of the iterated sums associated
with the multisum. Then the same calculations as those in the proof of Theorem 6.1 in [H8]
shows that when |z2| > |z1 − z2| > 0 and | arg z1 − arg z2| < 1

2
, the right-hand side of (3.49)

is equal to

〈w′3,Y−1((Y g1
W1

)m+ 1±1
2 (ez1LV (1)(−z−2

1 )LV (0)u, z−1
1 − z−1

2 )·
· ez2LW1

(1)e±πiLW1
(0)e−2 log(z2)LW1

(0)w1, z
−1
2 )w2〉, (3.51)

where m ∈ Z is given by

log(z1 − z2)− log z1 − log z2 + πi = lm+ 1±1
2

(z−1
1 − z−1

2 ).

We know that

〈w′3,Y(Y g1
W1

(ez1LV (1)(−z−2
1 )LV (0)u, z−1

1 − z−1
2 )ez2LW1

(1)e±πiLW1
(0)e−2 log(z2)LW1

(0)w1, z
−1
2 )w2〉

(3.52)
is absolutely convergent on the region |z−1

2 | > |z−1
1 − z−1

2 | > 0 and, if in addition | arg z−1
1 −

arg z−1
2 | < π

2
, the sum is equal to

f e(z−1
1 , z−1

2 ; ez1LV (1)(−z−2
1 )LV (0)u, ez2LW1

(1)e±πiLW1
(0)e−2 log(z2)LW1

(0)w1, w2, w
′
3).

Since (3.51) can be obtained from (3.52) using the multivalued analytic function (3.30) on
the region |z−1

2 | > |z−1
1 − z−1

2 | > 0 starting from the value given by (3.52) by letting z−1
2

go around 0 clockwise once while z−1
1 − z−1

2 is fixed (corresponding to b−1
13 b
−1
23 since to keep

z−1
1 −z−1

2 fixed, z−1
1 must also go around 0 clockwise once) and then letting z−1

1 go around z−1
2

counterclockwise m + 1±1
2

times (corresponding to b
m+ 1±1

2
12 ), we see that (3.51) is absolutely

convergent in the region |z−1
2 | > |z−1

1 − z−1
2 | > 0 and if | arg z−1

1 − arg z−1
2 | < π

2
, the sum is

equal to

f b
−1
13 b
−1
23 b

m+1±1
2

12 (z−1
1 , z−1

2 ; ez1LV (1)(−z−2
1 )LV (0)u, ez2LW1

(1)e±πiLW1
(0)e−2 log(z2)LW1

(0)w1, w2, w
′
3).

(3.53)
We now consider the set given by |z−1

1 | > |z−1
2 | > |z−1

1 −z−1
2 | > 0, | arg z−1

1 −arg z−1
2 | < π

2
,

| arg(z−1
1 − z−1

2 ) − arg z−1
2 | < π

2
, arg z1, arg z2 6= 0 and m + 1±1

2
= 0. Since |z−1

1 | > |z−1
2 | >

|z−1
1 − z−1

2 | > 0, | arg z−1
1 − arg z−1

2 | < π
2

and | arg(z−1
1 − z−1

2 ) − arg z−1
2 | < π

2
, we know that

(3.52) is equal to

〈w′3, Y
g3
W1

(ez1LV (1)(−z−2
1 )LV (0)u, z−1

1 )Y(ez2LW1
(1)e±πiLW1

(0)e−2 log(z2)LW1
(0)w1, z

−1
2 )w2〉
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= f e(z−1
1 , z−1

2 ; ez1LV (1)(−z−2
1 )LV (0)u, ez2LW1

(1)e±πiLW1
(0)e−2 log(z2)LW1

(0)w1, w2, w
′
3). (3.54)

Then on this set, (3.51) is absolutely convergent to

f b
−1
13 b
−1
23 (z−1

1 , z−1
2 ; ez1LV (1)(−z−2

1 )LV (0)u, ez2LW1
(1)e±πiLW1

(0)e−2 log(z2)LW1
(0)w1, w2, w

′
3)

= he±(z1, z2;u,w1, w
′
3, w2).

By analytic extension, we see that the sum of (3.51) is equal to he±(z1, z2;u,w1, w
′
3, w2) on

the subregion of M2
0 given by |z−1

2 | > |z−1
1 − z−1

2 | > 0, | arg z−1
1 − arg z−1

2 | < π
2
. By analytic

extension again, we see that the sum of (3.49) is equal to he±(z1, z2;u,w1, w
′
3, w2) on the

subregion of M2
0 given by |z2| > |z1 − z2| > 0, | arg z1 − arg z2| < 1

2
.

4 Tensor product bifunctors and some natural isomor-

phisms

In this section we introduce the notion of twisted P (z)-intertwining map and give a definition
and a construction of P (z)-tensor product of a g1-twisted module and a g2-twisted V -module
for g1, g2 in a group G of automorphisms of V in a category C of twisted V -modules under
suitable assumptions. Using the skew-symmetry isomorphism Ω+ given in the preceding
section, we construct G-crossed commutativity isomorphisms. We also construct parallel
transport isomorphisms. Using G-crossed commutativity isomorphisms and parallel trans-
port isomorphisms, we construct G-crossed braiding isomorphisms. The material in this
section is essentially the same as the corrresponding material in [HL2], [H6] and [HLZ2]
except that V -modules and intertwining maps are replaced by twisted V -modules in C and
twisted intertwining maps.

Let G be a group of automorphisms of V and C a category of g-twisted V -modules for
g ∈ G. The category C can be the category of grading-restricted g-twisted V -modules for
g ∈ G. But since many of the constructions in the present paper works for any category
satisfying suitable conditions, we shall work with a general category C.

Definition 4.1 Let g1, g2 ∈ G, W1, W2, W3 g1-, g2-, g1g2-twisted V -modules, respectively,
in the category C and z ∈ C×. A twisted P (z)-intertwining map of type

(
W3

W1W2

)
is a linear

map I : W1⊗W2 → W 3 given by I(w1⊗w2) = Y(w1, z)w2 for w1 ∈ W1 and w2 ∈ W2, where
Y is a twisted intertwining operator of type

(
W3

W1W2

)
.

Using the notion of twisted P (z)-intertwining map, we now define the notion of tensor
product of two twisted modules in C.

Definition 4.2 Let W1 and W2 be g1- and g2-twisted V -modules, respectively, in C. A
P (z)-product of W1 and W2 is a pair (W3, I) consisting of a g1g2-twisted V -module W3 and
a twisted P (z)-intertwining map I of type

(
W3

W1W2

)
. A P (z)-tensor product of W1 and W2
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is a P (z)-product (W1 �P (z) W2,�P (z)) satisfying the following universal property: For any
P (z)-product (W3, I) of W1 and W2, there exists a unique module map f : W1�P (z)W2 → W3

such that we have the commutative diagram

W1 ⊗W2 W 3

W1 �P (z) W2

�P (z)

I

f̄

where f̄ is the natural extension of f to W1 �P (z) W2.

We now give a construction of (W1 �P (z) W2,�P (z)) under a suitable assumption using
the same method as in [HL2] and [HLZ2].

Given a P (z)-product (W3, I) of W1 and W2, for w′3 ∈ W ′
3, we have an element λI,w′3 ∈

(W1 ⊗W2)∗ defined by
λI,w′3(w1 ⊗ w2) = 〈w′3, I(w1 ⊗ w2)〉

for w1 ∈ W1 and w2 ∈ W2. Let W1 P (z)W2 be the subspace of (W1 ⊗W2)∗ spanned by λI,w′3
for all P (z)-products (W3, I) and w′3 ∈ W ′

3. We define a vertex operator map

Y g1g2
W1 P (z)W2

: V ⊗ (W1 P (z)W2)→ (W1 P (z)W2){x}[log x]

by

Y
(g1g2)−1

W1 P (z)W2
(v, x)λI,w′3 = λ

I,Y
(g1g2)

−1

W ′3
(v,x)w′3

for v ∈ V and λI,w′3 ∈ W1 P (z)W2.

Proposition 4.3 The pair (W1 P (z)W2, Y
g1g2
W1 P (z)W2

) is a generalized (g1g2)−1-twisted V -module.

Proof. Note that every element of W1 P (z)W2 is a linear combination of elements of the form

λI,w′3 for a g1g2-twisted V -module W3 in C, a P (z)-intertwining map I of type of
(

W3

W1W2

)
and

an element w′3 ∈ W ′
3. For fixed W3 and I, the space spanned by all λI,w′3 for w′3 ∈ W ′

3 is
the image of W ′

3 under the linear map from W ′
3 to W1 P (z)W2 given by w′3 7→ λI,w′3 . This

linear map preserve the gradings, commutes with the actions of (g1g2)−1 and twisted vertex
operators. So the space of spanned by all λI,w′3 for w′3 ∈ W ′

3 is a generalized (g1g2)−1-twisted
V -module. Thus W1 P (z)W2 as a sum of generalized (g1g2)−1-twisted V -modules is also a
generalized (g1g2)−1-twisted V -module.

Assumption 4.4 We assume that the following conditions for C hold:

1. For objects W1 and W2 in C, W1 P (z)W2 is also in C.

2. The contragredient of an object in C is also in C.
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3. the double contragredient of an object in C is equivalent to the object

From the Conditions 1 and 2 in Assumption 4.4, we see that (W1 P (z)W2)′ is in C. We
take W1 �P (z)W2 to be (W1 P (z)W2)′. We still need to give a twisted P (z)-intertwining map

�P (z) of type
(
W1�P (z)W2

W1W2

)
or equivalently, an intertwining operator of the same type.

Let W be a (g1g2)−1-twisted V -module in C and f : W → W1 P (z)W2 a V -module
map. Since the double contragredient of an object in C is equivalent to the object itself by
Condition 3 in Assumption 4.4, every element of (W ′)′ can be viewed as an element of W .
For w1 ∈ W1, w2 ∈ W2 and w ∈ W , we define

〈w,Yf (w1, z)w2〉 = (f(w))(w1 ⊗ w2). (4.1)

Then we define

Yf (w1, x)w2 = xLW ′ (0)e−(log z)LW3
(0)Yf (x−LW1

(0)e(log z)LW1
(0)w1, z)x

−LW2
(0)e(log z)LW2

(0)w2

(4.2)
for w1 ∈ W1, w2 ∈ W2. We now have a linear map

Yf : W1 ⊗W2 → W ′{x}[log x].

Proposition 4.5 The linear map Yf : W1 ⊗W2 → W ′{x}[log x] given by (4.1) and (4.2)

above is a g1g2-twisted intertwining operator of type
(

W ′

W1W2

)
. In particular, in the case that

W = W1 P (z)W2 and f = 1W1 P (z)W2
: W → W1 P (z)W2 is the identity map, we obtain a

g1g2-twisted intertwining operator Y1
W1 P (z)W2

of type
(
W1�P (z)W2

W1W2

)
.

Proof. We first verify the L(−1)-derivative property.

d

dx
Yf (w1, x)w2

=
d

dx
xLW ′ (0)e−(log z)LW ′ (0)Yf (x

−LW ′1
(0)
e

(log z)LW ′1
(0)
w1, z)x

−LW2
(0)e(log z)LW2

(0)w2

= xLW ′ (0)−1e−(log z)LW ′ (0)LW ′(0)Yf (x−LW1
(0)e(log z)LW1

(0)w1, z)x
−LW2

(0)e(log z)LW2
(0)w2

− xLW ′ (0)e−(log z)LW ′ (0)Yf (LW1(0)x−LW1
(0)−1e(log z)LW1

(0)w1, z)x
−LW2

(0)e(log z)LW2
(0)w2

− xLW ′ (0)e−(log z)LW ′ (0)Yf (x−LW1
(0)e(log z)LW1

(0)w1, z)LW2(0)x−LW2
(0)−1e(log z)LW2

(0)w2

= x−1xLW ′ (0)e−(log z)LW ′ (0)·
·
(
LW ′(0)Yf (x−LW1

(0)e(log z)LW1
(0)w1, z)

− Yf (LW1(0)x−LW1
(0)e(log z)LW1

(0)w1, z)− Yf (x−LW1
(0)e(log z)LW1

(0)w1, z)LW2(0)
)
·

· x−LW2
(0)e(log z)LW2

(0)w2. (4.3)

Since f is a V -module map, f(W ) is a submodule of W1 P (z)W2. By the definition of
W1 P (z)W2, it is spanned by elements of the form λI,w′3 for a g1g2-twisted V -module W3, a

P (z)-intertwining map I of type
(

W3

W1W2

)
and w′3 ∈ W ′

3. In particular, for w ∈ W ,

f(w) =
n∑
i=3

λIi,w′i ,
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where for i = 3, . . . , n, w′i is an element of the contragredient module W ′
i of a g1g2-twisted

V -module Wi, I
i a P (z)-intertwining map of type

(
Wi

W1W2

)
.

Let Y i be the intertwining operator of type
(

Wi

W1W2

)
such that I i = Y i(·, z)·. Then we

have

〈w,Yf (w1, z)w2〉 = (f(w))(w1 ⊗ w2)

=
n∑
i=3

λIi,w′i(w1 ⊗ w2)

=
n∑
i=3

〈w′i, I i(w1 ⊗ w2)〉

=
n∑
i=3

〈w′i,Y i(w1, z)w2)〉

for w1 ∈ W1 and w2 ∈ W2. Also,

(f(LW (0)w))(w1 ⊗ w2) = ((LW1 P (z)W2
(0)f(w))(w1 ⊗ w2)

=
n∑
i=3

(LW1 P (z)W2
(0)λIi,w′i)(w1 ⊗ w2)

=
n∑
i=3

Resxx(Y
(g1g2)−1

W ′ (ω, x)λIi,w′i)(w1 ⊗ w2)

=
n∑
i=3

Resxx(λ
Ii,Y

(g1g2)
−1

W ′
i

(ω,x)w′i
(w1 ⊗ w2)

=
n∑
i=3

λIi,LW ′
i
(0)w′i

(w1 ⊗ w2).

for w1 ∈ W1 and w2 ∈ W2. So we have

f(LW (0)w) =
n∑
i=3

λIi,LW ′
i
(0)w′i

.

Thus for w1 ∈ W1, w2 ∈ W2,

〈w, (LW ′(0)Yf (w1, z)− Yf (LW1(0)w1, z)− Yf (w1, z)LW2(0))w2〉
= 〈LW (0)w,Yf (w1, z)w2〉 − 〈w,Yf (LW1(0)w1, z)w2〉 − 〈w,Yf (w1, z)LW2(0)w2〉
= (f(LW (0)w))(w1 ⊗ w2)− (f(w))(LW1(0)w1 ⊗ w2)− (f(w))(w1 ⊗ LW2(0)w2)

=
n∑
i=3

λIi,LW ′
i
(0)w′i

(w1 ⊗ w2)−
n∑
i=3

λI,w′i(LW1(0)w1 ⊗ w2)−
n∑
i=3

λI,w′i(w1 ⊗ LW2(0)w2)

=
n∑
i=3

〈LW ′i (0)w′i,Y i(w1, z)w2〉 −
n∑
i=3

〈w′i,Y i(LW1(0)w1, z)w2〉 −
n∑
i=3

〈w′i,Y i(w1, z)LW2(0)w2〉
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=
n∑
i=3

〈w′i, (LWi
(0)Y i(w1, z)− Y i(LW1(0)w1, z)− Y i(w1, z)LW2(0))w2〉

=
n∑
i=3

z〈w′i,Y i(LW1(−1)w1, z)w2〉

= z

n∑
i=3

λIi,w′i((LW1(−1)w1 ⊗ w2)

= z(f(w))(LW1(−1)w1 ⊗ w2)

= z〈w,Yf (LW1(−1)w1, z)w2〉,

where we have used the L(0)-commutator formula for the twisted intertwining operators Y i.
Since w ∈ W and w2 ∈ W2 are arbitrary, we obtain

LW (0)Yf (w1, z)− Yf (LW1(0)w1, z)− Yf (w1, z)LW2(0) = zYf (LW1(−1)w1, z) (4.4)

for w1 ∈ W1.
Using (4.4), we see that the right-hand side of (4.3) is equal to

x−1xLW (0)e−(log z)LW (0)zYf (LW1(−1)x−LW1
(0)e(log z)LW1

(0)w1, z)x
−LW2

(0)e(log z)LW2
(0)w2

= xLW (0)e−(log z)LW (0)Yf (x−LW1
(0)e(log z)LW1

(0)LW1(−1)w1, z)x
−LW2

(0)e(log z)LW2
(0)w2

= Yf (LW1(−1)w1, x)w2,

proving the L(−1)-derivative property.
For v ∈ V , w1 ∈ W1 and w2 ∈ W2, we have

(f(Y
(g1g2)−1

W (v, x)w))(w1 ⊗ w2) = (Y
(g1g2)−1

W1 P (z)W2
(v, x)f(w))(w1 ⊗ w2)

=
n∑
i=3

(Y
(g1g2)−1

W1 P (z)W2
(v, x)λIi,w′i)(w1 ⊗ w2)

=
n∑
i=3

λ
Ii,Y

(g1g2)
−1

Wi
(v,x)w′i

(w1 ⊗ w2).

Then we obtain

f(Y
(g1g2)−1

W (v, x)w) =
n∑
i=3

λ
Ii,Y

(g1g2)
−1

Wi
(v,x)w′i

For a g1g2-twisted V -module W3 in C, a P (z)-intertwining map I of type
(

W3

W1W2

)
, u ∈ V ,

w1 ∈ W1, w2 ∈ W2 and w′3 ∈ W ′
3, we have

〈w, Y g1g2
W ′ (u, z1)Yf (w1, z2)w2〉

= 〈w, Y g1g2
W ′ (u, z1)e(log z2)LW ′ (0)e−(log z)LW ′ (0)·
· Yf (e−(log z2)LW1

(0)e(log z)LW1
(0)w1, z)e

−(log z2)LW2
(0)e(log z)LW2

(0)w2〉

32



= 〈e(log z2)LW (0)e−(log z)LW (0)Y
(g1g2)−1

W (ez1LV (1)(−z−2
1 )LV (0)u, z−1

1 )w,

Yf (e−(log z2)LW1
(0)e(log z)LW1

(0)w1, z)e
−(log z2)LW2

(0)e(log z)LW2
(0)w2〉

= (f(e(log z2)LW (0)e−(log z)LW (0)Y
(g1g2)−1

W (ez1LV (1)(−z−2
1 )LV (0)u, z−1

1 )w))

(e−(log z2)LW1
(0)e(log z)LW1

(0)w1 ⊗ e−(log z2)LW2
(0)e(log z)LW2

(0)w2)

=
n∑
i=3

λ
Ii,e

(log z2)LW ′
i
(0)
e
−(log z)L

W ′
i
(0)
Y

(g1g2)
−1

W ′
i

(ez1LV (1)(−z−2
1 )LV (0)u,z−1

1 )w′i

(e−(log z2)LW1
(0)e(log z)LW1

(0)w1 ⊗ e−(log z2)LW2
(0)e(log z)LW2

(0)w2)

=
n∑
i=3

〈e(log z2)LW ′
i
(0)
e
−(log z)LW ′

i
(0)
Y

(g1g2)−1

W ′i
(ez1LV (1)(−z−2

1 )LV (0)u, z−1
1 )w′i,

Y i(e−(log z2)LW1
(0)e(log z)LW1

(0)w1, z)e
−(log z2)LW2

(0)e(log z)LW2
(0)w2〉

=
n∑
i=3

〈w′i, Y
g1g2
Wi

(u, z1)e(log z2)LWi (0)e−(log z)LWi (0)·

· Y i(e−(log z2)LW1
(0)e(log z)LW1

(0)w1, z)e
−(log z2)LW2

(0)e(log z)LW2
(0)w2〉

=
n∑
i=3

〈w′i, Y
g1g2
Wi

(u, z1)Y i(w1, z2)w2〉. (4.5)

Similarly, we have

〈w,Yf (w1, z2)Y g2
W2

(u, z1)w2〉 =
n∑
i=3

〈w′i,Y i(w1, z2)Y g2
W2

(u, z1)w2〉 (4.6)

and

〈w,Yf (Y g1
W2

(u, z1 − z2)w1, z2)w2〉 =
n∑
i=3

〈w′i,Y i(Y
g1
W1

(u, z1 − z2)w1, z2)w2〉. (4.7)

Since Y i for i = 1, . . . , n are twisted intertwining operators, the duality property for Y follows
from (4.5), (4.6), (4.7) and the duality properties for Y i.

The convergence for products of more than two operators follows from the formula

〈w, Y g1g2
W ′ (u1, z1) · · ·Y g1g2

W ′ (uk−1, zk−1)Yf (w1, zk)w2〉

=
n∑
i=3

〈w′i, Y
g1g2
Wi

(u1, z1) · · ·Y g1g2
Wi

(uk−1, zk−1)Y i(w1, zk)w2〉,

whose proof is the same as that of (4.5).

Let �P (z) = Y1
W1 P (z)W2

(·, z)·. Then �P (z) is a P (z)-intertwining map of type
(
W1�P (z)W2

W1W2

)
.

Let
w1 �P (z) w2 = �P (z)(w1 ⊗ w2) = Y(w1, z)w2 ∈ W1 �P (z) W2
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for w1 ∈ W1 and w2 ∈ W2. We call w1 �P (z) w2 the tensor product of w1 and w2. By (4.1),
we have

λ(w1 ⊗ w2) = 〈λ,w1 �P (z) w2〉 (4.8)

for λ ∈ W1 P (z)W2, w1 ∈ W1 and w2 ∈ W2.

Theorem 4.6 The pair (W1 �P (z) W2,�P (z)) is a P (z)-tensor product of W1 and W2.

Proof. Let (W3, I) be a P (z)-product of W1 and W2. Then we have a module map g : W ′
3 →

W1 P (z)W2 given by g(w′3) = λI,w′3 for w′3 ∈ W ′
3. By definition, we have (g(w′3))(w1 ⊗ w2) =

λI,w′3(w1 ⊗ w2) = 〈w′3, I(w1 ⊗ w2)〉 for w1 ∈ W1 and w2 ∈ W2. The adjoint of this module
map is a module map f : W1 �P (z) W2 → W3. By definitions and (4.8),

〈w′3, (f̄ ◦�P (z))(w1 ⊗ w2)〉 = 〈w′3, f̄(w1 �P (z) w2)〉
= 〈g(w′3), w1 �P (z) w2〉
= (g(w′3))(w1 ⊗ w2)

= 〈w′3, I(w1 ⊗ w2)〉.

So we obtain f̄ ◦�P (z) = I.

We have assigned each object (W1,W2) in the category C × C an object W1 �P (z) W2 in
C. To obtain a functor from C × C to C, we still need to assign a morphism (f1, f2) in C × C
a morphism f1 �P (z) f2 in C.

Let W1, W̃1 be g1-twisted V -modules in C and W2, W̃2 g1-twisted V -modules in C. Let
f1 : W1 → W̃1 and f2 : W2 → W̃2 be module maps. Let Ỹ be the intertwining operator

of type
(W̃1�P (z)W̃2

W̃1W̃2

)
such that w̃1 �P (z) w̃2 = Ỹ(w̃1, z)w̃2. Since f1 and f2 are module maps,

Y = Ỹ ◦ (f1 ⊗ f2) is an intertwining operator of type
(
W̃1�P (z)W̃2

W1W2

)
. Then I = Y(·, z)· is a

P (z)-intertwining operator of the same type. Hence we have a P (z)-product (W̃1�P (z)W̃2, I)
of W1 and W2. By the universal property of the tensor product (W1 �P (z) W2,�P (z)), there

exist a unique module map f : W1�P (z)W2 → W̃1�P (z)W̃2 such that I = f̄ ◦�P (z). We define
this module map f to be the P (z)-tensor product of f1 and f2 and denote it by f1 �P (z) f2.

Theorem 4.7 The assignments given by (W1,W2) 7→ W1�P (z)W2 and (f1, f2) 7→ f1�P (z)f2

above is a functor from C × C to C.

Proof. It is easy to verify 1w1 �P (z) 1W2 = 1W1�P (z)W2 and (f1 �P (z) f2) ◦ (g1 �P (z) g2) =
(f1g1) �P (z) (f2g2) by using the construction of the tensor products of module maps. We
omit the details of the proofs.

We call this functor the P (z)-tensor product bifunctor.
We now give a result on Condition 1 in Assumption 4.4.

Theorem 4.8 Let C be the category of grading-restricted g-twisted V -modules for g ∈ G.
Assume that the following conditions are satisfied:
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1. For g ∈ G, there are only finitely many irreducible grading-restricted g-twisted V -
modules.

2. Every grading-restricted twisted V -module is completely reducible.

3. For g1, g2 ∈ G and g1-, g2-, g1g2-twisted V -modules W1, W2, W3 in C, the fusion rule
NW3
W1W2

= dimVW3
W1W2

is finite.

Then W1 P (z)W2 is in C for objects W1 and W2 in C.

Proof. Let W1 and W2 be g1- and g2-twisted V -modules in C. Then W1 P (z)W2 is a geberal-
ized (g1g2)−1-twisted V -module. From the construction of W1 P (z)W2, it is a sum of grading-
restricted (g1g2)−1-twisted V -module. By Condition 2, W1 P (z)W2 must be a direct sum of
irreducible grading-restricted (g1g2)−1-twisted V -modules. But by Condition 1, there are
only finitely many irreducible grading-restricted (g1g2)−1-twisted V -modules. If W1 P (z)W2

is an infinite direct sum of irreducible grading-restricted (g1g2)−1-twisted V -modules, at least
one irreducible grading-restricted (g1g2)−1-twisted V -module W3 has infinitely many copies
in this decomposition of W1 P (z)W2. But then we have infinitely many linearly indepen-
dent injective V -module maps from W3 to the W1 P (z)W2. But by Proposition 4.5, these
infinite injective V -module maps give linearly independent twisted intertwining operator of
type

(
W ′3

W1W2

)
. Thus the fusion rule NW3

W1W2
is ∞. By Condition 3, this is a contradiction.

So W1 P (z)W2 must be a finite direct sum of irreducible grading-restricted (g1g2)−1-twisted
V -modules. In particular, it is grading restricted.

Corollary 4.9 The category of grading-restricted g-twisted V -modules for g ∈ G satisfies
Assumption 4.4.

Proof. Theorem 4.8 shows that Condition 1 holds. Conditions 2 and 3 are clearly holds for
grading-restricted twisted V -modules.

For the sameW1 andW2, let Y be the twisted intertwining operator of type
(φg1 (W2)�P (−z)W1

φg1 (W2)W1

)
such that w2 �P (−z) w1 = Y(w2,−z)w1 for w1 ∈ W1, w2 ∈ φg1(W2) = W2. Then by Theorem
3.1, Ω+(Y) is a twisted intertwining operator of type(

φg1(W2) �P (−z) W1

W1φ−1
g1

(φg1(W2))

)
=

(
φg1(W2) �P (−z) W1

W1W2

)
.

In particular, the pair (φg1(W2)�P (−z)W1,Ω+(Y)(·, z)·) is a P (z)-product of W1 and W2. By
the universal property of the tensor product W1 �P (z) W2, there exists a unique g1g2-twisted
V -module map

RP (z) : W1 �P (z) W2 → φg1(W2) �P (−z) W1

such that
Ω(Y)(·, z)· = RP (z) ◦�P (z),
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where RP (z) is the natural extension of RP (z). The g1g2-twisted V -module map RP (z) has
an inverse

R−1
P (z) : φg1(W2) �P (−z) W1 → W1 �P (z) W2

constructed in the same as above except that we use Ω− instead of Ω+. Then we obtain a
natural isomorphism RP (z) called the G-crossed commutativity isomorphism.

As in [H6] and [HLZ2], we also have parallel transport isomorphisms. Let z1, z2 ∈ C×
and γ a path in C× from z1 to z2. We denote the homotopy class of γ by [γ]. For the
same W1 and W2, let Y be the twisted intertwining operator of type

(W1�P (z2)
W2

W1W2

)
such that

w1 �P (z2) w2 = Y(w1, z)w2 for w1 ∈ W1, w2 ∈ W2. Then (W1 �P (z2) W2,Y(·, z1)·) is a P (z1)-
product of W1 and W2. By the universal property of the P (z1)-tensor product W1 �P (z1)W2,
there exists a unique g1g2-twisted V -module map

T[γ] : W1 �P (z1) W2 → W1 �P (z2) W2

such that T[γ] ◦ �P (z1) = �P (z2). The g1g2-twisted twisted V -module map T[γ] is invertible
since the same construction also gives a g1g2-twisted V -module map

T[γ−1] : W1 �P (z2) W2 → W1 �P (z1) W2

which is clearly the inverse of T[γ]. Thus the natural transformation T[γ] is a natural isomor-
phism called the parallel transport isomorphism from z1 to z2 along [γ].

Let γ be a path from −1 to 1 in the closed upper half plane with 0 deleted. For the same
W1 and W2, we define the G-crossed braiding isomorphsim R : W1�P (1)W2 → φg1(W2)�P (1)

W1 by
R = T[γ] ◦ RP (1).

5 Compatibility condition and grading-restriction con-

dition

In this section, we introduce P (z)-compatibility condition and P (z)-local grading-restriction
condition and using these conditions to give another construction of W1 P (z)W2 for two
twisted V -modules W1 and W2. In the untwisted case (the case that C is the category of
(untwisted or 1V -twisted) V -modules), these conditions and this second construction given in
[HL2], [HL3] and [HLZ3] play a crucial role in the proof of the associativity of intertwining
operators and the construction of associativity isomorphisms in [H1] and [HLZ5]. It is
expected that they will play the same crucial role in the proof of the associativity of twisted
intertwining operators and the construction of associativity isomorphisms for the P (z) tensor
product bifunctors on the category C of twisted V -modules.

In the untwisted case, The P (z)-compatibility condition is formulated using a formula
corresponding to the Jacobi identity for intertwining operators. Even though we can obtain
a Jacobi identity for the rational coefficients of the expansions in a suitable basis of products
and iterates of twisted intertwining operators with twisted vertex operators as in [H2] , we
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do not have a Jacobi identity for the products and iterates of twisted intertwining operators
with twisted vertex operators. Thus we have to use the analytic method to formulate the
P (z)-compatibility condition and prove the main results. In particular, the formulation
and proofs involving the P (z)-compatibility condition are completely different from those in
[HL2], [HL3] and [HLZ3].

For a fixed z ∈ C×, we need to study multivalued analytic functions on the region

Mn(0, z) =

{
(z1, . . . , zn) ∈ Cn

∣∣∣∣∣ zi 6= 0, zi 6= z, i = 1, . . . , n,

zi 6= zj, for i, j = 1, . . . , n, and i 6= j, if n > 1

}
.

for n ∈ Z+ and its subregions

Ωm,k,l(z) =


(z1, . . . , zm+k+l)

∈ Cm+k+l

∣∣∣∣∣∣∣∣∣∣∣∣

|z|< |zm|<. . .< |z1|, if m > 0,

0< |zm+k − z|<. . .< |zm+1 − z|< |z|, if k > 0,

0< |zm+k+l|<. . .< |zm+k+1|< |z|, if l > 0,

|zm+1 − z|+ |zm+k+1| < |z|, if k > 0, l > 0,

|zm+1 − z|+ |z1| < |z|, if m > 0, k > 0


,

Ω
(1)
m,k,l(z) =



(z1, . . . , zm+k+l)

∈ Ωm,k,l(z)

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

| arg(zj − z)− arg(zj)| <
π

2
,

j = 1, . . . ,m, if m > 0

| arg(zj)− arg(z)| < π

2
,

j = m+ 1, . . . ,m+ k, if k > 0

− 3π

2
< arg(zj − z)− arg(z)<−π

2
,

j = m+k+1, . . . ,m+k+l, if l > 0


,

Ω
(2)
m,k,l(z) =



(z1, . . . , zm+k+l)

∈ Ωm,k,l(z)

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

| arg(zj − z)− arg(zj)| <
π

2
,

j = 1, . . . ,m, if m > 0

| arg(zj)− arg(z)| < π

2
,

j = m+ 1, . . . ,m+ k, if k > 0

π

2
< arg(zj − z)− arg(z) <

3π

2
,

j = m+k+1, . . . ,m+k+l, if l > 0


.

for m, k, l ∈ N. Also, we define Mn
0 (0, z) to be the simply-connected region given by cutting

Mn(0, z) along the positive real lines in the zi-planes, zi − zj-planes and zi − z-planes, that
is, the sets

{(z1, . . . , zn) ∈Mn(0, z) | zi ∈ R+}, i = 1, . . . , n,

{(z1, . . . , zn) ∈Mn(0, z) | zi − zj ∈ R+}, i, j = 1, . . . , n, i 6= j,

37



{(z1, . . . , zn) ∈Mn(0, z) | zi − z ∈ R+}, i = 1, . . . , n,

with these sets attached to the upper half zi-planes, zi − zj-planes and zi − z-planes.
To formulate the P (z)-compatibility condition, we need a generalization of the notion of

isolated singularity in the theory of one complex variable to several complex variables. Let
b = (b1, . . . , bn) ∈ (C ∪ {∞})n and r = (r1, . . . , rn) ∈ Rn

+. Let I ⊂ {1, . . . , n}. We use the
following notation for polydisks and polycircular domains:

∆I(b, r) =

(z1, . . . , zn) ∈ (C ∪ {0})n

∣∣∣∣∣∣∣∣∣
|zi| > ri or zi =∞ if bi =∞,

|zi − bi| < ri if bi ∈ C, for i ∈ I,
|zj| > rj if bj =∞,

0 < |zj − bj| < rj if bj ∈ C, for j /∈ I.

 ,

∆(b, r) = ∆{1,...,n}(b, r),

∆×(b, r) = ∆∅(b, r).

We shall use bzi,z to denote the homotopy class of loop in M l(0, z) with zi going around
z counterclockwise once with zj for j 6= i fixed.

Let g1 and g2 be automorphisms of V , W1, W2, W3 g1-, g2-, g1g2-twisted V -modules,
respectively, in the category C and z ∈ C×. Let I be a twisted P (z)-intertwining map of
type

(
W3

W1W2

)
and w′3 ∈ W ′

3. Then we have an element λI,w′3 ∈ W1 P (z)W2.

Proposition 5.1 The element λI,w′3 has the following property: For l ∈ N, u1, . . . , ul ∈ V ,
w1 ∈ W1, and w2 ∈ W2, there exists a multivalued analytic function

fl(z1, . . . , zl;u1, . . . , ul, w1, w2;λI,w′3) (5.1)

on M l(0, z) with a preferred branch

f el (z1, . . . , zl;u1, . . . , ul, w1, w2;λI,w′3) (5.2)

on M l
0(0, z), satisfying the following:

1. (a) For i, j = 1, . . . , l, i 6= j, zi − zj = 0 are poles of (5.1). In particular, there exist
Mij ∈ Z+ such that( ∏

1≤i<j≤l

(zi − zj)Mij

)
fl(z1, . . . , zl;u1, . . . , ul, w1, w2;λI,w′3) (5.3)

can be analytically extended to a multivalued analytic function on

{(z1, . . . , zl) ∈ Cl | zi 6= 0, zi 6= z, i = 1, . . . , l}

(b) All component-isolated singularities of (5.3) are regular singularities.
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2. For u1, . . . , ul ∈ V , w1 ∈ W1, and w2 ∈ W2,

(a) The series

λI,w′3

(
Y g1(u1, z1 − z)w1 ⊗ w2

)
= λI,w′3

(
Y g1(u1, x)w1 ⊗ w2

)∣∣∣
xn=enl0(z1−z), log x=l0(z1−z)

(5.4)

is absolutely convergent on the region Ω0,1,0(z). Moreover, it is convergent to

f e1 (z1;u1, w1, w2;λI,w′3) on the region Ω
(1)
0,1,0(z) = Ω

(2)
0,1,0(z).

(b) For l ∈ N, the multiple series

λI,w′3

(
w1 ⊗ Y g2(u1, z1) · · ·Y g2(ul, zl)w2

)
= λI,w′3

(
w1 ⊗ Y g2(u1, x1) · · ·Y g2(ul, xl)w2

)∣∣∣
xni =enl0(z1), log(xi)=l0(z1), i=1,...,l

(5.5)

in powers and logarithms of z1, . . . , zl is absolutely convergent on the region Ω0,0,l(z).

Moreover, it is absolutely convergent to (5.2) on the region Ω
(1)
0,0,l(z) and to

f
b−1
z1,z
···b−1

zl,z

l (z1, . . . , zl;u1, . . . , ul, w1, w2;λ)

on the region Ω
(2)
0,0,l(z).

Proof. This result can be easily verified by using the definitions of λI,w′3 and P (z)-intertwining
maps and the properties of twisted intertwining operators. We omit the details.

Let g1 and g2 be automorphisms of V , W1, W2 g1-, g2-twisted V -modules, respectively,
in the category C and z ∈ C×. Motivated by Proposition 5.1, we formulate the following
condition for λ ∈ (W1 ⊗W2)∗:

P (z)-Compatibility condition A element λ ∈ (W1 ⊗W2)∗ is said to be P (z)-compatible
if for l ∈ N, u1, . . . , ul ∈ V , w1 ∈ W1, and w2 ∈ W2, there exists a multivalued analytic
function

fl(z1, . . . , zl;u1, . . . , ul, w1, w2;λ) (5.6)

on M l(0, z) with a preferred branch

f el (z1, . . . , zl;u1, . . . , ul, w1, w2;λ) (5.7)

on M l
0(0, z), satisfying the following:

1. (a) For i, j = 1, . . . , l, i 6= j, z1 − zj = 0 are poles of (5.6). In particular, there
exists Mij ∈ Z+ such that∏

1≤i<j≤n

(zi − zj)Mijfl(z1, . . . , zn;u1, . . . , un, w1, w2;λ) (5.8)

39



can be analytically extended to a multivalued analytic function on

{(z1, . . . , zl) ∈ Cl | zi 6= 0, zi 6= z, i = 1, . . . , l}.

(b) All component-isolated singularities of (5.8) are regular singularities.

2. For u1, . . . , ul ∈ V , w1 ∈ W1, and w2 ∈ W2,

(a) The series

λ
(
Y g1(u1, z1 − z)w1 ⊗ w2

)
= λ

(
Y g1(u1, x)w1 ⊗ w2

)∣∣∣
xn=enl0(z1−z), log x=l0(z1−z)

(5.9)

is absolutely convergent on the region Ω0,1,0(z). Moreover, it is convergent to

f e1 (z1;u1, w1, w2;λ) on the region Ω
(1)
0,1,0(z) = Ω

(2)
0,1,0(z).

(b) For l ∈ N, the multiple series

λ
(
w1 ⊗ Y g2(u1, z1) · · ·Y g2(ul, zl)w2

)
= λ

(
w1 ⊗ Y g2(u1, x1) · · ·Y g2(ul, xl)w2

)∣∣∣
xni =enl0(z1), log(xi)=l0(z1), i=1,...,l

(5.10)

in powers and logarithms of z1, . . . , zl is absolutely convergent on the region
Ω0,0,l(z). Moreover, it is absolutely convergent to (5.7) on the region Ω

(1)
0,0,l(z)

and to

f
b−1
z1,z
···b−1

zl,z

l (z1, . . . , zl;u1, . . . , ul, w1, w2;λ)

on the region Ω
(2)
0,0,l(z).

We denote the subspace of P (z)-compatible functionals in (W1 ⊗W2)∗ as

COMPP (z)((W1 ⊗W2)∗)

or COMP for short.

Remark 5.2 Note that the following are component-isolated singularities (and therefore
regular singular points) of (5.6) and (5.8):

• (z1, . . . , zl)− β = δ, for any β ∈ {0, z}l, and δ ∈ {0,∞}l are isolated singularities (and
therefore regular singular points) of (5.6) and (5.8).

• (z1 − z2, z2) = (0,∞) and (z1 − z2, z2 − z) = (0,∞) are regular singular points of
f2(z1, z2;u1, u2, w1, w2;λ).
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Remark 5.3 In 2(b) of Proposition 5.1 and 2.(b) of the P (z)-compatibility condition, the

reason that we involve two different regions Ω
(1)
0,0,l(z) and Ω

(2)
0,0,l(z) is because either of these two

regions could be empty. Notice that here z is a fixed nonzero complex number. Actually,
when arg z ∈ [0, π/2], the region Ω

(1)
0,0,l(z) is empty. When arg z ∈ [3π/2, 2π), the region

Ω
(2)
0,0,l(z) is empty. When Ω

(1)
0,0,l(z) and Ω

(2)
0,0,l(z) are both nonempty, the absolute convergence

of (5.10) on these two regions are equivalent.

Remark 5.4 Because of the definition of the domain of (5.7), i.e. M l
0(0, z), and the fact

that its singularities at zi = zj for i 6= j are poles, branches of (5.6) can be indexed by
elements in the fundamental group of the space

{(z1, . . . , zn) ∈ Cn | zi 6= 0, zi 6= z, i = 1, . . . , n} =
n∏
i=1

{zi ∈ C| zi 6= 0, zi 6= z}.

A set of generators of this fundamental group can be chosen to be bzi,0, bzi,z, i = 1, . . . , n.
For each i, the elements bzi,0 and bzi,z corresponds to b13 and b12 defined in section 2, and
they freely generate π1({zi ∈ C| zi 6= 0, zi 6= z}). Notice that

π1

(
n∏
i=1

{zi ∈ C| zi 6= 0, zi 6= z}

)
=

n∏
i=1

π1

(
{zi ∈ C| zi 6= 0, zi 6= z}

)
=

n∏
i=1

〈bi,0, bi,z〉. (5.11)

For λ ∈ COMP, we want to define Y
(g1g2)−1

P (z) (u, x)λ ∈ (W1⊗W2)∗{x}[log x]. We first define

Y
(g1g2)−1

P (z) (u, x)λ ∈ (W1⊗W2)∗{x}[log x] for λ in a larger subspace of (W1⊗W2)∗ than COMP.

Let COMP (z)((W1 ⊗W2)∗) or simply COM be the subspace of (W1 ⊗W2)∗ consisting of λ
satisfying 1.(a), (b) and 2.(b) in the P (z)-compatibility condition. By definition, COMP ⊂
COM. To define Y

(g1g2)−1

P (z) (u, x)λ ∈ (W1 ⊗ W2)∗{x}[log x] for u ∈ V and λ ∈ COM is
equivalent to define

Y
(g1g2)−1

P (z) (exL(1)(−x2)−L(0)u, x−1)λ =
(
Y

(g1g2)−1

P (z)

)o
(u, x)λ ∈ (W1 ⊗W2)∗{x}[log x].

Since z1 =∞ is a regular singular point of f1(z1;u1, w1, w2;λ), we know that there exist
unique ai,n,j(u1, w1, w2;λ) ∈ C and ri ∈ C, for i, j = 0, . . . , K and n ∈ N, such that on

Ω
(1)
1,0,0(z) = Ω

(2)
1,0,0(z) (i.e. the region given by |z1| > |z|, | arg(z1 − z)− arg(z1)| < π

2
),

f e1 (z1;u,w1, w2;λ) =
K∑

i,j=0

∑
n∈N

ai,n,j(u,w1, w2;λ)zri−n1 (log z1)j.

For i, j = 0, . . . , K, n ∈ N and u ∈ V , we define
(
Y

(g1g2)−1

P (z)

)o
−ri+n−1,j

(u)λ ∈ (W1 ⊗W2)∗ by

((
Y

(g1g2)−1

P (z)

)o
−ri+n−1,k

(u)λ

)
(w1 ⊗ w2) = ai,n,j(u,w1, w2;λ)
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for w1 ∈ W1 and w2 ∈ W2. Then we define Y
(g1g2)−1

P (z) (exL(1)(−x2)L(0)u, x−1)λ to be

N∑
i,j=0

∑
n∈N

(
Y

(g1g2)−1

P (z)

)o
−ri+n−1,j

(u)λxri−n(log x)j ∈ (W1 ⊗W2)∗{x}[log x],

that is,(
Y

(g1g2)−1

P (z) (exL(1)(−x2)−L(0)u, x−1)λ
)

(w1 ⊗ w2) =
N∑

i,j=0

∑
n∈N

ai,n,j(u,w1, w2;λ)xri−n(log x)j.

(5.12)

By definition, ((
Y

(g1g2)−1

P (z)

)o
(u, z1)λ

)
(w1 ⊗ w2)

is absolutely convergent on the region |z1| > |z| and its sum on Ω
(1)
1,0,0(z) = Ω

(2)
1,0,0(z) is equal

to f e1 (z1;u,w1, w2;λ). For simplicity, let
(
Y

(g1g2)−1

P (z)

)o
m,k

(u) = 0 for m ∈ C, m 6= −ri + n− 1

for i = 0, . . . , N and n ∈ N and k = 0, . . . N . Then we have(
Y

(g1g2)−1

P (z)

)o
(u, x) =

∑
m∈C

N∑
k=0

(
Y

(g1g2)−1

P (z)

)o
m,k

(u)x−m−1(log x)k.

We have the following result:

Proposition 5.5 The space COM is invariant under the action of the components of the

twisted vertex operators Y
(g1g2)−1

P (z) (u, x) for u ∈ V .

Proof. We need to show that for n1 ∈ C, k = 1, . . . , K, u1 ∈ V and λ ∈ COM,(
Y

(g1g2)−1

P (z)

)o
n1,k1

(u1)λ ∈ COM . (5.13)

For u2, . . . , ul ∈ V , we have

Y g2(u2, x2) · · ·Y g2(ul, xl) =
∑

n2,...,nl∈C

K∑
k2,...,kl=0

Y g2
n2,k2

(u2) · · ·Y g2
nl,kl

(ul)·

x−n2−1
2 · · ·x−nl−1

l+1 (log x2)k2 · · · (log xl)
kl .

Since λ ∈ COM, for u2, . . . , ul ∈ V , n2, . . . , nl ∈ C, k2, . . . , kl = 0, . . . , K, w1 ∈ W1 and
w2 ∈ W2,

λ(w1 ⊗ Y g2(u1, z1)Y g2
n2,k2

(u2) · · ·Y g2
nl,kl

(ul)w2)

is absolutely convergent on the region Ω0,0,1(z) and is absolutely convergent on the region

Ω
(1)
0,0,1(z) to the preferred single-valuued branches

f e1 (z1;u1, w1, Y
g2
n2,k2

(u2) · · ·Y g2
nl,kl

(ul)w2) (5.14)
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defined on M1
0 (0, z) of the multivalued analytic function

f1(z1;u1, w1, Y
g2
n2,k2

(u2) · · ·Y g2
nl,kl

(ul)w2) (5.15)

defined on M1(0, z). By definition, (Y
(g1g2)−1

P (z) )o−ri+n−1,j(u)λ is obtained by expanding (5.15)

on the region Ω
(1)
1,0,0(z) = Ω

(2)
1,0,0(z) as a series in suitable powers of z1 and log z1 and then

taking the corresponding coefficients.
We now consider the series

f e1 (z1;u1, w1, Y
g2(u2, z2) · · ·Y g2(ul, zl)w2) (5.16)

in suitable powers of z2, . . . , zl and log z1, . . . , log zl. The series (5.16) on the region Ω
(1)
0,0,1(z)

can be further expanded as the series

λ(w1 ⊗ Y g2(u1, z1)Y g2(u2, z2) · · ·Y g2(ul, zl)w2). (5.17)

But (5.17) is absolutely convergent on the region Ω0,0,l+1(z) and is absolutely convergent
either to

f el (z1, z2, . . . , zl;u1, . . . , ul, w1, w2;λ) (5.18)

on the region Ω
(1)
0,0,l(z) or to

f
b−1
z1,z
···b−1

bl,z

l (z1, z2, . . . , zl;u1, . . . , ul, w1, w2;λ) (5.19)

on the region Ω
(2)
0,0,l+1(z). Thus for z1 satisfying |z| > |z1| > 0, the series (5.16) as the sum of

(5.17) viewed as a series in suitable powers of z1 and log z1 must be absolutely convergent
on the region |z1| > |z2| > · · · > |zl| > 0 and if in addition, −3π

2
< arg(zi − z) < −π

2
or

π
2
< arg(zi − z) < 3π

2
for i = 1, . . . , l + 1, its sum must also be equal to (5.18) or (5.19),

respectively. But (5.18) can also be expanded on the region |z1| > |z| > |z2| > · · · > |zl| > 0
as a series in suitable powers of z1, . . . , zl and log z1, . . . , log zl. This fact can be seen as
follows: By 1.(a) in the P (z)-compatibility condition, we know that∏

1≤i<j≤n

(zi − zj)Mijfl(z1, z2, . . . , zn;u1, . . . , un, w1, w2;λ)

can be analytically extended to an analytic function on the region

{(z1, . . . , zl) ∈ Cl | zi 6= 0, zi 6= z, i = 1, . . . , l}

Moreover, this analytic function has a regular singularity at (∞, 0, . . . , 0). In particular, this
function can be analytically expanded on the region |z| < |z1, 0 < |zi| < |z| for i = 2, . . . , l
as a series in suitable powers of z1, . . . , zl and log z1, . . . , log zl. Thus (5.18) can be expanded
on the region |z1| > |z| > |z2| > · · · > |zl| > 0 as a series in suitable powers of z1, . . . , zl and
log z1, . . . , log zl. By definition, this expansion is equal to((

Y
(g1g2)−1

P (z)

)o
(u1, z1)λ

)
(w1 ⊗ Y g2(u2, z2) · · ·Y g2(ul, zl)w2) (5.20)
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The coefficients of the powers of z1 and log z1 in (5.20) are exactly((
Y

(g1g2)−1

P (z)

)o
−ri+n−1,j

(u1)λ

)
(w1 ⊗ Y g2(u2, z2) · · ·Y g2(ul, zl)w2)

for i, j = 0, . . . , N , n ∈ N. Since these are expansions of single-valued branches of multivalued
analytic functions on Ω0,0,l, they are absolutely convergent to these multivalued analytic
functions on the same region and are absolutely convergent to their corresponding single-
valued branches on Ω

(1)
0,0,l or Ω

(2)
0,0,l. Moreover, since fl(z1, . . . , zl;u1, . . . , ul, w1, w2;λ) satisfies

1.(a) and 1.(b) in P (z)-compatibility condition, the coefficients of its expansion on the region
|z1| > |z| > |z2| > · · · > |zl| > 0 also satisfy these conditions. This finishes the proof of
(5.13).

Proposition 5.6 For u1, . . . , um+l ∈ V , w1 ∈ W1, w2 ∈ W2 and λ ∈ COM, the series((
Y

(g1g2)−1

P (z)

)o
(um, zm) · · ·

(
Y

(g1g2)−1

P (z)

)o
(u1, z1)λ

)
(w1⊗Y g2(um+1, zm+1) · · ·Y g2(um+l, zm+l)w2)

(5.21)
is absolutely convergent on the region |z1| > · · · > |zm| > |z| > |zm+1| > · · · > |zl+m| > 0
and its sum is equal to

f el (z1, . . . , zm+l;u1, . . . , um+l;w1, w2;λ) (5.22)

on Ω
(1)
m,0,l(z) or to

f
b−1
zm+1,z

···b−1
zm+l,z

l (z1, . . . , zm+l;u1, . . . , um+l;w1, w2;λ) (5.23)

on Ω
(2)
m,0,l(z). Moreover, we have the following commutativity for Y

(g1g2)−1

P (z) : For u1, . . . , um ∈
V , w1 ∈ W1, w2 ∈ W2 and λ ∈ COM, the series(

Y
(g1g2)−1

P (z) (u1, z1) · · ·Y (g1g2)−1

P (z) (um, zm)λ
)

(w1 ⊗ w2) (5.24)

is absolutely convergent on the region |z−1| > |z1| > · · · > |zm| > 0 and for σ ∈ Sm, the sums
of (5.24) and (

Y
(g1g2)−1

P (z) (uσ(1), zσ(1)) · · ·Y (g1g2)−1

P (z) (uσ(m), zσ(l))λ
)

(w1 ⊗ w2) (5.25)

are analytic extensions of each other. We also have the weak commutativity for Y
(g1g2)−1

P (z) :
For u, v ∈ V , there exists M ∈ Z+ such that

(x1−x2)MY
(g1g2)−1

P (z) (u, x1)Y
(g1g2)−1

P (z) (v, x2) = (x1−x2)MY
(g1g2)−1

P (z) (v, x2)Y
(g1g2)−1

P (z) (u, x1). (5.26)
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Proof. To prove the convergence of (5.21), we use induction on m. In the case m = 0, the
convergence of (5.21) is given by Condition 2.(b). Assume that the convergence of (5.21) in
the case that m is m− 1 holds. Then((

Y
(g1g2)−1

P (z)

)o
(um−1, zm−1) · · ·

(
Y

(g1g2)−1

P (z)

)o
(u1, z1)λ

)
(w1 ⊗ Y g2(um, zm) · · ·Y g2(um+l, zm+l)w2)

=
((
Y

(g1g2)−1

P (z)

)o
(um−1, xm−1) · · ·

(
Y

(g1g2)−1

P (z)

)o
(u1, x1)λ

)
(w1 ⊗ Y g2(um, xm) · · ·Y g2(um+l, xm+l)w2)

∣∣∣∣
xni =en log zi ,log xi=log zi,i=1,...,m+l

(5.27)

is absolutely convergent on the region |z1| > · · · > |zm−1| > |z| > |zm| > · · · > |zm+l| > 0

and its sum is equal to (5.22) on Ω
(1)
m−1,0,l+1(z) or to

f
b−1
zm,z ···b

−1
zm+l,z

l (z1, . . . , zm+l;u1, . . . , um+l;w1, w2;λ) (5.28)

on Ω
(2)
m−1,0,l+1(z).

Write(
Y

(g1g2)−1

P (z)

)o
(um−1, xm−1) · · ·

(
Y

(g1g2)−1

P (z)

)o
(u1, x1)

=
∑

nm−1,...,n1∈C

K∑
km−1,...,k1=0

(
Y

(g1g2)−1

P (z)

)o
nm−1,km−1

(um−1) · · ·
(
Y

(g1g2)−1

P (z)

)o
n1,k1

(u1)·

· x−nm−1−1
m−1 · · ·x−n1−1

1 (log xm−1)km−1 · · · (log x1)k1

and

Y g2(um + 1, xm + 1) · · ·Y g2(um+l, xm+l)

=
∑

nm+1,...,nm+l∈C

K∑
km+1,...,km+l=0

Y g2
nm+1,km+1

(um+1) · · ·Y g2
nm+l,km+l

(um+l)·

· x−nm+1−1
2 · · ·x−nm+l−1

m+l (log xm+1)km+1 · · · (log xm+l)
km+l .

By Proposition (5.5),(
Y

(g1g2)−1

P (z)

)o
nm−1,km−1

(um−1) · · ·
(
Y

(g1g2)−1

P (z)

)o
n1,k1

(u1)λ ∈ COM .

Then ((
Y

(g1g2)−1

P (z)

)o
nm−1,km−1

(um−1) · · ·
(
Y

(g1g2)−1

P (z)

)o
n1,k1

(u1)λ

)
(w1 ⊗ Y g2(um, zm)Y g2

nm+1,km+1
(um) · · ·Y g2

nm+l,km+l
(um+l)w2)
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is absolutely convergent on the region |z| > |zm| > 0 and its sum is equal to

f e
(
zm;um, w1, Y

g2
nm+1,km+1

(um) · · ·Y g2
nm+l,km+l

(um+l)w2;(
Y

(g1g2)−1

P (z)

)o
nm−1,km−1

(um−1) · · ·
(
Y

(g1g2)−1

P (z)

)o
n1,k1

(u1)λ
)

(5.29)

on the region |z| > |zm| > 0, −3π
2
< arg(z1 − z)− arg z < −π

2
and to

f b
−1
zm,z

(
zm;um, w1, Y

g2
nm+1,km+1

(um) · · ·Y g2
nm+l,km+l

(um+l)w2;(
Y

(g1g2)−1

P (z)

)o
nm−1,km−1

(um−1) · · ·
(
Y

(g1g2)−1

P (z)

)o
n1,k1

(u1)λ
)

on the region |z| > |zm| > 0, π
2
< arg(z1 − z)− arg z < 3π

2
. By definition,((

Y
(g1g2)−1

P (z)

)o
(um, zm)

(
Y

(g1g2)−1

P (z)

)o
nm−1,km−1

(um−1) · · ·
(
Y

(g1g2)−1

P (z)

)o
n1,k1

(u1)λ

)
(w1 ⊗ Y g2

nm+1,km+1
(um) · · ·Y g2

nm+l,km+l
(um+l)w2) (5.30)

is absolutely convergent on the region |zm| > |z| and its sum is equal to (5.29) on the region
|zm| > |z|, | arg(zm − z)− arg zm| < π

2
.

But we know that

∑
n1,...,nm−1,nm+1,...,nm+l∈C

K∑
k1,...,km−1,km+1,...,km+l=0

f e
(
zm;um, w1, Y

g2
nm+1,km+1

(um) · · ·Y g2
nm+l,km+l

(um+l)w2;(
Y

(g1g2)−1

P (z)

)o
nm−1,km−1

(um−1) · · ·
(
Y

(g1g2)−1

P (z)

)o
n1,k1

(u1)λ
)
·

· z−n1−1
1 · · · z−nm−1−1

m−1 z−n1−1
m+1 · · · z−nm+l−1

m+l ·
· (log z1)k1 · · · (log zm−1)km−1(log zm+1)km+1 · · · (log zm+l)

km+l

=
∑

n1,...,nm−1,nm+1,...,nm+l∈C

K∑
k1,...,km−1,km+1,...,km+l=0((

Y
(g1g2)−1

P (z)

)o
nm−1,km−1

(um−1) · · ·
(
Y

(g1g2)−1

P (z)

)o
n1,k1

(u1)λ

)
(w1 ⊗ Y g2(um, zm)Y g2

nm+1,km+1
(um) · · ·Y g2

nm+l,km+l
(um+l)w2)·

· z−n1−1
1 · · · z−nm−1−1

m−1 z−n1−1
m+1 · · · z−nm+l−1

m+l ·
· (log z1)k1 · · · (log zm−1)km−1(log zm+1)km+1 · · · (log zm+l)

km+l (5.31)

as an iterated series of the multi-series (5.27) is absolutely convergent on the region |z1| >
· · · > |zm−1| > |z| > |zm| > · · · > |zm+l| > 0 and its sum is equal to (5.22) on Ω

(1)
m−1,0,l+1(z).
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In other words, the expansion of (5.22) on Ω
(1)
m−1,0,l+1(z) can also be written as the iterated

series (5.31). By the discussion above, the coefficients of the left-hand side of (5.31) is equal
to (5.30) on the region |zm| > |z|, | arg(zm− z)− arg zm| < π

2
. So the expansion of (5.22) on

the region Ω
(1)
m,0,l(z) can be written as the iterated series

∑
n1,...,nm−1,nm+1,...,nm+l∈C

K∑
k1,...,km−1,km+1,...,km+l=0((

Y
(g1g2)−1

P (z)

)o
(um, zm)

(
Y

(g1g2)−1

P (z)

)o
nm−1,km−1

(um−1) · · ·
(
Y

(g1g2)−1

P (z)

)o
n1,k1

(u1)λ

)
(w1 ⊗ Y g2

nm+1,km+1
(um) · · ·Y g2

nm+l,km+l
(um+l)w2)·

· z−n1−1
1 · · · z−nm−1−1

m−1 z−n1−1
m+1 · · · z−nm+l−1

m+l ·
· (log z1)k1 · · · (log zm−1)km−1(log zm+1)km+1 · · · (log zm+l)

km+l . (5.32)

Since the expansion of of (5.22) on the region Ω
(1)
m,0,l(z) must be absolutely convergent as

a multisum, we see that the multi-series (5.21) corresponding to (5.32) must be absolutely

convergent on the region Ω
(1)
m,0,l(z) to (5.22). Similarly, we can show that (5.21) is absolutely

convergent on the region Ω
(2)
m,0,l(z) to (5.23).

This convergence result implies in particular the absolute convergence of (5.24) on the
region |z−1| > |z1| > · · · > |zl| > 0. Using the commutativity for the twisted vertex operators
Y g2 , we see that for σ ∈ Sm, the sums of (5.24) and (5.25) are analytic extensions of each
other.

For u, v ∈ V , since λ satisfies the condition 1.(a) in the P (z)-compatibility condition,
there exists M ∈ Z+ such that z1 − z2 = 0 is not a singularity of

(z1 − z2)Mf e2 (z1, z2;u, u1, w1, w2;λ)

and we have

(z1 − z2)Mf e2 (z1, z2;u, v, w1, w2;λ) = (z1 − z2)Mf e2 (z2, z1; v, u, w1, w2;λ). (5.33)

Since the expansion of f e2 (z1, z2;u, v, w1, w2;λ) on the region Ω
(1)
2,0,0(z) is((

Y
(g1g2)−1

P (z)

)o
(v, z2)

(
Y

(g1g2)−1

P (z)

)o
(u, z1)λ

)
(w1 ⊗ w2),

we see that

(z1 − z2)M
((
Y

(g1g2)−1

P (z)

)o
(v, z2)

(
Y

(g1g2)−1

P (z)

)o
(u, z1)λ

)
(w1 ⊗ w2)

=
M∑
i=0

∑
n∈C

K1∑
k=0

∑
n1∈C

K1∑
k1=0

(
M

i

)((
Y

(g1g2)−1

P (z)

)o
n1,k1

(v)
(
Y

(g1g2)−1

P (z)

)o
n,k

(u)λ

)
(w1 ⊗ w2)·

· e(n+M−i) log z1(log z1)ke(n1+i) log z2(log z2)k1 (5.34)
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must be convergent absolutely to the left-hand side of (5.33) on Ω
(1)
2,0,0(z) (the region given

by |z1| > |z2| > |z|, | arg(z1−z)−arg z1| < π
2
, | arg(z2−z)−arg z2| < π

2
). On the other hand,

(z1 − z2)Mf e2 (z1, z2;u, v, w1, w2;λ) is analytic at z1 − z2 = 0. So (5.34) is in fact absolutely
convergent to the left-hand side of (5.33) on the region |z1|, |z2| > |z|, | arg(z1−z)−arg z1| <
π
2
, | arg(z2 − z)− arg z2| < π

2
. Thus

(z1 − z2)M
((
Y

(g1g2)−1

P (z)

)o
(u, z1)

(
Y

(g1g2)−1

P (z)

)o
(v, z2)λ

)
(w1 ⊗ w2) (5.35)

is absolutely convergent to the right-hand side of (5.33) also on the region |z1|, |z2| > |z|,
| arg(z1 − z) − arg z1| < π

2
, | arg(z2 − z) − arg z2| < π

2
. From (5.33), (5.34) and (5.35), we

obtain

(z1 − z2)M
((
Y

(g1g2)−1

P (z)

)o
(v, z2)

(
Y

(g1g2)−1

P (z)

)o
(u, z1)λ

)
(w1 ⊗ w2)

= (z1 − z2)M
((
Y

(g1g2)−1

P (z)

)o
(u, z1)

(
Y

(g1g2)−1

P (z)

)o
(v, z2)λ

)
(w1 ⊗ w2)

on the region |z1|, |z2| > |z|, | arg(z1−z)−arg z1| < π
2
, | arg(z2−z)−arg z2| < π

2
for λ ∈ COM,

u1, v ∈ V , w1 ∈ W1 and w2 ∈ W2, which, by the definition of
(
Y

(g1g2)−1

P (z)

)o
(u, x) for u ∈ V

above, is equivalent to (5.26).

Since COMP ⊂ COM, by Proposition 5.5, Y
(g1g2)−1

P (z) (u, x)λ for u ∈ V and λ ∈ COMP is

in COM{x}[log x]. We now prove the following stronger result:

Proposition 5.7 The space COMP is invariant under the action of the components of the

twiste vertex operators Y
(g1g2)−1

P (z) (u, x) for u ∈ V .

Proof. Let λ ∈ COMP. Then λ satisfies 2.(a) in the P (z)-compatibility condition. We need

only show that for v ∈ V , n ∈ C, k = 0, . . . , K,
(
Y

(g1g2)−1

P (z)

)o
n,k

(v)λ also satisfies 2.(a) in the

P (z)-compatibility condition.

By the definition of
(
Y

(g1g2)−1

P (z)

)o
(u, z1) for u ∈ V and the P (z)-compatibility condition

for λ, ((
Y

(g1g2)−1

P (z)

)o
(u, z1)λ

)
(w1 ⊗ Y g2

n,k(v)w2)

and
λ(Y g1(u, z1 − z)w1 ⊗ Y g2

n,k(v)w2)

for v ∈ V , n ∈ C, k = 0, . . . , K, w1 ∈ W1 and w2 ∈ W2 are absolutely convergent to
f e1 (z1;u,w1, Y

g2
n,k(v)w2;λ) on the region |z1| > |z|, | arg(z1 − z) − arg z1| < π

2
and the region

|z| > |z1 − z| > 0, | arg z1 − arg z| < π
2
, respectively. By Proposition (5.6),((

Y
(g1g2)−1

P (z)

)o
(u, z1)λ

)
(w1 ⊗ Y g2(v, z2)w2)
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=
∑
n∈C

K∑
k=0

((
Y

(g1g2)−1

P (z)

)o
(u, z1)λ

)
(w1 ⊗ Y g2

n,k(v)w2)en log z2(log z2)k (5.36)

is absolutely convergent on the region |z1| > |z| > |z2| > 0 and its sum is equal to

f e2 (z1, z2;u, v;w1, w2;λ) (5.37)

on Ω
(1)
1,0,1(z) and to

f
b−1
z2,z

2 (z1, z2;u, v;w1, w2;λ) (5.38)

on Ω
(2)
1,0,1(z). Thus

∑
n∈C

K∑
k=0

λ(Y g1(u, z1 − z)w1 ⊗ Y g2
n,k(v)w2)en log z2(log z2)k

= λ(Y g1(u, z1 − z)w1 ⊗ Y g2(v, z2)w2) (5.39)

is absolutely convergent on the region |z1| > |z| > |z1 − z| + |z2| > 0 and its sum is
equal to (5.37) on the region |z1| > |z| > |z1 − z| + |z2| > 0, | arg(z1 − z) − arg z1| < π

2
,

| arg z1 − arg z| < π
2
, −3π

2
< arg(z2 − z) − arg z < −π

2
and is equal to (5.38) on the region

|z1| > |z| > |z1 − z| + |z2| > 0, | arg(z1 − z) − arg z1| < π
2
, | arg z1 − arg z| < π

2
, π

2
<

arg(z2 − z)− arg z < 3π
2

. On the other hand, since (z1 − z, z2) = (0, 0) is a regular singular
point of (5.37) and (5.38), we can expand them on the regions |z| > |z2|, |z1−z| > 0 to obtain
a series of the same form as (5.39). Thus we see that (5.39) must be absolutely convergent
on the region |z| > |z2|, |z1 − z| > 0 and its sum is equal to (5.37) and (5.38) on the regions
|z| > |z1 − z| + |z2| > 0, | arg z1 − arg z| < π

2
, −3π

2
< | arg(z2 − z) − arg z < −π

2
and on the

region |z| > |z1−z|+ |z2| > 0, | arg z1−arg z| < π
2
, π

2
< arg(z2−z)−arg z < 3π

2
, respectively.

The right-hand side of (5.39) is equal to

∑
n∈C

K∑
k=0

λ(Y g1
n,k(u)w1 ⊗ Y g2(v, z2)w2)en log(z1−z)(log(z1 − z))k. (5.40)

We know that the series λ(Y g1
n,k(u)w1 ⊗ Y g2(v, z2)w2) is absolutely convergent on the region

|z| > |z2| > 0 and its sum is equal to f e1 (z2; v, Y g1
n,k(u)w1, w2;λ) on the region |z| > |z2| > 0,

−3π
2
< arg(z2 − z) − arg z2 < −π

2
and to f

bz2,z
1 (z2; v, Y g1

n,k(u)w1, w2;λ) on the region |z| >
|z2| > 0, π

2
< arg(z2 − z)− arg z2 <

3π
2

. We also know that the series((
Y

(g1g2)−1

P (z)

)o
(v, z2)λ

)
(Y g1

n,k(u)w1 ⊗ w2)

is absolutely convergent to f e1 (z2; v, Y g1
n,k(u)w1, w2;λ) on the region |z| > |z2| > 0, | arg(z2 −

z)− arg z2| < π
2
. From this discussion, (5.41) and the convergence of (5.39), we see that

∑
n∈C

K∑
k=0

((
Y

(g1g2)−1

P (z)

)o
(v, z2)λ

)
(Y g1

n,k(u)w1 ⊗ w2)en log(z1−z)(log(z1 − z))k
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=
((
Y

(g1g2)−1

P (z)

)o
(v, z2)λ

)
(Y g1(u, z1 − z)w1 ⊗ w2) (5.41)

is absolutely convergent on the region |z2| > |z| > |z1− z| > 0 and its sum is equal to (5.37)
on the region |z2| > |z| > |z1 − z| > 0, | arg(z2 − z)− arg z2| < π

2
, | arg z1 − arg z| < π

2
.

On the other hand, by Proposition 5.6,((
Y

(g1g2)−1

P (z)

)o
(u, z1)

(
Y

(g1g2)−1

P (z)

)o
(v, z2)λ

)
(w1 ⊗ w2) (5.42)

is absolutely convergent on the region |z2| > |z1| > |z| and its sum is equal to (5.37) on the
region |z2| > |z1| > |z|, | arg(z1 − z) − arg z1| < π

2
, | arg(z2 − z) − arg z2| < π

2
. Taking the

coefficients of
(
Y

(g1g2)−1

P (z) (v, z2)
)o

in both (5.41) and (5.42), we see that((
Y

(g1g2)−1

P (z)

)o
n,k

(v)λ

)
(Y g1(u, z1 − z)w1 ⊗ w2)

and ((
Y

(g1g2)−1

P (z)

)o
(u, z1)

(
Y

(g1g2)−1

P (z)

)o
n,k

(v)λ

)
(w1 ⊗ w2)

are absolutely convergent to the coefficients of en log z2(log z2)k in the expansion of (5.37) near
the singularity z2 = ∞ on the region |z| > |z1 − z| > 0, | arg z1 − arg z| < π

2
and on the

region |z1| > |z|, | arg(z1 − z) − arg z1| < π
2
, respectively. This is equivalent to 2.(a) in the

P (z)-compatibility condition for
(
Y

(g1g2)−1

P (z)

)o
n,k

(v)λ.

For a P (z)-intertwining map I of type
(

W3

W1W2

)
and an element w′3 of W ′

3, the element
λI,w′3 ∈ COM also have the following property:

Proposition 5.8 Consider the subspace WλI,w′3
of COM obtained by applying the coefficients

of the vertex operators Y
(g1g2)−1

P (z) (u, x) for all u ∈ V to λI,w′3. Then WλI,w′3
equipped with

Y
(g1g2)−1

P (z) is a generalized (g1g2)−1-twisted V -module in the category C.

Proof. The proof of this result is a straightforward verification. We omit the details.

Motivated by Proposition 5.8, we also introduce the following condition for λ ∈ COM:

P (z)-local-grading-restriction condition
(a) The P(z)-grading condition: λ is a (finite) sum of generalized eigenvectors for the
operator L(0)′P (z).

(b) Let Wλ be the smallest subspace of (W1 ⊗W2)∗ containing λ and stable under the

action of all the coefficients of the vertex operators Y
(g1g2)−1

P (z) (u, x) for all u ∈ V . We

know that Wλ can be decomposed into generalized eigenspaces of L(0)′P (z), which we

write as Wλ = qn∈C(Wλ)[n]. Then

dim(Wλ)[n] <∞, (5.43)

(Wλ)[n] = 0, for <(n) sufficiently negative. (5.44)
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We denote the subspace of P (z)-local grading restricted functionals in COM ⊂ (W1 ⊗W2)∗

as LGRP (z)((W1 ⊗ W2)∗), or LGR for short. Clearly, the space LGR is closed under the

action of Y
(g1g2)−1

P (z) (u, x), u ∈ V .

Theorem 5.9 For λ satisfying the P (z)-compatibility condition and the P (z)-local-grading-

restriction condition, the graded space Wλ equipped with Y
(g1g2)−1

P (z) is a grading-restricted

(g1g2)−1-twisted generalized module. An element λ ∈ (W1 ⊗ W2)∗ is in W1 P (z)W2 if and
only if λ satisfies the P (z)-compatibility condition and the P (z)-local-grading-restriction con-
dition. In other words,

W1 P (z)W2 = COMP∩LGR .

Proof. The identity property follows immediately from the definition of the twisted vertex

operator map Y
(g1g2)−1

P (z) . The L(0)-grading condition follows from the definition of the twisted

vertex operator map Y
(g1g2)−1

P (z) and the P (z)-grading condition in the P (z)-local-grading-

restriction condition. The (g1g2)−1-grading condition also follows from the the definition of

Y
(g1g2)−1

P (z) . The L(−1)-derivative property follows from the the definition of Y
(g1g2)−1

P (z) and the

L(−1)-derivative property of the twisted vertex operator Y g2 . We omit the details of the
proofs of these properties.

We prove the equivariance property for Y
(g1g2)−1

P (z) now. It is equivalent to((
Y

(g1g2)−1

P (z)

)o)p+1

(g1g2u, z1)λ̃ =
((
Y

(g1g2)−1

P (z)

)o)p
(u, z1)λ̃ (5.45)

for u ∈ V , λ̃ ∈ Wλ. By the definition of
(
Y

(g1g2)−1

P (z)

)o
, we know that for w1 ∈ W1, w2 ∈ W2,((

Y
(g1g2)−1

P (z)

)o
(u, z)λ̃

)
(w1 ⊗ w2)

is absolutely convergent on the region |z1| > |z|, | arg(z1−z)−arg(z1)| < π
2

to f e1 (z1;u,w1, w2; λ̃).
Let b3 be the homotopy class containing a loop given by a circle centered at 0 with radius
larger than |z| in the counterclockwise direction on the complex z1 plane. Then (5.45) is
equivalent to

f b31 (z1; g1g2u,w1, w2; λ̃) = f e1 (z1;u,w1, w2; λ̃) (5.46)

for u ∈ V , w1 ∈ W1, w2 ∈ W2 and λ̃ ∈ Wλ.
By the equivariance property for Y g2 and the convergence of λ̃(w1 ⊗ Y g2(v, z1)⊗ w2) to

f e1 (z1; v, w1, w2; λ̃) for v ∈ V on the region |z| > |z1| > 0, −3π
2
< arg(z1 − z)− arg z1 < −π

2
,

we obtain
f
bz1,0
1 (z1; g2v, w1, w2; λ̃) = f e1 (z1; v, w1, w2; λ̃).

Using the equivariance property for Y g2 and the convergence of λ̃(w1 ⊗ Y g2(v, z1)⊗ w2), we
obtain similarly

f
bz1,z
1 (z1; g1v, w1, w2; λ̃) = f e1 (z1; v, w1, w2; λ̃).
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Applying any homotopy class b of loops in the z1 complex plane with z and 0 deleted to
both sides of this equality, we obtain

f
bz1,zb
1 (z1; g1v, w1, w2; λ̃) = f b1(z1; v, w1, w2; λ̃)

for v ∈ V . Then we have

f
bz1,zbz1,0
1 (z1; g1g2u,w1, w2; λ̃) = f

bz1,0
1 (z1; g2u,w1, w2; λ̃)

= f e1 (z1;u,w1, w2; λ̃).

But it is easy to see that bz1,zbz1,0 = b3. Thus we have proved (5.46).
For u, v ∈ V , w ∈ Wλ, w

′ ∈ W ′
λ, by Proposition 5.5, we have

(x1 − x2)M〈w′, Y (g1g2)−1

P (z) (u, x1)Y
(g1g2)−1

P (z) (v, x2)w〉

= (x1 − x2)M〈w′, Y (g1g2)−1

P (z) (v, x2)Y
(g1g2)−1

P (z) (u, x1)w〉, (5.47)

where M ∈ Z+ depending on only on u and v. Since Wλ is lower bounded, by (5.47), the
left-hand side of (5.47) has only finitely many terms in complex powers of x1, x2 and integer
powers of log x1, log x2. Then

〈w′, Y (g1g2)−1

P (z) (u, x1)Y
(g1g2)−1

P (z) (v, x2)w〉

is equal to this finite sum multiplied by (x1 − x2)−M , which is is expanded in nonnegative
powers of x2. Thus we have a multivalued function of the form

f(z1, z2) =
N∑

i,j,k,l=0

aijklz
mi
1 z

nj
2 (logz1)k(logz2)l(z1 − z2)−M ,

where mi, ni ∈ C for i = 0, . . . , N , with the preferred branch

f e(z1, z2) =
N∑

i,j,k,l=0

aijkle
mi log z1enj log z2(log z1)k(log z2)l(z1 − z2)−M

such that
〈w′, Y (g1g2)−1

P (z) (u, z1)Y
(g1g2)−1

P (z) (v, z2)w〉

is absolutely convergent on the region |z1| > |z2| > 0 to f e(z1, z2). From (5.47), we also
obtain the commutativity, that is,

〈w′, Y (g1g2)−1

P (z) (v, x2)Y
(g1g2)−1

P (z) (u, x1)w〉

is absolutely convergent on the region |z2| > |z1| > 0 to f e(z1, z2).
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We now prove the associativity for Y
(g1g2)−1

P (z) . Since the associativity for Y
(g1g2)−1

P (z) is equiv-

alent to the associativity for (Y
(g1g2)−1

P (z) )o, we prove this associativity. For u, v ∈ V , w1 ∈ W1,

w2 ∈ W2 and λ̃ ∈ Wλ, by Proposition 5.6,((
Y

(g1g2)−1

P (z)

)o
(v, z2)

(
Y

(g1g2)−1

P (z)

)o
(u, z1)λ̃

)
(w1 ⊗ w2) (5.48)

is absolutely convergent on the region |z1| > |z2| > |z| and its sum is equal to

f e2 (z1, z2;u, v, w1, w2; λ̃) (5.49)

on the region |z1| > |z2| > |z|, | arg(z1 − z)− arg z1| < π
2
, | arg(z2 − z)− arg z2| < π

2
. By the

definition of
(
Y

(g1g2)−1

P (z)

)o
,((

Y
(g1g2)−1

P (z)

)o
((YV )n(u)v, z2)λ̃

)
(w1 ⊗ w2)

is absolutely convergent on the region |z2| > |z| and its sum is equal to

f e1 (z2; (YV )n(u)v, w1, w2; λ̃) (5.50)

on the region |z2| > |z|, | arg(z2 − z)− arg z2| < π
2
. Also

λ̃(w1 ⊗ Y g2((YV )n(u)v, z2)w2)

is absolutely convergent on the region |z| > |z2| > 0 and its sum is equal to (5.50) and to

f
b−1
z2,z

1 (z2; (YV )n(u)v, w1, w2; λ̃)

on the region |z| > |z2| > 0, −3π
2
< arg(z2 − z) − arg z < −π

2
and |z| > |z2| > 0, π

2
<

arg(z2 − z)− arg z < 3π
2

, respectively.

By the P (z)-compatibility condition for λ̃,

λ̃(w1 ⊗ Y g2(u, z1)Y g2(v, z2)w2)

is absolutely convergent to (5.49) and

f
b−1
z1,z

b−1
z2,z

2 (z1, z2;u, v, w1, w2; λ̃) (5.51)

on the region |z| > |z1| > |z2| > 0, −3π
2
< arg(z1 − z) − arg z, arg(z2 − z) − arg z < −π

2

and on the region |z| > |z1| > |z2| > 0, π
2
< arg(z1 − z) − arg z, arg(z2 − z) − arg z < 3π

2
,

respectively. By the associativity of the twisted vertex operator map Y g2 ,∑
n∈Z

λ̃(w1 ⊗ Y g2((YV )n(u)v, z2)w2)(z1 − z2)−n−1

= λ̃(w1 ⊗ Y g2(YV (u, z1 − z2)v, z2)w2)
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= λ̃(w1 ⊗ Y g2(u, z1)Y g2(v, z2)w2) (5.52)

on the region |z| > |z1| > |z2| > |z1 − z2| > 0, | arg z1 − arg z2| < π
2
. Thus the left-hand

side of (5.52) is absolutely convergent on the region |z| > |z1| > |z2| > |z1 − z2| > 0
and its sum is equal to (5.49) and (5.51) on the region |z| > |z1| > |z2| > |z1 − z2| > 0,
−3π

2
< arg(z1 − z) − arg z, arg(z2 − z) − arg z < −π

2
, | arg z1 − arg z2| < π

2
and on the

region |z| > |z1| > |z2| > |z1 − z2| > 0, π
2
< arg(z1 − z) − arg z, arg(z2 − z) − arg z < 3π

2
,

| arg z1 − arg z2| < π
2
, respectively. Then by the definition of

(
Y

(g1g2)−1

P (z)

)o
,((

Y
(g1g2)−1

P (z)

)o
(YV (u, z1 − z2)v, z2)λ̃

)
(w1 ⊗ w2)

=
∑
n∈Z

((
Y

(g1g2)−1

P (z)

)o
((YV )n(u)v, z2)λ̃

)
(w1 ⊗ w2)(z1 − z2)−n−1

=
∑
n∈Z

f e1 (z2; (YV )n(u)v, w1, w2; λ̃)(z1 − z2)−n−1 (5.53)

is in fact the expansion of (5.49) as a Laurent series in z1 − z2 near z1 − z2 = 0 and
then expand the coefficients as a series in powers of z2 and log z2 near z2 = ∞. Thus
we have shown that (5.48) and the left-hand side of (5.53) are convergent on the region
|z1| > |z2| > |z| and |z2| > |z1 − z2|, |z|, respectively and their sums are equal to (5.49)
on the region |z1| > |z2| > |z|, | arg(z1 − z) − arg z1|, | arg(z2 − z) − arg z2| < π

2
. and

|z2| > |z1 − z2|, |z|, | arg(z2 − z)− arg z2| < π
2
, | arg z1 − arg z2| < π

2
.

Since Wλ is lower-bounded and the singularities of (5.49) are all regular, (5.48) is a series
with only finitely many terms in negative powers of z2. Since (5.48) is absolutely convergent
on the region |z1| > |z2| > |z|, it must also absolutely convergent on the region |z1| > |z2| > 0.
Similarly, we see that the left-hand side of (5.53) is also absolutely convergent on the region

|z2| > |z1−z2| > 0. Thus we have proved the associativity for (Y
(g1g2)−1

P (z) )o, which is equivalent

to the associativity for Y
(g1g2)−1

P (z) . This finishes the proof that Wλ equipped with Y
(g1g2)−1

P (z) is

a grading-restricted generalized (g1g2)−1-twisted V -module.
By Propositions 5.1 and 5.8, an element of W1 P (z)W2 satisfies the P (z)-compatibility

condition and the P (z)-local-grading-restriction condition. We still need to prove an element
λ of (W1 ⊗ W2)∗ satisfying the P (z)-compatibility condition and the P (z)-local-grading-
restriction condition is in W1 P (z)W2.

Since Wλ is grading restricted, W ∗
λ is linearly isomorphic to W ′

λ. We shall identify W ∗
λ

with W ′
λ. We define a map linear map I : W1 ⊗W2 → W ∗

λ by

〈µ, I(w1 ⊗ w2)〉 = µ(w1 ⊗ w2)

for µ ∈ Wλ, w1 ∈ W1 and w2 ∈ W2. We define a linear map

YI : W1 ⊗W2 → (W ′
λ){x}[log x]

w1 ⊗ w2 7→ YI(w1, x)w2
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by
YI(w1, x)w2 = xL(0)e−(log z)L(0)I

(
x−L(0)e(log z)L(0)w1 ⊗ x−L(0)e(log z)L(0)w2

)
for w1 ∈ W1 and w2 ∈ W2.

Using the definition of Y
(g1g2)−1

P (z) , it is easy to see that Y
(g1g2)−1

P (z) is an intertwining operator

of type
(

W ′λ
W1W2

)
when W ′

λ, W1 and W2 are viewed as modules for the fixed point subalgebra

of V under g1 and g2. In particular, Y
(g1g2)−1

P (z) satisfies the L(−1)-derivative property.
For u1, . . . , uk−1 ∈ V , w1 ∈ W1, w2 ∈ W2 and w ∈ Wλ, we have

〈w, Y (g1g2)−1

P (z) (u1, z1) · · ·Y (g1g2)−1

P (z) (uk−1, zk−1)YI(w1, zk)w2〉

=
〈
w, Y

(g1g2)−1

P (z) (u1, z1) · · ·Y (g1g2)−1

P (z) (uk−1, zk−1)·

· e(log zk−log z)L(0)I
(
e−(log zk−log z)L(0)w1 ⊗ e−(log zk−log z)L(0)w2

)〉
=
〈
e(log zk−log z)L(0)w, Y

(g1g2)−1

P (z) (z
−L(0)
k zL(0)u1, e

−(log zk−log z−log z1))·

· · ·Y (g1g2)−1

P (z) (z
−L(0)
k zL(0)uk−1, e

−(log zk−log z−log zk−1))·

· I
(
e−(log zk−log z)L(0)w1 ⊗ e−(log zk−log z)L(0)w2

)〉
=
〈

(Y
(g1g2)−1

P (z) )o(z
−L(0)
k zL(0)uk−1, e

−(log zk−log z−log zk−1))·

· · · (Y (g1g2)−1

P (z) )o(z
−L(0)
k zL(0)u1, e

−(log zk−log z−log z1))e(log zk−log z)L(0)w,

I
(
e−(log zk−log z)L(0)w1 ⊗ e−(log zk−log z)L(0)w2

)〉
=
(

(Y
(g1g2)−1

P (z) )o(z
−L(0)
k zL(0)uk−1, e

−(log zk−log z−log zk−1))·

· · · (Y (g1g2)−1

P (z) )o(z
−L(0)
k zL(0)u1, e

−(log zk−log z−log z1))e(log zk−log z)L(0)w
)

(
e−(log zk−log z)L(0)w1 ⊗ e−(log zk−log z)L(0)w2

)
.
(5.54)

By (5.12), the right-hand side of (5.54) is equal to the series obtained by expanding the
function

f el (ξ1, . . . , ξl; z
−L(0)
k zL(0)u1, . . . , z

−L(0)
k zL(0)uk−1, z

−L(0)
k e(log z)L(0)w1, z

−L(0)
k e(log z)L(0)w2;w)

on the region |ξ1| > · · · > |ξk−1| > |z| as series in powers of ξ1, . . . , ξk−1 and nonnegative inte-
ger powers of log ξ1, . . . , log ξ1 and then substituting e−n(log zk−log z−log z1), . . . , e−n(log zk−log z−log zk−1)

(n ∈ C) for en log ξ1 , . . . , en log ξk−1 and log zk − log z − log z1, . . . , log zk − log z − log zk−1 for
log ξ1, . . . , log ξk−1, respectively. Then the right-hand side of (5.54) is absolutely convergent
on the region |zz1z

−1
k | > · · · > |zzk−1z

−1
k | > |z| or equivalently the region |z1| > · · · >

|zk−1| > |zk| > 0 and can be analytically extended to a multivalued analytic function on
Mk−1(0, z) with a preferred branch. By (5.54),

〈w, Y (g1g2)−1

P (z) (u1, z1) · · ·Y (g1g2)−1

P (z) (uk−1, zk−1)YI(w1, zk)w2〉
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is absolutely convergent on the region |z1| > · · · > |zk−1| > |zk| > 0 and can be analytically
extended to a multivalued analytic function on Mk(0, z) with a preferred branch.

We now prove the duality property for YI . By (5.54), for v ∈ V , w1 ∈ W1 and w2 ∈ W2,

〈w, Y (g1g2)−1

P (z) (v, z1)YI(w1, z2)w2〉

=
(

(Y
(g1g2)−1

P (z) )o(z
−L(0)
2 zL(0)v, e−(log z2−log z−log z1))e(log z2−log z)L(0)w

)
(
e−(log z2−log z)L(0)w1 ⊗ e−(log z2−log z)L(0)w2

)
,

which is absolutely convergent on the region |z−1
2 zz1| > |z| or equivalently |z1| > |z2| > 0

and its sum is equal to

f e1 (e−(log z2−log z−log z1); z
−L(0)
2 zL(0)v, e−(log z2−log z)L(0)w1, e

−(log z2−log z)L(0)w2; e(log z2−log z)L(0)w)
(5.55)

on the region |z−1
2 zz1| > |z|, | arg(z−1

2 zz1−z)−arg z−1
2 zz1| < π

2
or equivalently, |z1| > |z2| > 0,

| arg(z1 − z2)− arg z1|. By definition,

〈w,YI(w1, z2)Y g2(v, z1)w2〉
= 〈e(log z2−log z)L(0)w,YI(e−(log z2−log z)L(0)w1, z)·

· Y g2(z
−L(0)
2 zL(0)v, e−(log z2−log z−log z1))e−(log z2−log z)L(0)w2〉

= (e(log z2−log z)L(0)w)(e−(log z2−log z)L(0)w1

⊗ Y g2(z
−L(0)
2 zL(0)v, e−(log z2−log z−log z1))e−(log z2−log z)L(0)w2)

is absolutely convergent on the region |z| > |z−1
2 zz1| > 0 or equivalently |z2| > |z1| > 0 and its

sum is equal to to (5.55) on the region |z2| > |z1| > 0, −3π
2
< arg(z−1

2 zz1−z)−arg z < −π
2

or
equivalently, |z2| > |z1| > 0, −3π

2
< arg(z1− z2)−arg z2 < −π

2
. By 2.(a) in the compatibility

condition, we see that

〈w,YI(Y g1(v, z1 − z2)w1, z2)w2〉
= 〈e(log z2−log z)L(0)w,

YI(Y g1(z
−L(0)
2 zL(0)v, z−1

2 zz1 − z)e−(log z2−log z)L(0)w1, z)e
−(log z2−log z)L(0)w2〉

= (e(log z2−log z)L(0)w)(Y g1(z
−L(0)
2 zL(0)v, z−1

2 zz1 − z)e−(log z2−log z)L(0)w1 ⊗ e−(log z2−log z)L(0)w2),

which is absolutely convergent on the region |z| > |z−1
2 zz1 − z| > 0 or equivalently |z2| >

|z1−z2| > 0 and its sum is equal to (5.55) on the region |z| > |z−1
2 zz1−z| > 0, | arg z−1

2 zz1−
arg z| < π

2
or equivalently |z2| > |z1 − z2| > 0, | arg z1 − arg z2| < π

2
. Thus the duality

property for YI is proved and YI is a twisted intertwining operator. Then I is a twisted
P (z)-intertwining map.

Now we have
λ(w1 ⊗ w2) = 〈λ, I(w1 ⊗ w2)〉 = λI,λ(w1 ⊗ w2)

for w1 ∈ W1 and w2 ∈ W2. In particular, λ = λI,λ ∈ W1 P (z)W2.
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A A convergence lemma

Let A be a finite subset of C/Z, Rµ ∈ µ for µ ∈ A, D a subset of ∪µ∈A(Rµ−N), ∆ ∈ C and
an,j,i ∈ C for n ∈ D, j = 0, . . . ,M and i = 1, . . . , N . Consider the triple series

∑
n∈D

M∑
j=0

N∑
i=0

an,j,ie
(−∆+n+1) log z0(log z0)je(−n−1) log z2(log z2)i (A.1)

for z0, z2 ∈ C×.
For any z1, z2 satisfying |z1| > |z2| > 0, | arg(z1 − z2)− arg z1| < π

2
, we have

eα log(z1−z2) =
∑
k∈N

(
α

k

)
(−1)ke(α−k) log z1zk2 , (A.2)

log(z1 − z2) = log z1 +
∑
k∈Z+

(−1)k

k
z−k1 zk2 , (A.3)

eαlq2 (−z2) = eαπieα log z2 , (A.4)

lq2(−z2) = log z2 + πi, (A.5)

where α ∈ C and q2 = 0, 1 if arg z2 < π, arg z2 ≥ π, respectively. Note that in our notations,
log z = l0(z) for z ∈ C×.

For n ∈ D, j = 0, . . . ,M , k ∈ Z≥0, s = 0, . . . , j, define bn,j,k,s ∈ C as the coefficients of
the following formal power series expansion

(x+ y)−∆+n+1 log(x+ y)j =
∑
k∈N

j∑
s=0

bn,j,k,sx
−∆+n+1−kyk log(x)s, (A.6)

where x and y are formal variables. From (A.2), (A.3) and (A.6), when |z1| > |z2| > 0 and
| arg(z1 − z2)− arg z1| < π

2
, we have the following expansion

e(−∆+n+1) log(z1−z2)(log(z1 − z2))j =
∑
k∈N

j∑
s=0

(−1)kbn,j,k,se
(−∆+n+1−k) log z1zk2 (log z1)s. (A.7)

Now consider∑
n∈D

M∑
j=0

N∑
i=0

an,j,ie
(−∆+n+1) log(z1−z2)(log(z1 − z2))je(−n−1) log(−z2)(log(−z2))i. (A.8)

Using (A.7), we can further expand each term in the right-hand side of (A.8) so that the
right-hand side of (A.8) becomes the iterated sum

∑
n∈D

M∑
j=0

N∑
i=0

an,j,i

(∑
k∈N

j∑
s=0

(−1)kbn,j,k,se
(−∆+n+1−k) log z1zk2 (log z1)s

)
·
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· e(−n−1) log(−z2)(log(−z2))i

=
∑
n∈D

M∑
j=0

N∑
i=0

∑
k∈N

j∑
s=0

an,j,i(−1)kbn,j,k,se
(−∆+n+1−k) log z1zk2 ·

· (log z1)se(−n−1) log(−z2)(log(−z2))i

 , (A.9)

where the inner sum is absolutely convergent in the region |z1| > |z2| > 0.
We are interested in the convergence of the multisum

∑
n∈D

M∑
j=0

N∑
i=0

∑
k∈N

j∑
s=0

an,j,i(−1)kbn,j,k,se
(−∆+n+1−k) log z1zk2 (log z1)se(−n−1) log(−z2)(log(−z2))i

(A.10)

and the corresponding series

∑
m∈D−N

M∑
s=0

N∑
i=0

 M∑
j=s

∑
n−k=m
n∈D,k∈N

an,j,ibn,j,k,s

 e(−∆+m+1) log z1(log z1)se(−m−1) log(−z2)(log(−z2))i

(A.11)

in powers of z1 and z2 and nonnegative integral powers of log z1 and log z2.

Lemma A.1 Assume that the triple series (A.1) and the series obtained from (A.1) by
taking derivatives of each term in (A.1) with respect to z1 and z2 are absolutely convergent
on the region given by |z1| > |z2| > 0. Then the multisum (A.10) is absolutely convergent
on the region |z1| > 2|z2| > 0. Assume in addition that (A.1) is convergent on the region
|z1| > |z2| > 0, | arg(z1−z2)−arg z1| < π

2
to a single-valued analytic branch f e(z1, z2) on M2

0

of a maximally extended multivalued analytic function on M2 such that f e(z1 − z2,−z2) has
no singular point in the region |z1| > |z2| > 0. Then the iterated sum (A.11) are absolutely
convergent on the region |z1| > |z2| > 0, | arg z1 − arg(z1 − z2)| < π

2
to f e(z1 − z2,−z2).

Proof. Let ñ = Rµ − n. Then the sum
∑

n∈D in (A.1) can be written as the same as∑
µ∈A

∑
ñ∈N. So the series (A.1) can be written as

∑
µ∈A

∑
ñ∈N

M∑
j=0

N∑
i=0

aRµ−ñ,j,ie
(−∆+Rµ−ñ+1) log z1(log z1)je(−Rµ+ñ−1) log z2(log z2)i. (A.12)

For any r > 1, consider

∑
µ∈A

∑
ñ∈N

M∑
j=0

N∑
i=0

aRµ−ñ,j,ie
(−∆+Rµ−ñ+1) log z1(log z1)je(−Rµ+ñ−1) log z2(log z2)irñ. (A.13)
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Then the absolute convergence of (A.12) on the region |z1| > |z2| > 0 is equivalent to the
absolute convergence of (A.13) on the region |z1| > r|z2| > 0. But the absolute convergence
of (A.13) on the region |z1| > r|z2| > 0 is in turn equivalent to the absolute convergence of

∑
ñ∈N

aRµ−ñ,j,i

(
z2

z1

)ñ
rñ (A.14)

on the same region |z1| > r|z2| > 0. But as a power series in z2
z1

, (A.14) has a removable

singularity at z2
z1

= 0. Then we see that (A.14) is absolutely convergent on the region | z2
z1
| < 1

r

and is hence also uniformly convergent on the closed region | z2
z1
| ≤ r2 for any positive r2 <

1
r
.

Thus for such r2, (A.13) is a (finite) linear combination of the uniformly convergent series
(A.14) on the region | z2

z1
| ≤ r2 with analytic functions of z1 and z2 on M2

0 as coefficients.
Substituting z1 − z2 and −z2 for z1 and z2, respectively, in (A.13), we see that

∑
µ∈A

∑
ñ∈N

M∑
j=0

N∑
i=0

an,j,ie
(−∆+n+1) log(z1−z2)(log(z1 − z2))je(−n−1) log(−z2)(log(−z2))irñ. (A.15)

is absolutely convergent on the region |z1−z2| > r|z2| > 0 and is a (finite) linear combination
of uniformly convergent series on the region | z2

z1−z2 | ≤ r2 with analytic coefficients on M2
0 for

any positive r2 <
1
r
. Now we expand each term in (A.15) using (A.7) to obtain the iterated

sum

∑
µ∈A

∑
ñ∈N

M∑
j=0

N∑
i=0

aRµ−ñ,j,i

(∑
k∈N

j∑
s=0

(−1)kbRµ−ñ,j,k,se
(−∆+Rµ−ñ+1−k) log z1zk2 (log z1)s

)
·

· e(−Rµ+ñ−1) log(−z2)(log(−z2))irñ

=
∑
µ∈A

∑
ñ∈N

M∑
j=0

N∑
i=0

∑
k∈N

j∑
s=0

aRµ−ñ,j,i(−1)kbRµ−ñ,j,k,se
(−∆+Rµ−ñ+1−k) log z1zk2 ·

· (log z1)se(−Rµ+ñ−1) log(−z2)(log(−z2))i

 rñ, (A.16)

where the inner sum is absolutely convergent on the region |z1| > |z2| > 0. Then as a
subseries of (A.16) divided by e(−∆+Rµ+1) log z1e(−Rµ−1) log(−z2)(log(−z2))i, the series

∑
ñ∈N

(∑
k∈N

j∑
s=0

(−1)ñ+kaRµ−ñ,j,ibRµ−ñ,j,k,s

(
z2

z1

)ñ+k

(log z1)s

)
rñ

=
∑
ñ∈N

∑
k̃∈N

j∑
s=0

(−1)k̃aRµ−ñ,j,ibRµ−ñ,j,k̃−ñ,s

(
z2

z1

)k̃
(log z1)s

 rñ (A.17)
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is also absolutely convergent in the region |z1−z2| > r|z2| and is uniformly convergent in the
closed region | z2

z1−z2 | ≤ r2 any positive r2 <
1
r
, where the inner sum is absolutely convergent

in the region |z1| > |z2|. In the region |z1| > (1 + r)|z2| > 0, we have |z1− z2| ≥ |z1| − |z2| >
r|z2| > 0. Then (A.17) is absolutely convergent in the region |z1| > (1 + r)|z2| or | z2

z1
| < 1

1+r

with the inner sum absolutely convergent in the region |z1| > |z2| or | z2
z1
| < 1. Note that for

fixed z2
z1

, z1 can be any complex number and thus log z1 can also be any nonzero complex
number. This means that ζ1 = z2

z1
and ζ2 = log z1 can be viewed as independent variables

and

∑
ñ∈N

∑
k̃∈N

j∑
s=0

(−1)k̃aRµ−ñ,j,ibRµ−ñ,j,k̃−ñ,sζ
k̃
1 ζ

s
2

 ζ ñ3 , (A.18)

where bRµ−ñ,j,k̃−ñ,s is defined to be 0 when k̃ < ñ, is absolutely convergent on the region

given by |ζ1| < 1
1+r

, ζ2 ∈ C and |ζ3| < r.

On the other hand, on the region | z2
z1
| ≤ r2

1+r2
for positive r2 <

1
r
,∣∣∣∣ z2

z1 − z2

∣∣∣∣ ≤ |z2|
|z1| − |z2|

≤ |z2|
1+r2
r2
|z2| − |z2|

= r2.

Then for z2
z1
∈ C satisfying | z2

z1
| ≤ r2

1+r2
for positive r2 <

1
r

and log z1 ∈ C, (A.17) is uniformly
convergent with the inner sum also uniformly convergent on the same closed region. Thus
(A.18) is uniformly convergent on the region |ζ1| ≤ r2

1+r2
, ζ2 ∈ C and |ζ3| ≤ r with the

inner sum also uniformly convergent on the same closed region. Starting with the absolute
convergence of the series obtained from (A.1) by taking derivatives of each term in (A.1)
with respect to z1 and z2 and using the completely same proof of the uniform convergence of
(A.18), we can show that the series obtained from (A.18) by taking derivatives of each term
in (A.18) with respect to ζ1, ζ2 and ζ3 is also uniformly convergent on the region |ζ1| ≤ r2

1+r2
,

ζ2 ∈ C and |ζ3| ≤ r. In particular, the derivatives of the sum of (A.18) with respect to ζ1,
ζ2 and ζ3 exist and is equal to the sum of the series obtained by taking the corresponding
derivatives of each term in (A.18) on the region |ζ1| < r2

1+r2
, ζ2 ∈ C and |ζ3| < r. Then the

sum of (A.18) is an analytic function of ζ1, ζ2 and ζ3 on the same open region.
For r > 1, let ζ1, ζ2, ζ3 be complex numbers satisfying |ζ1| < 1

(1+r)r
, ζ2 ∈ C and |ζ3| < r.

Then we have |ζ1|
1−|ζ1| < (1 + r)|ζ1| < 1

r
. We choose r2 such that |ζ1|

1−|ζ1| < r2 < (1 + r)|ζ1|.
From |ζ1|

1−|ζ1| < r2, we obtain |ζ1| < r2
1+r2

. We also have 0 < r2 < (1 + r)|ζ1| < 1
r
. Now ζ1, ζ3

satisfy |ζ1| ≤ r2
1+r2

and |ζ3| < r. This means that the sum of (A.18) is analytic and the
derivatives can be calculated term by term at ζ1, ζ2, ζ3. So the sum of (A.18) is analytic and
the derivatives can be calculated term by term on the polydisc |ζ1| < 1

(1+r)r
, ζ2 ∈ C and

|ζ3| < r for any r > 1. Since analytic functions on polydiscs can be expanded as power series,
the sum of (A.18) can be expanded as a power series in ζ1, ζ2 and ζ3 and the coefficients of
the power series expansion can be obtained using its derivatives with respect to ζ1, ζ2 and
ζ3 evaluated at ζ1 = ζ2 = ζ3 = 0. By taking the derivatives term by term, we see that the
coefficients of the power series expansion of this analytic function are equal to the coefficients
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(−1)k̃aRµ−ñ,j,ibRµ−ñ,j,k̃−ñ,s of the iterated series (A.18). Since the power series expansion of
an analytic function is an absolutely convergent multisum, we see that the triple series

∑
ñ∈N

∑
k̃∈N

j∑
s=0

(−1)k̃aRµ−ñ,j,ibRµ−ñ,j,k̃−ñ,sζ
k̃
1 ζ

s
2ζ

ñ
3 (A.19)

is absolutely convergent on the region |ζ1| < 1
(1+r)r

, ζ2 ∈ C and |ζ3| < r.

In particular, on the region |z1| > (1 + r)r|z2|, taking ζ1 = z2
z1

, ζ2 = log z1 and ζ3 = 1 in
(A.19), we see that the triple series

∑
ñ∈N

∑
k̃∈N

j∑
s=0

(−1)k̃aRµ−ñ,j,ibRµ−ñ,j,k̃−ñ,s

(
z2

z1

)k̃
(log z1)s (A.20)

is absolutely convergent. Since r is an arbitrary real number satisfying r > 1, (A.20) is in
fact absolutely convergent on the region |z1| > 2|z2|. Multiplying

e(−∆+Rµ+1) log z1e(−Rµ−1) log(−z2)(log(−z2))i

to (A.20) and summing over A, j = 0, . . . ,M and i = 0, . . . , N , we see that the multiseires

∑
µ∈A

∑
ñ∈N

M∑
j=0

N∑
i=0

∑
k̃∈N

j∑
s=0

(−1)k̃aRµ−ñ,j,ibRµ−ñ,j,k̃−ñ,se
(−∆+Rµ+1) log z1·

· e(−Rµ−1) log(−z2)(log(−z2))i
(
z2

z1

)k̃
(log z1)s

=
∑
n∈D

M∑
j=0

N∑
i=0

∑
k∈N

j∑
s=0

an,j,i(−1)kbn,j,k,se
(−∆+n+1−k) log z1zk2 (log z1)se(−n−1) log(−z2)(log(−z2))i

(A.21)

is absolutely convergent on the region |z1| > 2|z2| > 0, proving the first part of the lemma.
In the case that the addional assumption holds, from the proof above and the additional

assumptuion, the multisum (A.21), which is equal to the iterated series in the right-hand side
of (A.9), is absolutely convergent on the region |z1| > 2|z2| > 0, | arg z1 − arg(z1 − z2)| < π

2

to f e(z1 − z2,−z2). In particular, (A.11) as an iterated sum of (A.21) is also absolutely
convergent on the region |z1| > 2|z2| > 0, | arg z1 − arg(z1 − z2)| < π

2
to f e(z1 − z2,−z2).

Since there is no singular point of f e(z1 − z2,−z2) in the region |z1| > |z2| > 0, (A.11) must
also be absolutely convergent when |z1| > |z2| > 0 and is thus absolutely convergent on the
region |z1| > |z2| > 0, | arg z1 − arg(z1 − z2)| < π

2
to f e(z1 − z2,−z2).

Remark A.2 There is a subtlety about the convergence regions for (A.21) and (A.11).
Note that in general the multisum (A.21) might not be absolutely convergent on the larger
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region |z1| > |z2| > 0. This is because (A.21) is not a series in powers of z1 and z2 and
nonnegative integral powers of log z1 and log z2. Even if we restore the variable ζ3 in the
proof of the lemma above to obtain a series in powers of z1, z2, ζ3 and nonnegative integral
powers of log z1 and log z2, since we do not have the assumption that the sum of this series
can be analytically extended to a region containing |z1| > |z2| > 0, this series might not be
absolutely convergent on any region containing |z1| > |z2| > 0.
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