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Abstract

We study the general twisted intertwining operators (intertwining operators among
twisted modules) for a vertex operator algebra V. We give the skew-symmetry and
contragredient isomorphisms between spaces of twisted intertwining operators and also
prove some other properties of twisted intertwining operators. Using twisted intertwin-
ing operators, we introduce a notion of P(z)-tensor product of two objects for z € C*
in a category of suitable g-twisted V-modules for ¢ in a group of automorphisms of V'
and give a construction of such a P(z)-tensor product under suitable assumptions. We
also construct G-crossed commutativity isomorphisms and G-crossed braiding isomor-
phisms. We formulate a P(z)-compatibility condition and a P(z)-grading-restriction
condition and use these conditions to give another construction of the P(z)-tensor
product.

1 Introduction

Modular tensor categories associated to conformal field theories were discovered first in
physics by Moore and Seiberg [MS]. In [T1], Turaev formulated a precise notion of modular
tensor category based on his joint work [RT] with Reshetikhin on the construction of quantum
invariants of three manifolds using representations of quantum groups. In [H6]|, the second
author proved the following theorem:

Theorem 1.1 Let V' be a simple vertex operator algebra staisfying the following conditions:

1. Forn <0, Viny = 0 and Vo) = C1 and as a V-module, V is equivalent to its contra-
gredient V-module V' (or equivalently, there exists a nondegenerate invariant bilinear
form on V).

2. Every lower-bounded (generalized) V -module is completely reducible.

3. 'V is Csy-cofinite.

Then the category of V -modules has a natural structure of modular tensor category in the
sense of Turaev [T1].



The proof of Theorem 1.1 was based on the results obtained by Lepowsky and the second
author in [HL2], [HL3], [HL4] and the results obtained by the second author in [H1], [H3],
[H4], [H5].

It is natural to expect that Theorem 1.1 has generalizations in two-dimensional orb-
ifold conformal field theory. Two-dimensional orbifold conformal field theories are two-
dimensional conformal field theories constructed from known theories and their automor-
phisms. The first example of two-dimensional orbifold conformal field theories is the the
moonshine module constructed by Frenkel, Lepowsky and Meurman [FLM1] [FLM2] [FLM3]
in mathematics. In string theory, the systematic study of two-dimensional orbifold confor-
mal field theories was started by Dixon, Harvey, Vafa and Witten [DHVW1] [DHVWZ2]. See
[H14] for an exposition on general results, conjectures and open problems in the construction
of two-dimensional orbifold conformal field theories using the approach of the representation
theory of vertex operator algebras.

In [K3], Kirillov Jr. stated that the category of g-twisted modules for a vertex operator
algebra V' for g in a finite subgroup G of the automorphism group of V' is a G-equivariant
fusion category (G-crossed braided (tensor) category in the sense of Turaev [T2]). For general
V', this is certainly not true. The vertex operator algebra V' must satisfy certain conditions.
Here is a precise conjecture formulated by the second author in [H9]:

Conjecture 1.2 Let V' be a vertex operator satisfying the three conditions in Theorem 1.1
and let G be a finite group of automorphisms of V. Then the category of g-twisted V -modules
for all g € G is a G-crossed braided tensor category.

We also conjecture that the category of g-twisted V-modules for all g € GG is a G-crossed
modular tensor category in a suiable sense. Since the definitions of G-crossed modular
tensor category in [K3] and [T2] are different, more work needs to be done to find out which
definition is the correct one for the category of twisted modules for a vertex operator algebra.
But we do believe that this stronger G-crossed modular tensor category conjecture should
be true in a suitable sense.

In the case that G is trivial (the group containing only the identity), Conjecture 1.2
and even the stronger G-crossed modular tensor category conjecture is true by Theorem
1.1. Thus the G-crossed modular tensor category conjecture is a natural generalization of
Theorem 1.1 to the category of category of g-twisted V-modules for g € G.

In the case that the fixed point subalgebra V¢ of V under G satisfies the conditions in
Theorem 1.1 above, the category of V¢-modules is a modular tensor category. In this case,
Conjecture 1.2 can be proved using the modular tensor category structure on the category
of V% modules and the results on tensor categories by Kirillov Jr. [K1] [K2] [K3] and Miiger
[Miil] [Mi2]. In the special case that G is a finite cyclic group and V satisfies the conditions
in Theorem 1.1, Carnahan-Miyamoto [CM] proved that V¢ also satisfies the conditions in
Theorem 1.1. In the case that G is a finite cyclic group and V' is in addition a holomorphic
vertex operator algebra (meaning that the only irreducible V-module is V itself), Conjecture
1.2 can be obtained as a consequence of the results of van Ekeren-Moller-Scheithauer [EMS]
and Moller [M&] on the modular tensor category of V¢-modules. Assuming that G is a



finite group containing the parity involution and that the category of grading-restricted V-
modules has a natrual structure of vertex tensor category structure in the sense of [HL1],
McRae [Mc| constructed a nonsemisimple G-crossed braided tensor category structure on
the category of grading-restricted (generalized) g-twisted V-modules.

For general finite group G, the conjecture that the fixed point subalgebra V¢ of V under
G also satisfies the conditions in Theorem 1.1 is still open and seems to be a difficult problem.
On the other hand, using twisted modules and twisted intertwining operators to construct
G-crossed braided tensor categories seems to be a more conceptual and direct approach. If
this approach works, we expect that the category of V¢-modules can also be studied using
the G-crossed braided tensor category structure on the category of twisted V-modules.

In the case that the vertex operator algebra V' does not satisfy the three conditions in
Theorem 1.1 and/or the group G is not finite, it is not even clear what should be the precise
conjecture. This was proposed as an open problem in [H9].

In the present paper, we prove some initial results in a long term program to prove the
conjecture and to solve the open problem above. We introduce a more general notion of
twisted intertwining operator than the one introduced by the second author in [H8]. In [HS],
the correlation functions obtained from the products and iterates of a twisted intertwining
operators and twisted vertex operators are required to be of a special explicit form. But for
a twisted intertwining operator in this paper, such correlation functions are not required to
have such an explicit form.

As in [H8], we prove some basic properties and construct the skew-symmetry and con-
tragredient isomorphsims for our general twisted intertwining operators. Using such general
twisted intertwining operators, we introduce a notion of P(z)-tensor product of two twisted
modules for z € C* and give a construction of such a P(z)-tensor product under suitable as-
sumptions. We also prove a result showing that under suitable conditions, these assumptions
are satisfied.

We need P(z)-tensor products for z € C* because we would like to construct G-crossed
vertex tensor categories in the future, not just G-crossed braided tensor categories. Also
note that to give the correct notion of P(z)-tensor product of twisted modules, we need to
use the most general twisted intertwining operators. If we use only certain special set of
twisted intertwining operators as in [H8| to define and construct the P(z)-tensor products,
we would obtain submodules of the correct P(z)-tensor products.

We note that in the untwisted case, a P(z)-compatibility condition and a P(z)-grading-
restriction condition (see [HL4] and [HLZ3|) play an important role in the proof of associa-
tivity (operator product expansion) of intertwining operators and in the construction of the
associativity isomorphisms for the vertex tensor category structure (see [H1] and [HLZ5]). In
this paper, we also formulate a P(z)-compatibility condition and a P(z)-grading-restriction
condition and use these conditions to give another construction of the P(z)-tensor product.
In the untwisted case, the P(z)-compatibility condition is formulated using a formula ob-
tained from the Jacobi identity in the definition of intertwining operators (see [HL4] and
[HLZ3]). But since in general we do not have a Jacobi identity that can be used as the main
axioms in the definition of twisted intertwining operators, our formulation of this condition



and the construction of tensor products using this condition are complex analytic and are
very different from the the formulation and construction in [HL4] and [HLZ3]. We expect
that these two conditions will play the same important role in the future proof of the con-
jectured associativity of twisted intertwining operators formulated in [H14] (where twisted
intertwining operators should be replaced by the most general twisted intertwining operators
introduced in this paper).

This paper is organized as follows: In Section 2, we recall the definitions of (general-
ized) twisted module, lower-bounded (generalized) twisted module and grading-restricted
(generalized) twisted module. We then introduce the general notion of twisted intertwining
operator mentioned above. In Section 3, we give the skew-symmetry and contragredient
isomorphisms for these general twisted intertwining operators. We introduce the notion of
P(z)-tensor product and give a construction under suitable assumptions in Section 4. We
prove a result showing that under suitable conditions, these assumptions are satisfied. We
also construct G-crossed commutativity isomorphisms and G-crossed braiding isomorphisms
in this section. We give the P(z)-compatibility condition and P(z)-grading-restriction con-
dition and give another construction of the P(z)-tensor product in Section 5.

2 Twisted modules and twisted intertwining operators

We first recall in this section the notion of (generalized) twisted module from [H7]. We then
introduce a notion of twisted intertwining operators more general than the one in [H8]. We
also give some basic results on such twisted intertwining operators.

For z € C* and p € Z, we shall use the notation [,(z) = log |z| + i arg z + 2mpi, where
0 < argz < 2m. We shall also use the notation log z = ly(2) = log |z| + i arg z. For a vector
space U, p € Z and a formal series

fl) =) anpa"(logz)",

k=0 neC
where a,; € U, the series

K

fP(z) = Z Z an,kenlp(z)(lp(z))k

k=0 neC

is called the p-th analytic branch of f(x). We also denote f°(z) simply by f(z).

Let g be an automorphism of V. We recall the definition of generalized g-twisted V-
module first introduced in [H7]. For simplicity, we shall omit the word “generalized” as
in [H8]. In particular, in this paper, the vertex operator map for a g-twisted V-module in
general contain the logarithm of the variable and the operator L(0) in general does not have
to act semisimply.



Definition 2.1 A g-twisted V-module is a CxC/Z-graded vector space W = [],,cc nec/z
(graded by weights and g-weights) equipped with a linear map

Yi: VoW — W{z}logzl,
v@w — Yi(v,z)w

satisfying the following conditions:
1. The equivariance property. For p e Z, z € C*, v eV and w € W,
(Vi )" (gv, 2)w = (Vi})" (v, 2)w,
where for p € Z, (Y{{))?(v, 2) is the p-th analytic branch of Y{j (v, z).

2. The identity property: For w € W, Y1, (1, 2)w = w.

o]
Wi

3. The duality property: For any u,v € V, w € W and w’ € W', there exists a maximally-

extended multivalued analytic function with preferred branch of the form

N

f(z1,22) = Z a2y 2y’ (logzy ) (logze) (21 — 29) ™"
i ke =0

for Ne N, my,...,mn, ny,...,ny € Cand t € Z,, such that the series

(W', (V)P (u,20) (Vi )P (0, za)w) = (!, (V)P (u, 20)m (Vi P (v, 22)w),

neC
(W', (Vi) (0, 2) (Vi) )P (u, z0)w) = D (', (V) (0, 22) (V)P (u, 21)w),
neC
(W', (V)P (Yv(u, 21 — 22)v, 20)w) = Z(w’, (Y )P (. Yy (u, 21 — 29)v, 22)w)
neC

are absolutely convergent on the regions |z1| > |2z2| > 0, |22| > |21] > 0, |22] > |21 —22] >

0, respectively, and their sums are equal to the branch

N

frP(z1,22) = Z aijue™ ) e ()l (22) (21 — 22) 7
4, J =0

of f(z1,22) on the region |z1]| > |25 > 0, the region |z3| > |z1| > 0, the region given by

| 22| > |21 — 22| > 0 and |arg 21 — arg 25| < 7, respectively.

4. The L(0)-grading condition and g-grading condition: Let Lj,(0) = Res,zY} (w

,T).

Then for n € C and « € C/Z, w € W[[;?, there exist K, A € Z, such that (L{,(0) —

K

_ 27ad

n)fw = (g — > = 0. Moreover, gV} (u,x)w = Y (gu,z)gw for u € V
weW.

and



5. The L(—1)-derivative property. For v € V,

d
%YV%(U, z) =Y (Ly(—1)v,x).

A lower-bounded g-twisted V-module is a g-twisted V-module W such that for each n € C,
Winqy = 0 for sufficiently negative real number I. A g-twisted V-module W is said to be
grading-restricted if it is lower bounded and for each n € C, dim W},,) < oo.

For simplicity, we shall sometimes omit the subscript W to denote the twisted vertex
operator map Y, by Y.

Let (W,Y}],) be a g-twisted V-module. Let h be an automorphism of V. We recall the
hgh~!-twisted V-module (W, ¢,,(Y;},)) (see for example [H8]). Let

on(Y)) : Vx W — W{z}logz]
vew — op(Y?) (v, x)w
be the linear map defined by
oY) (v, 2w = Vi (h™ o, 2)w.

Then the pair (W, ¢, (Y5,)) is an hgh™'-twisted V-module. We shall denote the hgh™'-twisted
V-module in the proposition above by ¢,(W).
Note that when h = g, we obtain a g-twisted module ¢,(1/) for which the twisted vertex
operator is given by
8, (Y8 (v, 2)w = Vi (g7 v, ).

But this g-twisted V-module is equivalent to the original g-twisted module W. The equiva-
lence is given by ¢! : W — W since we have

g Y (v,2)g = YT (g7 v, 2)w
for v € V. By the equivariance property, we have (Y1) (¢~ v, z) = (Y;},)P* (v, z) and, if

Yi(vojw=23 > (Vi)nw(v)z " (logz)*

k=0 neC
for v eV and w € W, we have
K
Yv%(g_lv, T)w = Z Z(Y%)nvk(v)e%i”x_"_l(logx + 2mi)".
k=0 neC

We also recall contragredient twisted V-modules (see for example [H8]). Let (W, Y}7,) be
a g-twisted V-module relative to G. Let W' be the graded dual of W. Define a linear map

Y5 VoW — W/{s}logz],

6



vew — (V) (v, 2)w

by
(V7)) (v, 2)w', w) = (w',YV“{,(emL(l)(—m_2)L(0)v,x_l)w>

forveV, we W and w’ € W'. Then the pair (W', (V;],)') is a g~ *-twisted V-module.

Let M? = {(z1,20) € C? | 21 # 0, 25 # 0, 21 # 22}. Let f(21,2) be a maximally
extended multivalued analytic function on M? with a preferred single-valued branch f¢(21, z)
on the simply-connected region M¢ given by cutting M? along the positive real lines in the
z1-, 29~ and (z1 — z3)-planes, that is, the sets

{(21722) € M2 | z21 € R+},
{(z1,22) € M?| 2, € R},
{(Zl,ZQ) € ]\42 | 21— 29 € R+},

with these sets attached to the upper half z1-, zo- and (27 — 2z5)-planes. Note that given any
point (2}, 28) € M? and any loop 7 based at (2}, 29), we obtain from the preferred branch
of f(z1,29) another single-valued branch by going around . The resulting single-valued
branch depends only on the homotopy class of the loop and is independent of the choices
of the base point. Thus we obtain a right action of the fundamental group of M? on the
set of single-valued branches of f(z1,29). Note that M? is homotopically equivalent to the

configuration space

F3(<C) = {(ZlszaZS) S (C3 | Zi 7& Zj5 i 7é ]}
So the fundamental group of M? is in fact the pure braid group PBs and has three generators
b1, b1z and boz, which are given as follows: Choose the base point to be (=3, —2). Then the

generator by is the homotopy class of the loop given by letting z; go counterclockwise around
the circle of radius 1 centered at —2 (see Figure 1). The generator bys is the homotopy class

Figure 1: The loop for by

of the loop given by letting 25 go counterclockwise around the circle of radius 2 centered
at 0 (see Figure 2). The generator by3 is the homotopy class of the loop given by letting
z1 go around first the lower half circle of radius 3 centered at 0 counterclockwise, then the
upper half circle of radius 2 centered at 1 counterclockwise and finally the lower half circle
of radius 1 centered at —2 clockwise (see Figure 3). We know that the pure braid group PB3
is isomorphic to the group generated by b9, b13, by3 with the relations

b13b12b23 = 612b23b13 = b23bl3b12-

7
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Figure 2: The loop for by
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Figure 3: The loop for by3
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See [D] for more detailed discussions on M?, its fundamental group, the pure braid groups
and multivalued functions on M?2.

For a € PB3, we denote the single-valued branch of f(z1,22) obtained by applying a to
fe(z1,22) by fe(z1, 22).

Let 6 = (01,...,0,), where ¢; € {0,00}, i = 1,...,n. Suppose f(z1,...,2,) is a multi-
valued analytic function defined on an open region €2 of C". We say (21,...,2,) = 0 is a
component-isolated singularity of f(z1,. .., zn) if there exists r € R”} such that A*(6,7) C Q.
Let A € GL(n,C) and g € C™ (written as a row vector). Then (j,...,(, given by

(Cl?"'?C’n) = (217"'72n)A_/6
are also independent variables. Define

g(Cla .- aCn) = f ((Cla s 7§n)A71 + 5"471) : (2'1)



For 6 € (CU {oco})", we say that ((i,...,(,) = 0 is a component-isolated sigularity of
f(z1, .., 2n) if (C1, ..., () = 0 is a component-isolated singularity of g((y, ..., ().

Remark 2.2 Notice that ((i,...,()(= (21,-..,2,)A — B) = d being a component-isolated
singularity of a function is not equivalent to (21, ..., z,) = 0A~'+ 3A~! being a component-
isolated singularity of the same function. This is because we have different sets of independent
variables. For example, consider f(z1,z2) = Zli@. Since ((1,¢2) = (0,0) is a component-
isolated singularity of the function g((i,(2) = 1/(, we also say that (21 — 22, 22) = (0,0) is a
component-isolated singularity of f(z1, z2). In this case, z; — z3 and zy are independent vari-
ables. However, (z1,29) = (0,0) is clearly not a component-isolated singularity of f(z1, 22).

In this case, the independent variables are z; and z».

Definition 2.3 Let f(z1,...,2,) be a multi-valued analytic function defined on an open
region of C". Let 6 = (4,...,6,) € {0,00}". Suppose (21,...,2,) = ¢ is a component-isolated
singularity of f(z1,...,2,). Let {f%(21,...,2,) ven be the set of all single valued branches
of f(z1,...,2,) near § with cuts at 2, € Ry. Then for each b € B, there exists r, € R’}
such that f°(zy,...,2,) is analytic on A*(d,7,). We say that (z1,...,2,) = d is a reqular
singularity of f(z1,...,z,) if there exists K € N, D; = ij:ilrj(i) + N (or D; = Uj-vz’ilrj(.i) - N)
where rf), . ,7’5\2 € C for 6; =0 (or §; = o0), and ag?7j1§-~-§an7jn € C, such that on the region
A*(0,7p), the right-hand-side of the following equation is absolutely convergent, and

n K
oz, ) = Z Z Z &((L?’jz;m;amjnzfl(log 2 ) 20 (log 2, ). (2.2)

i=1 a;€D; j1,---,Jn=0

If K =0and D, = —nD + N in the case §; = 0 and D; = n” — N in the case §; = oo for
i=1,...,nin ((2.2)), where n) € Z, fori € I C {1,...,n} and n®Y =0 for i # I, we say
that z; = 6; for i € I are poles of f(z1,...,2,). fn® € Z, foric I c {1,...,n}, 6; = 0 are
the smallest and such that (2.2) holds, we call n; the orders of the poles z; = §;, respectively,
fori € I. Let A € GL(n,C) and € C" be the same as above. We say that ((1,...,(,) =0 is
a reqular singularity of f(z1,...,2,) if ((1,...,(,) = J is aregular singularity of g((1, ..., (),
where ¢g((y, ..., () is give by (2.1). We say that (; = ¢; for i € I are poles of f(z1,...,2,)
with orders n;, respectively, if (; = ¢§; for i € I are poles of ¢g((i,...,(,) with orders n;,
respectively.

Remark 2.4 Let f(z1,...,2,) and g(z1,...,2,) be multivalued analytic functions with
preferred branches defined on an open region. Then Af(z1,...,2,) + pg(z1,...,2,) for
A € Cand f(z1,...,20)9(21,...,2,) are well defined using the preferred branches and
are also multivalued analytic functions on the same region with preferred branches. If
(1., Cn) = ((21,-+-,20)A — B =)0 is a regular singular point of both f(z,...,z2,) and

g(z1,...,2,), then it is also a regular singular point for A\f(z1,...,2,) + ug(z1,. .., 2,) and
f(z1,.. .y 20)9(21, ..., 2n). Therefore, the set of multivalued analytic functions on the same
region with a preferred branch such that ((i,...,(,) = 6 is a regular singular point form a

commutative associative algebra over C.



We also need the region

M"={(z1,...,2,) €C" | 2, #0, 2z # 2, i # j}

forneZ,.
Definition 2.5 Let g1, g2, g3 be automorphisms of V' and let Wy, W5 and W3 be g1-, go-
and gs-twisted V-modules, respectively. A twisted intertwining operator of type (W1V3V2) is a

linear map
V:Wi@W, — Ws{x}logz]
K
wy @wy = Y(wy, r)we = Z Zymk(wl)ng_"_l(log :L‘)k
k=0 neC

satisfying the following conditions:

1. The lower truncation property. For wy, € Wi and wy € Wy, n € Cand k =0,... K,
Yotik(wi)wy = 0 for [ € N sufficiently large.

2. The duality property: For uw € V, wy € Wy, wy € Wy and wj € Wy, there exists a
maximally extended multivalued analytic function f(21, z9;u, w1, we, w}) on M? with
a preferred single-valued branch f¢(zq, 22; u, wy, we, w}) on Mg such that the series

(w3, Vi (u, 21)V(wy, 22)ws) = Z(wé, Vit (u, 21) Y (w1, 20)ws), (2.3)
neC

(ws, Y(wi, 22) Y72 (u, 21)ws) = Z(wg, V(wy, 22)m Vi (u, 21)wa), (2.4)
neC

(wy, V(YT (u, 21 — 22)wy, 20)ws) = Z(wé,y(ﬂnYﬁl(u, 21 — 22)W1, Z3)Ws) (2.5)
neC

are absolutely convergent on the regions |z1| > |z2] > 0, |z2] > |2z1] > 0, |22 >
|21 — 22| > 0, respectively. Moreover, their sums are equal to f¢(z1, z9; u, wq, wo, w})
on the region given by |z1| > |22| > 0 and |arg(z; — 22) — argzi| < 7, the region
given by [z > [z1] > 0 and —2F < arg(z; — 29) — argzs < —2Z, the region given by

22| > |21 — 22| > 0 and |arg 2; — arg z;| < 7, respectively.

3. The convergence and analytic extension for products with more than one twisted vertex
operators: For k € N+3, uy,...,up—1 € V, wy € Wy, wy € Wy and wf € W3, the series
<w;/3; ng}o;, (ur,21) - Yﬂ% (Up—1, 2e—1) Y (W1, 21)w2)

= Z (w3, Yﬂ% (w1, 21) T, - 'Wnk,QYV’i% (Ur—1, 2k—1)Th 1Y (W1, 29)Ww2)

ni,...,np_1€C

is absolutely convergent on the region |z| > .-+ > |z| > 0 and can be maxi-
mally extended to a multivalued analytic function on the region M* such that all
the component-isolated singularities of this function are regular.

10



4. The L(—1)-derivative property:
d
%)J(wl, CL') = y(L(—l)wl, ZL‘)

Remark 2.6 For simplicity, in the duality property in Definition 2.5, we use only the pre-
ferred branches of the twisted intertwining operator and the twisted vertex operators. One
can derive what the products and iterates of other branches of a twisted intertwining op-
erator converge to using the actions of the elements of PB3 on the single-valued branch
fe(z1, 225 u, wy, wa, wy) of the multivalued function f(z1, 225w, wy, we, wy) in the definition.
Let Y be a twisted intertwining operator of type (Wvlv‘f’%) For any p1, p2, p12 € Z, the series

<w/37 (Y{g/i;)pl (u7 Zl)yp2 (U)l, Z2)w2> = Z(wé7 (YI/%% )Pl (U, Zl)”nyln (w17 ZQ)w2>7 (26)
neC

<w§, yre (wl, 22)(}/1%)101 (U7 21)w2> = Z(wé> ym(wb Z2)7Tn<YV£[]/22)p1 (% Zl)w2>7 (2-7)
neC

(wh, Y72 (VP2 (u, 21 — z2)w, z2)wa) = (why, VP2 (ma (Vi P12 (u, 21 — 22)w1, 22)ws) (2.8)
neC

are absolutely convergent on the regions |z1]| > |22] > 0, |22] > |21| > 0, |22] > |21 — 22| > 0,
respectively. Moreover, their sums are equal to the branches

bi3b12)P1bh2 . /
f( ) 23(217227u7w15w27w3 )

f(b12b23)p2b119?1) (Zh 225 Uy, W1, Wa, wé)’
/

P12

ba3b13)P2b .
f( ) 12 (ZI,ZQ,U7U)1,U)2,UJ3 )

respectively, of f(z1, z9; u, wy, we, w}) on the region given by |z1| > |22] > 0 and |arg(z, —
) — arg 21| < %, the region given by |2z5| > |21 > 0 and =2 < arg(z; — 22) — argzp < —1Z,
the region given by |2;| > |21 — 22| > 0 and |arg 21 — arg 23| < 7, respectively. See [D] for
more details.

Proposition 2.7 Let g1, g2, g3 be automorphisms of V., Wy, Wy, W3 g1-, g2-, gs-twisted
generalized V -modules and Y a twisted intertwining operator of type (WVIVSVQ) Assume that
the map u — Yvﬁ(u,x) 18 injective and )Y is surjective in the sense that the coefficients of

the series Y(wy, x)wy for wy € Wy, we € Wy span W5. Then g3 = g19a-

Proof. By the definition of twisted intertwining operator, for u € V, w; € Wy, wy € W5 and
wh € W3, there exists a multivalued analytic function f(zy, 29;u, wy, we, wh) on M? with a
preferred single-valued branch f¢(z1, zo; u, wy, we, wj) on M2 such that (2.3), (2.4) and (2.5)
are absolutely convergent to f¢(z1, zo; u, wq, wy, w}s) on the corresponding regions in given in
Defintion 2.5. In particular, on the region |z1| > |z > 0, |arg(z; — 22) — argz1| < § the
sum of the series (wj, Yii? (g3u, 21)Y (w1, 22)ws) is equal to f¢(21, 22; gau, w1, wa, wy). By the
equivariance property for Wi,

<w§,YV5{%(g3u, 21)V(wy, 22)w) = <7~U§,7 (ng/?;,)fl(ua z1)V(wy, z2)wy), (2.9)
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where as above (Y}7? )~! is the (—1)-th branch of the twisted vertex operator map Y}j? . But
the right-hand side of (2.9) can be obtained from (w3, V7> (u, 21)Y (w1, 22)ws) on the region
|z1] > |22| >0, |arg(z; — 2z3) —arg z1| < § by letting z; go around clockwise a circle of radius
larger than |25]. The homotopy class of such a circle is equal to (by3bi2) ™. So (2.9) gives

1
f(21, 205 g3u, wi, wo, wh) = FOBDT () 2w wy, wy, wh)
or equivalently
FP012 (21 295 gau, wi, wao, wh) = f€(21, 225 U, Wy, Wa, WY). (2.10)

Similarly, on the region |zo| > |2| > 0, —=2F < arg(z; — 22) —arg z» < —%, the sum of the
series (wy, Y (w1, 22)Yii7, (g2u, 21)ws) is equal to f¢(21, 22; gsu, w1, wy, ws). By the equivariance
property for W,

<w§), V(wy, Z2)Yv‘({% (92u, 21)w) = <wé7 Y(wy, 22)(3/1/%/22)_1(“7 21)Wa), (2.11)

where ({7 )" is the (—1)-th branch of the twisted vertex operator map Y77 . The right-hand
side of (2.11) can be obtained from (w3, Y(w1, 22) Vi (u, 21)wa) on the region |25 > |2] > 0,
—37” < arg(z — z) — argz; < —3 by letting 2; go around clockwise a circle of radius less
than |z;|. Such a circle as a loop must have a base point in the region |z| > |z| > 0, =2 <
arg(z; — z2) —arg zp < —5. But there is a canonical isomorphism between the fundamental
group of M? with such a base point and PB3 which has a base point (—3, —2). To see how the
loop given by the circle above acts on the single-valued branches of f (21, z2; u, wy, we, w}),
we need to find the element of PBj3 corresponding to this loop. We choose the following
loop 7 based at (—3,—2): The first part 7, of «y is the lower half circle centered at —1 with
radius 1 from —3 to —1 for z; and trivial ofor z; (meaning 2z, is always equal to —2). The
second part 7, is the counterclockwise circle centered at 0 with radius 1 based at —1 for z;
and trivial for z,. The third part 3 = v, ' is also the the lower half circle centered at —1
with radius 1 but from —1 to —3 for 2z; and trivial for z5. It is clear that v is homotopically
equivalent to the loop given in Figure 3. Then we have b1z = [y] = [1][12][11]™}, where []
for a path v means its homotopy class. Equivalently, we have [y5] = [y1]7*b13[11]. When we
let z; go from —1 to —3 along 7; !, since v; ' passes the cut along the positive real line in
the z; — zo-plane, the single-valued branch f€(zy, z9; u, w1, we, w}) is changed to the single-
valued branch fb1—21(zl, Zo; u, Wy, wo, wy). Similarly, when we let z; go from —1 to —3 along
Y1, f2(21, 295 u, Wy, we, wh) is changed to the single-valued branch f%12(2y, 2o; u, wy, wy, w}) for
any b € PB3. Thus when we let z; go around the loop 72, f€(21, 29; u, w1, we, w}) is changed
to for2013012 (21 20w, wy, we, w)), that is,

-1
th](Zh 29} U, W1, Wa, W) = fb12 blgbm(zl, 29} U, W1, Wa, WH).

Note that the circle 7, ! is exactly the circle we use to obtain the right-hand side of (2.11)
from (wh, Y(wy, 22)Yij7 (u, z1)ws) on the region |z5] > [z1] > 0, =3 < arg(z — z) —arg z; <
—%. So the right-hand side of (2.11) is equal to

—1 —1;—1
th ](21,22;%101,102,11/3) = fb12 bis b12<21722;uaw17w27w:/3)-
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But the sum of the left-hand side of (2.11) is equal to f¢(21, 22; gou, w1, wa, w}). So we obtain
[€(z1, 22; gou, wy, wo, wh) = fbl_;bl_?’lbm(zh 29} U, W1, Wa, W)
or equivalently
b (2 2y; gou,wn, wo, wh) = f4(21, 225w, wy, wa, wh). (2.12)
Similarly we also have
fle(Zl,ZQ;glu,UJ1,w27wg‘) = (21, 22; u, wy, W, wy). (2.13)

Using the right action of PB3 on the set of single-valued branches of the multivalued analytic
function f(z1, z9; u, wy, wy, w}), for b € PB3, we obtain from (2.13)

Fr20 (21, 295 gott, Wi, wa, wh) = (21, 295 U, wy, wa, Wh). (2.14)
From (2.10), (2.12) and (2.14), we have

Fr012 (21, 205 g, wi, wa, wy) = fO(21, 225w, w1, wa, W)
— fblebwbl?(zl, 29} goll, Wy, Wa, W)
= foue(bizbisbiz) () o 00 gou, Wy, wy, wh)
= fO13012 () 2os g1 gou, Wi, wo, W) (2.15)
When |z| > |2| > 0 and |arg(z; —22)—arg 2| < 7, the left- and right-hand sides of (2.15) are

equal to the sum of (wh, (Yi§2 ) (gsu, 21)V (w1, z2)ws) and (ws, (Yi$) (9192w, 21) Y (w1, 22)wa),
respectively. Therefore, we obtain

(wh, (Vi) (91920 — gsu, 21) Y (w1, z2)ws) = 0 (2.16)

for wy € Wi, wy € Wy, ws € Wj. Since ) is surjective in the sense above and wj is arbitrary,
(2.16) implies (V{7 )" (g192u — gsu, z1) = 0. But the map given by v — Y}i? (v, x) is injective,
we obtain g1gou — gsu = 0 for u € V. So we have g3 = ¢19». |

3 Skew-symmetry and contragredient isomorphisms

Let g1, g2 be automorphisms of V', Wy, Wy and W3 ¢1-, go- and g go-twisted V-modules and
Y a twisted intertwining operator of type (W‘ivafz) We define linear maps

Qi<y) : WQ & W1 — Wg{x}[logx]
wy @wy; = Qe (Y)(we, x)w

Qs (V) (w, 2)wy = DY (wy, y)ws (3.1)

yn=etnwign logy=logxtmi
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for w; € Wy and wy € Wy. Note that we can also define €2, for p € Z by changing + in the
right-hand side of (3.1) to +p. But we will not discuss €2, in this paper.
From the definition (3.1), for p € Z, wy € Wy, wy € Wy and z € C*,|

QL ()P (wg, 2)w; = Qi (V) (we, x)w;

zn=e"r () log z=l,(2)

= (6$L(_1)y(w1, Y)ws

yn=etnmign Jogy=log :v:|:7ri> azn=e"1(?)  log x=l,(2)

= LD Y (wy, y)wsy

yr=e"Up()Em) 50 y=lp(z)Lmi

When argz < 7 and argz > 7, arg(—z) = arg z + 7 and arg(—z) = arg z — m, respectively.
Hence

VY (wy, y)ws = VYR (wy, —2)wy
yn=e"Up()+m) ogy=|, (z)4ni

when arg z < 7w and

VY (wy, y)ws = VYR (wy, —2)w,
yr=e™Up(2) =) Nogy=1,(z)—7i

when arg z > 7. In particular, for wy € Wy, wes € W5 and z € C* satisfying arg z < 7 and
arg z > m, we have

Qy (V)P (wy, 2)wy = eFHEDYP(wy, —2)w, (3.2)
and

Q_ (V)P (wa, 2)wy = LEVYP(wy, —2)w,, (3.3)

respectively.

Theorem 3.1 The linear maps Q4 (V) and Q_(Y) are twisted intertwining operators of types

(Wmﬁfi’(wl)) and (%1 (yf;)wl); respectively (recall the definition of ¢, for an automorphism g

of V in Section 3).

Proof. The main difference between the proof here and the proof of Theorem 5.1 in [H8] is
that here we cannot use the explicit form of the correlation functions in [H8] obtained from
the products and iterates of a twisted intertwining operators and twisted vertex operators.
So our proof here is much more complicated and involves some technical convergence and
analytic extension results, even though the idea is the same as in the proof of Theorem 5.1
in [HS].

Let u € V, wy; € Wy, we € Wy and wj € WJ. As in the proof of Theorem 5.1 in [H§|, we
use f(z1, 22; u, wy, we, wh) to denote the multivalued analytic function in the duality prop-
erty for the twisted intertwining operator ) with the preferred branch f¢(zq, z2; u, wy, we, w}).
Note that f(z1, 2z9; u, w1, we, w}) in [HE] is of the particular form in the definition of twisted
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intertwining operator there. But in this proof, it is a maximally-extended multivalued ana-
Iytic function on M? with regular singular points at 21,2 = 0 and z; — 2, = 0 and in general
might not have the special form in [HS|.
Define

g+ (21, 225 U, wo, wy, wy) = f(21 — 22, —22; U, Wy, W, 622L/(1)wg) (3.4)
and choose the preferred branch ¢4 (21, 22; u, we, wy, wh) of g4 (21, 29; u, we, wy, wh) as follows:
On the subregion |z| > |z > 0, |arg(z1 — 22) — argz;| < § and argz, < m (for Q) or
arg zp > 7 (for Q_) of MZ, let

91(21, 295 U, wz,whwé) = fe(zl — 22, —Z2; U, W1, W2, €Z2L/(1)w§)- (3-5)

For general (21, 29) € Mg, we define g% (21, 22; u, wy, wi, wy) to be the unique analytic exten-
sion on M¢Z.

When |z1]| > |2] > 0, |arg(z1 — 22) —argz1| < § and argz, < 7 (for ;) or argzo > 7
(for Q_), from (3.2) and (3.3) and the L(—1)-derivative property for Y}i? , we have

(wy, i (u, 20) Q1Y) (wa, 22)wr)
= (ws, Vii? (u, 1) Q4 (V) (w2, z2)w1)

P =e" log 21 Jog 21 =log 21 ,xh=e" log 22 Jog zo=log 22

= <wé7 YI/%% (U, I1>6_yL(_1)y(w17 y)w2>

TP =e"198 21 log x1=log 21 ,y"=e™ 1°8(—22) log y=log(—22)

TP =e"198 21 log x1=log z1,y" =" 1°8(~22) log y=log(—22)

(3.6)

_ <ez2L/(1)wé’ (Y%)(U, 1+ y)y(wl, y)w2>

We first prove that the right-hand side of (3.6) is absolutely convergent on the region |z;| >
|22] > 0 and is convergent to f¢(z1, z2; u, wy, wa, wy) on the region |z1| > |z2| > 0, |arg(z —
7)) —argzi| < % . The proof is in fact the same as the proof that the right-hand side of
(9.170) in [HLZ5] is absolutely convergent in the region |z5| > |z9| > 0. Here we give a
slightly different proof.

We can always take u € V', w; € Wy, wy € W5 and ezQL'(l)wg € Wi to be homogeneous.
Let A = —wt e?! Wl + wtu 4+ wtw; + wtw,. Let

D = {n € C | there exist 4, j € N,such that (e*% O}, (Y%)A—n—zj (1) Vi (w1) wa) # 0}

and M, N € N such that (Ygﬁ;)mj (u) =0forme C, j > M and Y, ;(w,) =0 for i > N.
Then by the lower truncation préperty of Y, the fact that u is a finite sum of generalized
eigenvectors of g3 and the equivariance property of the gs-twisted module W3, we know that
there exist a finite subset A of C/Z and R,, € pu for each 1 € A such that

Dc |J(R,—N). (3.7)

HEA

Let
anga = {eFOul, (G8) Ly () (V)5 () wa ) € C
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forne D,0<j<Mand0<n < N. Then, by the convergence of (2.3), the L(—1)-
derivative properties for Yvﬁ and Y, and Proposition 7.9 in [HLZ4|, we know that the triple
series

M N
DD e TATE I (log 2 el DR l0g ) (3.8)

neD j=0 i=0

is absolutely convergent on the region given by |z;| > |23] > 0 and is convergent on the
region |z1] > [z2| > 0, |arg(z; — 22) —arg z1| < § to

fe(zh Z2; U, Wy, Wa, eZ2LI(1)wZ/3) = <622L/(1)w2/37 YI/%% (U, Zl)y<w17 22)w2>' (39)

Forne D,j=0,...,. M,k &€ Zxy,s=0,...,j,let b, ;rs € C be the numbers defined in
(A.6). Then

M N
ZZ Z Z an,]z n,j,k,s 6( Atmt1) logZ1(10gZ )S (=m—1)log(~ (10g< ))l

is equal to the right-hand side of (3.6) and, by Lemma A.1, is absolutely convergent on the
region |z1| > |2| > 0 and is convergent to f¢(z; — 22, —22; u, wy, Wy, €2’ Mwl) on the region
|21] > |22 > 0, |arg z; — arg(z; — )| < 5.

Now it is easy to see that the left-hand side of (3.6) is absolutely convergent on the region
|z1] > |22| > 0 and its sum is equal to g% (z1, z2; u, wy, wa, wj) on the region |z;| > |z2| > 0,
|arg z; — arg(z; — 22)| < §. In fact, we know that the left-hand side of (3.6) as a series is
equal to the right-hand side of (3.6) on the region |z| > |z| > 0, |arg(z; — 22) —argzi| < §
and arg zo < m (for Q) or arg zo > 7 (for 2_). But we have just proved that the right-hand
side of (3.6) is absolutely convergent on the larger region |z1]| > |22| > 0. The left-hand side
of (3.6) is also a series of the same form as (3.8). In particular, its absolute convergence on
the smaller region |zi| > |22 > 0, |arg(z; — 22) —argz1| < § and argz; < 7 (for €1) or
arg zo > m (for €2_) implies its absolute convergence on the larger region |z;| > |23] > 0.

On the region [z1] > |22 > 0, |arg(z1 — 22) —argz| < § and argz, < m (for Q)
or argzy > 7w (for 2_), by (3.6) and the discussion above, the left-hand side of (3.6) is
convergent to f¢(z; — 2o, —z2;u,w1,w2,ez2y(1)wg), which in turn is by definition equal to
9% (21, 22; u, wy, we, wh) on the same region. We know that the left-hand side of (3.6) on the
region given by |z1| > |z| > 0 and |arg(z; — 22) — arg z;| < § with cuts along the positive
real lines on the z;- and z-planes is convergent to the analytic extension of the sum of the
left-hand side of (3.6) on the smaller region |z1] > |z > 0, |arg(z; — 22) — argz1| <
and argzo < 7 (for ) or arg zo > 7 (for Q_). Also, by definition, g5 (21, 29; u, w1, wa, w})
on M¢ is obtained by analytically extending g% (21, z2; u, wy, we, wh) on the smaller region
|z1] > |22| >0, |arg(z1—2)—arg 2| < § and arg 2z, < 7 (for €1 ) or arg 2, > 7 (for 2_). Thus
the left-hand side of (3.6) on the region given by |z1| > [2| > 0 and | arg(z; —22) —arg 21| < §
is absolutely convergent to g (21, 29; u, wy, wo, wh) on ME.
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Generalizing the proof of the convergence of (3.6) above, we can prove that
(ws, Vif? (w1, 21) - - Vif2 (ug—1, 251) Qe (V) (wo, 21)w1) (3.10)

is absolutely convergent on the region |z;| > - -+ > |z;| > 0 and can be maximally extended to
a multivalued analytic function on the region M* for k € N+ 3, uy, ..., up_1 € V, wy € Wi,
wy € Wy and wjy € W4. In fact, generalizing (3.6), we see that (3.10) is equal to

<€Z2Ll(1)w£’n (YV%%)<ula r1 + y) e (le%)(uk*h Tp—1+ y)
V(w1 y)ws) - (3.11)

x?:e”logzi,logm:logzi,izl,...,kfl,y”:enlog(_zw,logy:log(fzk)
From Definition 2.1, we see that the convergence and analytic extension of (3.11) on the
region |z1| > -+ > |2z| > 0 is equivalent to the convergence and analytic extension of

H (2 — 2j) M (e Wy, (Y2 ) (ur, 21 +y) - - - (Vi ) (U1, -1 +y)-
1<i<j<k—1

- Y(wi, y)ws)

x=em log z; log z;=log z;,i=1,....k—1,y"=e" 1°8(=2&) ]og y=log(—zx)

(3.12)

on the region |z;| > |zx| > 0 for i = 1,...,k — 1, 2; # z; for i # j, where M;; € Z, for
i # j satisfy 2MiYy (u;, z)u; € V|[[z]]. Note that Lemma A.1 can be generalized to the case
of more than two variables for a series of the form (3.12). Using the convergence of products
with more than one twisted vertex operators for the twisted intertwining operator ) and
this generalization of Lemma A.1, we see that (3.12) is absolutely convergent on the region
|zi| > |zx| > 0fori=1,...,k—1, z; # z; for i # j and its sum has analytic extension on
the region M*. Thus (3.10) is absolutely convergent on the region |z;| > -+ > |z;,| > 0 and
its sum has maximal analytic extension on the region MF*.
When |2z3] > |z1| > 0 and arg zo > 7,

(wh, Q_ (V) (ws, 22) Vil (u, 21 )wy)
= (w}, e VYV (4, 20)wy, —2)w)

= (e Dy, V(YT (u, (21 — 22) — (—22)) w1, —22)wa) (3.13)
converges absolutely and if in addition, |arg(z; — 2z2) — arg(—=22)| < %, its sum is equal to

Fé(z1 — 22, — 203 U, wy, Wy, €2 D)), (3.14)
Note that by definition, (3.14) is a single-valued analytic function on the set ]\Ajg given by
cutting M? along the postive real line in the 2;- and (z; — 2;)-planes and along the negative
real line in the zo-plane, with these positive real lines in the z;- and (27 — z2)-planes attached
to the upper half z;- and (z; — 25)-planes and the negative real line in the zo-plane attached
to the lower half zo-plane. Then the subset

7r
{(zl,zQ) € MZ | 20| > |21| > 0,arg 2o > 7, |arg(z1 — 2p) — arg(—22)| < 5} (3.15)
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of Mg is also a subset of MZ. But on the subset of MZ given by |z1| > |z5| > 0, argzy > ,
by definition, (3.14) is equal to ¢°(z1, z2; u, wa, wy,ws). Since ¢° (21, z9; U, wo, Wy, wh) on
Mg is obtained by analytic extension, we see that (3.14) is equal to g° (21, zo; u, wa, wy, W)
also on the subset (3.15). Thus the left-hand side of (3.13) is absolutely convergent to
9° (21, 223 u, wo, wy, ws) when |2] > |21| > 0, |arg(z; — 22) — arg(—22)| < § and argz, > 7.
Since ¢° (21, 22; U, wo, wy, wy) and the sum of (3.13) are both analytic extensions of their
restrictions on the subset given by |2;| > |21| > 0, |arg(z; — 22) —arg(—22)| < § and arg z; >
7, we see that the left-hand side of (3.13) is absolutely convergent to ¢¢ (21, 22; u, we, wy, wh)
when |z| > |21| > 0 and |arg(z; — 22) — arg(—=22)| < §. But when argz, > 7, arg(—2z) =
arg zp — m. Hence in this case, the inequality | arg(z; — z2) — arg(—z2)| < % becomes —2 <
arg(z1 — 22) —arg z; < —5. Also both the left-hand side of (3.13) and g¢° (21, 22; u, w2, wy, W)
are single valued analytic functions in z; and 2o with cuts at z; € Ry and 2, € R;. Thus
when |zo| > |z1] > 0 and —2F < arg(z; — 23) — argzs < —%, the left-hand side of (3.13) is
absolutely convergent to g (z1, zo; u, W, Wy, w}).

Next we discuss the iterate of Q_()) and the twisted vertex operator map ¢, (Yif?).
When |z5| > |21 — 25| > 0 and arg 2o > 7,

(w3, (V) (g, (Vi) (1, 21 — 22)wa, 22)w1)
= (wh, Q- (V) (Vi3 ) (91 'u, 21 — 22)ws, 20)wy)

= (w}, e?PIY(wy, —20) (Vi) (g7 1, 21 — 22)w2)

= (2 Wl Y(wr, —20) (Vi) (g7 ', 21 — 22)ws), (3.16)
converges absolutely and if in addition, —37” < argz — arg(—z2) < —7%, its sum is equal

to fe(z1 — 2o, —20; gy ‘u, Wi, wy, €2 M), Note that the proofs of Lemmas 4.5 and 4.6
in [H8] do not use the explicit form of the multivalued analytic functions in the duality
property of the twisted intertwining operators introduced in [H8]. Then the same proof of
Lemma 4.5 in [H8] shows that the sum of the right-hand side of (3.16) is equal to f*2 (2, —
22,—22;gl_lu,w1,wg,eZQL/(l)wg) when |z5| > |21 — 22| > 0, argz; > 7 and § < argz —
arg(—22) < 2F. The same proof of (4.4) in Lemma 4.6 in [H8] shows that
fbl_;(zl — 29, —29; g7 Y, wy, wo, €2 Wwl) = FO(2) — 29, —29;u, Wy, Wy, €2 Dagt),
Since when argz, > 7, arg(—z) = argz; — 7 and § < argz — arg(—z) < ¥ becomes
|arg 21 — arg 25| < %, we see that the sum of the right-hand side of (3.16) is equal to (3.14)
when |z3] > |21 — 22| > 0, arg 2, > 7 and |arg z; — arg z| < 7.
We now use the same argument as above to finish the proof in this case. The subset

{(zl,ZQ) € Mg | |z| > |21 — 20| > 0,arg 20 > 7, |arg(z)) — arg 25| < g} (3.17)

of M2 is also a subset of MZ2. By definition, on the subset of M2 given by |z| > |zo| >
0, argzy > m, (3.14) is equal to ¢° (21, z2; u, wo, wy, wh). Since ¢°(z1, z2; u, wa, Wy, ws) on
Mg is obtained by analytic extension, we see that (3.14) is equal to g° (21, 22; u, wa, wy, W)
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also on the subset (3.17). Thus the left-hand side of (3.16) is absolutely convergent to
g (21, 205 u, wo, wy, wy) when |z3] > |21 — 25| > 0, |argz, — argzy| < § and argz, > 7.
Since ¢° (z1, z2; u, wo, wy, wy) and the sum of (3.16) are both analytic extensions of their
restrictions on the subset given by |za| > |21 — 22| > 0, |arg 21 — arg 23| < § and arg z, > m,
we see that the left-hand side of (3.16) is absolutely convergent to g¢ (z1, z2; u, wa, w1, wh)
when |23] > |21 — 23| > 0 and |arg z; — arg 2| < 7.

We still need to prove the two other cases for €24 ()). When |23 > |21| > 0 and arg 25 < 7,

(ws, Qp (V) (w2, 22) b1 (Vifh ) (u, 21 )wn )
= (wh, e VY(dy 1 (V) (u, 21 )wr, —22)ws)

= (=Wl V() (gau, 21w, —22)ws) (3.18)
converges absolutely and if in addition, |arg(z; — 2z2) — arg(—=22)| < %, its sum is equal to
(21 = 22, =203 gau, wy, wy, € ). (3.19)
The subset

7T
{(zl, ) € M§ | |z2| > |21 > 0,arg 2o < 7, |arg(z1 — 20) — arg(—2)| < 5} (3.20)

of M2 is also a subset of M2. By definition, on the subset of M2 given by |z;| > |2| > 0,
arg zo < m, (3.19) is equal to g5 (21, 22; gou, wo, w1, w}). Since ¢ (21, 22; gou, wo, w1, W) on M
is obtained by analytic extension, (3.19) is equal to g5 (21, 22; gou, w2, w1, w}) also on the sub-
set (3.20). Thus the left-hand side of (3.18) is absolutely convergent to g5 (21, 22; gou, wa, w1, wy)
when |z;| > |21] > 0, | arg(z1—22) —arg(—z;)| < § and arg z, < 7. Since g5 (21, 22; gou, W, W1, W)
and the sum of (3.18) are both analytic extensions of their restrictions on the subset
given by [z > |z1] > 0, |arg(z1 — 22) — arg(—=22)| < § and argzy < 7, the left-hand
side of (3.18) is absolutely convergent to g< (21, z2; gou, wo, wr, ws) when |z5] > |z| > 0,
|arg(z1 — 22) — arg(—22)| < 3.

The same proof as that of (4.5) in Lemma 4.6 in [H8| gives

pl
g-e|-<zla 22;92U,w1,w2>w§) =g4° (2’1722;“7 wl;w27w;/%)7 (3-21)

since argz; < 7, arg(—z) = argzy + 7 and the inequality |arg(z; — 22) — arg(—=22)| <
becomes § < arg(z — z2) — argz; < 37” Also, the same proof as that of Lemma 4.5 in
[H8] shows that when when |z,| > [21] > 0 and I < arg(z; — 22) — arg 2o < 27, the sum of
left-hand side of (3.18) is equal to g< (21, z2; u, wa, w1, wy).

Finally, we discuss the iterate of () and the twisted vertex operator map Y}{?. When

|22] > |21 — 22| > 0 and arg zo < T,

(wy, Qe (V) (V72 (u, 21 — 22)wa, 22)wr)
= (w}, e VY (wy, —20) (Vi) (u, 21 — 22)ws)

= (e Ol Y(wy, —20) (Vi) (u, 21 — 22)ws) (3.22)
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converges absolutely and if in addition, —37” < argz —arg(—z) < its sum is equal to

(3.14). The subset

_T
PR

3
{(21,22) € MJ | |z| > |21 — 20| > 0,arg 25 < w,—g < argz; — arg(—zg) < —g} (3.23)

of ]\7@ is also a subset of M. As we have discussed above, on the subset of Mg given by |21 >

20| > 0, argzy < 7, (3.14) is equal to g5 (21, 225 u, wa, wr, ws). Since g5 (21, 223 u, W, Wy, wy)

on M is obtained by analytic extension, (3.14) is equal to ¢¢ (21, z2; u, wo, w1, w}) also on the

subset (3.23). Thus the left-hand side of (3.22) is absolutely convergent to g< (21, z2; u, wa, w1, w})
3

when |z > |21 — 22| > 0, =5 < argz; — arg(—22) < —% and argz, < m. Since

95 (21, 22; u, wo, wy, wh) and the sum of (3.18) are both analytic extensions of their restric-
3T

tions on the subset given by |z > |21 — 22| > 0, —5F < argz; — arg(—2) < —% and
argz, < 7, the left-hand side of (3.22) is absolutely convergent to g< (21, 22; u, wa, wq, W)
when [z, > |21 — 22| > 0 and =2 < argz; — arg(—2z) < —3. |
W3

W1W2)' Then we have:

Let VV%% be the space of twisted intertwining operators of type (

Corollary 3.2 The maps Qs : Vg, = Vil oy and Qo Vyghy = Vi - are lin-
92

. . . Ws W3 Ws . . .
ear isomorphisms. In particular, Vi iy, | V¢g1 (Wa)Wh and Vqubg_l(Wl) are linearly isomorphic.
2

Proof. Tt is clear that 2, and {)_ are inverse of each other. |

The linear isomorphisms 2, and €_ are called the skew-symmetry isomorphisms.
Let g1, g2 be automorphisms of V', Wy, Wy and W3 g1-, go- and ¢, go-twisted V-modules

and ) a twisted intertwining operator of type (WVIV‘;*VQ) We define linear maps

AL(Y) W@ Wy — Wi{z}[log ]
wy @wy = AL(Y)(wr, z)ws
by
(AL (D) (wy, z)wh, wy) = (wh, V(e MO (= HO) 20 27 hw,) (3.24)

for wy; € Wy and wy € Wy and wy € Wi. Similarly to €, for p € Z, we can also define A, for
p € Z by replacing £ in (3.24) by +p. But we will also not discuss A, in this paper.

Let (W,Y})) be a g-twisted V-module. When Wy =V, Wy = W5 =W and Y = Y{], by
definition, A, (Y{§) = A_(Y{}) = (V}],)’ (see Section 4).

Let Ly, (0) be the semisimple part of Ly, (0). From the definition (3.24), for p € Z,
wy € Wi, wy € Wy, wh € Wy and 2z € C*, we have

(AL (V)P (w1, 2)ws, wo)

= (A=(V)"(wy, T)wg, we)

an=e"r(?) | log x=l,(z)
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_ <wé, 3}(6:1:LW1(1)6jzrriLW1 (0) (mewl (0))2w1’ l’il)w2>

azr=e"(?) log x=l,(2)

= (wl, y(eszwl(l)eiwiLwl (0) (m—LSW1 (0))2_

(e B O Ly, O)logzy2, ooty

xn=e™(?) log x=I,(z)

_ (wé, y(eszl (1) p£miLu, (0) (e—lp(Z)Lév1 (0))2-

. (e*(LW1 (0)71’?/[/1 0)p(2) )le, y)w2>

yr=e () log y=—1,(2)

_ <'LUé, y(eszl (1)ei7riLW1 (O)G*le(Z)Lwl (O)wb y)w2> (325)

ynr=e "p(2) logy=—1p(2)

When argz = 0, argz™! = argz = 0 and —1,(2) = [_,(27"). When argz # 0, argz~! =
—argz + 27 and —[,(z) = l_p_1(z7"). Hence when arg z = 0, the right-hand side of (3.25)
is equal to

(wé, y(eszl(1)ejmriLW1 (O)eZZ_p(Zfl)Lwl (O)w17 y)w2>

ynzenl_p(zfl)7 logy:l_p(z_l)

= (wh, Y7 P(e*tM (1) gEmiLw, (0) g2-p(z" ") Lw, Oy, 27 Haws) (3.26)

and when arg z # 0, it is equal to

<wé7 y(ezLW1 (1)6i7riLW1 (0) 6217?71(2_1)LW1 (O)wh y)w2>

-1
yn:enl,pfl(z ), logy=l_p_1(z~1)

_ <w37 yfp71<€zLW1(1)ei7riLW1 (0) g2l-p—1(z"H)Lw, (o)wl’ 271>w2>. (3.27)
From (3.25)-(3.27), for wy € Wi, wy € Wa, wh € W5 and z € C*, we have
(AL (V)P (wy, 2)wh, w) = (wh, Y (¥ etmilwy 0 2-p("DIwy )y 2= 1)) (3.28)
when arg z = 0 and
(AL (V)P (wy, 2)wh, wa) = (wh, Y 7P (e*lw D etmilw, (0) 2lp-1(THIwy 00y 2= 1)g) (3.29)
when arg z # 0.

Theorem 3.3 The linear maps A (Y) and A_(Y) are twisted intertwining operators of
b9y (W3) W3 ;

types ( 5‘}1Wz ) and (W1 ¢g1_f (Wé)), respectively.

Proof. 'The proof of this result is also essentially the same as the proof of Theorem 6.1

in [H8]. But the proof here is much more complicated because the correlation functions

involved are not of the explicitly form as in [H8]. As in [H8], we need only prove the duality

property.
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We first give the multivalued analytic functions with preferred branches in the duality
property. We shall denote these multivalued analytic functions for A, ()) and A_()) by
hy (21, 205w, wy, wo, wy) and h_(z1, 295 u, wy, wa, w}), respectively. Let f(z1, zo;u, wy, wy, w})
be the multivalued analytic function with the preferred branch f¢(zy, zo; u, wy, wy, w}) in the
duality property for the twisted intertwining operator ). Define

ha (21, 203w, wo, wi, wh) = f(z17t, 255 ezlLV(l)(—zf)_LV(O)u, 6Z2LW1(1)<—Z§)_LW1(O)U11, Wa, Wy)
(3.30)
and choose the preferred branch hS (21, z9; u, we, wy, wh) of he(z1, 22; u, wa, wy, wy) as follows:
On the subregion |z1| > [22] > 0, [arg(z1 — 22) — arg 21| < § and arg(z; — 22) < 7 (for A;)
or arg(z; — z9) > 7 (for A_) of MZ, let

e . /
hi(zb Z2; U, W2, Wy, w3)

b_l -1

b ,1 .
13°%23 /_— - —
_ f (21 1’ 2 17 e LV(I)(—Z%) LV(O)U, eszwl(1)6:|:7r1LW1 (0)6 2log(z2) Lw, (0)w1, wo, wé)

(3.31)

For general (21, 29) € Mg, we define hS (21, 29; u, we, wy, wh) to be the unique analytic exten-
sion on M¢.

Let u € V, wy € Wy, wy € Wy and wh € W4 We consider 2, 2o € C satisfying |z, | >
|27 > 0 (or equivalently |z1| > |25| > 0) and arg z;,arg 2o # 0. Since |25 | > |2;*| > 0 and
arg zi,arg zp # 0, from (3.29), (Vii? ) = A (Y}f,) and the duality property for ), we know
that

(), P (2w () gm0 =2og(e2) Ly (0, )Y%( ALy (D (o= lv () =1y, o1y (3.39)
is absolutely convergent and if in addition, —7” <arg(z;t—z ) —argz, b < —3, its sum is
equal to

Fet 2 ’ezlLV(l)( 2T gLy () il (0 =2108(2) Ly 0 4y )

— (et 2yt g e V) (L) BV Oy pmaEw (D miw, 00 —2108(2) Ly Oy, ). (3.33)

We know that

(0, (V173)) (1, 22) Ay (V) (w1, 22) w5, w2)
= (V)" (g1 "w, 20) A (V) (w1, 22)w], wo)
_ <wé7 y—l(eszwl (1)€7riLW1 (0) —2log(z2)LW1 (0)w17 22—1)

) O () O s ) (3.34)

can be obtained using the multivalued analytic function (3 30) on the region |z, !| > |27 > 0

starting from the value given by (3.32) by letting 2! go around 0 clockwise once (corre-

sponding to by3), then letting z,' go around 0 clockwise once (corresponding to by by, ).

Then (3.34) also converges absolutely on the region |2;'| > |27 > 0 and if in addition,
I <arg(z; — 2 ') —argz; ' < —Z, its sum is equal to

—1 11, _ _ _ : _
fb13 by bis (Z 2z 791 lozLv (1 )(_Zl 2>LV(O)u’ e#2Lwy (1) omilwy (0) o —2log(22) L, (O)U)l’ Wo, wé)
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b tbbst -1 _—1. —1_zLy(1 —2\Ly (0 zo Ly, (1) wiLy, (0) ,—2log(z2) L, (O /
—f 1o 013 bog (Zl Lz grte ()<_Zl ) ()u,e 1 ( )6 1 ( )6 (22)Lw, ( )wbw%w?’)'

(3.35)

Using the equivariance property for W; and the convergence of (2.5) to f¢(z1, z9; u, wy, wa, w4)
on the region |z| > |21 — 2| > 0, [arg z; — arg z,| < 7, we have

F(z1, 205 97w w, wo, wh) = 72 (21, 203w, Wy, wa, wh).
Applying b € PB3 to both sides of this equality, we obtain
fb(zb 223 91 U, W, we, wh) = fbmb(zla 22} U, Wi, Wa, W) (3.36)
for b € PBs. By (3.36) with b = by, by4 by, we see that (3.35) is equal to
fb1_31b2_31(21_1, 22_1; ezlLV(l)(_Zl—Q)Lv(O)u’ ez2Lw (1) omilwy (0)6210g(z§1)Lw1 (O)wl’ w27wg)’ (3_37)
which by definition, is equal to hS (21, 22; u, wo, wy, wy) when |21 > |22] > 0, |arg(z1 — 22) —
arg z1| < § and arg(z; — 2z2) < 7.
On the other hand, we have

21 — 22
—RZ1%2

arg(z;' — 2, ') = arg ( ) = arg(z) — 29) —argz; —argze + (2¢ + 1)m (3.38)

for some ¢ € Z. But for any z € C, we have 0 < arg z < 27. In particular, we have
0 <arg(z —22) —argz; —argz; + (2¢ + 1)m < 27.
Since we also have 0 < arg 2o < 27, we obtain
—m —2qm < arg(z] — 22) —argz; < T — 2qm. (3.39)
Therefore when |arg(z; — 2z2) — arg z1| < 7, we must have ¢ = 0 and thus
arg(z;t — 2y ') = arg(z; — 22) —argz; — arg 2, + 7.

Also when arg z;,argz, # 0, we have argz;' = —argz + 27, argz, ' = —argz + 27.
Therefore when arg z;,arg z, # 0 and | arg(z; — 23) — arg z1| < 7, we have

—3; <arg(z;! — 2z ) —argz, ! = arg(z; — 20) —argz — 7 < —g.
Thus when [z1| > |22| > 0, arg z1,arg z, # 0, |arg(z1 — 22) —arg z1| < § and arg(z — ) < 7,
the series (3.34) is absolutely convergent to hS (21, 22; u, w2, wy, ws). Since both the sum of the
left-hand side of (3.34) and h¢ (21, 22; u, w2, wy, wh) are analytic extensions of their restrictions
on the subset given by |z1| > |2| > 0, argz,argz; # 0, |arg(z; — 22) — argz;| < § and
arg(z; — 2z2) < m, the sum of the left-hand side of (3.34) is equal to h% (21, 22; u, wa, wq, W)
when |21 > |2 > 0 and |arg(z; — 22) —arg 21| < 5.

23



Generalizing the convergence and analytic extension of (3.34) above, we can prove that

(00, (V7)) (un, 21) -+ @, (ViF) ) (ur—r, 20-1) A (V) (w1, 20 ) w3, w2) (3.40)
is absolutely convergent on the region |z;| > -+ > |z;| > 0 and its sum can be maximally
extended to a multivalued analytic function on the region M* for k € Z, +3, u1, ..., up_1 €

V,wy € Wi, wy € Wy and wy € Wi, In fact, the same calculations as in (3.34) shows that
(3.40) is equal to

/ -1/ zrL 1) miL 0) ,—2log(zx)L 0 -1

. (YI/?/QQ)71<€Zk71LV(1)<_z1;_21)LV(0)9171Uk71, le—ll)'
(R T e W (=) O g, 2 ws) (3.41)

From the duality properties in Definitions 2.1 and 2.5, we see that

IT Gt =)Mo (wh, (i)~ (e v O (=22 P O gy, 27)-

1<i<j<k—1
()T e W (=) O, o)
is absolutely convergent on the region |2, '| > |z} > 0 fori=1,...,k—1, 2;' # zj_l for

1 # 7, and its sum can be analytically extended to a maximal multivalued analytic function
on

{(z1,...,2) €CF | 2y # i =1,... k— 1},

where M;; € Z, for i # j satisfy MYy (u;, x)u; € V[[z]]. Using the duality property in
Definition 2.5 repeatedly, we see that

H (szl _ ijl)Mij (wh, y—1(€ZkLW1(1)€7FiLW1 (0) g2 log(z) L, (00, 21;1)

1<i<j<k—1
. (Yﬁ%)—l(ezk—1Lv(l)(_Zk—zl)Lv(O)gl—luk_h Z;jl)
()TN e O (=) O g, 2 w) (3.43)
is absolutely convergent on the region |z, '] < |z;!| > 0fori=1,...,k—1, 27! # 2 for

1 # j, and its sum can be analytically extended to a maximal multivalued analytic function
on

{(z21,...,2) €ECF | zi # i =1,..., k — 1},

Thus (3.41) and consequently (3.40) is absolutely convergent on the region |z;| > -+ >
|2 > 0 and its sum has a maximal analytic extension on the region MP".

Next we consider the product of A ()) and the twisted vertex operator (Y3i2)". Let u, w1,
wy and wh be the same as above. When |z, > |25 | > 0 (or equivalently |z| > |21 > 0),

<'LU§,, YV%Q <€z1LV(1)(_2;2)LV(O)u, Z;l)y(€ZQLW1 (l)eﬂ'iLwl (0)€f2log(,22)LW1 (O)wl’ Z;l)w2> (344)
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converges absolutely and if in addition, |arg(z; ' — 2, ') —arg 2, | < 5, its sum is equal to

fe<z1_17 22_1; 6Z1LV(1)(—Z1_2)LV(O)U, ezszl(l)eniLwl (0)6_210g(22)LW1 (0)w1, W, wé) (345)
We know that when arg zy, arg 2o # 0,
(AL (V) (wr, 22) (Vi)' (u, 21)ws, wo)
= Gl (%2) 7 (O () O, 27
. y—l(ezQLwl (1)67riLW1 (O)e—Qlog(zg)Lwl (0)w17 ZQ_I)UJQ) (346)

can be obtained using the multivalued analytic function (3.30) on the region |z, | > |25 '] > 0
starting from the value given by (3.44) by letting z,' go around 0 clockwise once (corre-
sponding to by ), then letting z; ' go around 0 clockwise once (corresponding to by, by ).
Then (3.46) also converges absolutely and if in addition, |arg(z; ' — 23") —arg 2| < Z, its
sum is equal to
fbg3lb;21b;31 (21—1’ 22—1’ ezlLv(l) (_ZI—Q)L\/(O)U’ eZQLwl (1)67riLW1 (0)6_2 105(22)LW1 (0)1111, w27 wg)
_ fb;31b;31b;21 (21—1’ 22—1; ezlLV(l)(—Zl_2)LV(O)U, e?2Lw (1) omilw, (0) o —2log(22) Lw, (O)wb W, W)

(3.47)

When —37” < arg(z — z2) —argz; < —5, we have

m 7r
-5 < arg(zy — z2) —argzy +m < 5

In the case arg z; # 0, by (3.38) and arg z; ' = — arg 2; + 27, we obtain

—g +2(q— )71 <arg(z; ! — 2 t) —argz ' < g+ 2(q — 1)m.

When 0 < arg(z; ! — 2;1),arg z;* < 7, we have
—m <arg(z;t — 2z ') —argz < T

So in this case, ¢ = 1. Since in this case,

To arg(z; ' — 2y !) —argz ' < z,
2 2

we see that the sum of (3.46) is equal to (3.47). Using analytic extension, we see that when
20| > |z1] > 0 and —2F < arg(z; — 2) — arg 22 < —Z, the sum of (3.46) is equal to (3.47).

On the region |z;| > |21 > 0, (3.47) is in fact equal to hS (21, 22; u, we, w1, w}). This can be
seen as follows: On the intersection of M and the region |zo| > |2z1] > 0, h% (21, 22; u, wa, wy, wh)
is obtained by analytically extending (3.30) defined on the intersection of the region |z;| >
|z5] > 0,0 < arg(z;' — 2z,') < 7 and MZ. We need to find what is this analytic extension.
Let &, € —R, satisfying £ < ¢ < 0. Then we have |£| > || > 0 and, by definition,

hi (57 C? U, Wz, W1, wé)
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_ f by (§ C €Ly ( )(_ésQ)va(O)u7 eCLwl(1)€i7riLW1(0)6*210g(C)LWl(O)wl’w27 wé)

Let v = (71,72) be the path from (&, () to (¢, &) given by the upper half circle v, centered at
§+C with radius §+< from £ to ¢ and the lower half circle v, centered at HC with radius §+C
from Cto&. Ttis clear that 7 is a continuous path in Mg. So h% (¢, & u wg, wy, wy) is obtamed
by analytically extending the value 2% (€, (;u, wa, wy, wé) along v. On the other hand, ~ gives
a path v = (5 ',97") from (¢71 €71 to (€75, ¢7Y). But 4/ is not a continuous path in M2
because when (z1, 29) goes from ((71,&71) to (€71, (1) along the path 7/, z; — 2y crosses the
positive real line clockwise. Crossing the positive real line clockwise corresponds to changing
the branch by an action of b, . Thus on the intersection of the region |z| > |2;] > 0 and
M¢, we must have

hi(ZhZQ;anQ,whwé)
_ fb;;b;;b;;(zl—1’ 22—1; ezl—lLV(n(_Z%)—Lv(o)% e?2lwy (1) g EmiLw, (0) ,—2log(22) L, (O)wl,wg, wy).
(3.48)
Since when |z5| > |z| > 0 and |arg(z;' — 23') — argz;'| < 2, the sum of (3.46) is
equal to (3.47), that is, the right-hand side of (3.48), the sum of (3.46) is indeed equal

. /
to he (21, 22 U, Wo, w1, WS).
We can prove the absolute convergence of

(V72) ) (w, 20) A (V)P (w1, 22)wl, wa)

and
(A_ (V) (w1, 22) 1 (V7)) (u, 21)ws, wo)

in the corresponding regions to h® (21, z9; u, we, wy, w}) similarly by generalizing the proofs
in [H8] using the same method above for A_()). Here we omit the details.

Finally we study the iterate of A+()) and the twisted vertex operator Yij;. When
arg zo # 0, from (3.29), we have

<Ai(y)(YV“{}1(u, 21 — Z2)W1, Z9) W5, Wa)
= (ws, y_l(eZ2LW1(1)ei”iLW1 (0) g=2log(22) Lw, (O)Yﬁ}l (u, 21 — 29)w1, 23 “)ws). (3.49)
As in [H8], we have in the region |z3| > |z; — 22| > 0
e#2Lw, (1) gEmiLw, (0) —210g(22) L, (O)ngvll(u7 % — z)un

P _ T
- ng(/ll <e ILV(1)<_Zl Q)LV(O)% (22 + Io)@)

xgzenZZHQ (z21—29) , log :L“o=log(z1 722)7 xg,:en log(z9)
log z2=lp, (22), "=t Jog z=+ri

. 622LW1 (1)eiﬂ-1LW1 (0)672 10g(z2)LW1 (O)wl . (350)

As in the proof of the first part of Theorem 3.1, we see that

y—l (ng{}l <621LV(1)(_21—2)LV(0)U’ ( Ixo )

) + l’o)l‘g

xg,:enlp12 (Z17z2), log zo=log(z1 —22), zh=e" log(z9)
log z2=lp, (22), gn=etnmi log z=+i
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. eZQLWl (l)eifriLW1 (0)6—2 log(z2) Ly, (O)wb 22_1>

is an iterated series obtained by expanding one variable inside the series obtained from
the iterate of Y~! and Y. Using the same method as in the proof of the first part of
Theorem 3.1, we can prove that the corresponding multiple series is absolutely convergent.
In particular, we can calculate the sum of the series using any of the iterated sums associated
with the multisum. Then the same calculations as those in the proof of Theorem 6.1 in [HS]
shows that when |z5| > |21 — 25| > 0 and |arg z; — arg 25| < 3, the right-hand side of (3.49)
is equal to

(wh, YY) 5 (e D (272 B Oy ot o).

- eralwy (D gEmilw, (0) g=2log(za)Lwy 0y o—L)qp) (3.51)
where m € 7Z is given by
log(z1 — 22) — log 21 — log 25 + mi = ler%(zl_1 — 2z ).
We know that

<wg’ y(YV%ll (ezlLv(l) (_Zl—Q)Lv(O)u’ 21—1 _ 22_1)€Z2LW1 (l)e:l:TriLwl (0)6—210g(22)LW1 (0)w1’ Zz_l)w2>

(3.52)

is absolutely convergent on the region |z, '| > |2;' — 23| > 0 and, if in addition | argz; ' —
arg z;'| < Z, the sum is equal to

fe(zfl, Z;l; ezlLv(l) (_ZIQ)LV(O)U/, 622LW1 (1)€i7TiLW1 (0)672 10g(Z2)LW1 (0)w1’ U}z, wg)

Since (3.51) can be obtained from (3.52) using the multivalued analytic function (3.30) on

the region |25'| > |27' — 23| > 0 starting from the value given by (3.52) by letting 25!

go around 0 clockwise once while 2, ! — 25 ' is fixed (corresponding to by3 bss since to keep

2t =2y ! fixed, z; ! must also go around 0 clockwise once) and then letting 2; ' go around 2, *

141
counterclockwise m + % times (corresponding to b;r;r 2 ), we see that (3.51) is absolutely
convergent in the region |z3'| > |27 — 23! > 0 and if |arg 27" — argz;'| < Z, the sum is
equal to

1+1

2 _ _ _ s _
(2 L 2 L. ezlLV(l)(_Zl 2>LV(O)U’ o72Lw, (1) g £miLw, (0) ,—21og(22) L, (0)

—1;—1,m*
fb131 byg b1y wi, Wy, wg)
(3.53)
We now consider the set given by [z > |25 > |27 =25 > 0, |arg 27" —arg 2, | < 3,
larg(2;' — 25") —arg 2, '| < %, argzj,argzs # 0 and m + £ = 0. Since |21 > |25 >
|27t — 21 >0, |argz; ' —argz; | < % and |arg(z; — 23 ') — argz; | < Z, we know that
(3.52) is equal to

<wé, YVg[]/gl <€zlLV(1)(_2,1—2)LV(0)U7 Zl—l)y(eszwl (1)6:|:7riLW1 (0)6—210g(zg)LW1 (0)’11]1, 22_1)1U2>
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— fe(zl—l’ 22—1’ ezlLV(l)(—Zl_Q)LV(O)U, 6z2LW1 (l)e:i:wiLW1 (0)6—210g(22)LW1 (0)w17 wo, wé) (354)

Then on this set, (3.51) is absolutely convergent to

fb1_31b2_31 (Zl_l —1. ZlLv(l) (_Z—Q)LV (0)u7 €Z2LW1 (l)ezl:T('lLVV1 (O)e—Qlog(zg)Lwl (0)

/
7Z2 ;€ 1 w17w2>w3)

e . /
= hi(zh Z2; U, W1, Wg, w2)-

By analytic extension, we see that the sum of (3.51) is equal to h% (21, z2; u, wy, w5, we) on
the subregion of Mg given by |25'| > [27" — 23! > 0, |arg 2] — arg 2, '| < 3. By analytic
extension again, we see that the sum of (3.49) is equal to h%(z1, 22; u, wy, W}, wy) on the
subregion of Mg given by |2o] > |21 — 22| > 0, |arg 21 — arg zo| < 3. n

4 Tensor product bifunctors and some natural isomor-
phisms

In this section we introduce the notion of twisted P(z)-intertwining map and give a definition
and a construction of P(z)-tensor product of a g;-twisted module and a go-twisted V-module
for g1, g2 in a group G of automorphisms of V' in a category C of twisted V-modules under
suitable assumptions. Using the skew-symmetry isomorphism €2, given in the preceding
section, we construct G-crossed commutativity isomorphisms. We also construct parallel
transport isomorphisms. Using G-crossed commutativity isomorphisms and parallel trans-
port isomorphisms, we construct G-crossed braiding isomorphisms. The material in this
section is essentially the same as the corrresponding material in [HL2|, [H6] and [HLZ2]
except that V-modules and intertwining maps are replaced by twisted V-modules in C and
twisted intertwining maps.

Let G be a group of automorphisms of V' and C a category of g-twisted V-modules for
g € G. The category C can be the category of grading-restricted g-twisted V-modules for
g € (. But since many of the constructions in the present paper works for any category
satisfying suitable conditions, we shall work with a general category C.

Definition 4.1 Let g1,90 € G, Wy, Wy, W3 g1-, g2-, g1go-twisted V-modules, respectively,
in the category C and z € C*. A twisted P(z)-intertwining map of type (WZVSVQ) is a linear
map I : W, @ Wy — W given by I(w; @ wy) = Y(wy, 2)w, for wy; € Wi and wy € Wy, where
Y is a twisted intertwining operator of type (WﬂfVQ :

Using the notion of twisted P(z)-intertwining map, we now define the notion of tensor
product of two twisted modules in C.

Definition 4.2 Let W; and W, be g;- and go-twisted V-modules, respectively, in C. A
P(z)-product of Wy and W3 is a pair (W3, I) consisting of a gy go-twisted V-module W3 and

a twisted P(z)-intertwining map I of type (WZVSVZ) A P(z)-tensor product of Wy and Wy
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is a P(z)-product (W Mp(.) Wa,Kp.)) satisfying the following universal property: For any
P(z)-product (W3, I) of Wy and W, there exists a unique module map f : Wi Xp,)Wa — Wy
such that we have the commutative diagram

W1®W2;>W3

Rp(, -
P( >l /

Wi Kp(.) We

where f is the natural extension of f to W; X p(z) Wa.

We now give a construction of (W X p(z) Wa, X p(z)) under a suitable assumption using
the same method as in [HL2] and [HLZ2].
Given a P(z)-product (W3, I) of Wy and Wy, for wy € W3, we have an element Aj,, €
(W1 ® Wa)* defined by
ALy (W1 ® w2) = (ws, (w1 ® ws))

for w; € Wy and wy € Wy. Let Witlp(,) Wy be the subspace of (W @ Ws)* spanned by A
for all P(z)-products (W3, I) and wj € Wi. We define a vertex operator map

YI/SIJ/}lgE?P(z)WQ Ve (W1E|P(Z)W2) - (WlNP(z)W2){x}[log ilf]
by

(g192)7t

UV, T) A [, = A -1
W1EP(2)W2( ’ ) Towy I,Y‘/(Vgél”) (v,z)w}

for v € V and )\I,wg € Willp)Wa.

Proposition 4.3 The pair (WiSp.)Wa, YV?}EP(Z)WQ) is a generalized (g1g2) ™ -twisted V -module.
Proof. Note that every element of W 5p(,) W5 is a linear combination of elements of the form
ALy for a gigo-twisted V-module Wy in C, a P(z)-intertwining map I of type of (WZVSW) and
an element wy € Wj. For fixed W3 and I, the space spanned by all A\;,, for wy € Wy is
the image of Wy under the linear map from W3 to Witip(,)Ws given by wy +— Ar . This
linear map preserve the gradings, commutes with the actions of (g1g2)™! and twisted vertex
operators. So the space of spanned by all Aj,, for wy € W3 is a generalized (g1 g,)~'-twisted
V-module. Thus Witp,)W> as a sum of generalized (9192)'-twisted V-modules is also a

generalized (g;g0)!-twisted V-module. |

Assumption 4.4 We assume that the following conditions for C hold:
1. For objects Wy and Wy in C, WiBp,))Ws is also in C.

2. The contragredient of an object in C is also in C.
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3. the double contragredient of an object in C is equivalent to the object

From the Conditions 1 and 2 in Assumption 4.4, we see that (Witp,)Ws)' is in C. We

take Wy Mp(.y W to be (Witp)Wa)'. We still need to give a twisted P(z)-intertwining map
Xp(. of type ( 15;11” 1(4)2%) or equivalently, an intertwining operator of the same type.

Let W be a (g1go) -twisted V-module in C and f : W — Wigp)Ws a V-module
map. Since the double contragredient of an object in C is equivalent to the object itself by
Condition 3 in Assumption 4.4, every element of (W) can be viewed as an element of .

For wy € W1, wy € Wy and w € W, we define

(w, Y(wy, 2)wz) = (f(w))(w1 © wy). (4.1)
Then we define
Vi(wy, 2)wy = xLW/(0)6—(logZ)ng(O)yf(gc—Lw1 (0)gllog =) Lw, (), Z>x—LW2(O)€(logz)LWQ(O)w2
(4.2)
for w; € Wy, wy € Wy, We now have a linear map
Vi Wh @ Wy — W{x}logz|.

Proposition 4.5 The linear map Yy : W1 @ Wy — W'{z}[log x| given by (4.1) and (4.2)
above s a g1go-twisted intertwining operator of type (WWW) In particular, in the case that
W = Witpy\Wy and f = 1W1§p(z)Wz : W — Whdp,)\Wa 1s the identity map, we obtain a

g192-twisted intertwining operator y1 Wiy Wy of type (Wﬁf‘(az/;Wz).

Proof. We first verify the L(—1)-derivative property.

d
%yf(wlax)ub
_ deW/(O) e—(logz)LW/(O)yf(aj—LW{(0)6(logz)LW{(O)wl 2) oI (0) (108 2) Ly (0,
dx ’

— 2w O =108 L O) [ (0)Y (g Ew O 108wy 00y =Ly (0) (108 2) L 01,

— gl (@) o= Coe ) Lyr ) (T ()= Lwa 01008 )Ly 00y ) =Ly (0) (loB ) Ly (0),
— gl @)= (og2) L)y (= Lwr O log2)Lwy 0y 2) [ (0)2~Ewa (0108 2) b, 0)y,
— L L (0) g —(log 2) Ly (0),
. (LW/<O)yf(ZE—LW1 (0) g(log 2) Ly (0)yy,, 2)
—yf<LW1(O)x_Lwl(O)e(Ing)Lwl(0)w17Z) Vi(x ~Lw (0)g(log 2)Lwy (0)y,, )LWQ(O))
- Lwy (0) o (log 2) Ly (0) (4.3)

Since f is a V-module map, f(W) is a submodule of W;tp.yWs. By the definition of
Witlp(z) W2, it is spanned by elements of the form Aj,,; for a ggo-twisted V-module W3, a

P(z)-intertwining map I of type ( Ws ) and w4 € Wj. In particular, for w € W,

WiWa
n
= E /\Ii whs
=3
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where for ¢ = 3,...,n, w, is an element of the contragredient module W/ of a g, go-twisted

V-module W;, I a P(z)-intertwining map of type (WVIV%)

Let ' be the intertwining operator of type (WZV%) such that I' = Y'(-,2)-. Then we
have

(w, Vs(wy, 2)ws) = (f(w))(w1 ® wy)
- Z At (W1 @ w5)

—Zw I'(w; @ ws))

= Z(wg,yi(wbz)wﬂ)

for wy € Wy and we € W. AlSO,

(f(Lw (O)w)) (w1 © wz) = ((Lw, S, w2 (0) f (w)) (w1 @ ws)

= Z(LWIEP(z)WQ( )‘IZ )(wl ® w2)

= ZResm (v,(9192) o, T)Api ) (W1 @ wa)
= ; Resxx()\fi,YV([}?gQ)71(w,x)wg (w1 ® wy)

= Z AL Ly (0)w! (W1 ® w2).
i=3

for w; € Wi and we € Wy, So we have

w) = Z AL Ly (0w}
=3
Thus for wy; € Wl, Wy € WQ,

<w7 (LW’(O)yf(wh Z) - yf(LVVl (O)wlv Z) - yf(wh Z>LW2 (0) w2>
= <LW(O)wa yf(wb Z)w2> - <w’ yf(LWI (O)wlv Z)w2> - <w7 yf(wlv Z)LWQ (0)w2>
= (f(LW(O) ) (w1 ® wa) = (f(w))(Lw, (0)wr @ wa) — (f (w)) (w1 @ L, (0)w2)

n

= Z At Ly 0t (01 @ w2) = D At (L (0)wn @ wa) = D Mg (wn @ Ly (0)ew)
i i=3

= Z<LW[ (O)IUZ,-, yi(wlv z)wsz) — Z(wga yZ(LVVl (0)wr, 2)wa) — Z<w:ﬁ7 yi(wh z) Ly, (0)ws)

=3 =3
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=D (Wi, (Lw, (0)Y' (w1, 2) = V' (Lw, (0)wr, 2) — V' (wr, 2) Ly, (0) Jw2)

i

3

Z<’LU;, yl<LW1 (—1)’(1]1, Z)w2>
3

)

I

~
Il
w

z Ariw (L (—1)w; @ wy)

=
—
S

) (L, (=Dwy @ ws)

z(w, Yy (L, (=1)wi, 2)wa),

where we have used the L(0)-commutator formula for the twisted intertwining operators )*.
Since w € W and wy € Wy are arbitrary, we obtain

LW<O)yf(w17 Z) - yf(LVVl (O>w1> Z) - yf(wla Z)LWQ (0) = ny(LWI (—1)11)1, Z) (4'4)

for wy € Wj.
Using (4.4), we see that the right-hand side of (4.3) is equal to

7L pLw (0) ,—(log Z)LW(O)ny(LW1 (_1)x_LW1 (0) o (log 2) L, (O)wh Z>x_LW2 (0) o (log 2) L, (0)w2

_ xLW(O)e_(IOgZ)LW(O)yf(x_Lwl (0) o (log 2) Ly (O)Lwl(—l)wh Z)J;—LWQ (0)6(10g3)LW2(0)w2
= Vi (Lw, (—1)wy, x)ws,
proving the L(—1)-derivative property.
For v € V, w; € Wi and wy € Wy, we have

1

(OB (o) wn @ w) = (V) Ly (0,2) () (wr © ws)

-

-1
(Va0 s ) © )

1=3
n
= A - w wWa).
]i’Y‘/([/?ng) l(vw)w;( 1 ® 2)
i=3 i
Then we obtain
n
-1
Y992 () =S A -
f( %% ( ) ) ) I'L,Yv(‘f_ng) I(U’x)wg
i=3 i

For a gy go-twisted V-module W3 in C, a P(z)-intertwining map I of type (WVIVVS%), ueV,
wy € Wy, we € Wy and wh € Wi, we have

<w7 ng[/1’92 (U, Zl)yf(wl, 22)w2>

= (w, YV‘(IJ/I,QQ (u’ Zl)@(k’g 22) Ly (0)67(10g 2) Ly (0)

. yf(ef(logzz)lzwl (0)€(logz)Lw1 (())u)17 Z>€f(10g 22) Ly, (O)e(logz)LW2 (0)w2>
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<e(log ZQ)LW(O)ef(logz)LW(O)YV(Vglgﬂ_l (ezlLV(l) (_Zfz)Lv(o)u’ zfl)w,

yf(e*(logzz)Lwl (0) o (log 2) Ly, (O)w17 Z)ef(bg 22) L, (0) , (log 2) L, (0)w2>
_ (f(e(logzz)LW(O)ef(logz)LW(O)YV(Vglm)—l(ezlLV(l)(_ZIQ)LV(O)u, Z;l)w>>

(e 22) Law, 0) 108 2) Ly (0) ) =108 22) Loy 0) 108 2) Ly (0 )
n
- E )\ (log z9)L (0) —(logz)L (0) —1
i—3 Ie &5 W e &wy Y‘f‘/g{lg2) (ezlLv(l)(_Z;Q)LV(O)U’Zl—l)w;
(e 22) Law, 0) 108 2) Ly (0) ) =108 22) Ly 0) 108 2) Ly (0 )

/
(3

_ <e(10g 2’2)LWZ((0)6—(103 Z)LWZ((O)YV(I}qillgz)_l (ez1Lv(1) (_2172)L‘/(0)u7 Zfl)w

i=3
V(e loa=)lwy 0)gllos ) Lwy (0)y 2y (lo=2) Iy (0) glloa =) Ew, (),

_ (wg, ngi/th (u, Zl>e(log #z2) Lw; (0) , —(log 2) Ly, (0),

=3
. yi(e—(log 22) Ly, (D)e(log z) Ly, (O)Ujl, 2)6_(10g 22) Ly, (0)6(log z) Ly (O)w2>
=) (Wi, Vi (u, 20) YV (wy, 22)wa). (4.5)
=3

Similarly, we have

n

(w, Ys(wy, ZQ)YV’{,Z;(u, 21)ws) = Z(w;, Vi(wy, z2)YVgV22 (u, z1)ws) (4.6)
=3
and .
(w, yf(Y‘f{}2 (u, 21 — 29)wy, 22)Ws) = Z(wg, yi(YV“{}l (u, 21 — z9)wy, 22)Ws). (4.7)
=3
Since Y fori = 1,...,n are twisted intertwining operators, the duality property for ) follows

from (4.5), (4.6), (4.7) and the duality properties for )".
The convergence for products of more than two operators follows from the formula

(w, Vi (un, z1) - - Y (wp—1, 21-1) Yy (w1, 25)w2)

n
= Z(wga ng{}igz (u1,21) - Yvﬁ” (up—1, Zk—l)yi(wla Zk)W2),
=3

whose proof is the same as that of (4.5). n

Let IX’P(z) = y1
Let

W@PMWQ).

(+,2)-. Then Mp(,) is a P(z)-intertwining map of type ( W,

N
willp )W

w1 Mpry we = Mpey (Wi ® wa) = Y(wi, 2)wy € Wy Mpy W
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for w; € Wy and wy € Wy, We call wy Mp(,) wo the tensor product of w, and w,. By (4.1),
we have
)\(wl & w2) = <)\, w1 @p(z) w2) (48)

for A € W1|§lp WQ, wy € Wy and wy € Wi,
Theorem 4.6 The pair (W, Rpy Wo,Mp(,)) is a P(z)-tensor product of Wy and Ws.

Proof. Let (W3, I) be a P(z)-product of Wy and W5. Then we have a module map g : Wi —
WiEp) Wy given by g(ws) = Ar .y for wy € Wy. By definition, we have (g(ws))(w; ® wy) =
AL, (w1 ® wy) = (wh, [(wy ® w2)> for w; € Wy and wy € Wy, The adjoint of this module
map is a module map f : Wy Mp(,y Wo — W;5. By definitions and (4.8),

(wy, (f o Wp(e) (w1 @ wa)) = (wh, fwi Bp(e) wn))

(
= (g(w3), w1 Wp(,) wo)
= (g(w3)) (w1 @ wy)
= (wg, I (w1 ® wy)).

So we obtain foXp(,) = I. n

We have assigned each object (W;, W) in the category C x C an object Wi Mp(,) W in
C. To obtain a functor from C x C to C, we still need to assign a morphism (fi, f2) in C x C
a morphism f1 XNpey f2in C.

Let W1, W1 be gi-twisted V-modules in C and Wy, W2 gi-twisted V-modules in C. Let
fi: W — W gnd fo: Wy — Wg be module maps. Let ) be the intertwining operator

of type (Wléf%zWQ) such that w; Mp(,) Wy = j}v(zbl, 2)Wsy. Since f; and fo are module maps,

Yy =Yo (f1 ® f2) is an intertwining operator of type (WlfWZWQ). Then I = Y(-,2)- is a

P(z)-intertwining operator of the same type. Hence we have a P(z)-product (W; X P(2) Wa, 1)
of Wi and W,. By the universal property of the tensor product (W1 Wp(sy Wa, Mp.y), there

exist a unique module map f : Wi Xp )W — W1 Xp() W2 such that I = folX P(z)- We define
this module map f to be the P(z)- tensor product of f; and f, and denote it by fi Mp() fo.

Theorem 4.7 The assignments given by (W, Wa) —= W1 Rp.) Wy and (f1, f2) = filp() fo
above is a functor from C x C to C.

Proof. Tt is easy to verify 1., ®p) lw, = lwim,,w, and (fi Kpe) f2) o (91 Mp) g2) =
(fi91) Mp(2) (f292) by using the construction of the tensor products of module maps. We
omit the detalls of the proofs. |

We call this functor the P(z)-tensor product bifunctor.
We now give a result on Condition 1 in Assumption 4.4.

Theorem 4.8 Let C be the category of grading-restricted g-twisted V-modules for g € G.
Assume that the following conditions are satisfied:
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1. For g € G, there are only finitely many irreducible grading-restricted g-twisted V -
modules.

2. Every grading-restricted twisted V -module is completely reducible.

3. For g1,90 € G and g1-, g2-, g1go-twisted V-modules Wy, Wy, W3 in C, the fusion rule
NVVI‘,?WQ = dim VVVII,?WQ is finite.

Then W1Sp,) Wy is in C for objects Wy and Ws in C.

Proof. Let W, and W5 be g1- and go-twisted V-modules in C. Then Witp(.\ s is a geberal-
ized (g192)~ L_twisted V-module. From the construction of WiEp:)Wha, it is a sum of grading-
restricted (g1go) !-twisted V-module. By Condition 2, Witip(. Wz must be a direct sum of
irreducible grading-restricted (g;go) '-twisted V-modules. But by Condition 1, there are
only finitely many irreducible grading-restricted (g;g2)~-twisted V-modules. If Wlﬁp(z)Wz
is an infinite direct sum of irreducible grading-restricted (g;g2)~!-twisted V-modules, at least
one irreducible grading-restricted (g;g2)~!-twisted VV-module W3 has infinitely many copies
in this decomposition of WiSpyW,. But then we have infinitely many linearly indepen-
dent injective V-module maps from W3 to the WiSp,)W,. But by Proposition 4.5, these
infinite injective V-module maps give linearly independent twisted intertwining operator of
type ( W ) Thus the fusion rule NII,/VV:‘W is co. By Condition 3, this is a contradiction.
So Wllﬂp yW5 must be a finite direct sum of irreducible grading-restricted (g1g2)~ L_twisted
V- modules In particular, it is grading restricted. |

Corollary 4.9 The category of grading-restricted g-twisted V-modules for g € G satisfies
Assumption 4.4.

Proof. Theorem 4.8 shows that Condition 1 holds. Conditions 2 and 3 are clearly holds for
grading-restricted twisted V-modules. |

For the same W; and W5, let Y be the twisted intertwining operator of type (%1 ;W2()$§ )<‘;VZ1) Wl)
91

such that wy Mp(_.y wy = V(wa, —2)w; for wy € Wy, wy € ¢4, (W3) = Wa. Then by Theorem
3.1, Q. (Y) is a twisted intertwining operator of type

Ciremon i)~ (i)

In particular, the pair (¢g, (We)Xp_) W1, Q4 (Y) (-, 2)-) is a P(z)-product of Wy and Wy. By
the universal property of the tensor product W1 Kp(,) W, there exists a unique g; go-twisted
V-module map

Rpe) : Wi Kpiy W — ¢g1(W2) Xp—.) W1

such that o
QV)(,2) = Rp) o Xp(z),
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where ﬁp(z) is the natural extension of Rp(;). The g;go-twisted V-module map Rp(.) has
an inverse

R;’%z) D Qg (Wo) Wp(oy Wi — Wi Kpy Wo

constructed in the same as above except that we use 2_ instead of €2,. Then we obtain a
natural isomorphism Rp(.y called the G-crossed commutativity isomorphism.

As in [H6] and [HLZ2|, we also have parallel transport isomorphisms. Let 21,2 € C*
and v a path in C* from 2; to z2. We denote the homotopy class of v by [v]. For the
same Wi and W5, let ) be the twisted intertwining operator of type (Wl%vi(‘j[;;%) such that
w1 Mpy) we = Y(wy, 2)ws for wy € Wi, wy € Wy, Then (W Mp.,y Wa, V(-, 21)-) is a P(21)-
product of W; and W5. By the universal property of the P(z1)-tensor product W; X P(z) Wa,
there exists a unique g; go-twisted V-module map

Thy = Wi Bpeey) Wo — Wi Kp(,) W

such that m o Mp(:) = Mp(z,). The gigo-twisted twisted V-module map 7, is invertible
since the same construction also gives a g;go-twisted V-module map

7{7—1] : Wl IEP(ZQ) W2 — Wl IXP(zl) W2

which is clearly the inverse of 7). Thus the natural transformation 7, is a natural isomor-
phism called the parallel transport isomorphism from z; to zo along [v].

Let v be a path from —1 to 1 in the closed upper half plane with 0 deleted. For the same
Wi and W, we define the G-crossed braiding isomorphsim R : W1 Mpy Wa — ¢4, (W2) Kpq)
W1 by

R ="Tp 0 Req:-

5 Compatibility condition and grading-restriction con-
dition

In this section, we introduce P(z)-compatibility condition and P(z)-local grading-restriction
condition and using these conditions to give another construction of Witp. W, for two
twisted V-modules W and W5. In the untwisted case (the case that C is the category of
(untwisted or 1y-twisted) V-modules), these conditions and this second construction given in
[HL2|, [HL3] and [HLZ3] play a crucial role in the proof of the associativity of intertwining
operators and the construction of associativity isomorphisms in [H1] and [HLZ5]. It is
expected that they will play the same crucial role in the proof of the associativity of twisted
intertwining operators and the construction of associativity isomorphisms for the P(z) tensor
product bifunctors on the category C of twisted V-modules.

In the untwisted case, The P(z)-compatibility condition is formulated using a formula
corresponding to the Jacobi identity for intertwining operators. Even though we can obtain
a Jacobi identity for the rational coefficients of the expansions in a suitable basis of products
and iterates of twisted intertwining operators with twisted vertex operators as in [H2] , we
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do not have a Jacobi identity for the products and iterates of twisted intertwining operators
with twisted vertex operators. Thus we have to use the analytic method to formulate the
P(z)-compatibility condition and prove the main results. In particular, the formulation
and proofs involving the P(z)-compatibility condition are completely different from those in
[HL2], [HL3] and [HLZ3].

For a fixed z € Cy, we need to study multivalued analytic functions on the region

2#0, zi# 2z, 1=1,....,n, }

MTL O’ o ey Zn Gcn - . o
2 {(21 ) zi # zj, ford,j=1,...,n, and i # j, if n > 1

for n € Z, and its subregions

( 12| <|zm| <...<|z|, if m >0, )
(& i) 0<|2mer — 2| <...<|Zmy1 — 2| <|z2|, if £ >0,
Qm7k7l(2’) = ’ ’ c Cm-‘rk‘-i-l O<|Zm+k+l| <.. .<|Zm+k+1| < |Z’7 lfl > 0, y
|Zm41 — 2| + |Zmart1] < |z], ifk>0,1>0,
\ |Zma1 — 2| + |21 < |z], ifm>0,k>0
( T )
Jar(z; — 2) — ara(z)] < 7,
j=1,...,m,if m >0
T
Q(l)kl<z) _ (Zl, e 7Zm+k+l) |a‘rg(zj) - arg(z)\ < 57
e € U pi(2) j=m+1,....m+kifk>0
3
—; < arg(z; — z) —arg(z) < —g,
\ j=m+k+1,... m+k+l, if1>0)
( T 3\
Jar(z; — 2) — ara(z,)] < 2,
j=1,....m,if m >0
™
Q(z)kl(z) _ (Zl, . 7Zm+k+l) ’arg(zj) - arg(z)\ < 57
e € L pi(2) j=m+1,...om+kifk>0
3
g < arg(z; — z) —arg(z) < g,
{ J=m+k+1,... m+k+l, ifl>0)

for m, k,l € N. Also, we define M (0, z) to be the simply-connected region given by cutting
M™(0, z) along the positive real lines in the z-planes, z; — z;-planes and z; — z-planes, that
is, the sets

{(z1,...,2n) € M™(0,2) | z; €Ry}, i=1,...,n,
{(z1,...,20) e M™(0,2) | zi — 2z, € Ry}, 4,5 =1,...,n,i%# ],
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{(z1,...,20) € M™"(0,2) | zs —z € R}, i=1,...,n,

with these sets attached to the upper half z;-planes, z; — z;-planes and z; — z-planes.

To formulate the P(z)-compatibility condition, we need a generalization of the notion of
isolated singularity in the theory of one complex variable to several complex variables. Let
b= (bi,...,b,) € (CU{oo})" and r = (r1,...,m,) € R%. Let I C {1,...,n}. We use the
following notation for polydisks and polycircular domains:

|zi] > 1 or z; = 00 if b; = o0,
|Zl—bl|<’l“7, 1be€C, fOI‘iG[,
|Zj’>rj ifbj:OO,
0<’Zj—bj|<7"jifbj€(c, fOI‘j%[

Al(b,r) =< (21,...,2,) € (CU{O})"

Ab,r) = A" (b, r),
A*(b,r) = A°(b,T).

We shall use b, . to denote the homotopy class of loop in M'(0, z) with z; going around
z counterclockwise once with z; for j # 4 fixed.
Let g; and g5 be automorphisms of V', Wy, Wy, W3 g1-, go-, g1go-twisted V-modules,

respectively, in the category C and z € C*. Let I be a twisted P(z)-intertwining map of

type (Wvlvlfw) and wy € Wy. Then we have an element A7, € Witlp)Wa.

Proposition 5.1 The element Ar ., has the following property: Forl € N, uy,...,u €V,
wy € W1, and wy € Wy, there exists a multivalued analytic function

Sz, -z un, - g, W, W25 ALwy) (5.1)
on M0, 2) with a preferred branch
Jrz, sz un, o g, W, w23 Ary) (5.2)
on M{(0, 2), satisfying the following:
1. (a) Fori,j=1,...,1,i# j, zi — z; = 0 are poles of (5.1). In particular, there exist
M;; € Z such that
< H (2 — zj)Mij) Sz, -z un, e g, W, W23 Ary) (5.3)
1<i<j<l
can be analytically extended to a multivalued analytic function on

{(Z17"-7zl)ecl|zi7é07 Zi?'éza Zzlaal}

(b) All component-isolated singularities of (5.3) are reqular singularities.
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2. Foruy,...,ui €V, w € Wy, and wy € Wy,
(a) The series
AL, (Ygl<u1; 2 — 2)w ® w2>

= >\I,wg (an (w1, x)wy ® w2> (5.4)

zn=e™0(21-2)  log zx=Iy(21—2)

is absolutely convergent on the region y10(2). Moreover, it is convergent to
fi(z1;uq, wy, wa; )‘I,wg) on the region 982,0(2) = Qéﬁo(z).

(b) Forl € N, the multiple series
AL, <w1 QY (uy, 21) - Y92 (uy, Zz)w2>

= AL, (w1 QY2 (uy, 1) - - Y92 (wy, $l>w2)

(5.5)

:v?:e"lo(zl), log(zi)=lo(z1), i=1,...,l

in powers and logarithms of zy, . .., z; is absolutely convergent on the region o,(%).
Moreover, it is absolutely convergent to (5.2) on the region Q&g’l(z) and to
b,;lz"'b,;lz
fl v a (21,..-,Z[;Ul,-..,ul,UJh'LUQ;)\)

on the region Q(()Zgl(z)

Proof. This result can be easily verified by using the definitions of A, and P(z)-intertwining
maps and the properties of twisted intertwining operators. We omit the details. [ |

Let g and g, be automorphisms of V', Wi, Wy g1-, go-twisted V-modules, respectively,
in the category C and z € C*. Motivated by Proposition 5.1, we formulate the following
condition for A € (W @ Wy)*:

P(z)-Compatibility condition A element A € (W) ® Wh)* is said to be P(z)-compatible
ifforl € N, uy,...,u; € V, wy € Wy, and wy € Wy, there exists a multivalued analytic
function

filza, ooz, o g, Wy, way A) (5.6)

on M0, z) with a preferred branch
fi(z, oz un, o g, Wy, wap N) (5.7)
on M}(0, 2), satisfying the following:

1. (a) Fori,j=1,...,1,9%# j, 21 —z; = 0 are poles of (5.6). In particular, there
exists M;; € Z, such that

H (z; — zj)Mijfl(zl, ey Zni ULy ey Uy, WY, Wa ) (5.8)

1<i<j<n
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can be analytically extended to a multivalued analytic function on

{(z1,...,2) €C' | 2 #0, zi # 2z i=1,...,1}.

(b) All component-isolated singularities of (5.8) are regular singularities.
2. For uy,...,u; € V, wy € Wy, and wy € Wo,
(a) The series

)\(Ygl (ug, 21 — 2)w; ® w2> = A(Ygl(ul, r)wy @ w2>

an=em0(z1-2) | log z=lg(z1—2)

(5.9)

is absolutely convergent on the reglon Qo1 0(2) Moreover it is convergent to
ff(z1;uq, wy,we; A) on the region Qo,1,o( z) = Q 10(2).
(b) For [ € N, the multiple series

A(wl QY2 (u, z1) - Y2 (uy, zl)w2>

= A(wl ® Y2 (uy, xq) -+ - Y2 (uy, xl)w2>

x?:enlo(z1)7 log(zi):lo(zl), i=1,..., 1

(5.10)
in powers and logarithms of 2y, ...,z is absolutely convergent on the reglon
Q0,0.(2). Moreover, it is absolutely convergent to (5.7) on the region QO 01(2)

and to ) )
szl,z"'b;l,z

) (21, oy 215U, oo Uy, WY, Way )
on the region Q((fa’l(z).
We denote the subspace of P(z)-compatible functionals in (W} ® W5)* as
COMP p(y (W7 @ Wa)")

or COMP for short.

Remark 5.2 Note that the following are component-isolated singularities (and therefore
regular singular points) of (5.6) and (5.8):

o (21,...,2)— =06, forany B € {0,2}!, and § € {0,000} are isolated singularities (and
therefore regular singular points) of (5.6) and (5.8).

® (z1 — 29,29) = (0,00) and (21 — 22,20 — 2z) = (0,00) are regular singular points of
fa(21, 225 ur, ug, wy, was A).
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Remark 5.3 In 2(b) of Proposition 5.1 and 2.(b) of the P(z)-compatibility condition, the
reason that we involve two different regions Qélg) ,(2) and 982()] ,(2) is because either of these two
regions could be empty. Notice that here z is a fixed nonzero complex number. Actually,
when arg z € [0,7/2], the region Q&&l(z) is empty. When argz € [37/2,27), the region
Q((f())’l(z) is empty. When Q(()f()]’l(z) and Qé?())’l(z) are both nonempty, the absolute convergence
of (5.10) on these two regions are equivalent.

Remark 5.4 Because of the definition of the domain of (5.7), i.e. M(0,z2), and the fact
that its singularities at z; = z; for ¢ # j are poles, branches of (5.6) can be indexed by
elements in the fundamental group of the space

{(217"‘72n)ecn|zi7é07 Zi#zu Z:177n}:H{ZlEC| Zi#07 ZZ#Z}
=1

A set of generators of this fundamental group can be chosen to be b, 9, b,, ., 7 =1,...,n.
For each i, the elements b,, o and b, . corresponds to b3 and b;2 defined in section 2, and
they freely generate m ({z; € C| z; # 0, z; # z}). Notice that

n

T (H{Zz €Clz#0, z # Z}) = Hﬂl({zi €C| 2z #0, 2 #2}) = H<bi,0= bi.). (5.11)

i=1

For A € COMP, we want to define Yl%ﬁm)_l (u, 2)\ € (W1 @Ws)*{x}[log x]. We first define
Y]E@)g”*l (u, )\ € (W1 @Ws)*{x}[log z] for A in a larger subspace of (W; ® W3)* than COMP.
Let COMp(.y (W1 ® W3)*) or simply COM be the subspace of (Wi @ W5)* consisting of A
satisfying 1.(a), (b) and 2.(b) in the P(z)-compatibility condition. By definition, COMP C
COM. To define Y% (u,2)\ € (Wi @ Wa)*{a}[loga] for u € V and A € COM is
equivalent to define

VS (e 0 () O p A = (V) ()A€ (W @ Wa) {a} llogal.
Since z; = oo is a regular singular point of fi(z1;uy, wy, we; A), we know that there exist
unique @; ,, ;(u1, w1, we; A) € C and r; € C, for 4,5 = 0,...,K and n € N, such that on
QS&O(Z’) = Q%’O(z) (i.e. the region given by |z1| > |z|, |arg(z; — z) — arg(z1)| < g),

K
Fi G wy, wes A) =) 0 a0(u, wi, way )z " (log 1)

1,7=0 neN

Fori,j=0,...,K,n€Nandu €V, we define (Y(g192)71>0 (u)A € (W1 @ Wa)* by

P2 —ritn—1,j

—1 o
((YJSZL?Q) >_m+n_17k (U))\) (w1 ® wa) = @45 (w, Wi, wa; )
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for wy, € W, and wy € W,. Then we define Y, ?152) (e (=) L0 271\ to be

N
>3 () (WAa" " (logx)? € (W1 @ Wa)*{x}log ],
—ri+n—1,j

1,j=0 neN

that is,

(YF(;‘(’;;’Q)A(exL(l)(—asg)_L(o)u,x_l))\> wy ® ws) Z Zamj u, wy, wo; )z " (log ).

1,7=0 neN

(5.12)

By definition,
—1\ ©O
((77) (e 2a) (i @
(2)

is absolutely convergent on the region |z1| > |z| and its sum on Q%’O(z) = ) 90(2) is equal

to ff(z1;u, wy, we; \). For simplicity, let (Y(?XQ) ) (u)=0formeC,m#—r;+n—1
m,k

fori=0,...,Nandn € Nand £k =0,... N. Then we have

(YI%‘;’Q 1) ZZ( 9192 1) (u)z™™ (log 2)*.

meC k=0
We have the following result:

Proposition 5.5 The space COM is invariant under the action of the components of the
1
twisted vertex operators Y(“((”fz) (u,z) forueV.

Proof. We need to show that forn, € C, k=1,..., K, u; € V and A € COM,
(Yé@gz)*)o () € COM. (5.13)
ni,k1

For uy,...,u; € V, we have

YO (ug ) YR (wy) = Y Y Y () Vi (w)-
N2ye.ny n €C ka,..., k=0
T YT Y(log zo)*2 - - - (log a)*.
Since A € COM, for ug,...,u; € V, no,...,n; € C, ko,..., k; = 0,..., K, wy € Wy and
Wo € WQ,
Mwy @ Y (uy, 21)Y72 ) (ug) -+ Y72 (w)ws)

is absolutely convergent on the region €2y ;(z) and is absolutely convergent on the region
Q&%’l(z) to the preferred single-valuued branches

fle(Zl; Uy, Wy, Y92 (Ug) Yﬁi K (UZ)U)Q) (514)

na,ke
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defined on M; (0, z) of the multivalued analytic function

il w00, Y2 )+ Y22 () (5.15)
defined on M!'(0, z). By definition, (Y}%)”)_l)‘lrﬁn_u (u)\ is obtained by expanding (5.15)

on the region Qg&o(z) = Qf())’o(z) as a series in suitable powers of z; and log z; and then
taking the corresponding coefficients.
We now consider the series

iz ur, wy, Y2 (ug, 22) - - - Y2 (wy, 2)ws) (5.16)

in suitable powers of zs, ..., 2 and log 21, ..., log 2. The series (5.16) on the region Q&%’l(z)
can be further expanded as the series

AMwy @ Y92 (uq, 21)Y 9 (ug, 29) - - - Y92 (uy, z)ws). (5.17)

But (5.17) is absolutely convergent on the region €2y,11(%) and is absolutely convergent
either to
iz, 20, oy 25U, - oo Uy, W1, Was N) (5.18)

on the region Q(()%())’l(z) or to

bl bt
1 e bl’z(zl, 29y ey 2 UL, - . Ug, WY, Woi A) (5.19)

on the region Q((f()),lﬂ(z). Thus for z; satisfying |z| > |z1] > 0, the series (5.16) as the sum of

(5.17) viewed as a series in suitable powers of z; and log z; must be absolutely convergent
on the region || > |z] > --+ > || > 0 and if in addition, —2F < arg(z; — z) < —% or

7 <arg(z —2) < 37“ fori = 1,...,0 4 1, its sum must also be equal to (5.18) or (5.19),

respectively. But (5.18) can also be expanded on the region |zi| > |z]| > |25] > -+ > |z] >0

as a series in suitable powers of zq,..., 2 and logz,...,logz. This fact can be seen as
follows: By 1.(a) in the P(z)-compatibility condition, we know that
H (zi — 2))M9 fi(21, 29y - ooy Zpi UL, oy Uy W1, Was )
1<i<j<n

can be analytically extended to an analytic function on the region

{(Zlv"wzl)e(clyzi#oa Zi#f% 2:1771}

Moreover, this analytic function has a regular singularity at (00,0, ...,0). In particular, this
function can be analytically expanded on the region |z| < |21, 0 < |z;]| < |2| fori=2,...,1
as a series in suitable powers of z1, ...,z and log z1, ..., log 2. Thus (5.18) can be expanded
on the region |z1| > |z| > |22| > -+ > |z| > 0 as a series in suitable powers of zy,. ..,z and
log z1, ...,log z;. By definition, this expansion is equal to

(YA (w207 (w0 @ Y (g, 20) -+ Y2 (g, 1)) (5.20)
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The coefficients of the powers of z; and log z; in (5.20) are exactly

<(Y1§Z52)_1) —ri+n—1,j (u1))\) (w1 @Y (ug, 29) - - Y (uy, 21)ws)

fori,j =0,..., N, n € N. Since these are expansions of single-valued branches of multivalued
analytic functions on €y, they are absolutely convergent to these multivalued analytic
functions on the same region and are absolutely convergent to their corresponding single-
valued branches on Q&()),l or Qé?()),z- Moreover, since fi(z1,...,2;u1,. .., U, Wi, wa; A) satisfies
1.(a) and 1.(b) in P(2)-compatibility condition, the coefficients of its expansion on the region
|z1] > |z| > |z2| > -+ > |z1| > 0 also satisfy these conditions. This finishes the proof of
(5.13). |

Proposition 5.6 For uy,..., U,y €V, wy € Wi, wy € Wy and A € COM, the series

—1\ © -1\ ©
(™) o)+ (YE527) (w200 ) (@Y (st 2s1) -+ Y P 1,2 102)

(5.21)
is absolutely convergent on the region |zi| > «-+ > |zm| > |2] > |zms1] > -+ > |2iam| > 0
and its sum is equal to
fE(z o Zmas o U W1, Was A) (5.22)
on Q;}L,)o,z(z) or to
bz_l z"'bz_l z
LT T (2 By ULy - Ul WY, Wa A) (5.23)
on QEZ?OJ(Z). Moreover, we have the following commutativity for Yg{;’ﬂil cForuy,... u, €
V., w € Wi, wy € Wy and X € COM, the series
—1 -1
(V827 s 2) - Yty 2) ) (101 @ 102) (5.24)
is absolutely convergent on the region |z 1| > |z1| > -+ > |2,,] > 0 and for o € S,,, the sums
of (5.24) and
—1 —1
(ng‘((]i‘;n) (Uo (1) 20(1))  * 'Ylg‘[(]i‘;m (Yo (m) ZJ(Z))/\> (w1 ® wa) (5.25)
are analytic extensions of each other. We also have the weak commutativity for Y};‘Z;)QQ)A'

Foru,v € V, there exists M € Z. such that

—1 -1 -1 -1
(1 — 22 MY S (w,20) Y20 (0,2) = (01— 22) MY (0, 20) YS9 (u,21). (5.26)
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Proof. To prove the convergence of (5.21), we use induction on m. In the case m = 0, the
convergence of (5.21) is given by Condition 2.(b). Assume that the convergence of (5.21) in
the case that m is m — 1 holds. Then

—1\ 0O —1\ ©
(7)o e (V) 200)

(w1 @ Y (U, 2m) -+ Y (W41, 2mey1)W2)

—1\ O —1\©
= ((Ylgﬁgﬂ ) (Upm—1s Ty1) - - - (Ylgggz) ) (Ul,xl))\>

(w1 @Y (U, Tp) + +* YI2 (Uit Ty ) W2) (5.27)
zP=e"1°8 %i log z;=log z;,i=1,...,m+l
is absolutely convergent on the region |z1] > -+ > |zp-1| > |2| > |2m| > -+ > |2mu] > 0
and its sum is equal to (5.22) on QSL)_LOJH(,Z) or to
boh b
i (21, oy 2ty Uty -+ oy Uy W1, Wai N) (5.28)

2
on Qﬁn)fl,o,lJrl(z)'
Write

—1\ O -1\ °
(v ™) <um*1,xmfl>~~(yé%;§'” ) ()

_ Y(glgz)_l>o 1) (Y(glgz)_1>o .
Z Z < P(z) Nm—1,km—1 (u 1) P(z) ni,k1 (U1>

Nm—1;-- 7”16Ckm 1y k1=

—Nm_1—1 . 717,17].(

s, Xy log :z:T,L,l)k'”*1 -+ (log xl)kl

and

Y92 (U + 1,2 + 1) - Y2 (Ui, Tinsr)
K

- Z Z Yng’thlvkval (tmi1) - Y77/g7i+l7km+l (Ums1)-

nm+1,'~~7nm+l€(c km+17---,km+l:0

—Nm41—1 —nmyr—1 km k
“Ty " T (log Zpy1) ™" - - - (log Tpmyr) ™"

By Proposition (5.5),
(vl ()= (VE™) ()A€ COM.
Nm—1,km—1 1,k
Then

Y(9192)_1>0 1) (Y(glgz)‘l)o A
(( P(z) ront s (Um—1) P(z) . (u1)

(wl ® Y92 (um7 zm>YTngl+1 km+1 (um) e YTlg:1+l,km+l (um+l)w2)
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is absolutely convergent on the region |z| > |z,,| > 0 and its sum is equal to

e (Zm; Um, W1, YTf]wiJrhka () - Yfrznﬂvkmﬂ ()2
Y(9192)_1>0 ) (Y(glgz)_l)o )\) 5.29
( P(Z) nm717k771,71 (u 1> P(Z) nl,kl (UI) ( )

on the region |z| > |z,| > 0, =2 < arg(z; — z) —argz < —3 and to

.. V92
MNm+1 7km+l

o (5557, )

-1
szm,z <Zm; U, W1, Yngyi+17km+1 (um) ’ (umH)wQ;

(g192)"1\°
(V™)

Nm—1,km—1

on the region |z| > |z,| > 0, 2 < arg(z; — z) — argz < 2. By definition,

—1\ O —1 o —1\ ©
(i) o (i), e (7)., )

Nn—1,km—1
(wl & erri+1,km+1 (um) Y (um+l)w2) (530)

Nm+41 7km+l

is absolutely convergent on the region |z,,| > |z| and its sum is equal to (5.29) on the region
|zm| > |2], |arg(zm — 2) — arg z,| < 3.
But we know that

K

2. D

N1,y m—1,Mm41se -1 EC k1, oo km—1,km+41,-- s km+1=0
e . g2 g2 .
f (Zm’ U, W1, Ynm+1,km+1 (Um) Y Ynm+lvkm+l (um""l)wQ’

—1\ O —1
ORE ), et ()

. —n1—1 . —Nm—1—1 —ni1—1 . 7n'm+171_
21 Zm—1 m+1 m+l

o

(w))):

ni,k1

- (log 1)+ (10g 2y —1)"" " (10g Zim1) "+ -+ (log z1) "+
K

- 2 2.

N1y —1,mA 1511 EC K1 skm—1,km 41, K 41=0

192) 7! ° 192) 7! °
((Y]gszjz) ) (Upp—1) - - - <Y1§‘éz)92) )m,kl (ul))\)

Nm—1,km—1

(wl ® Y (um’ Zm)yﬁqjt+1:km+l (um) o 'Yngjwl,kmﬂ (um+l)w2)'
. zf"lfl . ;L’i?—l_lz;lilfl . Z;ﬁr’?”_l.

(log 20)" -+ (log zyn—1)"" 7 (log 2y 1) - (log zyna) ™ (5.31)

as an iterated series of the multi-series (5.27) is absolutely convergent on the region |z;| >
coo > zmet| > 2] > |zm] > o > |Zm| > 0 and its sum is equal to (5.22) on QSL)_LOJH(z).
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In other words, the expansion of (5.22) on erlz)—l,o,l +1(2) can also be written as the iterated
series (5.31). By the discussion above, the coefficients of the left-hand side of (5.31) is equal
to (5.30) on the region |z, | > |2|, | arg(zm, — 2) — arg z,,| < 5. So the expansion of (5.22) on
the region 923071(2) can be written as the iterated series

K

2 2.

N15e N —1,MmA4 15N 1 €EC k1o skm—1,km+ 150 km41=0

<(YF(’%12)92)_1) (U, Zm) (Ylg%lz‘)Q2)_1> (Upp1) - - - <YPS.§(7;.§72)_1)711 ) (u1))\>

Nm—1,km—1

(wl ® Y’I"Lqithkmle (um) T Y?fyi+l,km+l (um+l)U}2)'
R S R PR ;LT?H_l'
- (log 21)** - - - (1og 2pm—1)"=1(10g Zpy1)* ™+ - - - (l0g Zpyy) L. (5.32)

Since the expansion of of (5.22) on the region Q,(?IL?OJ(Z) must be absolutely convergent as
a multisum, we see that the multi-series (5.21) corresponding to (5.32) must be absolutely

convergent on the region QS?OJ(Z) to (5.22). Similarly, we can show that (5.21) is absolutely

convergent on the region Qg?o,l(z) to (5.23).

This convergence result implies in particular the absolute convergence of (5.24) on the
region |27t > |z1| > -+ > |z| > 0. Using the commutativity for the twisted vertex operators
Y9 we see that for o € S,,, the sums of (5.24) and (5.25) are analytic extensions of each
other.

For u,v € V, since A satisfies the condition 1.(a) in the P(z)-compatibility condition,
there exists M € Z, such that z; — z; = 0 is not a singularity of

(21 — 22)M f5 (21, 225 4, wn, Wy, wa; N)
and we have
(21 — )M fS(21, 223w, v, w1, was ) = (21 — 22)™ f5(20, 2150, w, wy, wa3 N). (5.33)
Since the expansion of f$(z1, zo; u, v, wy, wse; A) on the region Qg()),o(z) is
(V) o) (V7)) (w202 (un @ ),

we see that

(z1 — )M <<Y1§g§2)71>0 (v, 29) (Y;f(’;f?)*l)() (u, zl))\> (w1 ® wy)

DRI () (i) o (vl ™), n) (w s

=0 neC k=0 nle(C k1=0

. p(ntM—i)logz1 (log Zl)ke(mﬂ') log 22 (]og 2, )k (5.34)
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must be convergent absolutely to the left-hand side of (5.33) on QS()LO(Z) (the region given
by |21 > |z2| > |2|, |arg(z1 —2) —arg 21| < §, |arg(z2 —2) —arg 22| < §). On the other hand,
(21 — 22)M f$(21, 205 u, v, w1, wo; \) is analytic at z; — 2o = 0. So (5.34) is in fact absolutely
convergent to the left-hand side of (5.33) on the region |z|, |z2| > |z], |arg(z1 —2) —arg 21| <
7, larg(z — 2) —arg z| < 5. Thus

(21 — 2)M ((YIS‘Z;‘;’2)71>O (u, 1) (Y;ﬁ‘?zrl)O (v, ZQ))\) (w1 ® wy) (5.35)

is absolutely convergent to the right-hand side of (5.33) also on the region |z, |z2| > |z|,
|arg(z1 — 2) —argzi| < 3, |arg(z, — 2) — argz| < 5. From (5.33), (5.34) and (5.35), we
obtain

(21 — 20)M ((Y]g%;)”)il) (v, 29) (Y]gsé‘;mil) (u,zl)/\> (w1 ® wy)

—1\ O —1\©
:(21—22)M<<Y1§?i§2) ) (4, 21) (Y;gg'?) ) (0,22))\) (w1 ® wy)

on the region |21|, |22 > |2|, | arg(z1 —z) —arg z1] < §, |arg(z—z) —arg 2| < § for A € COM,
u,v €V, wy € Wy and wy € Wy, which, by the definition of (Y;§;§2)’1> (u,2) for u € V
above, is equivalent to (5.26). |

Since COMP c COM, by Proposition 5.5, Y},’Z;;’Z)ﬂ(u,m))\ for w € V and A € COMP is

in COM{z}[log z]. We now prove the following stronger result:

Proposition 5.7 The space COMP s invariant under the action of the components of the
-1
twiste vertex operators YIE,%;‘;D) (u,z) forueV.

Proof. Let A € COMP. Then X satisfies 2.(a) in the P(z)-compatibility condition. We need
only show that forv e V, ne C, k=0,..., K, <Y]§‘gi§}2)_l>o . (v)A also satisfies 2.(a) in the
P(z)-compatibility condition. "

By the definition of (Y;?;?2)71>0 (u, z1) for u € V and the P(z)-compatibility condition
for A,

(0 )t 2200
and
MY (u, 21 — 2)w; @ Y75 (v)ws)

forveV,neC k=0,... K w € W, and wy € Wy are absolutely convergent to
fi (215w, w1, Y5 (v)wa; A) on the region |z1| > 2|, |arg(z1 — z) — arg 21| < § and the region
|z| > |21 — 2| > 0, |arg z; — arg z| < 7, respectively. By Proposition (5.6),

((Y;?;?Q)A)O (u, 21)/\> (w1 @ Y9 (v, z9)ws)
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K
- Z((ygg;)gﬂ”) (u,zl))\) (w1 @ Y2 (0)wn)e" 5% (log 2,)* (5.36)

is absolutely convergent on the region |z1| > |z| > |22| > 0 and its sum is equal to
f;(zlvz2;u7v;w17w2;/\) (537)

on le())l(z) and to
1

£ (21, 250, v3 w1, was \) (5.38)
on ng())l(z) Thus

K
Z MY (u, 21 — 2)wy ® Yrﬁ(v)wﬁe"log”(log 2)F
neC k=

0
= MY (u, 21 — 2)wy ® Y9 (v, z9)ws) (5.39)

is absolutely convergent on the region |z| > |z| > |z1 — z| + |22] > 0 and its sum is
equal to (5.37) on the region |zi| > [z| > |21 — 2| + |22| > 0, |arg(z1 — 2) —argzi| < 7,
largzy —argz| < 3, =3 < arg(z; — 2) —argz < —Z and is equal to (5.38) on the region

)
|z1] > |2| > |21 — 2| + |22] > 0, |arg(z1 — 2) —argz| < §, |argz; —argz| < 5, § <

arg(z; — z) —argz < 2%, On the other hand, since (z; — z, z23 = (0,0) is a regular singular

point of (5.37) and (5.38), we can expand them on the regions |z| > |22, |21 —2| > 0 to obtain

a series of the same form as (5.39). Thus we see that (5.39) must be absolutely convergent

on the region |z| > |2z3|, |21 — 2| > 0 and its sum is equal to (5.37) and (5.38) on the regions

2] > |21 — 2| + |22 > 0, |arg 2y —argz| < %, =3 < |arg(z; — 2z) —argz < —% and on the

region |z| > |21 — 2|+ 22| > 0, |arg z; —arg 2| < < arg(z; —z) —arg z < 3% respectively.
The right-hand side of (5.39) is equal to

r T
27 2

DN AVE(u)wr @ Y (v, 23)wa)e 5 ) (log (2 — 2))*. (5.40)

neC k=0

We know that the series A(Y,/} (u)w1 ® Y% (v, z5)wy) is absolutely convergent on the region
2] > |22 > 0 and its sum is equal to f(22;v, Y/} (w)wi, wz; A) on the region |z| > [22] > 0,

-3 < arg(z — z) —argz < —% and to fsz’Z(ZQ;v,YTzlk(u)wl,wg;/\) on the region |z| >

20| > 0, I < arg(z; — 2) — arg zs < 3. We also know that the series

(i) 0, 20) (Vfhwyn @)

is absolutely convergent to ff(22;v, )/} (u)wy, wz; A) on the region |z| > |zo| > 0, [arg(z2 —
z) — arg z;| < 7. From this discussion, (5.41) and the convergence of (5.39), we see that

K
S (V) o) (Ve @ wa)e 5 log(z, — 2))*
neC k=0
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= ((Ygggﬂ_l)() (v, 22))\) (Y9 (u, 2y — 2)wy ® wy) (5.41)

is absolutely convergent on the region |23] > |z| > |z; — 2| > 0 and its sum is equal to (5.37)
on the region |z| > |2] > |21 — 2| > 0, |arg(z — 2) —arg 2| < §, |argz; —argz| < 7.
On the other hand, by Proposition 5.6,

(Vi) o) (V) (0, 2200) (w1 @ ) (5.42)

is absolutely convergent on the region |z3| > |21| > |z| and its sum is equal to (5.37) on the
region |zg| > |z1| > |z|, |arg(z1 — 2) —arg 21| < 7§, |arg(z2 — 2) — arg 2| < §. Taking the
o

coefficients of (YI%?Q)A(U, 22)> in both (5.41) and (5.42), we see that

—1\ ©
(™) ) (s = o )

and
(™) ) (vi7) 000 (w0

are absolutely convergent to the coefficients of €"!°22(log 25)* in the expansion of (5.37) near

the singularity zo = oo on the region |z| > |27 — z| > 0, |argz; —argz| < % and on the

2
region |z1| > |z|, |arg(z1 — 2) — arg 21| < §, respectively. This is equivalent to 2.(a) in the

P(z)-compatibility condition for <Y1§‘[&§72)71> . (V). |

For a P(z)-intertwining map I of type (WVIVSVQ) and an element wj of Wi, the element

Arwy, € COM also have the following property:

Proposition 5.8 Consider the subspace Wy, of COM obtained by applying the coefficients

I,wé

of the vertex operators Y}S‘Z;?)_l(u,x) for allw € V to Ajuy. Then Wy, ., equipped with
z Wy

Y(9192)_1

P2) is a generalized (g1g2) ' -twisted V -module in the category C.

Proof. 'The proof of this result is a straightforward verification. We omit the details. [

Motivated by Proposition 5.8, we also introduce the following condition for A € COM:

P(2)-local-grading-restriction condition
(a) The P(z)-grading condition: X is a (finite) sum of generalized eigenvectors for the
operator L(0)p).
(b) Let W) be the smallest subspace of (W; ® W5)* containing A and stable under the
action of all the coefficients of the vertex operators Y]gé(’i)g2)71(u, z) for all u € V. We

know that W) can be decomposed into generalized eigenspaces of L(O)},(z), which we
write as Wy = ,ec(Wa)m)- Then
dim(W,\)[n} < 00, (543)
(Wx)m) =0, for R(n) sufficiently negative. (5.44)
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We denote the subspace of P(z)-local grading restricted functionals in COM C (W; ® W3)*
as LGRp() (W1 ® Wa)*), or LGR for short. Clearly, the space LGR is closed under the

action of Y(gl)”) (u,z), ueV.

Theorem 5.9 For \ satisfying the P(z)-compatibility condition and the P(z)-local-grading-

restriction condition, the graded space W equipped with Y]S(’;;’Q)*l 1s a grading-restricted

(9192) ' -twisted generalized module. An element A € (W7 @ Wa)* is in Witlp(,)Wa if and
only if X satisfies the P(z)-compatibility condition and the P(z)-local-grading- restmctzon con-
dition. In other words,

WyTp(Wa = COMP N LGR..

Proof. 'The identity property follows immediately from the definition of the twisted vertex

operator map Ylgg(’;?)_l. The L(0)-grading condition follows from the definition of the twisted

vertex operator map Y]%?Q)fl and the P(z)-grading condition in the P(z)-local-grading-

restriction condition. The (g;g2)~'-grading condition also follows from the the definition of

Ylg“g;)”)il. The L(—1)-derivative property follows from the the definition of Y, ?1‘;]2) " and the

L(—1)-derivative property of the twisted vertex operator Y92. We omit the details of the
proofs of these properties.

We prove the equivariance property for Ylgzl‘;m now. It is equivalent to
—1\ O p+1 ~ —1\ O\ P ~
(V™)) (g z0d = (Vi )) (w20 (5.45)

for u € V, A € Wy. By the definition of (Y 932) 1) , we know that for w, € Wy, wy € W,

((Y;%;§2)71>0 (u, 2)5\> (w ® wy)

is absolutely convergent on the region |21 > |z|, | arg(z1—z)—arg(z1)| < § to ff(z1; u, w1, wo; A).
Let b3 be the homotopy class containing a loop given by a circle centered at 0 with radius
larger than |z| in the counterclockwise direction on the complex z; plane. Then (5.45) is
equivalent to 3 )

F13 (215 grgou, wi, wo; N) = fE(21;5u, wy, wa; \) (5.46)

foru eV, w; € Wi, wy € Wy and A € W,

By the equivariance property for Y9 and the convergence of \(w; ® Y9 (v, z) @ w,) to
fe(z1;v, w1, wy; N) for v € V on the region |z| > |z] > 0, =3 <arg(z —z) —argz < — 1,
we obtain

ffZI (ZlagQU w1, Wa; ) f1<217U w17w27)‘>'
Using the equivariance property for Y92 and the convergence of /\(wl ®RY%2(v,z1) @ wy), we
obtain similarly

b 3 -
flzlyz(zﬁgw,wbwz;)\) = ff(zl;v,w1,w2;/\)-
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Applying any homotopy class b of loops in the z; complex plane with z and 0 deleted to
both sides of this equality, we obtain

bz, 2b ~ ~
121’2 (Zl;glv,wbwz;)\) = flb(Zl;U,wlywz;)\)

for v € V. Then we have

bay 2b 3 b A
LV (215 grgou, wi, was ) = f17 (215 gau, wi, wa; A)

= ff(ZﬁU;wl,wQ;S\)-

But it is easy to see that b, ,b., o = b3. Thus we have proved (5.46).
For u,v € V, w € Wy, w' € Wy, by Proposition 5.5, we have

g2)7!

-1
(21 — z0)M (W, Yéﬁ’jﬂ (u, xl)Ylg“g) (v, 22)w)
= (21 — 22)M (W Y (0, 2) VI (u, 0 )w), (5.47)

where M € Z, depending on only on u and v. Since W) is lower bounded, by (5.47), the
left-hand side of (5.47) has only finitely many terms in complex powers of 1, x5 and integer
powers of log x1,log z5. Then

(!, Vi oY

) (v, z9)w)

is equal to this finite sum multiplied by (z; — x5)~*, which is is expanded in nonnegative
powers of x5. Thus we have a multivalued function of the form

N

f(21,22) = Z aijuzy" 2y’ (logzr)* (logze)' (21 — z0) ™,
i1,k A=0

where m;,n; € C for : =0,..., N, with the preferred branch

N

f(z,22) = Z aijre™ logz1gnilog 22 (1gg 2, )# (log 22)l(z1 — )™
0,4k, 0=0

such that ) )

(W' Ve () Vi (0, 2)w)
is absolutely convergent on the region |z;| > |z3] > 0 to f¢(z1,22). From (5.47), we also
obtain the commutativity, that is,

—1 —1
(W, Y (0, e) Vi (um)uw)

is absolutely convergent on the region |z5| > |21] > 0 to f¢(21, 22).
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—1 -1
We now prove the associativity for Yé@f"’) . Since the associativity for Y,ﬁ%;f?’ is equiv-

alent to the associativity for (Ylg“(’gﬁil)o, we prove this associativity. For u,v € V', wy € W,

wy € Wy and = W, by Proposition 5.6,

(Vi) .2 (YA ™) (20 (wn @ 1) (5.48)

is absolutely convergent on the region |z1| > |29| > |z| and its sum is equal to

er(Z17Z2;u7U7wlaw2;>\) (549)

on the region |z1| > |22| > |2], |arg(z1 — 2) —argz1| < §, |arg(z2 — 2) — arg 23| < §. By the
— o
definition of (Y}%)QQ) 1) ,

(Vs ™) (3w, 2)3) (w1 0 w)
is absolutely convergent on the region |z9| > |z| and its sum is equal to
F§ (225 (Y ) (u)v, w1, wa; A) (5.50)

on the region |z;| > |z|, |arg(z2 — 2) —arg 2| < §. Also

Mwy @ Y2 ((Yy )n(u)v, 29)ws)

is absolutely convergent on the region |z| > |z3| > 0 and its sum is equal to (5.50) and to

—1
FI7 (203 (Y D (), w1, w5 A)

on the region [z| > |zo] > 0, —=2F < arg(z — z) —argz < —3 and |z] > |z] > 0, I <
arg(zy — z) —argz < 37”, respectively.
By the P(z)-compatibility condition for A,

AMwr @ Y (u, 21) Y (v, 22)ws)

is absolutely convergent to (5.49) and

bz 3
fo T (21, 205w, v, w1, wo; A) (5.51)
on the region |z| > [z > |z] > 0, =38 < arg(z; — 2) — argz,arg(z — z) —argz < —3

and on the region |z| > [z1] > |z] > 0, 2 < arg(z1 — z) — arg z,arg(z — 2) — argz < 2,
respectively. By the associativity of the twisted vertex operator map Y92,

Z S\(wl ® Y2 ((Yy)"(u)v, 29)ws) (21 — 25) " !

neL

= Muwy @ Y2(Yy (u, 2, — 22)v, 22)w3)
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= Mwy ® Y(u, 21) Y (v, 23)ws) (5.52)

on the region |z| > |z1| > |22] > |21 — 22| > 0, |argz; — arg 2| < 5. Thus the left-hand

side of (5.52) is absolutely convergent on the region |z| > |z1| > |22] > |21 — 22| > 0

and its sum is equal to (5.49) and (5.51) on the region |z| > |z1| > |z2| > |21 — 22| > 0,
3

-3 < arg(z1 — z) — argz,arg(z — 2) —argz < —7, |argz — argz| < § and on the

region |z| > |z1] > |za| > |21 — 2] > 0, I < arg(z — 2) — argz,arg(z — 2) —argz <

|arg z; — arg z;| < 7, respectively. Then by the definition of <Y(gl§’2) 1) ,

((Y}%?Q)il)o (Yv(u, 21 — 29)v, z2)5\> (w1 ® wy)

— Z << 9192 1>0 ((Yv)n(u)v,z2)5\> (w1 ® ws) (21 — 22) """

nez
= fi s (Y )n (v, wr, wa; M) (21 — 20) " (5.53)
neZ
is in fact the expansion of (5.49) as a Laurent series in z; — 25 near z; — 2o = 0 and

then expand the coefficients as a series in powers of 2z, and log 2o near 2z = oo. Thus
we have shown that (5.48) and the left-hand side of (5.53) are convergent on the region
|z1] > |z2] > |2| and |z2| > |21 — 22|, |z|, respectively and their sums are equal to (5.49)
on the region |z1] > |z| > |z, |arg(z1 — 2) — arg 21|, |arg(z; — 2) — argz| < §. and
|22| > |21 — 22|, |2], |arg(z2 — 2) —arg 2| < 7, |arg z; — arg zp| < 3.

Since W), is lower-bounded and the singularities of (5.49) are all regular, (5.48) is a series
with only finitely many terms in negative powers of z5. Since (5.48) is absolutely convergent
on the region |z1| > |z2| > |z|, it must also absolutely convergent on the region |z1| > |z2| > 0.
Similarly, we see that the left-hand side of (5.53) is also absolutely convergent on the region

|z2] > |21 —22| > 0. Thus we have proved the associativity for (Y;?l)gﬂil )°, which is equivalent

to the associativity for Y(‘?‘;’?) This finishes the proof that W, equipped with Ypﬁm) ' is

a grading-restricted generalized (g;g2)'-twisted V-module.

By Propositions 5.1 and 5.8, an element of Witp(,)WW> satisfies the P(z)-compatibility
condition and the P(z)-local-grading-restriction condltlon We still need to prove an element
A of (W) ® Wh)* satisfying the P(z)-compatibility condition and the P(z)-local-grading-
restriction condition is in Widp,)Ws.

Since W) is grading restricted, Wy is linearly isomorphic to Wj\ We shall identify Wy
with W/’\ We define a map linear map 1 : Wy @ Wy — Wy by

(1, I(wr @ w)) = p(wy ® ws)
for p € Wy, wy € Wy and wy € W5. We define a linear map
Vi Wy @ Wy — (Wy){x}|log z]

wy ® we — Vr(wy, T)ws
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by
Vi(wn, )ws = &0 1BILO) ] (=L 10810y ) 4= E0) 082100 )
for wy € W, and wy € Wh. ) .
Using the definition of Y}%)QQ) , it is easy to see that Ylg‘((’i‘;”) is an intertwining operator
of type (W‘ivévg) when Wy, Wy and W; are viewed as modules for the fixed point subalgebra

of V under ¢g; and g». In particular, Ylgﬁ)”)il satisfies the L(—1)-derivative property.

For wy,...,up_1 € V, wy € Wy, wy € Wy and w € W), we have

—1 —1
(w, Ylg%lf) (u1,21) - 'ng%gQ) (wk—1, 2k—1) Vi (w1, 2 )w2)

—1 —1
= <w, Ylgg&j%) (u1,21) - 'Ylgs(’i)QQ) (Ur—1, 26-1)"

X e(logzk—logz)L(O)] (e—(logzk—logz)L(O)U}1 ® 6—(10gzk—logz)L(0)w2)>

_ <€(10g zk—logz)L(O)w’ Ylggéiéyg)*l (zk_L(O)ZL(O)ula e—(logzk—log z—logzl)).

.. Yf(’!é,lz§]2)71 (Z;L(O)ZL(O)UIC—L e—(logzk—logz—logzk_l))‘
i (e—(logzk—log z)L(()),w1 ® 6—(1og zk—logz)L(O)w2)>
= <(YPS‘?L;D)_l)O(Z];L(O)ZL(O)uk‘fl, e*(10g2k710g2710g2k,1)).

.. (Y;!Z1§J2)—1)o(Zk—L(O)ZL(O)ul, ef(log 2, —log z—log 21))6(10gzk710gz)L(0)w

Y

I (ef(logzkflogz)L(O)u}1 ® ef(log zkflogz)L(O)w2)>

(2)

. (Ylg_?;]z)*l)o(zk—L(O)ZL(O)ul’ 6—(log 2 —log z—log zl))e(log zk—logz)L(O)w>

= <(Y]g9192)*1 )O(Z’;L(O)ZL(O)Uk—l, 6—(log z;,—log z—log zk,1)>_

(ef(log zkflogz)L(O),w1 ® ef(logzkflog z)L(O)w2) )
(5.54)

By (5.12), the right-hand side of (5.54) is equal to the series obtained by expanding the
function

fle(éla o 7&; Z'I;L(O)ZL(O)UI’ o ,z,;L(O)ZL(O)uk,l, Zk_L(O)e(lng)L(O)wl, zk—L(O)e(log z)L(O)wQ; w)

on the region |&;| > - -+ > [€,_1| > |2| as series in powers of {1, . .., &1 and nonnegative inte-

ger powers of log &1, . . ., log & and then substituting e (082 —logz—logz1) -~ o=n(logz;—logz—logz—1)
(n € C) for erlosé . enloeti—1 and log 2z, — logz — log 21, ..., log 2, — log z — log 2., for
log&,. .., log & 1, respectively. Then the right-hand side of (5.54) is absolutely convergent

on the region |zz12,'| > --+ > [22,_12; '] > |2| or equivalently the region |z > -+ >
|zk—1] > |zx] > 0 and can be analytically extended to a multivalued analytic function on
M*=1(0, 2) with a preferred branch. By (5.54),

—1 —1
(w, Y;%?Q) (u1,21) - 'Y1£?2§2) (uk—1, 2k—1) Vi (w1, 2 )w2)
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is absolutely convergent on the region |z1| > -+ > |zx_1| > |zx| > 0 and can be analytically
extended to a multivalued analytic function on M*(0, z) with a preferred branch.
We now prove the duality property for V;. By (5.54), for v € V', w; € Wy and wy € W,

—1
(w, Ylgil)%) (v, 21) Vr(wr, 22)w2)

_ <(Y]§g(71§72)*1)o(Z;L(O)zL(O)U’ 6—(log z9—log z—log zl))e(log 29—log z)L(O)w>

(ef(log z2—log z)L(O)u}1 ® ef(log z2—log Z)L(O)wg) 7

which is absolutely convergent on the region |z, 'zz,| > |2| or equivalently |z;| > |z5| > 0
and its sum is equal to

fle(ef(logZQflonglogzl); Z;L(O)ZL(O)U, ef(logZQflogz)L(O)wlj ef(logzzflogz)L(O)w% e(logZQflogz)L(O)uO
(5.55)
on the region 2 ez | > |z, arg 25 2z —2 —arg 2lzz| < Zor equivalently, |z1| > |z2| > 0,
2 2 2 2
|arg(z; — 29) — arg z1|. By definition,

(w, Yr(wy, 22)Y(v, 21)ws)
— <€(logz2—logz)L(O)w’ yI(e—(logzz—logz)L(O)wI’ Z)

.Y 92 (Z;L(O) ZL(O)'U, e—(log zo—log z—log z1) )e—(log zo—log z)L(O)w2>

_ (e(log zo—log z)L(O)w> (ef(log z2—log z)L(O),w1

R Y92 (Z;L(O) ZL(O)U, ef(log zo—log z—log z1) )ef(log z2—log z)L(0) w2)

is absolutely convergent on the region |z| > |25 '221| > 0 or equivalently |z;| > |z;| > 0 and its
sum is equal to to (5.55) on the region |zo| > |21 > 0, =2 < arg(z;'221 —z) —argz < —% or
equivalently, [2o] > |z1| > 0, —=2F < arg(z; — z2) —arg z; < —%. By 2.(a) in the compatibility
condition, we see that

(w, V(Y9 (v, 21 — 29)w1, 22)ws)

_ <€(10g zo—log z)L(O)w’

y](Ygl (Z;L(O)ZL(O)U, 22_1221 o Z)e—(logzg—log Z)L(O)’LU1, Z)e—(logzg—log z)L(O)w2>

_ (e(log za—log z)L(O)w)(Ygl (ZQ_L(O)ZL(O)U, 22_1221 B Z)e—(log 22—log z)L(O)w1 ® o—(log z2—log z)L(O)w2)’

which is absolutely convergent on the region |z| > |25 22, — 2| > 0 or equivalently |z, >
|21 — 25| > 0 and its sum is equal to (5.55) on the region |z| > |25 '22; — 2| > 0, |arg z; ‘2z, —
arg z| < § or equivalently |zp| > |21 — 22| > 0, |argz — argzy| < §. Thus the duality
property for Yy is proved and )Y; is a twisted intertwining operator. Then [ is a twisted
P(z)-intertwining map.

Now we have

)\(wl & ’LUQ) = <)\, I(’Ll)l X w2)> = )\[7,\('LU1 & UJQ)
for wy € Wy and wy € Wy, In particular, A = Ar )\ € Witlp,)Wa. |
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A A convergence lemma

Let A be a finite subset of C/Z, R,, € p for p € A, D a subset of U,eca(R, —N), A € C and
an;i € Cforne D, j=0,...,M andi=1,...,N. Consider the triple series

Zzzan]le A+n+1)10gzo(lOgZO) (—n— 1)10g22<10gz2)i (Al)

neD j=0 =0

for zg, zo € C*.
For any zy, 2, satisfying |z1| > [2] > 0, |arg(z1 — 22) — arg 21| < §, we have

ealog(Zj*ZQ) _ Z (Z) (_1)/66(01776) logZ1Z§ ’ (Az)

keN
log(z1 — 22) = log z1 + Z A A (A.3)
/i‘EZ+
ealq2(722) — eaﬂ’iealogZQ’ (A4)
lg,(—22) = log 2o + i, (A.5)

where o € C and ¢ = 0,1 if arg 25 < 7, arg zo > 7, respectively. Note that in our notations,
log z = ly(z) for z € C*.

ForneD,j=0,..., M,k € Zxy, s=0,...,7, define b, ;s € C as the coefficients of
the following formal power series expansion

J
(z+y) 2 og(x + y)! = Z Z by jrst TR YR log ()7, (A.6)

keN s=0

where x and y are formal variables. From (A.2), (A.3) and (A.6), when |z1| > |22 > 0 and
|arg(z; — 22) — arg z1| < §, we have the following expansion

( A+n+1)log(z1— zg)(log Zl _ 22 J — ZZ ngkse —A4n+1-k) logzlz (log Zl) . (A?)
keN s=0

Now consider
M N

Z ZZan,j,ie(_A+"+1)log(zl_”)(log(a — z5) Vel 10e(=22) (o (— 2,))'. (A.8)
neD j=0 i=0

Using (A.7), we can further expand each term in the right-hand side of (A.8) so that the
right-hand side of (A.8) becomes the iterated sum

ZZZW(ZZ gl AT s ’f(logzl>>'

neD j=0 =0 keN s=0
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el DIos(=22) (Jog (— 2,) !

M N
_ k —A+n+1-k)logz1 k
= E E i (—1) by j g s€" Jlogz1 8.

<.

(log 21)"e Vs (log(—z)) | (A.9)

where the inner sum is absolutely convergent in the region |z1| > |23] > 0.
We are interested in the convergence of the multisum

M N J
3 S S IS a1y el K g e g ()

neD j=0 i=0 keN s=0

(A.10)

and the corresponding series

M N M
ST NS S ugibuge | €A (log 2 el R (1gg (2, )

meD—N s=0 =0 j=s n—k=m
neD,keN

(A.11)

in powers of z; and 2z and nonnegative integral powers of log z; and log z,.

Lemma A.1 Assume that the triple series (A.1) and the series obtained from (A.1) by
taking derivatives of each term in (A.1) with respect to z; and zo are absolutely convergent
on the region given by |z1| > |za] > 0. Then the multisum (A.10) is absolutely convergent
on the region |z1| > 2|za| > 0. Assume in addition that (A.1) is convergent on the region
21| > 22| > 0, |arg(z1 — z2) —arg z1| < 5 to a single-valued analytic branch f¢(z, z2) on Mg
of a mazimally extended multivalued analytic function on M?* such that f¢(z; — 2o, —23) has
no singular point in the region |z1| > |22| > 0. Then the iterated sum (A.11) are absolutely
convergent on the region |z1| > |z > 0, |argz; — arg(z1 — 22)| < § to f(21 — 22, —22).

Proof. Let n = R, —n. Then the sum )  _, in (A.1) can be written as the same as
> e onen- So the series (A.1) can be written as

M N
DD an, gt AR log 2 Y AR08 (g ), (A.12)
PEA REN j=0 i=0
For any r > 1, consider
M N
D I I I T e e L e L (P LA AW E)
PEA REN j=0 i=0
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Then the absolute convergence of (A.12) on the region |z;| > |z3] > 0 is equivalent to the
absolute convergence of (A.13) on the region |z;| > r|z3] > 0. But the absolute convergence
of (A.13) on the region |z| > r|z3| > 0 is in turn equivalent to the absolute convergence of

E AR, —,j,i (_22) r (A.14)
< 21
neN

on the same region |21 > r|z2| > 0. But as a power series in 2, (A.14) has a removable

singularity at 2 = 0. Then we see that (A.14) is absolutely convergent on the region |z—f| < %

and is hence also uniformly convergent on the closed region |j—f| < ry for any positive ry < %

Thus for such 75, (A.13) is a (finite) linear combination of the uniformly convergent series

(A.14) on the region |2| < 7y with analytic functions of z; and z5 on Mg as coefficients.
Substituting z; — 2o and —z, for z; and 29, respectively, in (A.13), we see that

M N
D020 0D g IR g ) e log(—za))e " (A5

pneA neN j=0 =0

is absolutely convergent on the region |z — 29| > 7“|22| >0 and is a (ﬁnite) linear combination
of uniformly convergent series on the region ;5 for

any positive 7, < 1. Now we expand each term in (A 15) using (A.7) to obtain the 1terated
sum

M N j
5553 s (3 S0 )

pneA neN j=0 =0 keN s=0
e(*Rqunfl) log(—z2) <log<_z2))zrn

M N j
A+R,, —n+1—k)log z1 k
—E:E:E:E: E:E:GRH i bRu wkse( g ) 852y

HEA REN j keN s=0

- (log 2, )e( " Ruti=Dlos(=22) (Jog(—2,))e | 7, (A.16)

where the inner sum is absolutely convergent on the region |z;| > |z3| > 0. Then as a
subseries of (A.16) divided by e(=A+RutDlogzio(=Ru—1)log(=22) (Jog(—2,))?, the series

J ) % n+k i
> (Z D (=D an, 5 iba, ks (Z) (log Zl)s> '

neEN \keN s=0

k
_Z ZZ CLRM 75i0R, i j s (j—j) (log z1)* | ™ (A.17)

nEN \ keN s=0

29



is also absolutely convergent in the region |21 — 29| > ’I“|ZQ| and is uniforrnly convergent in the

in the region ]21] 3 \22] In the region |z| > (1 +7)|z2| > 0, we have |z; — 29| > |21]| — | 22] >

7|22| > 0. Then (A.17) is absolutely convergent in the region |21 > (1 +7)|2| or [2] < 1+7"

with the inner sum absolutely convergent in the region [21] > |22 or |2] < 1. Note ‘that for

fixed z—f, z; can be any complex number and thus log z; can also be any nonzero complex
22

number. This means that (; = 2 and (, = log z; can be viewed as independent variables
and

Z ZZ aRH —7,j, ZbRu g k— nsCl CQ Ci?a (A18)

where b is defined to be 0 when k < 7, is absolutely convergent on the region

Ry, —,§,k—1,s

given by |(1] < 115, (2 € C and |(3] < 7.

On the other hand, on the region [2| < #2- for positive ry <1
<2 |22 |22 _
— — 1+4rg =T2.
21— 22 21| = [22] 7‘22’_‘22’

Then for 2 € C satisfying |2 L and log z; € C, (A.17) is uniformly
convergent with the inner sum also unlformly convergent on the same closed region. Thus
(A.18) is uniformly convergent on the region |(;] < > ¢ € Cand (3] < r with the
inner sum also uniformly convergent on the same closed region. Starting with the absolute
convergence of the series obtained from (A.1) by taking derivatives of each term in (A.1)
with respect to z; and z; and using the completely same proof of the uniform convergence of
(A.18), we can show that the series obtained from (A.18) by taking derivatives of each term
in (A.18) with respect to (3, (5 and (3 is also uniformly convergent on the region |(;| < 1—?7"2
¢y € C and |(3] < r. In particular, the derivatives of the sum of (A.18) with respect to (i,
(5 and (3 exist and is equal to the sum of the series obtained by taking the corresponding
derivatives of each term in (A.18) on the region |G| < 132, (2 € C and |(3] < r. Then the
sum of (A.18) is an analytic function of (;, (s and (3 on the same open region.

For r > 1, let (1, (s, (3 be complex numbers satisfying |(;| < ﬁ, (2 € C and |(3] < .

Then we have 1'%2'1‘ < (14 7)[¢1| < £. We choose ry such that 1‘f|1g|1| < ry < (1 +7)|C].
(1]

From 2 < ry, we obtain |G| < 3%+ We also have 0 < rp < (1+7)[Gi] < L. Now (i, (3
satisfy [¢i] < 3% and |(3| < r. This means that the sum of (A.18) is analytic and the
derivatives can be calculated term by term at (1, (s, (3. So the sum of (A. 18) is analytic and
the derivatives can be calculated term by term on the polydisc |(;| < T H W (2 € C and
|(3| < rfor any r > 1. Since analytic functions on polydiscs can be expanded as power series,
the sum of (A.18) can be expanded as a power series in (;, (s and (3 and the coefficients of
the power series expansion can be obtained using its derivatives with respect to (i, ¢ and
(3 evaluated at (; = (5 = (3 = 0. By taking the derivatives term by term, we see that the

coefficients of the power series expansion of this analytic function are equal to the coefficients
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(—1)kaRu_m’ibRrﬁ’j’,}fﬁ’S of the iterated series (A.18). Since the power series expansion of
an analytic function is an absolutely convergent multisum, we see that the triple series

j T. 7 ~
Z Z Z(_1)kaRu_ﬁ:jvibRu—ﬁ,j,l}—ﬁ,sCfCSC?? (A.19)

is absolutely convergent on the region |(;] < ﬁ, G € Cand |(3] <.
In particular, on the region |21 > (1 +r)r|z|, taking ¢; = 2, ¢ =logz and (3 =1 in
(A.19), we see that the triple series

J k
i z
S SV it agpns (2) (g (A20

AiEN feN 5=0

is absolutely convergent. Since r is an arbitrary real number satisfying r > 1, (A.20) is in
fact absolutely convergent on the region |z;| > 2|z5|. Multiplying

(- At RutDlog 21 o(—Ru—)log(=22) (]gg (— 2,))!

to (A.20) and summing over A, j =0,..., M and i =0,..., N, we see that the multiseires

M N 7
Z Z Z Z Z Z<_UkaRu—ﬁJ}ibRu*fL,j,l;fﬁ,se(_A+R”+1) log 21,

neA REN j=0 i=0 LN s=0

k
- e(RumDlog(=22) (|gg(— 2,) ) (é> (log z1)*

21

<.

M N
_ Z Z an,j,i<_1)kbn,j,k,s€(_A+n+1_k) log 21 Zé:(log Zl)se(—n—l) log(—z2) <log<_z2))z
(A.21)

is absolutely convergent on the region |z1| > 2|z2| > 0, proving the first part of the lemma.

In the case that the addional assumption holds, from the proof above and the additional
assumptuion, the multisum (A.21), which is equal to the iterated series in the right-hand side
of (A.9), is absolutely convergent on the region |z1| > 2|2;| > 0, |arg z; — arg(z1 — 22)| < §
to f¢(z1 — 29, —22). In particular, (A.11) as an iterated sum of (A.21) is also absolutely
convergent on the region |z1| > 2|z| > 0, |argz; — arg(z1 — z2)| < § to f(21 — 22, —22).
Since there is no singular point of f¢(z; — 22, —22) in the region |z1| > |23 > 0, (A.11) must
also be absolutely convergent when |z;| > |22| > 0 and is thus absolutely convergent on the
region |z1] > [2| > 0, |arg z; — arg(z1 — 22)| < § to f(2z1 — 22, —22). |

Remark A.2 There is a subtlety about the convergence regions for (A.21) and (A.11).
Note that in general the multisum (A.21) might not be absolutely convergent on the larger
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region |z1| > |zo] > 0. This is because (A.21) is not a series in powers of z; and 2z and
nonnegative integral powers of log z; and log 2. Even if we restore the variable (5 in the
proof of the lemma above to obtain a series in powers of 21, 25, (3 and nonnegative integral
powers of log z; and log 25, since we do not have the assumption that the sum of this series
can be analytically extended to a region containing |z;| > |2z| > 0, this series might not be
absolutely convergent on any region containing |z;| > |2za| > 0.
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