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Abstract

This is the seventh part in a series of papers in which we introduce and develop
a natural, general tensor category theory for suitable module categories for a vertex
(operator) algebra. In this paper (Part VII), we give sufficient conditions for the
existence of the associativity isomorphisms.
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In this paper, Part VII of a series of eight papers on logarithmic tensor category theory,
we give sufficient conditions for the existence of the associativity isomorphisms. The sec-
tions, equations, theorems and so on are numbered globally in the series of papers rather
than within each paper, so that for example equation (a.b) is the b-th labeled equation in
Section a, which is contained in the paper indicated as follows: In Part I [HLZ1], which con-
tains Sections 1 and 2, we give a detailed overview of our theory, state our main results and
introduce the basic objects that we shall study in this work. We include a brief discussion of
some of the recent applications of this theory, and also a discussion of some recent literature.
In Part II [HLZ2], which contains Section 3, we develop logarithmic formal calculus and
study logarithmic intertwining operators. In Part III [HLZ3], which contains Section 4, we
introduce and study intertwining maps and tensor product bifunctors. In Part IV [HLZ4],
which contains Sections 5 and 6, we give constructions of the P (z)- and Q(z)-tensor product
bifunctors using what we call “compatibility conditions” and certain other conditions. In
Part V [HLZ5], which contains Sections 7 and 8, we study products and iterates of inter-
twining maps and of logarithmic intertwining operators and we begin the development of our

1



analytic approach. In Part VI [HLZ6], which contains Sections 9 and 10, we construct the
appropriate natural associativity isomorphisms between triple tensor product functors. The
present paper, Part VII, contains Section 11. In Part VIII [HLZ7], which contains Section
12, we construct braided tensor category structure.
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11 The convergence and extension properties and dif-

ferential equations

In the construction of the associativity isomorphisms we have needed, and assumed, the con-
vergence and expansion conditions for intertwining maps in C. In this section we will follow
[H1] to give certain sufficient conditions for a category C to have these properties. In Section
11.1, by exhibiting explicitly the shapes of products and iterates of logarithmic intertwining
operators as analytic functions, we give what we call, as in [H1], the “convergence and ex-
tension properties” and show that they imply the convergence and expansion conditions for
intertwining maps in C. In our general setting, these properties in general involve both the
logarithm function and the abelian group gradings. These properties are formulated globally
using analytic functions defined on the regions |z1| > |z2| > 0 and |z2| > |z1 − z2| > 0,
while the expansion condition is formulated locally near a point (z1, z2) in the intersection
of these regions, that is, such that |z1| > |z2| > |z1 − z2| > 0. In Section 11.2, we show
that the proofs in [H2], deriving and using differential equations, can be adapted to gener-
alize the results of [H2] to results in the logarithmic generality. In particular, we will see
that two purely algebraic conditions, the “C1-cofiniteness condition” and the “quasi-finite-
dimensionality condition,” for all objects of C imply the convergence and extension properties
and thus also imply the convergence and expansion conditions for intertwining maps in C.

11.1 The convergence and extension properties

Given objects W1, W2, W3, W4, M1 and M2 of the category C, let Y1, Y2, Y1 and Y2 be
logarithmic intertwining operators of types

(
W4

W1M1

)
,
(

M1

W2W3

)
,
(

W4

M2W3

)
and

(
M2

W1W2

)
, respectively.

We now consider certain natural conditions on the product of Y1 and Y2 and on the iterate
of Y1 and Y2. These conditions require that the product of Y1 and Y2 (respectively, the
iterate of Y1 and Y2) be absolutely convergent in the region |z1| > |z2| > 0 (respectively,
|z2| > |z1− z2| > 0) and that it can be analytically extended to a function of the same shape
as (finite) sums of iterates (respectively, products) of logarithmic intertwining operators in
the region |z2| > |z1 − z2| > 0 (respectively, |z1| > |z2| > 0) with finitely-generated “lower
bounded doubly-graded generalized V -modules” as intermediate generalized V -modules (see
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Definition 11.3 below). In fact, when the intermediate generalized V -module M2 is a finitely-
generated lower bounded doubly-graded generalized V -module, the sum defining the iterate
(11.7) in the region |z2| > |z1 − z2| > 0 is a branch of a multivalued analytic function of the
form (11.4), and analogously, when the intermediate generalized V -module M1 is a finitely-
generated lower bounded doubly-graded generalized V -module, the sum defining the product
(11.3) in the region |z1| > |z2| > 0 is a branch of a multivalued analytic function of the form
(11.8). In the following conditions, we recall from the beginning of Section 7, in particular,
(7.1), (7.2), (7.5) and (7.8), the meaning of the absolute convergence of (11.3) and (11.7)
below; as in (7.13) and (7.14), we are taking p = 0 in the notation of (4.12).

Convergence and extension property for products For any β ∈ Ã, there exists an
integer Nβ depending only on Y1, Y2 and β, and for any weight-homogeneous elements
w(1) ∈ (W1)(β1) and w(2) ∈ (W2)(β2) (β1, β2 ∈ Ã) and any w(3) ∈ W3 and w′(4) ∈ W ′

4 such
that

β1 + β2 = −β, (11.1)

there exist M ∈ N, rk, sk ∈ R, ik, jk ∈ N, k = 1, . . . ,M ; K ∈ Z+ independent of w(1)

and w(2) such that each ik < K; and analytic functions fk(z) on |z| < 1, k = 1, . . . ,M ,
satisfying

wt w(1) + wt w(2) + sk > Nβ, k = 1, . . . ,M, (11.2)

such that
〈w′(4),Y1(w(1), x1)Y2(w(2), x2)w(3)〉W4

∣∣∣
x1=z1, x2=z2

(11.3)

is absolutely convergent when |z1| > |z2| > 0 and can be analytically extended to the
multivalued analytic function

M∑
k=1

zrk2 (z1 − z2)sk(log z2)ik(log(z1 − z2))jkfk

(
z1 − z2

z2

)
(11.4)

(here log(z1 − z2) and log z2, and in particular, the powers of the variables, mean the
multivalued functions, not the particular branch we have been using) in the region
|z2| > |z1 − z2| > 0.

Convergence and extension property without logarithms for products When ik =
jk = 0 for k = 1, . . . ,M , we call the property above the convergence and extension
property without logarithms for products.

Convergence and extension property for iterates For any β ∈ Ã, there exists an in-
teger Ñβ depending only on Y1, Y2 and β, and for any w(1) ∈ W1, w(2) ∈ (W2)(β2),

w(3) ∈ (W3)(β3) (β2, β3 ∈ Ã) and w′(4) ∈ W ′
4, with w(2) and w(3) weight-homogeneous,

such that
β2 + β3 = −β, (11.5)
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there exist M̃ ∈ N, r̃k, s̃k ∈ R, ĩk, j̃k ∈ N, k = 1, . . . , M̃ ; K̃ ∈ Z+ independent of w(2)

and w(3) such that each ĩk < K̃; and analytic functions f̃k(z) on |z| < 1, k = 1, . . . , M̃ ,
satisfying

wt w(2) + wt w(3) + s̃k > Ñβ, k = 1, . . . , M̃ , (11.6)

such that
〈w′(4),Y1(Y2(w(1), x0)w(2), x2)w(3)〉W4

∣∣∣
x0=z1−z2, x2=z2

(11.7)

is absolutely convergent when |z2| > |z1 − z2| > 0 and can be analytically extended to
the multivalued analytic function

M̃∑
k=1

zr̃k1 z
s̃k
2 (log z1)ĩk(log z2)j̃k f̃k

(
z2

z1

)
(11.8)

(here log z1 and log z2, and in particular, the powers of the variables, mean the mul-
tivalued functions, not the particular branches we have been using) in the region
|z1| > |z2| > 0.

Convergence and extension property without logarithms for iterates When ik =
jk = 0 for k = 1, . . . ,M , we call the property above the convergence and extension
property without logarithms for iterates.

If the convergence and extension property (with or without logarithms) for products
holds for any objects W1, W2, W3, W4 and M1 of C and any logarithmic intertwining op-
erators Y1 and Y2 of the types as above, we say that the (corresponding) convergence and
extension property for products holds in C. We similarly define the meaning of the phrase
the (corresponding) convergence and extension property for iterates holds in C.

Remark 11.1 When we verify these properties using differential equations below, we will
actually be verifying stronger absolute convergence assertions than as in (11.3) and (11.7)
(that is, as in (7.5) and (7.8)): When all four vectors are weight-homogeneous, (11.3) and
(11.7) will be proved to be absolutely convergent in the substitution-sense described in the
statement of Proposition 7.20, and this implies the absolute convergence of (11.3) and (11.7)
as above (again, as in (7.5) and (7.8)), because the absolute convergence of the triple series
(7.46) implies the absolute convergence of the corresponding iterated series.

Lemma 11.2 If the convergence and extension property for products holds, then, with all
four vectors assumed weight-homogeneous, we can always find M , rk, sk, ik, jk and fk(z),
k = 1, . . . ,M , such that

rk + sk = ∆, k = 1, . . . ,M, (11.9)

where
∆ = −wt w(1) − wt w(2) − wt w(3) + wt w′(4). (11.10)

Analogously, if the convergence and extension property for iterates holds, then, with all four
vectors assumed weight-homogeneous, we can always find M̃ , r̃k, s̃k, ĩk, j̃k and f̃k(z), k =
1, . . . , M̃ , such that

r̃k + s̃k = ∆, k = 1, . . . , M̃ . (11.11)
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Proof Here we prove the assertion for products; the proof for iterates is entirely analogous.
By (3.61), the expression (11.3) but without the evaluation at z1 and z2 is

〈w′(4),Y1(w(1), x1)Y2(w(2), x2)w(3)〉
= 〈yL′(0)w′(4),Y1(y−L(0)w(1), x1y

−1)Y2(y−L(0)w(2), x2y
−1)y−L(0)w(3)〉,

and we know that this formal series in x1, log x1, x2, log x2, y and log y is constant with
respect to the formal variables y and log y. This formal series equals

〈ywt w′
(4)elog y(L′(0)−wt w′

(4)
)w′(4),Y1(y−wt w(1)e− log y(L(0)−wt w(1))w(1), x1y

−1)·
·Y2(y−wt w(2)e− log y(L(0)−wt w(2))w(2), x2y

−1)y−wt w(3)e− log y(L(0)−wt w(3))w(3)〉
= y∆〈elog y(L′(0)−wt w′

(4)
)w′(4),Y1(e− log y(L(0)−wt w(1))w(1), x1y

−1) ·
·Y2(e− log y(L(0)−wt w(2))w(2), x2y

−1)e− log y(L(0)−wt w(3))w(3)〉,
and the coefficient of each monomial xm1 x

n
2 (m,n ∈ R) in x1 and x2 is a real power of y times

a polynomial in log x1, log x2 and log y, and is in fact constant with respect to y and log y;
in particular, m + n = ∆ in each nonzero term. Thus this expression equals the result of
specializing y to z2, with log y specialized to log z2 (using our usual branch of log), namely,

e∆ log z2〈e(log z2)(L′(0)−wt w′
(4)

)w′(4),Y1(e−(log z2)(L(0)−wt w(1))w(1), e
− log z2x1)·

·Y2(e−(log z2)(L(0)−wt w(2))w(2), e
− log z2x2)e−(log z2)(L(0)−wt w(3))w(3)〉,

using the notation (3.76) for each of Y1 and Y2. Thus, using the notation (7.14) with p = 0,
we have that

〈w′(4),Y1(w(1), x1)Y2(w(2), x2)w(3)〉W4

∣∣∣
x1=z1, x2=z2

,

an absolutely convergent sum dictated by the monomials in x1 and x2, equals

e∆ log z2〈e(log z2)(L′(0)−wt w′
(4)

)w′(4),Y1(e−(log z2)(L(0)−wt w(1))w(1), ξ1)·

·Y2(e−(log z2)(L(0)−wt w(2))w(2), ξ2)e−(log z2)(L(0)−wt w(3))w(3)〉
∣∣∣
ξ1=elog z1−log z2 , ξ2=e0

.

Thus (11.3) as an analytic function defined on |z1| > |z2| > 0 can be analytically extended
to the analytic function

e∆ log z2〈e(log z2)(L′(0)−wt w′
(4)

)w′(4),Y1(e(log z2)(−L(0)+wt w(1))w(1), 1 + (z1 − z2)/z2)·
·Y2(e(log z2)(−L(0)+wt w(2))w(2), 1)e(log z2)(−L(0)+wt w(3))w(3)〉 (11.12)

on the same region, where as usual, we are using the particular branch of log and the
corresponding branch of each power function.

On the other hand, by the convergence and extension property for products, (11.3) can
be analytically extended to the multivalued function

M∑
k=1

zrk2 (z1 − z2)sk(log z2)ik(log(z1 − z2))jkfk

(
z1 − z2

z2

)

=
M∑
k=1

zrk+sk
2

(
z1 − z2

z2

)sk
(log z2)ik(log(z1 − z2))jkfk

(
z1 − z2

z2

)
(11.13)
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in the region |z2| > |z1 − z2| > 0. Thus the right-hand side of (11.12) can be analytically
extended to the right-hand side of (11.13) in the region |z2| > |z1 − z2| > 0. Fix w ∈ C such
that |1 + w| > 1 > |w| > 0. Then for any z2 ∈ C×, if we let z1 = z2 + z2w, we have

|z1| = |z2||1 + w| > |z2| > |z2||w| = |z1 − z2| > 0,

and thus

e∆ log z2〈e(log z2)(L′(0)−wt w′
(4)

)w′(4),Y1(e(log z2)(−L(0)+wt w(1))w(1), 1 + w)·
·Y2(e(log z2)(−L(0)+wt w(2))w(2), 1)e(log z2)(−L(0)+wt w(3))w(3)〉

as an analytic function of z2 in the region z2 ∈ C× can be analytically extended to the
multivalued analytic function

M∑
k=1

zrk+sk
2 wsk(log z2)ik(log(z2w))jkfk(w)

in the same region. In particular, we can change fk if necessary so that

e∆ log z2〈e(log z2)(L′(0)−wt w′
(4)

)w′(4),Y1(e(log z2)(−L(0)+wt w(1))w(1), 1 + w)·
Y2(e(log z2)(−L(0)+wt w(2))w(2), 1)e(log z2)(−L(0)+wt w(3))w(3)〉

=
M∑
k=1

e(rk+sk) log z2wsk(log z2)ik(log(z2w))jkfk(w) (11.14)

in the region z2 ∈ C×. By Proposition 7.8 (applied to a finite sum), we obtain from (11.14)
that for l 6= ∆, ∑

rk+sk=l

wsk(log z2)ik(log(z2w))jkfk(w) = 0

in the region z2 ∈ C×. Thus we see that (11.3) can be analytically extended to the multi-
valued function (11.4) where rk + sk = ∆. �

Recall the notion of lower bounded (strongly Ã-graded) generalized V -module in Defini-
tion 2.25. We also need the following more general notion, for which we recall the notions
of doubly-graded generalized V -module and doubly-graded V -module in Definition 9.14 (for
which the grading restrictions (2.85) and (2.86) are not assumed):

Definition 11.3 If a doubly-graded generalized V -module W =
∐

β∈Ã
∐

n∈RW
(β)
[n] satisfies

the condition that for β ∈ Ã, W
(β)
[n] = 0 for n sufficiently negative, we say that W is a lower

bounded doubly-graded generalized V -module. We define the notion of lower bounded doubly-
graded V -module W =

∐
β∈Ã

∐
n∈RW

(β)
(n) analogously. Such a structure is a lower bounded

generalized V -module (respectively, lower bounded V -module) if and only if each space W
(β)
[n]

(respectively, W
(β)
(n) ) is finite dimensional.
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We use such lower boundedness to give conditions for insuring that the convergence and
the expansion condition for intertwining maps in C hold:

Theorem 11.4 Suppose that the following two conditions are satisfied:

1. Every finitely-generated lower bounded doubly-graded generalized V -module is an object
of C (or every finitely-generated lower bounded doubly-graded V -module is an object of
C, when C is in Msg).

2. The convergence and extension property for either products or iterates holds in C (or the
convergence and extension property without logarithms for either products or iterates
holds in C, when C is in Msg).

Then the convergence and expansion conditions for intertwining maps in C both hold (recall
Definitions 7.4 and 9.28).

Proof By the convergence and extension property for either products or iterates, the con-
vergence condition for intertwining maps in C holds (recall Definition 7.4).

We shall now use the convergence and extension property for products to prove the first
of the two equivalent conditions in Theorem 9.27; the convergence and extension property
for iterates can be used analogously to prove the second condition in Theorem 9.27. We shall
work in the general (logarithmic) case; the argument for the case C inMsg is analogous (and
shorter). That is, we shall prove: For any objects W1, W2, W3, W4 and M1 of C, any nonzero
complex numbers z1 and z2 satisfying |z1| > |z2| > |z1 − z2| > 0, any P (z1)-intertwining
map I1 of type

(
W4

W1M1

)
and P (z2)-intertwining map I2 of type

(
M1

W2W3

)
, and any w′(4) ∈ W ′

4,

(I1 ◦ (1W1 ⊗ I2))′(w′(4)) ∈ (W1⊗W2⊗W3)∗ satisfies the P (2)(z1− z2)-local grading restriction
condition. Moreover, for any w(3) ∈ W3 and n ∈ R, the smallest doubly graded subspace

of W
(2)

(I1◦(1W1
⊗I2))′(w′

(4)
),w(3)

containing the term λ
(2)
n of the (unique) series

∑
n∈R λ

(2)
n weakly

absolutely convergent to µ
(2)

(I1◦(1W1
⊗I2))′(w′

(4)
),w(3)

as indicated in the P (2)(z0)-grading condition

and stable under the action of V and of sl(2) is a generalized V -submodule of some object
of C included in (W1 ⊗W2)∗.

We may and do take the elements w(1) ∈ W1, w(2) ∈ W2, w(3) ∈ W3, w
′
(4) ∈ W ′

4 to be
weight-homogeneous, since it is enough to prove the required properties for such elements.
We also recall the notation ∆ from Lemma 11.2. Let Y1 = YI1,0 and Y2 = YI2,0. By
Condition 2 (for products) and Lemma 11.2, for β ∈ Ã, there exists Nβ ∈ Z and for any

w(1) ∈ (W1)
(β1)
[n1] , w(2) ∈ (W2)

(β2)
[n2] , w(3) ∈ (W3)[n3], w

′
(4) ∈ (W ′

4)[n4] such that (11.1) holds, there
exist M ∈ N, rk, sk ∈ R, ik, jk ∈ N, k = 1, . . . ,M ; K ∈ Z+ independent of w(1) and w(2)

such that each ik < K; and analytic functions fk(z) on |z| < 1, k = 1, . . . ,M , such that
(11.9) holds and (11.3) is absolutely convergent when |z1| > |z2| > 0 and can be analytically
extended to the multivalued analytic function (11.4) in the region |z2| > |z1− z2| > 0. Then
we can always find fk(z) for k = 1, . . . ,M such that (11.3) is equal to (11.4) when we choose
the values of log z2 and log(z1 − z2) to be log |z2| + i arg z2 and log |z1 − z2| + i arg(z1 − z2)
where 0 ≤ arg z2, arg(z1 − z2) < 2π and the values of zrk2 and (z1 − z2)sk to be erk log z2
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and esk log(z1−z2) (recalling that in the convergence and extension properties for products and
iterates, log z2 and log(z1 − z2) mean the multivalued logarithm functions).

Expanding fk(z), k = 1, . . . ,M , we see that in the region |z1| > |z2| > |z1 − z2| > 0,
(11.3) is equal to the absolutely convergent sum

M∑
k=1

∑
m∈N

Cm;k(w
′
(4), w(1), w(2), w(3))·

·e(rk−m) log z2e(sk+m) log(z1−z2)(log z2)ik(log(z1 − z2))jk , (11.15)

where, as in this work except in a few identified places, log z2 and log(z1− z2) are the values
of the logarithm function at z2 and z1 − z2 such that 0 ≤ arg z2, arg(z1 − z2) < 2π.

The expression (11.15) can be written as∑
i,j∈N

∑
n∈R

an;i,j(w
′
(4), w(1), w(2), w(3))·

·e(∆+n+1) log(z1−z2)e(−n−1) log z2(log z2)i(log(z1 − z2))j, (11.16)

where
an;i,j(w

′
(4), w(1), w(2), w(3)) = 0 (11.17)

whenever
n 6= −rk − 1 = −∆ + sk − 1 or i 6= ik or j 6= jk (11.18)

for each k = 1, · · · ,M . Also, if w(1) ∈ (W1)(β1), w(2) ∈ (W2)(β2), w(3) ∈ (W3)(β3) and
w′(4) ∈ (W ′

4)(β4) and

β1 + β2 + β3 + β4 6= 0, (11.19)

then (11.17) holds. From (11.18), (11.19), (11.2), (11.9) we see that for n ∈ R, if

n+ 1 + wt w′(4) − wt w(3) ≤ Nβ3+β4 , (11.20)

then (11.17) holds.
Since |z1| > |z2| > |z1 − z2| > 0, we know that∑

i,j∈N

∑
n∈R

an;i,j(w
′
(4), w(1), w(2), w(3))·

·e(∆+n+1) log(z1−z2)e(−n−1) log z2(log z2)i(log(z1 − z2))j (11.21)

converges absolutely to (11.3). For i, j ∈ N, w′(4) ∈ W ′
4, w(3) ∈ W3, let βn;i,j(w

′
(4), w(3)) ∈

(W1 ⊗W2)∗ be defined by

(βn;i,j(w
′
(4), w(3)))(w(1) ⊗ w(2))

= an;i,j(e
L(0)s log(z1−z2)w′(4), e

−L(0)s log(z1−z2)w(1), e
−L(0)s log(z1−z2)w(2), e

−L(0)s log(z1−z2)w(3))

(11.22)
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for all w(1) ∈ W1 and w(2) ∈ W2. By definition, the series∑
i,j∈N

∑
n∈R

(βn;i,j(w
′
(4), w(3)))(w(1) ⊗ w(2))e

(n+1) log(z1−z2)e(−n−1) log z2(log z2)i(log(z1 − z2))j

is absolutely convergent to µ
(2)

I1◦(1W2
⊗I2))′(w′

(4)
),w(3)

(w(1) ⊗ w(2)) for w(1) ∈ W1 and w(2) ∈ W2.

Also since (11.17) holds when (11.19) holds, we have

βn;i,j(w
′
(4), w(3)) ∈ ((W1 ⊗W2)∗)(β3+β4) (11.23)

for w(3) ∈ (W3)(β3) and w′(4) ∈ (W ′
4)(β4).

To show that (I1 ◦ (1W2 ⊗ I2))′(w′(4)) satisfies the P (2)(z1 − z2)-local grading restriction
condition, we need to calculate

(v1)m1 · · · (vr)mrβn;i,j(w
′
(4), w(3))

and its weight for any r ∈ N, v1, . . . , vr ∈ V, m1, . . . ,mr ∈ Z, n ∈ R, where (v1)m1 , . . . , (vr)mr ,
m1, · · · ,mr ∈ Z, are the components of Y ′P (z1−z2)(v1, x), . . . , Y ′P (z1−z2)(vr, x), respectively, on

(W1 ⊗W2)∗. As in [H1], for convenience, we instead calculate

(vo1)m1 · · · (vor)mrβn;i,j(w
′
(4), w(3)),

where (vo1)m1 , . . . , (v
o
r)mr , m1, · · · ,mr ∈ Z, are the components of the opposite vertex opera-

tors Y ′ oP (z1−z2)(v1, x), . . . , Y ′ oP (z1−z2)(vr, x), respectively.

By the definition (5.87) of Y ′P (z1−z2)(v, x) and

Y ′ oP (z1−z2)(v, x) = Y ′P (z1−z2)(e
xL(1)(−x−2)L(0)v, x−1),

we have

(Y ′ oP (z1−z2)(v, x)βn;i,j(w
′
(4), w(3)))(w(1) ⊗ w(2))

= (βn;i,j(w
′
(4), w(3)))(w(1) ⊗ Y2(v, x)w(2))

+Resx0(z1 − z2)−1δ

(
x− x0

z1 − z2

)
(βn;i,j(w

′
(4), w(3)))(Y1(v, x0)w(1) ⊗ w(2))

= an;i,j(e
L(0)s log(z1−z2)w′(4), e

−L(0)s log(z1−z2)w(1), e
−L(0)s log(z1−z2)Y2(v, x)w(2), e

−L(0)s log(z1−z2)w(3))

+Resx0(z1 − z2)−1δ

(
x− x0

z1 − z2

)
·

·an;i,j(e
L(0)s log(z1−z2)w′(4), e

−L(0)s log(z1−z2)Y1(v, x0)w(1), e
−L(0)s log(z1−z2)w(2), e

−L(0)s log(z1−z2)w(3)).

(11.24)

On the other hand, since (11.21) is absolutely convergent to (11.3) when |z1| > |z2| >
|z1 − z2| > 0, we have∑
i,j∈N

∑
n∈R

e(n+1) log(z1−z2)e(−n−1) log z2(log z2)i(log(z1 − z2))j·
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·an;i,j(e
L(0)s log(z1−z2)w′(4), e

−L(0)s log(z1−z2)w(1), e
−L(0)s log(z1−z2)Y2(v, x)w(2), e

−L(0)s log(z1−z2)w(3))

+Resx0(z1 − z2)−1δ

(
x− x0

z1 − z2

)∑
i,j∈N

∑
n∈R

e(n+1) log(z1−z2)e(−n−1) log z2(log z2)i(log(z1 − z2))j ·

·an;i,j(e
L(0)s log(z1−z2)w′(4), e

−L(0)s log(z1−z2)Y1(v, x0)w(1), e
−L(0)s log(z1−z2)w(2), e

−L(0)s log(z1−z2)w(3))

= 〈w′(4),Y1(w(1), x1)Y2(Y2(v, x)w(2), x2)w(3)〉W4

∣∣∣
x1=z1,x2=z2

+Resx0(x1 − x2)−1δ

(
x− x0

x1 − x2

)
·

·〈w′(4),Y1(Y1(v, x0)w(1), x1)Y2(w(2), x2)w(3)〉W4

∣∣∣
x1=z1,x2=z2

= 〈w′(4),Y1(w(1), x1)Y2(Y2(v, x)w(2), x2)w(3)〉W4

∣∣∣
x1=z1,x2=z2

+Resx0x
−1
1 δ

(
(x+ x2)− x0

x1

)
·

·〈w′(4),Y1(Y1(v, x0)w(1), x1)Y2(w(2), x2)w(3)〉W4

∣∣∣
x1=z1,x2=z2

. (11.25)

Using the Jacobi identity for the logarithmic intertwining operators Y1 and Y2 and the
properties of the formal δ-function, the right-hand side of (11.25) is equal to

Resyx
−1δ

(
y − x2

x

)
〈w′(4),Y1(w(1), x1)Y5(v, y)Y2(w(2), x2)w(3)〉W4

∣∣∣
x1=z1,x2=z2

−Resyx
−1δ

(
x2 − y
−x

)
〈w′(4),Y1(w(1), x1)Y2(w(2), x2)Y3(v, y)w(3)〉W4

∣∣∣
x1=z1,x2=z2

+〈w′(4), Y4(v, x+ x2)Y1(w(1), x1)Y2(w(2), x2)w(3)〉W4

∣∣∣
x1=z1,x2=z2

−〈w′(4),Y1(w(1), x1)Y5(v, x+ x2)Y2(w(2), x2)w(3)〉W4

∣∣∣
x1=z1,x2=z2

= 〈w′(4), Y4(v, x+ x2)Y1(w(1), x1)Y2(w(2), x2)w(3)〉W4

∣∣∣
x1=z1,x2=z2

−Resyx
−1δ

(
x2 − y
−x

)
〈w′(4),Y1(w(1), x1)Y2(w(2), x2)Y3(v, y)w(3)〉W4

∣∣∣
x1=z1,x2=z2

= Resyx
−1δ

(
y − x2

x

)
〈w′(4), Y4(v, y)Y1(w(1), x1)Y2(w(2), x2)w(3)〉W4

∣∣∣
x1=z1,x2=z2

−Resyx
−1δ

(
x2 − y
−x

)
〈w′(4),Y1(w(1), x1)Y2(w(2), x2)Y3(v, y)w(3)〉W4

∣∣∣
x1=z1,x2=z2

.

(11.26)

From (11.25) and (11.26), we obtain∑
i,j∈N

∑
n∈R

e(n+1) log(z1−z2)e(−n−1) log z2(log z2)i(log(z1 − z2))j·
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·an;i,j(e
L(0)s log(z1−z2)w′(4), e

−L(0)s log(z1−z2)w(1), e
−L(0)s log(z1−z2)Y2(v, x)w(2), e

−L(0)s log(z1−z2)w(3))

+Resx0(z1 − z2)−1δ

(
x− x0

z1 − z2

)∑
i,j∈N

∑
n∈R

e(n+1) log(z1−z2)e(−n−1) log z2(log z2)i(log(z1 − z2))j ·

·an;i,j(e
L(0)s log(z1−z2)w′(4), e

−L(0)s log(z1−z2)Y1(v, x0)w(1), e
−L(0)s log(z1−z2)w(2), e

−L(0)s log(z1−z2)w(3))

= Resyx
−1δ

(
y − x2

x

)
〈w′(4), Y (v, y)Y1(w(1), x1)Y2(w(2), x2)w(3)〉W4

∣∣∣
x1=z1,x2=z2

−Resyx
−1δ

(
x2 − y
x

)
〈w′(4),Y1(w(1), x1)Y2(w(2), x2)Y (v, y)w(3)〉W4

∣∣∣
x1=z1,x2=z2

=
∑
m∈Z

∑
l∈N

(−1)l
(
m

l

)
x−m−1xl2〈w′(4), vm−lY1(w(1), x1)Y2(w(2), x2)w(3)〉W4

∣∣∣
x1=z1,x2=z2

−
∑
m∈Z

∑
l∈N

(−1)l+m
(
m

l

)
x−m−1xm−l2 〈w′(4),Y1(w(1), x1)Y2(w(2), x2)vlw(3)〉W4

∣∣∣
x1=z1,x2=z2

=
∑
m∈Z

∑
l∈N

(−1)l
(
m

l

)
x−m−1

∑
i,j∈N

∑
n∈R

e(n+1) log(z1−z2)e(l−n−1) log z2(log z2)i(log(z1 − z2))j ·

·an;i,j(e
L(0)s log(z1−z2)vom−lw

′
(4), e

−L(0)s log(z1−z2)w(1), e
−L(0)s log(z1−z2)w(2), e

−L(0)s log(z1−z2)w(3))

−
∑
m∈Z

∑
l∈N

(−1)l+m
(
m

l

)
x−m−1

∑
i,j∈N

∑
n∈R

e(n+1) log(z1−z2)e(m−l−n−1) log z2(log z2)i(log(z1 − z2))j ·

·an;i,j(e
L(0)s log(z1−z2)w′(4), e

−L(0)s log(z1−z2)w(1), e
−L(0)s log(z1−z2)w(2), e

−L(0)s log(z1−z2)vlw(3)).

(11.27)

The intermediate steps in the equality (11.27) hold only when |z1| > |z2| > |z1−z2| > 0. But
since both sides of (11.27) can be analytically extended to the region |z2| > |z1 − z2| > 0,
(11.27) must hold when |z2| > |z1 − z2| > 0. By Proposition 7.8, the coefficients of both
sides of (11.27) in powers of elog z2 , log z2 and log(z1 − z2) are equal, that is,

an;i,j(e
L(0)s log(z1−z2)w′(4), e

−L(0)s log(z1−z2)w(1), e
−L(0)s log(z1−z2)Y2(v, x)w(2), e

−L(0)s log(z1−z2)w(3))

+Resy(z1 − z2)−1δ

(
x− y
z1 − z2

)
·

·an;i,j(e
L(0)s log(z1−z2)w′(4), e

−L(0)s log(z1−z2)Y1(v, y)w(1), e
−L(0)s log(z1−z2)w(2), e

−L(0)s log(z1−z2)w(3))

=
∑
m∈Z

∑
l∈N

(−1)l
(
m

l

)
x−m−1(z1 − z2)l ·

·an+l;i,j(e
L(0)s log(z1−z2)vom−lw

′
(4), e

−L(0)s log(z1−z2)w(1), e
−L(0)s log(z1−z2)w(2), e

−L(0)s log(z1−z2)w(3))

−
∑
m∈Z

∑
l∈N

(−1)l+m
(
m

l

)
x−m−1(z1 − z2)m−l ·

·an+m−l;i,j(e
L(0)s log(z1−z2)w′(4), e

−L(0)s log(z1−z2)w(1), e
−L(0)s log(z1−z2)w(2), e

−L(0)s log(z1−z2)vlw(3)).

(11.28)
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By (11.24) and (11.28), we obtain

(vomβn;i,j(w
′
(4), w(3)))(w(1) ⊗ w(2))

=
∑
l∈N

(−1)l
(
m

l

)
(βn+l;i,j(v

o
m−lw

′
(4), w(3)))(w(1), w(2))(z1 − z2)l

−
∑
l∈N

(−1)l+m
(
m

l

)
(βn+m−l;i,j(w

′
(4), vlw(3)))(w(1), w(2))(z1 − z2)m−l. (11.29)

By induction, we obtain

((vo1)m1 · · · (vor)mrβn;i,j(w
′
(4), w(3))(w(1) ⊗ w(2)) =

=
t∑

s=0

∑
j1 > · · · > js

js+1 > · · · > jr

{j1, . . . , jr} = {1, . . . , r}

∑
l1,...,lr≥0

(−1)l1+···+lr+(mjs+1
+1)+···+(mjr+1)

(
mj1

l1

)
· · ·
(
mjr

lr

)
·

·(βn+mjs+1
···+mjr+l1+···+ls−ls+1−···−lr;i,j

((voj1)mj1
−l1 · · · (vojs)mjs−lsw

′
(4), vls+1 · · · vlrw(3)))(w(1) ⊗ w(2)) ·

·(z1 − z2)l1+···+ls+(ms+1−ls+1)+···+(mr−lr) (11.30)

for m1, . . . ,mr ∈ Z, and any v1, . . . , vr ∈ V . In particular, when V is a conformal vertex
algebra,

(L′P (z1−z2)(0)βn;i,j(w
′
(4), w(3)))(w(1) ⊗ w(2))

= (βn;i,j(L
′(0)w′(4), w(3)))(w(1) ⊗ w(2))

−(βn+1;i,j(L
′(1)w′(4), w(3)))(w(1) ⊗ w(2)) · (z1 − z2)

−(βn;i,j(w
′
(4), L(0)w(3)))(w(1) ⊗ w(2))

+(βn+1;i,j(w
′
(4), L(−1)w(3)))(w(1) ⊗ w(2)) · (z1 − z2)

= (wt w′(4) − wt w(3))(βn;i,j(w
′
(4), w(3)))(w(1) ⊗ w(2))

+(βn;i,j((L
′(0)− wt w′(4))w

′
(4), w(3)))(w(1) ⊗ w(2))

−(βn;i,j(w
′
(4), (L(0)− wt w(3))w(3)))(w(1) ⊗ w(2))

−(βn+1;i,j(L
′(1)w′(4), w(3)))(w(1) ⊗ w(2)) · (z1 − z2)

+(βn+1;i,j(w
′
(4), L(−1)w(3)))(w(1) ⊗ w(2)) · (z1 − z2); (11.31)

by a similar argument, (11.31) holds for a Möbius vertex algebra as well. From (11.30) and

(11.23), we see that when v1 ∈ V (α1)
(m1) , . . . , vr ∈ V

(αr)
(mr) , w(3) ∈ (W3)

(β3)
[n3] and w′(4) ∈ (W ′

4)
(β4)
[n4] ,

(vo1)m1 · · · (vor)mrβn;i,j(w
′
(4), w(3)) ∈ ((W1 ⊗W2)∗)(α1+···+αr+β3+β4). (11.32)
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Let z0 = z1 − z2. When |z1| > |z2| > |z0| > 0,

−
∑
i,j∈N

∑
n∈R

an;i,j(L
′(1)w′(4), w(1), w(2), w(3))·

·e((∆−1)+n+1) log(z1−z2)e(−n−1) log z2(log z2)i(log(z1 − z2))j

+
∑
i,j∈N

∑
n∈R

an;i,j(w
′
(4), w(1), w(2), L(−1)w(3)) ·

·e((∆−1)+n+1) log(z1−z2)e(−n−1) log z2(log z2)i(log(z1 − z2))j

= −〈L′(1)w′(4),Y1(w(1), x1)Y2(w(2), x2)w(3)〉W4

∣∣∣
x1=z2+z0, x2=z2

+〈w′(4),Y1(w(1), x1)Y2(w(2), x2)L(−1)w(3)〉W4

∣∣∣
x1=z2+z0, x2=z2

. (11.33)

By the commutator formula for L(−1) and intertwining operators and the L(−1)-derivative
property for intertwining operators, the right-hand side of (11.33) is equal to

−
〈
w′(4),

(
d

dx1

(Y1(w(1), x1))

)
Y2(w(2), x2)w(3))

〉
W4

∣∣∣
x1=z2+z0, x2=z2

−
〈
w′(4),Y1(w(1), x1)

(
d

dx2

(Y2(w(2), x2)

)
w(3))

〉
W4

∣∣∣
x1=z2+z0, x2=z2

= − ∂

∂z2

(
〈w′(4), (Y1(w(1), x1)Y2(w(2), x2)w(3))〉W4

∣∣∣
x1=z2+z0, x2=z2

)
= − ∂

∂z2

(∑
i,j∈N

∑
n∈R

an;i,j(w
′
(4), w(1), w(2), w(3)) ·

·e(∆+n+1) log z0e(−n−1) log z2(log z2)i(log z0)j
)

= −
∑
i,j∈N

∑
n∈R

(−n− 1)an;i,j(w
′
(4), w(1), w(2), w(3)) ·

·e(∆+n+1) log z0e(−n−2) log z2(log z2)i(log z0)j

−
∑
i,j∈N

∑
n∈R

an;i,j(w
′
(4), w(1), w(2), w(3)) ·

·e(∆+n+1) log z0e(−n−1) log z2

(
∂

∂z2

(log z2)i
)

(log z0)j, (11.34)

where ∂
∂z2

is partial differentiation with respect to z2 acting on functions of z0 and z2 rather
than on functions of z1 and z2.

From (11.33) and (11.34), we obtain

−
∑
i,j∈N

∑
n∈R

βn;i,j(L
′(1)w′(4), w(3))(w(1) ⊗ w(2))·

·e(n+1) log(z1−z2)e(−n−1) log z2(log z2)i(log(z1 − z2))j
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+
∑
i,j∈N

∑
n∈R

βn;i,j(w
′
(4), L(−1)w(3))(w(1) ⊗ w(2)) ·

·e(n+1) log(z1−z2)e(−n−1) log z2(log z2)i(log(z1 − z2))j

= −
∑
i,j∈N

∑
n∈R

(−n− 1)βn;i,j(w
′
(4), w(3))(w(1) ⊗ w(2)) ·

e(n+1) log(z1−z2)e(−n−2) log z2(log z2)i(log(z1 − z2))j

−
∑
i,j∈N

∑
n∈R

βn;i,j(w
′
(4), w(3))(w(1) ⊗ w(2)) ·

e(n+1) log(z1−z2)e(−n−1) log z2

(
∂

∂z2

(log z2)i
)

(log(z1 − z2))j

(11.35)

when |z1| > |z2| > |z1 − z2| > 0. Since both sides of (11.35) can be analytically extended to
the region |z2| > |z1 − z2| > 0, it also holds when |z2| > |z1 − z2| > 0. Thus the expansion
coefficients of the two sides of (11.35) as series in z2 and z1 − z2 are equal. So for i, j ∈ N,

(z1 − z2)
(
− βn+1;i,j(L

′(1)w′(4), w(3))(w(1) ⊗ w(2)) + βn+1;i,j(w
′
(4), L(−1)w(3))(w(1) ⊗ w(2))

)
= −(−n− 1)βn;i,j(w

′
(4), w(3))(w(1) ⊗ w(2))− (i+ 1)βn;i+1,j(w

′
(4), w(3))(w(1) ⊗ w(2)).

(11.36)

From (11.31) and (11.36), we obtain

((L′P (z1−z2)(0)− wt w′(4) − n− 1 + wt w(3))βn;i,j(w
′
(4), w(3)))(w(1) ⊗ w(2))

= (βn;i,j((L
′(0)− wt w′(4))w

′
(4), w(3)))(w(1) ⊗ w(2))

−(βn;i,j(w
′
(4), (L(0)− wt w(3))w(3)))(w(1) ⊗ w(2))

−(i+ 1)βn;i+1,j(w
′
(4), (L(0)− wt w(3))w(3)))(w(1) ⊗ w(2)). (11.37)

From (11.37), we see that there exists N ∈ Z+ independent of w(1) ∈ W(1) and w(2) ∈ W(2)

such that for n ∈ R and i, j ∈ N,

(L′P (z1−z2)(0)− wt w′(4) + wt w(3) − n− 1)Nβn;i,j(w
′
(4), w(3)) = 0. (11.38)

Thus we obtain the following conclusion: For v1 ∈ V (α1)
(m1) , . . . , vr ∈ V

(αr)
(mr) , w(3) ∈ (W3)

(β3)
[n3] and

w′(4) ∈ (W ′
4)

(β4)
[n4] , the element

(vo1)m1 · · · (vor)mrβn;i,j(w
′
(4), w(3))

is homogeneous of (generalized) weight

−(wt v1 −m1 − 1)− · · · − (wt vr −mr − 1) + wt w′(4) + n+ 1− wt w(3) (11.39)

and of Ã-degree
α1 + · · ·+ αr + β3 + β4,
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and we have

(vo1)m1 · · · (vor)mrβn;i,j(w
′
(4), w(3)) = 0

when wt (vo1)m1 · · · (vor)mrβn;i,j(w
′
(4), w(3)) ≤ Nα1+···+αr+β3+β4 . (11.40)

In particular, the (generalized) weight of βn;i,j(w
′
(4), w(3)) is wt w′(4) + n+ 1− wt w(3).

For n ∈ R, let λ
(2)
n (w′(4), w(3)) ∈ (W1 ⊗W2)∗ be defined by

(λ(2)
n (w′(4), w(3)))(w(1) ⊗ w(2))

=
∑
i,j∈N

(βn−wt w′
(4)
−1+wt w(3);i,j(w

′
(4), w(3)))(w(1) ⊗ w(2)) ·

·e(n−wt w′
(4)

+wt w(3)) log(z1−z2)e(−n+wt w′
(4)
−wt w(3)) log z2(log z2)i(log(z1 − z2))j

(11.41)

for homogeneous w′(4) ∈ W ′
4 and w(3) ∈ W3. Then∑

n∈R

(λ(2)
n (w′(4), w(3)))(w(1) ⊗ w(2))

is absolutely convergent to µ
(2)

(I1◦(1W2
⊗I2))′(w′

(4)
),w(3)

(w(1) ⊗ w(2)) for w(1) ∈ W1 and w(2) ∈ W2.

Since (11.38) holds for n ∈ R and i, j ∈ N,

(L′P (z1−z2)(0)− n)Nλ(2)
n (w′(4), w(3)) = 0

for n ∈ R.
Moreover, by (11.41) and (11.38),∑
n∈R

(e
z′L′

P (z1−z2)
(0)
λ(2)
n (w′(4), w(3)))(w(1) ⊗ w(2))

=
∑
n∈R

∑
i,j∈N

(e
z′L′

P (z1−z2)
(0)
βn−wt w′

(4)
−1+wt w(3);i,j(w

′
(4), w(3)))(w(1) ⊗ w(2)) ·

·e(n−wt w′
(4)

+wt w(3)) log(z1−z2)e(−n+wt w′
(4)
−wt w(3)) log z2(log z2)i(log(z1 − z2))j

=
∑
n∈R

∑
i,j∈N

N−1∑
l=0

1

l!
((L′P (z1−z2(0)− n)lβn−wt w′

(4)
−1+wt w(3);i,j(w

′
(4), w(3)))(w(1) ⊗ w(2)) ·

·enz′(z′)le(n−wt w′
(4)

+wt w(3)) log(z1−z2)e(−n+wt w′
(4)
−wt w(3)) log z2(log z2)i(log(z1 − z2))j.

(11.42)

By (11.37), for n ∈ R, i, j ∈ N and l = 0, . . . , N − 1,

((L′P (z1−z2(0)− n)lβn−wt w′
(4)
−1+wt w(3);i,j(w

′
(4), w(3)))(w(1) ⊗ w(2))
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is a linear combination of

(βn−wt w′
(4)
−1+wt w(3);i

′,j((L
′(0)− wt w′(4))

pw′(4), (L(0)− wt w(3))
qw(3)))(w(1) ⊗ w(2))

for i′, p, q ∈ N such that p, q ≤ N − 1. For p, q ∈ N,∑
i,j∈N

∑
n∈R

(βn;i,j((L
′(0)− wt w′(4))

pw′(4), (L(0)− wt w(3))
qw(3)))(w(1) ⊗ w(2))·

·e(n+1) log(z1−z2)e(−n−1)((log z2)−z′)((log z2)− z′)i(log(z1 − z2))j

=
∑
i,j∈N

∑
n∈R

an;i,j((L
′(0)− wt w′(4))

pw′(4), w(1), w(2), (L(0)− wt w(3))
qw(3)) ·

·e(∆+n+1) log(z1−z2)e(−n−1)((log z2)−z′)((log z2)− z′)i(log(z1 − z2))j

is absolutely convergent when z′ is in a sufficiently small neighborhood of z′ = 0 such that
|ez′z2| > |z0| > 0. In particular, for i, j, l ∈ N and p, q ∈ N such that p, q ≤ N − 1,∑

n∈R

βn−wt w′
(4)
−1+wt w(3);i,j((L

′(0)− wt w′(4))
pw′(4), (L(0)− wt wq(3)w(3)))(w(1) ⊗ w(2))·

·enz′(z′)le(n−wt w′
(4)

+wt w(3)) log(z1−z2)e(−n+wt w′
(4)
−wt w(3)) log z2(log z2)i(log(z1 − z2))j

is absolutely convergent in the same neighborhood of z′ = 0. Thus the right-hand side of
(11.42) is absolutely convergent. Hence the left-hand side of (11.42) is absolutely convergent,
completing the proof that (I1 ◦ (1W2 ⊗ F2))′(w′(4)) satisfies Part (a) of the P (2)(z1 − z2)-local
grading restriction condition.

Recall the space Wλ for λ ∈ (W1 ⊗ W2)∗ in the P (z)-local grading restriction condi-

tion in Section 5 and the space W
(2)
λ,w(3)

for λ ∈ (W1 ⊗ W2 ⊗ W3)∗ and w(3) ∈ W3 in the

P (2)(z)-local grading restriction condition in Section 9. For fixed n ∈ R, w(3) ∈ (W3)
(β3)
[n3]

and w′(4) ∈ (W ′
4)

(β4)
[n4] , (11.39) and (11.40) show that for β ∈ Ã, the homogeneous subspace

(W
λ
(2)
n (w′

(4)
,w(3))

)
(β)
[l] of W

λ
(2)
n (w′

(4)
,w(3))

is 0 when l ≤ Nβ. In particular, each λ
(2)
n (w′(4), w(3)),

n ∈ R, satisfies the P (z1 − z2)-lower truncation condition. By Theorem 9.17, W
λ
(2)
n (w′

(4)
,w(3))

is a doubly-graded generalized V -module (a doubly-graded V -module when C is in Msg).

Since for β ∈ Ã, (W
λ
(2)
n (w′

(4)
,w(3))

)
(β)
[l] = 0 when l ≤ Nβ, it is in fact lower bounded. Thus

W
λ
(2)
n (w′

(4)
,w(3))

, generated by λ
(2)
n (w′(4), w(3)), is a finitely-generated lower bounded doubly-

graded generalized V -module (or V -module), and so by assumption it is in fact an object of

C. Thus W
(2)

(I1◦(1W2
⊗I2))′(w′

(4)
),w(3)

, as a sum of these objects of C, lies in W1 P (z1−z2)W2, which,

by assumption, is an object of C. Since C is a subcategory of GMsg, W
(2)

(I1◦(1W2
⊗I2))′(w′

(4)
),w(3)

,

as a generalized V -module of W1 P (z1−z2)W2, satisfies the two grading-restriction conditions,
proving that the element I1 ◦ (1W2⊗ I2))′(w′(4)) of (W1⊗W2⊗W3)∗ satisfies the P (2)(z1−z2)-
local grading-restriction condition. �
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11.2 Differential equations

In this section, we assume for simplicity that A and Ã are trivial. We would like to emphasize
that this assumption is not essential since all the results can be generalized to the case that A
and Ã are not trivial. To avoid spending too many pages to straighforwardly generalize many
definitions and results to the general case (for example, the definition of C1-cofiniteness),
and to allow the use of most of the arguments in [H2], for which both A and Ã are trivial,
we choose to simply assume that A and Ã are trivial.

We use differential equations to prove the convergence and extension property, given
in the preceding section, when the objects of C satisfy natural conditions. The results
and the proofs here are in fact the same as those in [H2], except that in this section, we
consider objects of C, not just ordinary V -modules, and we consider logarithmic intertwining
operators, not just ordinary intertwining operators. So in the proofs of the results in this
section, we shall indicate only how the proofs here differ from the corresponding ones in [H2]
and refer the reader to [H2] for more details.

Let V be a Möbius or conformal vertex algebra with A the trivial group and let

V+ =
∐
n>0

V(n).

For a generalized V -module W , set

C1(W ) = span{u−1w | u ∈ V+, w ∈ W}.

Definition 11.5 If W/C1(W ) is finite dimensional, we say that W is C1-cofinite or satisfies
the C1-cofiniteness condition. If for any N ∈ R,

∐
n<N W[n] is finite dimensional, we say that

W is quasi-finite dimensional or satisfies the quasi-finite-dimensionality condition.

We have:

Theorem 11.6 Let Wi for i = 0, . . . , n + 1 be generalized V -modules satisfying the C1-
cofiniteness condition and the quasi-finite-dimensionality condition. Then for any w′(0) ∈ W ′

0,
w(1) ∈ W1, . . . , w(n+1) ∈ Wn+1, there exist

ak, l(z1, . . . , zn) ∈ C[z±1
1 , . . . , z±1

n , (z1 − z2)−1, (z1 − z3)−1, . . . , (zn−1 − zn)−1],

for k = 1, . . . ,m and l = 1, . . . , n, such that the following holds: For any generalized V -
modules W̃1, . . . , W̃n−1, and any logarithmic intertwining operators

Y1,Y2, . . . ,Yn−1,Yn

of types (
W0

W1W̃1

)
,

(
W̃1

W2W̃2

)
, . . . ,

(
W̃n−2

Wn−1W̃n−1

)
,

(
W̃n−1

WnWn+1

)
,
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respectively, the series

〈w′(0),Y1(w(1), z1) · · · Yn(w(n), zn)w(n+1)〉 (11.43)

satisfies the system of differential equations

∂mϕ

∂zml
+

m∑
k=1

ι|z1|>···>|zn|>0(ak, l(z1, . . . , zn))
∂m−kϕ

∂zm−kl

= 0, l = 1, . . . , n

in the region |z1| > · · · > |zn| > 0, where

ι|z1|>···>|zn|>0(ak, l(z1, . . . , zn))

for k = 1, . . . ,m and l = 1, . . . , n are the (unique) Laurent expansions of ak, l(z1, . . . , zn) in
the region |z1| > · · · > |zn| > 0. Moreover, for any set of possible singular points of the
system

∂mϕ

∂zml
+

m∑
k=1

ak, l(z1, . . . , zn)
∂m−kϕ

∂zm−kl

= 0, l = 1, . . . , n (11.44)

such that either zi = 0 or zi = ∞ for some i or zi = zj for some i 6= j, the ak, l(z1, . . . , zn)
can be chosen for k = 1, . . . ,m and l = 1, . . . , n so that these singular points are regular.

Proof Proposition 1.1, Corollary 1.2 and Corollary 1.3 in [H2] and their proofs still hold
when all V -modules are replaced by strongly-graded generalized V -modules. Theorem 1.4 in
[H2] also still holds, except that in its proof all V -modules are replaced by strongly-graded
generalized V -modules and the spaces

z∆
1 C({z2/z1})[z±1

1 , z±1
2 ],

z∆
2 C({(z1 − z2)/z1})[z±1

2 , (z1 − z2)±1],

z∆
2 C({z1/z2})[z±1

1 , z±1
2 ]

are replaced by

z∆
1 C({z2/z1})[z±1

1 , z±1
2 ][log z1, log z2],

z∆
2 C({(z1 − z2)/z1})[z±1

2 , (z1 − z2)±1][log z2, log(z1 − z2)],

z∆
2 C({z1/z2})[z±1

1 , z±1
2 ][log z1, log z2],

respectively. Theorem 1.6 and its proof also still hold in our setting here. Thus the first
conclusion holds.

Proposition 2.1, Lemma 2.2, Theorem 2.3, Remark 2.4 and Theorem 2.5 in [H2] and their
proofs still hold here. Thus the second conclusion holds. �
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Remark 11.7 In [H2] and in Theorem 11.6 above, we are using the definition of the notion
of system of differential equations with regular singular points (or regular singularities) given
in Appendix B of the book [Kn]. This definition defines such a system in terms of the form of
the expansions of the solutions at the singular points. What we need in the present section
is precisely this form of the expansions of the solutions of such a system. However, we warn
the reader that in some books and papers, a system of differential equations with regular
singular points is instead defined in terms of the coefficients of the system. In fact, there
are systems with regular singular points that do not satisfy the definition in terms of the
coefficients of the system. See for example [Lut] for a study of the problem of analyzing
under what conditions the singular points of a system of differential equations that do not
satisfy the regularity condition in terms of the coefficients are still regular. In Section B.5
of [Kn], systems with simple singular points (called simple sigularities there and defined in
terms of the coefficients) are discussed and it is proved there that simple singular points are
indeed regular singular points. From Theorem B.16 in Section B.5 of [Kn], together with
(2.2) and (2.3) in [H2] and their obvious extensions to the case of more than two intertwining
operators, it is clear that for any set of possible of singular points of (11.44) of any of the
indicated types, the ak, l(z1, . . . , zn) can be chosen for k = 1, . . . ,m and l = 1, . . . , n so that
these singular points are simple singular points and thus are regular singular points.

We now have:

Theorem 11.8 Suppose that all generalized V -modules in C satisfy the C1-cofiniteness con-
dition and the quasi-finite-dimensionality condition. Then:

1. The convergence and extension properties for products and iterates hold in C. If C is
in Msg and if every object of C is a direct sum of irreducible objects of C and there
are only finitely many irreducible objects of C (up to equivalence), then the convergence
and extension properties without logarithms for products and iterates hold in C.

2. For any n ∈ Z+, any objects W1, . . . ,Wn+1 and W̃1, . . . , W̃n−1 of C, any logarithmic
intertwining operators

Y1,Y2, . . . ,Yn−1,Yn
of types (

W0

W1W̃1

)
,

(
W̃1

W2W̃2

)
, . . . ,

(
W̃n−2

Wn−1W̃n−1

)
,

(
W̃n−1

WnWn+1

)
,

respectively, and any w′(0) ∈ W ′
0, w(1) ∈ W1, . . . , w(n+1) ∈ Wn+1, the series

〈w′(0),Y1(w(1), z1) · · · Yn(w(n), zn)w(n+1)〉 (11.45)

is absolutely convergent in the region |z1| > · · · > |zn| > 0 and its sum can be an-
alytically extended to a multivalued analytic function on the region given by zi 6= 0,
i = 1, . . . , n, zi 6= zj, i 6= j, such that for any set of possible singular points with either
zi = 0, zi =∞ or zi = zj for i 6= j, this multivalued analytic function can be expanded
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near the singularity as a series having the same form as the expansion near the singular
points of a solution of a system of differential equations with regular singular points
(as defined in Appendix B of [Kn]; recall Remark 11.7).

Proof The first statement in the first part, except for the existence of the upper bound K
for ik, and the statement in the second part of the theorem follow directly from Theorem 11.6
and the theory of differential equations with regular singular points. To prove the existence
of K, note that in [H2], T/J is a finitely generated R-module and the map φY1,Y2 with
domain T induces a map φ̄Y1,Y2 with domain T/J such that in particular the image of φY1,Y2
is equal to the image of φ̄Y1,Y2 . Since T/J is a finitely-generated C[z±1

1 , z±1
2 , (z1 − z2)−1]-

module, its image under φ̄Y1,Y2 is also a finitely-generated C[z±1
1 , z±1

2 , (z1 − z2)−1]-module.
Any set of generators of this image has been proved to have analytic extensions in the region
|z2| > |z1 − z2| > 0 of the form (11.4), and for finitely many such generators, we have an
upper bound K for the powers of log z2 in their analytic extensions in this region. Thus
the powers of log z2 in the analytic extension of any element of the image of the map φY1,Y2
in this region, as a linear combination of the analytic extensions of these generators with
coefficients in C[z±1

1 , z±1
2 , (z1 − z2)−1], are also less than K.

The second statement in the first part was in fact proved in [H2]. �

Remark 11.9 Note that the first statement in the first part of Theorem 11.8 follows im-
mediately from Theorem 11.6. To prove the second statement in the first part of Theorem
11.8, we start with the product of two intertwining operators without logarithms in the
region |z1| > |z2| > 0, and we have to prove that its analytic extension in the region
|z2| > |z1 − z2| > 0 has no terms involving logarithms. This is the main hard part of the
proof of Theorem 3.5 in [H2].
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