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Abstract

This is the third part in a series of papers in which we introduce and develop
a natural, general tensor category theory for suitable module categories for a vertex
(operator) algebra. In this paper (Part III), we introduce and study intertwining maps
and tensor product bifunctors.
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In this paper, Part III of a series of eight papers on logarithmic tensor category theory,
we introduce and study intertwining maps and tensor product bifunctors. The sections,
equations, theorems and so on are numbered globally in the series of papers rather than
within each paper, so that for example equation (a.b) is the b-th labeled equation in Section
a, which is contained in the paper indicated as follows: In Part I [HLZ1], which contains
Sections 1 and 2, we give a detailed overview of our theory, state our main results and
introduce the basic objects that we shall study in this work. We include a brief discussion of
some of the recent applications of this theory, and also a discussion of some recent literature.
In Part II [HLZ2], which contains Section 3, we develop logarithmic formal calculus and
study logarithmic intertwining operators. The present paper, Part III, contains Section 4.
In Part IV [HLZ3], which contains Sections 5 and 6, we give constructions of the P (z)- and
Q(z)-tensor product bifunctors using what we call “compatibility conditions” and certain
other conditions. In Part V [HLZ4], which contains Sections 7 and 8, we study products
and iterates of intertwining maps and of logarithmic intertwining operators and we begin
the development of our analytic approach. In Part VI [HLZ5], which contains Sections
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9 and 10, we construct the appropriate natural associativity isomorphisms between triple
tensor product functors. In Part VII [HLZ6], which contains Section 11, we give sufficient
conditions for the existence of the associativity isomorphisms. In Part VIII [HLZ7], which
contains Section 12, we construct braided tensor category structure.
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4 P (z)- and Q(z)-intertwining maps and the P (z)- and

Q(z)-tensor product bifunctors

We now generalize to the setting of the present work the notions of P (z)- and Q(z)-tensor
product of modules, for z ∈ C×, introduced in [HL1], [HL2] and [HL3]. The symbols P (z)
and Q(z) refer to moduli space elements described in Remarks 4.3 and 4.37, respectively.
We introduce the notions of P (z)- and Q(z)-intertwining map among strongly Ã-graded
generalized modules for a strongly A-graded Möbius or conformal vertex algebra V and es-
tablish the relationship between such intertwining maps and grading-compatible logarithmic
intertwining operators. We define the P (z)- and Q(z)-tensor product bifunctors for pairs of
strongly Ã-graded generalized V -modules using these intertwining maps and natural univer-
sal properties. As examples, for a strongly Ã-graded generalized module W , we construct
and describe the P (z)-tensor products of V and W and also of W and V ; the underlying
strongly Ã-graded generalized modules of the tensor product structures are W itself, in both
of these cases. In the case in which V is a finitely reductive vertex operator algebra (recall
the Introduction), we construct and describe the P (z)- and Q(z)-tensor products of arbi-
trary V -modules, and we use this structure to motivate the construction of associativity
isomorphisms that we will carry out in later sections. At the end of this section we relate
the P (z)- and Q(z)-tensor products.

We emphasize an important issue: Even though, as we have just mentioned, we construct
the P (z)- and Q(z)-tensor product bifunctors in some cases, we do not give any general
construction of (models for) these bifunctors in this section. But for our deeper results, we
will crucially need a suitable general construction of these bifunctors, and indeed, for both
P (z) and Q(z), we will construct a useful, particular bifunctor (when it exists) in Section
5. We will use this construction in order to construct the required natural associativity
isomorphisms among triple tensor products, leading to braided tensor category structure,
under suitable conditions.

In view of the results in Sections 2 and 3 involving contragredient modules, it is natural
for us to work in the strongly-graded setting from now on:

Assumption 4.1 Throughout this section and the remainder of this work, we shall assume
the following, unless other assumptions are explicitly made: A is an abelian group and Ã is
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an abelian group containing A as a subgroup; V is a strongly A-graded Möbius or conformal
vertex algebra; all V -modules and generalized V -modules considered are strongly Ã-graded;
and all intertwining operators and logarithmic intertwining operators considered are grading-
compatible. (Recall Definitions 2.23, 2.25, 3.10 and 3.14.)

We shall be working with full subcategories C of the category Msg of strongly Ã-graded
(ordinary) V -modules or the category GMsg of strongly Ã-graded generalized V -modules
(recall Notation 2.36).

In this section, z will be a fixed nonzero complex number.

4.1 P (z)-intertwining maps and the notion of P (z)-tensor product

We first generalize the notion of P (z)-intertwining map given in Section 4 of [HL1]; our
P (z)-intertwining maps will automatically be grading-compatible by definition. We use the
notations given in Definition 2.18. The main part of the following definition, the Jacobi
identity (4.4), was previewed in the Introduction (formula (1.19)). It should be compared
with the corresponding formula (1.1) in the Lie algebra setting, and with the Jacobi identity
(3.26) in the definition of the notion of logarithmic intertwining operator; note that the
formal variable x2 in that Jacobi identity is specialized here to the nonzero complex number
z. Also, the sl(2)-bracket relations (4.5) should be compared with the corresponding relations
(3.28). There is no L(−1)-derivative formula for intertwining maps; as we shall see, the
P (z)-intertwining maps are obtained from logarithmic intertwining operators by a process
of specialization of the formal variable to the complex variable z.

Definition 4.2 Let (W1, Y1), (W2, Y2) and (W3, Y3) be generalized V -modules. A P (z)-
intertwining map of type

(
W3

W1W2

)
is a linear map

I : W1 ⊗W2 → W 3 (4.1)

(recall from Definition 2.18 that W 3 is the formal completion of W3 with respect to the C-
grading) such that the following conditions are satisfied: the grading compatibility condition:

for β, γ ∈ Ã and w(1) ∈ W (β)
1 , w(2) ∈ W (γ)

2 ,

I(w(1) ⊗ w(2)) ∈ W (β+γ)
3 ; (4.2)

the lower truncation condition: for any elements w(1) ∈ W1, w(2) ∈ W2, and any n ∈ C,

πn−mI(w(1) ⊗ w(2)) = 0 for m ∈ N sufficiently large (4.3)

(which follows from (4.2), in view of the grading restriction condition (2.85); recall the
notation πn from Definition 2.18); the Jacobi identity:

x−1
0 δ
(x1 − z

x0

)
Y3(v, x1)I(w(1) ⊗ w(2))

= z−1δ
(x1 − x0

z

)
I(Y1(v, x0)w(1) ⊗ w(2))

+x−1
0 δ
(z − x1

−x0

)
I(w(1) ⊗ Y2(v, x1)w(2)) (4.4)
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for v ∈ V , w(1) ∈ W1 and w(2) ∈ W2 (note that all the expressions in the right-hand side of
(4.4) are well defined, and that the left-hand side of (4.4) is meaningful because any infinite
linear combination of vn (n ∈ Z) of the form

∑
n<N anvn (an ∈ C) acts in a well-defined way

on any I(w(1) ⊗ w(2)), in view of (4.3)); and the sl(2)-bracket relations: for any w(1) ∈ W1

and w(2) ∈ W2,

L(j)I(w(1) ⊗ w(2)) = I(w(1) ⊗ L(j)w(2)) +

j+1∑
i=0

(
j + 1

i

)
ziI((L(j − i)w(1))⊗ w(2)) (4.5)

for j = −1, 0 and 1 (note that if V is in fact a conformal vertex algebra, this follows
automatically from (4.4) by setting v = ω and taking Resx0Resx1x

j+1
1 ). The vector space of

P (z)-intertwining maps of type
(

W3

W1W2

)
is denoted by

M[P (z)]W3
W1W2

,

or simply by
MW3

W1W2

if there is no ambiguity.

Remark 4.3 As we mentioned in the Introduction, P (z) is the Riemann sphere Ĉ with
one negatively oriented puncture at ∞ and two ordered positively oriented punctures at
z and 0, with local coordinates 1/w, w − z and w, respectively, vanishing at these three
punctures. The geometry underlying the notion of P (z)-intertwining map and the notions
of P (z)-product and P (z)-tensor product (see below) is determined by P (z).

Remark 4.4 In the case of C-graded ordinary modules for a vertex operator algebra, where
the grading restriction condition (2.90) for a module W is replaced by the (more restrictive)
condition

W(n) = 0 for n ∈ C with sufficiently negative real part (4.6)

as in [HL1] (and where, in our context, the abelian groups A and Ã are trivial), the notion
of P (z)-intertwining map above agrees with the earlier one introduced in [HL1]; in this case,
the conditions (4.2) and (4.3) are automatic.

Remark 4.5 If W3 in Definition 4.2 is lower bounded, as in Remark 3.25, then (4.3) can be
strengthened to:

πnI(w(1) ⊗ w(2)) = 0 for <(n) sufficiently negative (4.7)

(n ∈ C).
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Remark 4.6 As in Remark 3.42, it is clear that the sl(2)-bracket relations (4.5) can equiv-
alently be written as

I(L(j)w(1) ⊗ w(2)) =

j+1∑
i=0

(
j + 1

i

)
(−z)iL(j − i)I(w(1) ⊗ w(2))

−
j+1∑
i=0

(
j + 1

i

)
(−z)iI(w(1) ⊗ L(j − i)w(2)) (4.8)

for w(1) ∈ W1, w(2) ∈ W2 and j = −1, 0 and 1.

Following [HL1] we will choose the branch of log z (and of arg z) such that

0 ≤ =(log z) = arg z < 2π (4.9)

(despite the fact that we happened to have used a different branch in (3.12) in the proof of
Theorem 3.6), so that

log z = log |z|+ i arg z.

We will also use the notation

lp(z) = log z + 2πip, p ∈ Z, (4.10)

as in [HL1], for arbitrary values of the log function. For a formal expression f(x) as in (3.2),
but involving only nonnegative integral powers of log x, and ζ ∈ C, whenever

f(x)
∣∣∣
xn=eζn, (log x)m=ζm, n∈C, m∈N

(4.11)

exists algebraically, we will write (4.11) simply as f(x)
∣∣∣
x=eζ

or f(eζ), and we will call this

“substituting eζ for x in f(x),” even though, in general, it depends on ζ, not just on eζ . (See
also (3.76).) In addition, for a fixed integer p, we will sometimes write

f(x)
∣∣∣
x=z

or f(z) (4.12)

instead of f(x)
∣∣∣
x=elp(z)

or f(elp(z)). We will sometimes say that “f(eζ) exists” or that “f(z)

exists.”

Remark 4.7 A very important example of an f(z) existing in this sense occurs when

f(x) = Y(w(1), x)w(2) (∈ W3[log x]{x})

for w(1) ∈ W1, w(2) ∈ W2 and a logarithmic intertwining operator Y of type
(

W3

W1W2

)
, in the

notation of Definition 3.10; note that (4.11) exists (as an element of W 3) in this case because
of Proposition 3.20(b). Note also that in particular, Y(w(1), e

ζ) (or Y(w(1), z)) exists as a
linear map from W2 to W 3, and that Y(·, z)· exists as a linear map

W1 ⊗W2 → W 3

w(1) ⊗ w(2) 7→ Y(w(1), z)w(2). (4.13)
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Now we use these considerations to construct correspondences between (grading-compatible)
logarithmic intertwining operators and P (z)-intertwining maps. Fix an integer p. Let Y be
a logarithmic intertwining operator of type

(
W3

W1W2

)
. Then we have a linear map

IY,p : W1 ⊗W2 → W 3 (4.14)

defined by
IY,p(w(1) ⊗ w(2)) = Y(w(1), e

lp(z))w(2) (4.15)

for all w(1) ∈ W1 and w(2) ∈ W2. The grading-compatibility condition (3.31) yields the
grading-compatibility condition (4.2) for IY,p, and (4.3) follows. By substituting elp(z) for
x2 in (3.26) and for x in (3.28), we see that IY,p satisfies the Jacobi identity (4.4) and the
sl(2)-bracket relations (4.5). Hence IY,p is a P (z)-intertwining map. (Note that the L(−1)-
derivative property (3.27) is not used here, so that, for example, each Y(k) in Remark 3.26
produces P (z)-intertwining maps in this way. But the L(−1)-derivative property is indeed
needed for the recovery of Y from IY,p, as we shall now see.)

On the other hand, we note that (3.61) (whose proof uses the L(−1)-derivative property
of Y) is equivalent to

〈yL′(0)w′(3),Y(y−L(0)w(1), x)y−L(0)w(2)〉W3 = 〈w′(3),Y(w(1), xy)w(2)〉W3 (4.16)

for all w(1) ∈ W1, w(2) ∈ W2 and w′(3) ∈ W ′
3, where we are using the pairing between

the contragredient module W ′
3 and W3 or W 3 (recall Definition 2.32, Theorem 2.34, (2.75),

(2.101) and (3.55)). Substituting elp(z) for x and then e−lp(z)x for y, we obtain

〈yL′(0)xL
′(0)w′(3),Y(y−L(0)x−L(0)w(1), e

lp(z))y−L(0)x−L(0)w(2)〉W3

∣∣∣
y=e−lp(z)

= 〈w′(3),Y(w(1), x)w(2)〉W3 ,

or equivalently, using the notation (4.15),

〈w′(3), y
L(0)xL(0)IY,p(y

−L(0)x−L(0)w(1) ⊗ y−L(0)x−L(0)w(2))〉W3

∣∣∣
y=e−lp(z)

= 〈w′(3),Y(w(1), x)w(2)〉W3 .

Thus we have recovered Y from IY,p (with (3.27) having been used in the proof).
This motivates the following definition: Given a P (z)-intertwining map I and an integer

p, we define a linear map
YI,p : W1 ⊗W2 → W3[log x]{x} (4.17)

by

YI,p(w(1), x)w(2)

= yL(0)xL(0)I(y−L(0)x−L(0)w(1) ⊗ y−L(0)x−L(0)w(2))
∣∣∣
y=e−lp(z)

(4.18)
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for any w(1) ∈ W1 and w(2) ∈ W2 (this is well defined and indeed maps to W3[log x]{x}, in

view of (3.55)). We will also use the notation w(1)
I,p
n;kw(2) ∈ W3 defined by

YI,p(w(1), x)w(2) =
∑
n∈C

∑
k∈N

w(1)
I,p
n;k
w(2)x

−n−1(log x)k. (4.19)

Observe that since the operator x±L(0) always increases the power of x in an expression
homogeneous of generalized weight n by ±n, we see from (4.18) that

w(1)
I,p
n;k
w(2) ∈ (W3)[n1+n2−n−1] (4.20)

for w(1) ∈ (W1)[n1] and w(2) ∈ (W2)[n2]. Moreover, for I = IY,p, we have YI,p = Y (from the
above), and for Y = YI,p, we have IY,p = I.

We can now prove the following proposition generalizing Proposition 12.2 in [HL3].

Proposition 4.8 For p ∈ Z, the correspondence

Y 7→ IY,p

is a linear isomorphism from the space VW3
W1W2

of (grading-compatible) logarithmic intertwin-

ing operators of type
(

W3

W1W2

)
to the space MW3

W1W2
of P (z)-intertwining maps of the same

type. Its inverse map is given by
I 7→ YI,p.

Proof We need only show that for any P (z)-intertwining map I of type
(

W3

W1W2

)
, YI,p is a

logarithmic intertwining operator of the same type. The lower truncation condition (4.3)
implies that the lower truncation condition (3.25) for logarithmic intertwining operator holds
for YI,p; for this, (4.20) can be used. Let us now prove the Jacobi identity for YI,p.

Changing the formal variables x0 and x1 to x0e
lp(z)x−1

2 and x1e
lp(z)x−1

2 , respectively, in the

Jacobi identity (4.4) for I, and then changing v to y−L(0)x
−L(0)
2 v

∣∣∣
y=e−lp(z)

we obtain (noting

that at first, elp(z) could be written simply as z because only integral powers occur)

x−1
0 δ

(
x1 − x2

x0

)
Y3(y−L(0)x

−L(0)
2 v, x1y

−1x−1
2 )I(w(1) ⊗ w(2))

∣∣∣
y=e−lp(z)

= x−1
2 δ

(
x1 − x0

x2

)
I(Y1(y−L(0)x

−L(0)
2 v, x0y

−1x−1
2 )w(1) ⊗ w(2))

∣∣∣
y=e−lp(z)

+x−1
0 δ

(
x2 − x1

−x0

)
I(w(1) ⊗ Y2(y−L(0)x

−L(0)
2 v, x1y

−1x−1
2 )w(2))

∣∣∣
y=e−lp(z)

.

Using the formula

Y3(y−L(0)x
−L(0)
2 v, x1y

−1x−1
2 ) = y−L(0)x

−L(0)
2 Y3(v, x1)yL(0)x

L(0)
2 ,
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which holds on the generalized module W3, by (3.61), and the similar formulas for Y1 and
Y2, we get

x−1
0 δ

(
x1 − x2

x0

)
y−L(0)x

−L(0)
2 Y3(v, x1)yL(0)x

L(0)
2 I(w(1) ⊗ w(2))

∣∣∣
y=e−lp(z)

= x−1
2 δ

(
x1 − x0

x2

)
I(y−L(0)x

−L(0)
2 Y1(v, x0)yL(0)x

L(0)
2 w(1) ⊗ w(2))

∣∣∣
y=e−lp(z)

+x−1
0 δ

(
x2 − x1

−x0

)
I(w(1) ⊗ y−L(0)x

−L(0)
2 Y2(v, x1)yL(0)x

L(0)
2 w(2))

∣∣∣
y=e−lp(z)

.

Replacing w(1) by y−L(0)x
−L(0)
2 w(1)

∣∣∣
y=e−lp(z)

and w(2) by y−L(0)x
−L(0)
2 w(2)

∣∣∣
y=e−lp(z)

, and then

applying yL(0)x
L(0)
2

∣∣∣
y=e−lp(z)

to the whole equation, we obtain

x−1
0 δ

(
x1 − x2

x0

)
Y3(v, x1)yL(0)x

L(0)
2 ·

·I(y−L(0)x
−L(0)
2 w(1) ⊗ y−L(0)x

−L(0)
2 w(2))

∣∣∣
y=e−lp(z)

= x−1
2 δ

(
x1 − x0

x2

)
yL(0)x

L(0)
2 ·

·I(y−L(0)x
−L(0)
2 Y1(v, x0)w(1) ⊗ y−L(0)x

−L(0)
2 w(2))

∣∣∣
y=e−lp(z)

+x−1
0 δ

(
x2 − x1

−x0

)
yL(0)x

L(0)
2 ·

·I(y−L(0)x
−L(0)
2 w(1) ⊗ y−L(0)x

−L(0)
2 Y2(v, x1)w(2))

∣∣∣
y=e−lp(z)

.

But using (4.18), we can write this as

x−1
0 δ

(
x1 − x2

x0

)
Y3(v, x1)YI,p(w(1), x2)w(2)

= x−1
2 δ

(
x1 − x0

x2

)
YI,p(Y1(v, x0)w(1), x2)w(2)

+x−1
0 δ

(
x2 − x1

−x0

)
YI,p(w(1), x2)Y2(v, x1)w(2).

That is, the Jacobi identity for YI,p holds.
Similar procedures show that the sl(2)-bracket relations for I imply the sl(2)-bracket

relations for YI,p, as follows: Let j be −1, 0 or 1. By multiplying (4.5) by (yx)j and using
(3.66) we obtain

(yx)−L(0)L(j)(yx)L(0)I(w(1) ⊗ w(2))
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= I(w(1) ⊗ (yx)−L(0)L(j)(yx)L(0)w(2))

+

j+1∑
i=0

(
j + 1

i

)
zi(yx)iI(((yx)−L(0)L(j − i)(yx)L(0)w(1))⊗ w(2))

Replacing w(1) by (yx)−L(0)w(1) and w(2) by (yx)−L(0)w(2), and then applying (yx)L(0) to the
whole equation, we obtain

L(j)(yx)L(0)I((yx)−L(0)w(1) ⊗ (yx)−L(0)w(2))

= (yx)L(0)I((yx)−L(0)w(1) ⊗ (yx)−L(0)L(j)w(2))

+

j+1∑
i=0

(
j + 1

i

)
zi(yx)i(yx)L(0)I(((yx)−L(0)L(j − i)w(1))⊗ (yx)−L(0)w(2)).

Evaluating at y = e−lp(z) and using (4.18) we see that this gives exactly the sl(2)-bracket
relations (3.28) for YI,p.

Finally, we prove the L(−1)-derivative property for YI,p. This follows from (4.18), (3.57),
and the sl(2)-bracket relation with j = 0 for YI,p, namely,

[L(0),YI,p(w(1), x)] = YI,p(L(0)w(1), x) + xYI,p(L(−1)w(1), x),

as follows:

d

dx
YI,p(w(1), x)w(2)

=
d

dx
e−lp(z)L(0)xL(0)I(elp(z)L(0)x−L(0)w(1) ⊗ elp(z)L(0)x−L(0)w(2))

= e−lp(z)L(0)x−1xL(0)L(0)I(elp(z)L(0)x−L(0)w(1) ⊗ elp(z)L(0)x−L(0)w(2))

−e−lp(z)L(0)xL(0)I(elp(z)L(0)x−1x−L(0)L(0)w(1) ⊗ elp(z)L(0)x−L(0)w(2))

−e−lp(z)L(0)xL(0)I(elp(z)L(0)x−L(0)w(1) ⊗ elp(z)L(0)x−1x−L(0)L(0)w(2))

= x−1L(0)YI,p(w(1), x)w(2) − x−1YI,p(w(1), x)L(0)w(2)

−x−1YI,p(L(0)w(1), x)w(2)

= YI,p(L(−1)w(1), x)w(2). �

Remark 4.9 From Remarks 3.25 and 4.5, we note that if W3 is lower bounded, then the
spaces of logarithmic intertwining operators and of P (z)-intertwining maps in Proposition
4.8 satisfy the stronger conditions (3.43) and (4.7), respectively.

Remark 4.10 Given a generalized V -module (W,YW ), recall from Remark 3.16 that YW is
a logarithmic intertwining operator of type

(
W
VW

)
not involving log x and having only integral

powers of x. Then the substitution x 7→ z in (4.15) is very simple; it is independent of p and
YW (·, z)· entails only the substitutions xn 7→ zn for n ∈ Z. As a special case, we can take
(W,YW ) to be (V, Y ) itself.

9



Remark 4.11 Let I be a P (z)-intertwining map of type
(

W3

W1W2

)
and let p, p′ ∈ Z. From

(4.18), we see that the logarithmic intertwining operators YI,p and YI,p′ of this same type
differ as follows:

YI,p′(w(1), x)w(2)

= e2πi(p−p′)L(0)YI,p(e2πi(p′−p)L(0)w(1), x)e2πi(p′−p)L(0)w(2) (4.21)

for w(1) ∈ W1 and w(2) ∈ W2. Using the notation in Remark 3.45, we thus have

YI,p′ = (YI,p)[p−p′,p′−p,p′−p]

= YI,p(·, e2πi(p−p′)·) · . (4.22)

Remark 4.12 Let I be a P (z)-intertwining map of type
(

W3

W1W2

)
. Then from the correspon-

dence between P (z)-intertwining maps and logarithmic intertwining operators in Proposition
4.8, we see that for any nonzero complex number z1, the linear map I1 defined by

I1(w(1) ⊗ w(2)) =
∑
n∈C

∑
k∈N

w(1)
I,p
n;k
w(2)e

lp(z1)(−n−1)(lp(z1))k (4.23)

for w(1) ∈ W1 and w(2) ∈ W2 (recall (4.19)) is a P (z1)-intertwining map of the same type. In

this sense, w(1)
I,p
n;kw(2) is independent of z. This justifies writing I(w(1) ⊗ w(2)) alternatively

as

I(w(1), z)w(2), (4.24)

indicating that z can be replaced by any nonzero complex number; this notation was some-
times used in [H], although we shall generally not be using it in the present work. However,
for a general intertwining map associated to a sphere with punctures not necessarily of type
P (z), the corresponding element w(1)

I,p
n;kw(2) will in general be different.

We now proceed to the definition of the P (z)-tensor product. As in [HL1], this will
be a suitably universal “P (z)-product.” We generalize these notions from [HL1] using the
notations Msg and GMsg (the categories of strongly graded V -modules and generalized
V -modules, respectively; recall Notation 2.36) as follows:

Definition 4.13 Let C1 be either of the categoriesMsg or GMsg (recall Notation 2.36). For
W1,W2 ∈ ob C1, a P (z)-product of W1 and W2 is an object (W3, Y3) of C1 equipped with a
P (z)-intertwining map I3 of type

(
W3

W1W2

)
. We denote it by (W3, Y3; I3) or simply by (W3; I3).

Let (W4, Y4; I4) be another P (z)-product of W1 and W2. A morphism from (W3, Y3; I3) to
(W4, Y4; I4) is a module map η from W3 to W4 such that the diagram

W 3
-W 4

W1 ⊗W2
�
�

�
�
�+

Q
Q
Q
Q
Qsη̄

I3 I4
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commutes, that is,
I4 = η̄ ◦ I3, (4.25)

where
η̄ : W 3 → W 4 (4.26)

is the natural extension of η. (Note that η̄ exists because η preserves C-gradings; we shall
use the notation η̄ for any such map η.)

Remark 4.14 In this setting, let η be a morphism from (W3, Y3; I3) to (W4, Y4; I4). We know
from (4.17)–(4.19) that for p ∈ Z, the coefficients w(1)

I3,p
n;k w(2) and w(1)

I4,p
n;k w(2) in the formal

expansion (4.19) of YI3,p(w(1), x)w(2) and YI4,p(w(1), x)w(2), respectively, are determined by
I3 and I4, and that

η(w(1)
I3,p
n;k
w(2)) = w(1)

I4,p
n;k
w(2), (4.27)

as we see by applying η̄ to (4.18).

The notion of P (z)-tensor product is now defined by means of a universal property as
follows:

Definition 4.15 Let C be a full subcategory of either Msg or GMsg. For W1,W2 ∈ ob C,
a P (z)-tensor product of W1 and W2 in C is a P (z)-product (W0, Y0; I0) with W0 ∈ ob C
such that for any P (z)-product (W,Y ; I) with W ∈ ob C, there is a unique morphism from
(W0, Y0; I0) to (W,Y ; I). Clearly, a P (z)-tensor product of W1 and W2 in C, if it exists, is
unique up to unique isomorphism. In this case we will denote it by

(W1 �P (z) W2, YP (z);�P (z))

and call the object
(W1 �P (z) W2, YP (z))

the P (z)-tensor product (generalized) module of W1 and W2 in C. We will skip the phrase
“in C” if the category C under consideration is clear in context.

Remark 4.16 Consider the functor from C to the category Set defined by assigning to
W ∈ ob C the set MW

W1W2
of all P (z)-intertwining maps of type

(
W

W1W2

)
. Then if the P (z)-

tensor product of W1 and W2 exists, it is just the universal element for this functor, and
this functor is representable, represented by the P (z)-tensor product. (Recall that given a
functor f from a category K to Set, a universal element for f , if it exists, is a pair (X, x)
where X ∈ obK and x ∈ f(X) such that for any pair (Y, y) with Y ∈ obK and y ∈ f(Y ),
there is a unique morphism σ : X → Y such that f(σ)(x) = y; in this case, f is represented
by X.)

Definition 4.15 and Proposition 4.8 immediately give the following result relating the
module maps from a P (z)-tensor product (generalized) module with the P (z)-intertwining
maps and the logarithmic intertwining operators:

11



Proposition 4.17 Suppose that W1 �P (z) W2 exists. We have a natural isomorphism

HomV (W1 �P (z) W2,W3)
∼→ MW3

W1W2

η 7→ η ◦�P (z) (4.28)

and for p ∈ Z, a natural isomorphism

HomV (W1 �P (z) W2,W3)
∼→ VW3

W1W2

η 7→ Yη,p (4.29)

where Yη,p = YI,p with I = η ◦�P (z). �

Suppose that the P (z)-tensor product (W1 �P (z) W2, YP (z);�P (z)) of W1 and W2 exists.
We will sometimes denote the action of the canonical P (z)-intertwining map

w(1) ⊗ w(2) 7→ �P (z)(w(1) ⊗ w(2)) = �P (z)(w(1), z)w(2) ∈ W1 �P (z) W2 (4.30)

(recall (4.24)) on elements simply by w(1) �P (z) w(2):

w(1) �P (z) w(2) = �P (z)(w(1) ⊗ w(2)) = �P (z)(w(1), z)w(2). (4.31)

Remark 4.18 We emphasize that the element w(1) �P (z) w(2) defined here is an element of
the formal completion W1 �P (z) W2, and not (in general) of the module W1 �P (z) W2 itself.
This is different from the classical case for modules for a Lie algebra (recall Section 1.3),
where the tensor product of elements of two modules is an element of the tensor product
module.

Remark 4.19 Note that under the natural isomorphism (4.28) for the case W3 = W1 �P (z)

W2, the identity map from W1 �P (z) W2 to itself corresponds to the canonical intertwining
map �P (z). Furthermore, for p ∈ Z, the P (z)-tensor product of W1 and W2 gives rise to a

logarithmic intertwining operator Y�P (z),p of type
(
W1�P (z)W2

W1W2

)
, according to formula (4.18).

If p is changed to p′ ∈ Z, this logarithmic intertwining operator changes according to (4.21).
Note that the P (z)-intertwining map �P (z) is canonical and depends only on z, while a
corresponding logarithmic intertwining operator is not; it depends on p ∈ Z.

Remark 4.20 Sometimes it will be convenient, as in the next proposition, to use the par-
ticular isomorphism associated with p = 0 (in Proposition 4.8) between the spaces of P (z)-
intertwining maps and of logarithmic intertwining operators of the same type. In this case,
we shall sometimes simplify the notation by dropping the p (= 0) in the notation w(1)

I,0
n;kw(2)

(recall (4.19)):
w(1)

I
n;k
w(2) = w(1)

I,0
n;k
w(2). (4.32)
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Proposition 4.21 Suppose that the P (z)-tensor product (W1 �P (z) W2, YP (z);�P (z)) of W1

and W2 in C exists. Then for any complex number z1 6= 0, the P (z1)-tensor product of W1 and
W2 in C also exists, and is given by (W1�P (z)W2, YP (z);�P (z1)), where the P (z1)-intertwining
map �P (z1) is defined by

�P (z1)(w(1) ⊗ w(2)) =
∑
n∈C

∑
k∈N

w(1)
�P (z)

n;k w(2)e
log z1(−n−1)(log z1)k (4.33)

for w(1) ∈ W1 and w(2) ∈ W2.

Proof By Remark 4.12, (4.33) indeed defines a P (z1)-product. Given any P (z1)-product
(W3, Y3; I1) of W1 and W2, let I be the P (z)-product related to I1 by formula (4.23) with I1, I
and z1 in (4.23) replaced by I, I1 and z, respectively, and with p = 0. Then from the definition
of P (z)-tensor product, there is a unique morphism η from (W1 �P (z) W2, YP (z);�P (z)) to
(W3, Y3; I). Thus by (4.27) and (4.33) we see that η is also a morphism from the P (z1)-
product (W1 �P (z) W2, YP (z);�P (z1)) to (W3, Y3; I1). The uniqueness of such a morphism
follows similarly from the uniqueness of a morphism from (W1 �P (z) W2, YP (z);�P (z)) to
(W3, Y3; I). Hence (W1 �P (z) W2, YP (z);�P (z1)) is the P (z1)-tensor product of W1 and W2.
�

Remark 4.22 In general, it will turn out that the existence of tensor product, and the
tensor product (generalized) module itself, do not depend on the geometric data. It is
the intertwining map from the two modules to the completion of their tensor product that
encodes the geometric information.

Generalizing Lemma 4.9 of [H], we have:

Proposition 4.23 The generalized module W1 �P (z)W2 (if it exists) is spanned (as a vector
space) by the (generalized-) weight components of the elements of W1 �P (z) W2 of the form
w(1) �P (z) w(2), for all w(1) ∈ W1 and w(2) ∈ W2.

Proof Denote by W0 the vector subspace of W1 �P (z) W2 spanned by all the weight com-
ponents of all the elements of W1 �P (z) W2 of the form w(1) �P (z) w(2) for w(1) ∈ W1 and
w(2) ∈ W2. For a homogeneous vector v ∈ V and arbitrary elements w(1) ∈ W1 and w(2) ∈ W2,
equating the x−1

0 x−m−1
1 coefficients of the Jacobi identity (4.4) gives

vm(w(1) �P (z) w(2)) = w(1) �P (z) (vmw(2)) +
∑
i∈N

(
m

i

)
zm−i(viw(1)) �P (z) w(2) (4.34)

for all m ∈ Z. Note that the summation in the right-hand side of (4.34) is always finite.
Hence by taking arbitrary weight components of (4.34) we see that W0 is closed under the
action of V . In case V is Möbius, a similar argument, using (4.5), shows that W0 is stable
under the action of sl(2). It is clear that W0 is C-graded and Ã-graded. Thus W0 is a
submodule of W1 �P (z) W2.
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Now consider the quotient module

W = (W1 �P (z) W2)/W0

and let πW be the canonical map from W1 �P (z) W2 to W . By the definition of W0, we have

πW ◦�P (z) = 0,

using the notation (4.30). The universal property of the P (z)-tensor product then demands
that πW = 0, i.e., that W0 = W1 �P (z) W2.

(Another argument: The image of the P (z)-intertwining map �P (z) lies in

W 0 ⊂ W1 �P (z) W2,

so that W0 is naturally a P (z)-product of W1 and W2, giving rise to a (unique) V -module
map

f : W1 �P (z) W2 → W0

such that f takes each w(1) �P (z) w(2) to w(1) �P (z) w(2), by the universal property. Writing

ι : W0 → W1 �P (z) W2

for the natural injection, we have that ι ◦ f is the identity map on W1 �P (z) W2, by the
universal property. Thus ι is surjective (or, alternatively, f is injective and is 1 on W0), so
that W0 = W1 �P (z) W2.) �

It is clear from Definition 4.15 that the tensor product operation distributes over direct
sums in the following sense:

Proposition 4.24 For U1, . . . , Uk, W1, . . . ,Wl ∈ ob C, suppose that each Ui�P (z)Wj exists.
Then (

∐
i Ui) �P (z) (

∐
jWj) exists and there is a natural isomorphism(∐

i

Ui

)
�P (z)

(∐
j

Wj

)
∼→
∐
i,j

Ui �P (z) Wj. �

Remark 4.25 It is of course natural to view the P (z)-tensor product as a bifunctor: Sup-
pose that C is a full subcategory of eitherMsg or GMsg (recall Notation 2.36) such that for
all W1,W2 ∈ ob C, the P (z)-tensor product of W1 and W2 exists in C. Then �P (z) provides
a (bi)functor

�P (z) : C × C → C (4.35)

as follows: For W1,W2 ∈ ob C,

�P (z)(W1,W2) = W1 �P (z) W2 ∈ ob C (4.36)

and for V -module maps
σ1 : W1 → W3, (4.37)
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σ2 : W2 → W4 (4.38)

with W3,W4 ∈ ob C, we have the V -module map, denoted

�P (z)(σ1, σ2) = σ1 �P (z) σ2, (4.39)

fromW1�P (z)W2 toW3�P (z)W4, defined by the universal property of the P (z)-tensor product
W1 �P (z) W2 and the fact that the composition of �P (z) with σ1 ⊗ σ2 is a P (z)-intertwining
map

�P (z) ◦ (σ1 ⊗ σ2) : W1 ⊗W2 → W3 �P (z) W4. (4.40)

Note that it is the effect of this bifunctor on morphisms (rather than on objects) that exhibits
the role of the geometric data.

We obtain right exact functors by fixing one of the generalized modules in Remark 4.251:

Proposition 4.26 In the setting of Remark 4.25, for W ∈ ob C the functors W �P (z) · and
·�P (z) W are right exact.

Proof Let
W1

σ1−→ W2
σ2−→ W3 −→ 0

be exact in C. We show that

W �P (z) W1

1W�P (z)σ1−→ W �P (z) W2

1W�P (z)σ2−→ W �P (z) W3 −→ 0

is exact; the proof of right exactness for ·�P (z) W is completely analogous.
For the surjectivity of 1W � σ2, we observe that the elements

(1W � σ2)(πn(w � w(2)))

for w ∈ W , w(2) ∈ W2 and n ∈ C span W �W3 (we are dropping the subscripts P (z)), since
this element equals

πn(1W � σ2(w � w(2))) = πn(w � σ2(w(2))),

and these elements span W �W3 by the surjectivity of σ2 and Proposition 4.23.
Since

(1W � σ2)(1W � σ1) = 1W � σ2σ1 = 0,

it remains only to show that the natural (surjective) module map

θ : (W1 �W2)/Im (1W � σ1)→ W1 �W3

is injective. Noting that

(W1 �W2)/Im (1W � σ1) = (W1 �W2)/Im (1W � σ1),

1We thank Ingo Runkel for asking us whether our tensor product functors are right exact.
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we characterize θ by:

θ(w � w(2) + Im (1W � σ1)) = 1W � σ2(w � w(2)).

We construct a P (z)-intertwining map

I : W ⊗W3 → (W �W2)/Im (1W � σ1)

as follows: For w ∈ W and w(3) ∈ W3 set

I(w ⊗ w(3)) = w � w(2) + Im (1W � σ1)

where w(2) ∈ W2 is such that
σ2(w(2)) = w(3).

Then I is well defined because for w′(2) ∈ W2 with σ2(w′(2)) = w(3),

w ⊗ (w(2) − w′(2)) ∈ w � Kerσ2 = w � Imσ1 ⊂ Im (1W ⊗ σ1),

and it is straightforward to verify that I is in fact a P (z)-intertwining map. Thus we have
a module map

η : W �W3 → (W �W2)/Im (1W ⊗ σ1)

such that
η(w � w(3)) = w � w(2) + Im (1W ⊗ σ1),

with the elements as above. Then

η ◦ θ(w � w(2) + Im (1W ⊗ σ1)) = η(1W ⊗ σ2(w � w(2)))

= η(w � σ2(w(2)))

= η(w � w(3))

= w � w(2) + Im (1W ⊗ σ1),

which shows that η ◦ θ is the identity map, and so θ is injective, as desired. �

We now discuss the simplest examples of P (z)-tensor products—those in which one or
both of W1 or W2 is V itself (viewed as a (generalized) V -module); we suppose here that
V ∈ ob C. Since the discussion of the case in which both W1 and W2 are V turns out to be
no simpler than the case in which W1 = V , we shall discuss only the two more general cases
W1 = V and W2 = V .

Example 4.27 Let (W,YW ) be an object of C. The vertex operator map YW gives a P (z)-
intertwining map

IYW ,p = YW (·, z)· : V ⊗W → W
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for any fixed p ∈ Z (recall Proposition 4.8 and Remark 4.10). We claim that (W,YW ;YW (·, z)·)
is the P (z)-tensor product of V and W in C. In fact, let (W3, Y3; I) be a P (z)-product of V
and W in C and suppose that there exists a module map η : W → W3 such that

η ◦ (YW (·, z)·) = I. (4.41)

Then for w ∈ W , we must have

η(w) = η(YW (1, z)w)

= (η ◦ (YW (·, z)·))(1⊗ w)

= I(1⊗ w), (4.42)

so that η is unique if it exists. We now define η : W → W 3 using (4.42). We shall show that
η(W ) ⊂ W3 and that η has the desired properties. Since I is a P (z)-intertwining map of
type

(
W3

VW

)
, it corresponds to a logarithmic intertwining operator Y = YI,p of the same type,

according to Proposition 4.8. Since L(−1)1 = 0, we have

d

dx
Y(1, x) = Y(L(−1)1, x) = 0.

Thus Y(1, x) is simply the constant map 1Y−1;0 : W → W3 (using the notation (3.24)),
and this map preserves (generalized) weights, by Proposition 3.20(b). By Proposition 4.8,
I = IY,p, so that

η(w) = I(1⊗ w)

= IY,p(1⊗ w)

= 1Y−1;0w

for w ∈ W . So η = 1Y−1;0 is a linear map from W to W3 preserving (generalized) weights.
Using the Jacobi identity (4.4) for the P (z)-intertwining map I and the fact that Y (u, x0)1 ∈
V [[x0]] for u ∈ V , we obtain

η(YW (u, x)w) = I(1⊗ YW (u, x)w)

= Y3(u, x)I(1⊗ w)− Resx0z
−1δ

(
x− x0

z

)
I(Y (u, x0)1⊗ w)

= Y3(u, x)I(1⊗ w)

= Y3(u, x)η(w)

for u ∈ V and w ∈ W , proving that η is a module map when V is a conformal vertex algebra,
and when V is Möbius, η also commutes with the action of sl(2), by (4.5). For w ∈ W ,

(η ◦ (YW (·, z)·))(1⊗ w) = η(YW (1, z)w)

= η(w)

= I(1⊗ w). (4.43)
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Using the Jacobi identity for P (z)-intertwining maps, we obtain

I(Y (u, x0)v ⊗ w)

= Resxx
−1
0 δ

(
x− z
x0

)
Y3(u, x)I(v ⊗ w)− Resxx

−1
0 δ

(
z − x
−x0

)
I(v ⊗ YW (u, x)w) (4.44)

for u, v ∈ V and w ∈ W . Since η is a module map and YW (·, z)· is a P (z)-intertwining map
of type

(
W
VW

)
, η ◦ YW (·, z)· is a P (z)-intertwining map of type

(
W3

VW

)
. In particular, (4.44)

holds when we replace I by η ◦ YW (·, z)·. Using (4.44) for v = 1 together with (4.43), we
obtain

(η ◦ (YW (·, z)·))(u⊗ w) = I(u⊗ w)

for u ∈ V and w ∈ W , proving (4.41), as desired. Thus (W,YW ;YW (·, z)·) is the P (z)-tensor
product of V and W in C.

Example 4.28 Let (W,YW ) be an object of C. In order to construct the P (z)-tensor product
W �P (z) V , recall from (3.77) and Proposition 3.44 that Ωp(YW ) is a logarithmic intertwin-

ing operator of type
(
W
WV

)
. It involves only integral powers of the formal variable and no

logarithms, and it is independent of p. In fact,

Ωp(YW )(w, x)v = exL(−1)YW (v,−x)w

for v ∈ V and w ∈ W . For q ∈ Z,

IΩp(YW ),q = Ωp(YW )(·, z)· : W ⊗ V → W

is a P (z)-intertwining map of the same type and is independent of q. We claim that
(W,YW ; Ωp(YW )(·, z)·) is the P (z)-tensor product of W and V in C. In fact, let (W3, Y3; I) be
a P (z)-product of W and V in C and suppose that there exists a module map η : W → W3

such that
η ◦ Ωp(YW )(·, z)· = I. (4.45)

For w ∈ W , we must have

η(w) = η(YW (1,−z)w)

= e−zL(−1)η(ezL(−1)YW (1,−z)w)

= e−zL(−1)η(Ωp(YW )(w, z)1))

= e−zL(−1)(η ◦ (Ωp(YW )(·, z)·))(w ⊗ 1)

= e−zL(−1)I(w ⊗ 1), (4.46)

and so η is unique if it exists. (Note that the right-hand side of (4.46) is indeed defined, in
view of (4.3).) We now define η : W → W 3 by (4.46). Consider the logarithmic intertwining
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operator Y = YI,q that corresponds to I by Proposition 4.8. Using Proposition 4.8, (4.9)–
(4.11), (3.76) and the equality

lq(−z) = log | − z|+ i(arg(−z) + 2πq)

=

{
log |z|+ i(arg z + π + 2πq), 0 ≤ arg z < π
log |z|+ i(arg z − π + 2πq), π ≤ arg z < 2π

=

{
lq(z) + πi, 0 ≤ arg z < π
lq(z)− πi, π ≤ arg z < 2π,

we have

e−zL(−1)I(w ⊗ 1) = e−zL(−1)Y(w, elq(z))1

= e−xL(−1)Y(w, x)1|xn=enlq(z), (log x)m=(lq(z))m, n∈C, m∈N

= eyL(−1)Y(w, e±πiy)1|yn=enlq(−z), (log y)m=(lq(−z))m, n∈C, m∈N,

where e±πi is e−πi when 0 ≤ arg z < π and is eπi when π ≤ arg z < 2π. Then by (3.77),
we see that η(w) = e−zL(−1)I(w ⊗ 1) is equal to Ω−1(Y)(1, elq(−z))w when 0 ≤ arg z < π
and is equal to Ω0(Y)(1, elq(−z))w when π ≤ arg z < 2π. By Proposition 3.44, Ω−1(Y) and
Ω0(Y) are logarithmic intertwining operators of type

(
W3

VW

)
. As in Example 4.27, we see

that Ω−1(Y)(1, y) and Ω0(Y)(1, y) are equal to 1
Ω−1(Y)
−1,0 and 1

Ω0(Y)
−1,0 , respectively, and these

maps preserve (generalized) weights. Therefore η is a linear map from W to W3 preserving
(generalized) weights. Using the Jacobi identity (4.4) for the P (z)-intertwining map I and
the fact that Y (u, x1)1 ∈ V [[x1]], we have

η(YW (u, x0)w) = e−zL(−1)I(YW (u, x0)w ⊗ 1)

= Resx1x
−1
0 δ

(
x1 − z
x0

)
e−zL(−1)Y3(u, x1)I(w ⊗ 1)

−Resx1x
−1
0 δ

(
z − x1

−x0

)
e−zL(−1)I(w ⊗ Y (u, x1)1)

= e−zL(−1)Y3(u, x0 + z)I(w ⊗ 1)

= Y3(u, x0)e−zL(−1)I(w ⊗ 1)

= Y3(u, x0)η(w)

for u ∈ V and w ∈ W , proving that η is a module map when V is a conformal vertex algebra.
As in Example 4.27, when V is Möbius, η also commutes with the action of sl(2), this time
by (4.8) together with (3.72) with x specialized to −z. For w ∈ W ,

(η ◦ (Ωp(YW )(·, z)·))(w ⊗ 1) = η(ezL(−1)YW (1,−z)w)

= ezL(−1)η(w)

= ezL(−1)e−zL(−1)I(w ⊗ 1)

= I(w ⊗ 1). (4.47)
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Since both η ◦ (Ωp(YW )(·, z)·) and I are P (z)-intertwining maps of type
(
W3

WV

)
, using the

Jacobi identity for P (z)-intertwining operators and (4.47) (cf. Example 4.27), we have

(η ◦ (Ωp(YW )(·, z)·))(w ⊗ v) = I(w ⊗ v)

for v ∈ V and w ∈ W , proving (4.45). Thus (W,YW ; Ωp(YW )(·, z)·) is the P (z)-tensor
product of W and V in C.

We discussed the important special class of finitely reductive vertex operator algebras in
the Introduction. In case V is a finitely reductive vertex operator algebra, the P (z)-tensor
product always exists, as we are about to establish (following [HL1] and [HL3]). As in the
Introduction, the definition of finite reductivity is:

Definition 4.29 A vertex operator algebra V is finitely reductive if

1. Every V -module is completely reducible.

2. There are only finitely many irreducible V -modules (up to equivalence).

3. All the fusion rules (the dimensions of the spaces of intertwining operators among
triples of modules) for V are finite.

Remark 4.30 In this case, every V -module is of course a finite direct sum of irreducible
modules. Also, the third condition holds if the finiteness of the fusion rules among triples of
only irreducible modules is assumed.

Remark 4.31 We are of course taking the notion of V -module so that the grading restriction
conditions are the ones described in Remark 2.27, formulas (2.90) and (2.91); in particular,
V -modules are understood to be C-graded. Recall from Remark 2.20 that for an irreducible
module, all its weights are congruent to one another modulo Z. Thus for an irreducible
module, our grading-truncation condition (2.90) amounts exactly to the condition that the
real parts of the weights are bounded from below. In [HL1]–[HL3], boundedness of the real
parts of the weights from below was our grading-truncation condition in the definition of the
notion of module for a vertex operator algebra. Thus the first two conditions in the notion of
finite reductivity are the same whether we use the current grading restriction conditions in
the definition of the notion of module or the corresponding conditions in [HL1]–[HL3]. As for
intertwining operators, recall from Remark 3.12 and Corollary 3.22 that when the first two
conditions are satisfied, the notion of (ordinary, non-logarithmic) intertwining operator here
coincides with that in [HL1] because the truncation conditions agree. Also, in this setting,
by Remark 3.23, the logarithmic and ordinary intertwining operators are the same, and so
the spaces of intertwining operators VW3

W1W2
and fusion rules NW3

W1W2
in Definition 3.17 have

the same meanings as in [HL1]. Thus the notion of finite reductivity for a vertex operator
algebra is the same whether we use the current grading restriction and truncation conditions
in the definitions of the notions of module and of intertwining operator or the corresponding
conditions in [HL1]–[HL3]. In particular, finite reductivity of V according to Definition 4.29
is equivalent to the corresponding notion, “rationality” (recall the Introduction) in [HL1]–
[HL3].
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Remark 4.32 For a vertex operator algebra V (in particular, a finitely reductive one), the
category M of V -modules coincides with the category Msg of strongly graded V -modules;
recall Notation 2.36.

For the rest of Section 4.1, let us assume that V is a finitely reductive vertex operator
algebra. We shall now show that P (z)-tensor products always exist in the categoryM =Msg

of V -modules, in the sense of Definition 4.15.
The considerations from here through (4.61) also hold, with natural adjustments, for

finite-dimensional modules for a semisimple Lie algebra (even though there are infinitely
many irreducible modules up to equivalence) or for a finite group or for a compact group,
etc., but in such classical contexts, one does not ordinarily express things in this way because
one knows a priori that the tensor product functors exist and satisfy natural associativity as
in (4.62), (4.63). What we do now shows how to build tensor product functors with knowledge
“only” of the spaces of intertwining maps, and uses this to motivate how to approach the
problem of constructing appropriate natural associativity isomorphisms, whether or not our
vertex algebra V is a finitely reductive vertex operator algebra.

Consider V -modules W1, W2 and W3. We know that

NW3
W1W2

= dimVW3
W1W2

<∞ (4.48)

and from Proposition 4.8, we also have

NW3
W1W2

= dimM[P (z)]W3
W1W2

= dimMW3
W1W2

<∞ (4.49)

(recall Definition 4.2).
The natural evaluation map

W1 ⊗W2 ⊗MW3
W1W2

→ W 3

w(1) ⊗ w(2) ⊗ I 7→ I(w(1) ⊗ w(2)) (4.50)

gives a natural map

F [P (z)]W3
W1W2

: W1 ⊗W2 → Hom(MW3
W1W2

,W 3) = (MW3
W1W2

)∗ ⊗W 3. (4.51)

Since dimMW3
W1W2

< ∞, (MW3
W1W2

)∗ ⊗ W3 is a V -module (with finite-dimensional weight

spaces) in the obvious way, and the map F [P (z)]W3
W1W2

is clearly a P (z)-intertwining map,
where we make the identification

(MW3
W1W2

)∗ ⊗W 3 = (MW3
W1W2

)∗ ⊗W3. (4.52)

This gives us a natural P (z)-product for the category M = Msg (recall Definition 4.13).
Moreover, we have a natural linear injection

i :MW3
W1W2

→ HomV ((MW3
W1W2

)∗ ⊗W3,W3)

I 7→ (f ⊗ w(3) 7→ f(I)w(3)) (4.53)
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which is an isomorphism if W3 is irreducible, since in this case,

HomV (W3,W3) ' C

(see [FHL], Remark 4.7.1). On the other hand, the natural map

h : HomV ((MW3
W1W2

)∗ ⊗W3,W3) → MW3
W1W2

η 7→ η ◦ F [P (z)]W3
W1W2

(4.54)

given by composition clearly satisfies the condition that

h(i(I)) = I, (4.55)

so that if W3 is irreducible, the maps h and i are mutually inverse isomorphisms and we have
the property that for any I ∈MW3

W1W2
, there exists a unique η such that

I = η ◦ F [P (z)]W3
W1W2

(4.56)

(cf. Definition 4.15).
Using this, we can now show, in the next result, that P (z)-tensor products always exist

for the category of modules for a finitely reductive vertex operator algebra, and we shall in
fact exhibit the P (z)-tensor product. Note that there is no need to assume that W1 and W2

are irreducible in the formulation or proof, but by Proposition 4.24, the case in which W1

and W2 are irreducible is in fact sufficient, and the tensor product operation is canonically
described using only the spaces of intertwining maps among triples of irreducible modules.

Proposition 4.33 Let V be a finitely reductive vertex operator algebra and let W1 and W2

be V -modules. Then (W1 �P (z) W2, YP (z);�P (z)) exists, and in fact

W1 �P (z) W2 =
k∐
i=1

(MMi
W1W2

)∗ ⊗Mi, (4.57)

where {M1, . . . ,Mk} is a set of representatives of the equivalence classes of irreducible V -
modules, and the right-hand side of (4.57) is equipped with the V -module and P (z)-product
structure indicated above. That is,

�P (z) =
k∑
i=1

F [P (z)]Mi
W1W2

. (4.58)

Proof From the comments above and the definitions, it is clear that we have a P (z)-product.
Let (W3, Y3; I) be any P (z)-product. Then W3 =

∐
j Uj where j ranges through a finite set

and each Uj is irreducible. Let πj : W3 → Uj denote the j-th projection. A module map

η :
∐k

i=1(MMi
W1W2

)∗ ⊗Mi → W3 amounts to module maps

ηij : (MMi
W1W2

)∗ ⊗Mi → Uj
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for each i and j such that Uj 'Mi, and I = η ◦�P (z) if and only if

πj ◦ I = ηij ◦ FMi
W1W2

for each i and j, the bars having the obvious meaning. But πj ◦ I is a P (z)-intertwining
map of type

(
Uj

W1W2

)
, and so ι ◦ πj ◦ I ∈ MMi

W1W2
, where ι : Uj

∼→ Mi is a fixed isomorphism.
Denote this map by τ . Thus what we finally want is a unique module map

θ : (MMi
W1W2

)∗ ⊗Mi →Mi

such that
τ = θ ◦ F [P (z)]Mi

W1W2
.

But we in fact have such a unique θ, by (4.55)–(4.56). �

Remark 4.34 By combining Proposition 4.33 with Proposition 4.8, we can express W1�P (z)

W2 in terms of VMi
W1W2

in place of MMi
W1W2

.

Remark 4.35 If we know the fusion rules among triples of irreducible V -modules, then from
Proposition 4.33 we know all the P (z)-tensor product modules, up to equivalence; that is,
we know the multiplicity of each irreducible V -module in each P (z)-tensor product module.
But recall that the P (z)-tensor product structure of W1 �P (z) W2 involves much more than
just the V -module structure.

As we discussed in the Introduction, the main theme of this work is to construct natural
“associativity” isomorphisms between triple tensor products of the shape W1 � (W2 �W3)
and (W1 �W2) �W3, for (generalized) modules W1, W2 and W3. In the finitely reductive
case, let W1, W2 and W3 be V -modules. By Proposition 4.33, we have, as V -modules,

W1 �P (z) (W2 �P (z) W3) = W1 �P (z)

(
k∐
i=1

Mi ⊗ (MMi
W2W3

)∗

)

=
k∐
i=1

(W1 �P (z) Mi)⊗ (MMi
W2W3

)∗

=
k∐
i=1

(
k∐
j=1

(MMj

W1Mi
)∗ ⊗Mj

)
⊗ (MMi

W2W3
)∗

=
k∐
j=1

(
k∐
i=1

(MMj

W1Mi
)∗ ⊗ (MMi

W2W3
)∗

)
⊗Mj

=
k∐
j=1

(
k∐
i=1

(MMj

W1Mi
⊗MMi

W2W3
)∗

)
⊗Mj (4.59)

23



and

(W1 �P (z) W2) �P (z) W3 =

(
k∐
i=1

Mi ⊗ (MMi
W1W2

)∗

)
�P (z) W3

=
k∐
i=1

(Mi �P (z) W3)⊗ (MMi
W1W2

)∗

=
k∐
i=1

(
k∐
j=1

(MMj

MiW3
)∗ ⊗Mj

)
⊗ (MMi

W1W2
)∗

=
k∐
j=1

(
k∐
i=1

(MMj

MiW3
)∗ ⊗ (MMi

W1W2
)∗

)
⊗Mj

=
k∐
j=1

(
k∐
i=1

(MMj

MiW3
⊗MMi

W1W2
)∗

)
⊗Mj. (4.60)

These two V -modules will be equivalent if for each j = 1, . . . , k, their Mj-multiplicities are
the same, that is, if

k∑
i=1

N
Mj

W1Mi
NMi
W2W3

=
k∑
i=1

NMi
W1W2

N
Mj

MiW3
. (4.61)

However, knowing only that these two V -modules are equivalent (knowing that � is “as-
sociative” in only a rough sense) is far from enough. What we need is a natural isomorphism
between these two modules analogous to the natural isomorphism

W1 ⊗ (W2 ⊗W3)
∼−→ (W1 ⊗W2)⊗W3 (4.62)

of vector spaces Wi determined by the natural condition

w(1) ⊗ (w(2) ⊗ w(3)) 7→ (w(1) ⊗ w(2))⊗ w(3) (4.63)

on elements (recall the Introduction). Suppose that W1, W2 and W3 are finite-dimensional
completely reducible modules for some Lie algebra. Then we of course have the analogue of
the relation (4.61). But knowing the equality of these multiplicities certainly does not give
the natural isomorphism (4.62)–(4.63).

Our intent to construct a natural isomorphism between the spaces (4.59) and (4.60)
(under suitable conditions) in fact provides a guide to what we need to do. In (4.59), each

spaceMMj

W1Mi
⊗MMi

W2W3
suggests combining an intertwining map Y1 of type

(
Mj

W1Mi

)
with an

intertwining map Y2 of type
(

Mi

W2W3

)
, presumably by composition:

Y1(w(1), z)Y2(w(2), z). (4.64)

But this will not work, since this composition does not exist because the relevant formal
series in z does not converge; we must instead take

Y1(w(1), z1)Y2(w(2), z2), (4.65)
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where the complex numbers z1 and z2 are such that

|z1| > |z2| > 0,

by analogy with, and generalizing, the situation in Corollary 2.42. The composition (4.65)
must be understood using convergence and “matrix coefficients,” again as in Corollary 2.42.

Similarly, in (4.60), each space MMj

MiW3
⊗MMi

W1W2
suggests combining an intertwining

map Y1 of type
(

Mj

MiW3

)
with an intertwining map of type Y2 of type

(
Mi

W1W2

)
:

Y1(Y2(w(1), z1 − z2)w(2), z2),

a (convergent) iterate of intertwining maps as in (2.117), with

|z2| > |z1 − z2| > 0,

not
Y1(Y2(w(1), z)w(2), z), (4.66)

which fails to converge.
The natural way to construct a natural associativity isomorphism between (4.59) and

(4.60) will in fact, then, be to implement a correspondence of the type

Y1(w(1), z1)Y2(w(2), z2) = Y1(Y2(w(1), z1 − z2)w(2), z2), (4.67)

as we have previewed in the Introduction (formula (1.36)) and also in (2.117). Formula (4.67)
expresses the existence and associativity of the general nonmeromorphic operator product
expansion, as discussed in Remark 2.44. Note that this viewpoint shows that we should not
try directly to construct a natural isomorphism

W1 �P (z) (W2 �P (z) W3)
∼−→ (W1 �P (z) W2) �P (z) W3, (4.68)

but rather a natural isomorphism

W1 �P (z1) (W2 �P (z2) W3)
∼−→ (W1 �P (z1−z2) W2) �P (z2) W3. (4.69)

This is what we will actually do in this work, in the general logarithmic, not-necessarily-
finitely-reductive case, under suitable conditions. The natural isomorphism (4.69) will act
as follows on elements of the completions of the relevant (generalized) modules:

w(1) �P (z1) (w(2) �P (z2) w(3)) 7→ (w(1) �P (z1−z2) w(2)) �P (z2) w(3), (4.70)

implementing the strategy suggested by the classical natural isomorphism (4.62)–(4.63).
Recall that we previewed this strategy in the Introduction.

It turns out that in order to carry out this program, including the construction of equal-
ities of the type (4.67) (the existence and associativity of the nonmeromorphic operator
product expansion) in general, we cannot use the realization of the P (z)-tensor product
given in Proposition 4.33, even when V is a finitely reductive vertex operator algebra. As in
[HL1]–[HL3] and [H], what we do instead is to construct P (z)-tensor products in a completely
different way (even in the finitely reductive case), a way that allows us to also construct the
natural associativity isomorphisms. Section 5 is devoted to this construction of P (z)- (and
Q(z)-)tensor products.
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4.2 Q(z)-intertwining maps and the notion of Q(z)-tensor product

We now generalize the notion of Q(z)-tensor product of modules from [HL1] to the setting
of the present work, parallel to what we did for the P (z)-tensor product above. Here we
give only the results that we will need later. Other results similar to those for P (z)-tensor
products certainly also carry over to the case of Q(z), for example, the results above on the
finitely reductive case, as were presented in [HL1].

Definition 4.36 Let (W1, Y1), (W2, Y2) and (W3, Y3) be generalized V -modules. A Q(z)-
intertwining map of type

(
W3

W1W2

)
is a linear map

I : W1 ⊗W2 → W 3

such that the following conditions are satisfied: the grading compatibility condition: for
β, γ ∈ Ã and w(1) ∈ W (β)

1 , w(2) ∈ W (γ)
2 ,

I(w(1) ⊗ w(2)) ∈ W (β+γ)
3 ; (4.71)

the lower truncation condition: for any elements w(1) ∈ W1, w(2) ∈ W2, and any n ∈ C,

πn−mI(w(1) ⊗ w(2)) = 0 for m ∈ N sufficiently large (4.72)

(which follows from (4.71), in view of the grading restriction condition (2.85); cf. (4.3)); the
Jacobi identity:

z−1δ

(
x1 − x0

z

)
Y o

3 (v, x0)I(w(1) ⊗ w(2))

= x−1
0 δ

(
x1 − z
x0

)
I(Y o

1 (v, x1)w(1) ⊗ w(2))

−x−1
0 δ

(
z − x1

−x0

)
I(w(1) ⊗ Y2(v, x1)w(2)) (4.73)

for v ∈ V , w(1) ∈ W1 and w(2) ∈ W2 (recall (2.57) for the notation Y o, and note that the
left-hand side of (4.73) is meaningful because any infinite linear combination of vn of the
form

∑
n<N anvn (an ∈ C) acts on any I(w(1)⊗w(2)), in view of (4.72)); and the sl(2)-bracket

relations: for any w(1) ∈ W1 and w(2) ∈ W2,

L(−j)I(w(1) ⊗ w(2)) =

j+1∑
i=0

(
j + 1

i

)
(−z)iI((L(−j + i)w(1))⊗ w(2))

−
j+1∑
i=0

(
j + 1

i

)
(−z)iI(w(1) ⊗ L(j − i)w(2)) (4.74)

for j = −1, 0 and 1 (note that if V is in fact a conformal vertex algebra, this follows
automatically from (4.73) by setting v = ω and taking Resx1Resx0x

j+1
0 ). The vector space

of Q(z)-intertwining maps of type
(

W3

W1W2

)
is denoted by

M[Q(z)]W3
W1W2

.
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Remark 4.37 As was explained in [HL1], the symbol Q(z) represents the Riemann sphere
C ∪ {∞} with one negatively oriented puncture at z and two ordered positively oriented
punctures at ∞ and 0, with local coordinates w − z, 1/w and w, respectively, vanishing
at these punctures. In fact, this structure is conformally equivalent to the Riemann sphere
C ∪ {∞} with one negatively oriented puncture at ∞ and two ordered positively oriented
punctures 1/z and 0, with local coordinates z/(zw − 1), (zw − 1)/z2w and z2w/(zw − 1)
vanishing at ∞, 1/z and 0, respectively.

Remark 4.38 In the case of C-graded ordinary modules for a vertex operator algebra, where
the grading restriction condition (2.90) for a module W is replaced by the (more restrictive)
condition

W(n) = 0 for n ∈ C with sufficiently negative real part (4.75)

as in [HL1] (and where, in our context, the abelian groups A and Ã are trivial), the notion
of Q(z)-intertwining map above agrees with the earlier one introduced in [HL1]; in this case,
the conditions (4.71) and (4.72) are automatic.

Remark 4.39 (cf. Remark 4.5) If W3 in Definition 4.36 is lower bounded, then (4.72) can
be strengthened to:

πnI(w(1) ⊗ w(2)) = 0 for <(n) sufficiently negative. (4.76)

In view of Remarks 4.3 and 4.37, we can now give a natural correspondence between P (z)-
and Q(z)-intertwining maps. (See the next three results.) Recall that since our generalized
V -modules are strongly graded, we have contragredient generalized modules of generalized
modules.

Proposition 4.40 Let I : W1 ⊗W2 → W 3 and J : W ′
3 ⊗W2 → W ′

1 be linear maps related
to each other by:

〈w(1), J(w′(3) ⊗ w(2))〉 = 〈w′(3), I(w(1) ⊗ w(2))〉 (4.77)

for any w(1) ∈ W1, w(2) ∈ W2 and w′(3) ∈ W ′
3. Then I is a Q(z)-intertwining map of type(

W3

W1W2

)
if and only if J is a P (z)-intertwining map of type

(
W ′1

W ′3W2

)
.

Proof Suppose that I is a Q(z)-intertwining map of type
(

W3

W1W2

)
. We shall show that J is

a P (z)-intertwining map of type
(

W ′1
W ′3W2

)
.

Since I satisfies the grading compatibility condition, it is clear that J also satisfies this
condition. For the lower truncation condition for J , it suffices to show that for any w(2) ∈
W

(β)
2 and w′(3) ∈ (W ′

3)(γ), where β, γ ∈ Ã, and any n ∈ C,

〈π[n−m]W
(−β−γ)
1 , J(w′(3) ⊗ w(2))〉 = 0

for m ∈ N sufficiently large, or that

〈w′(3), I(π[n−m]W
(−β−γ)
1 ⊗ w(2))〉 = 0 for m ∈ N sufficiently large. (4.78)
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But (4.78) follows immediately from (2.85).
Now we prove the Jacobi identity for J . The Jacobi identity for I gives

z−1δ

(
x1 − x0

z

)
〈w′(3), Y

o
3 (v, x0)I(w(1) ⊗ w(2))〉

= x−1
0 δ

(
x1 − z
x0

)
〈w′(3), I(Y o

1 (v, x1)w(1) ⊗ w(2))〉

−x−1
0 δ

(
z − x1

−x0

)
〈w′(3), I(w(1) ⊗ Y2(v, x1)w(2))〉 (4.79)

for any v ∈ V , w(1) ∈ W1, w(2) ∈ W2 and w′(3) ∈ W ′
3. By (2.73) the left-hand side is equal to

z−1δ

(
x1 − x0

z

)
〈Y ′3(v, x0)w′(3), I(w(1) ⊗ w(2))〉

So by (4.77), the identity (4.79) can be written as

z−1δ

(
x1 − x0

z

)
〈w(1), J(Y ′3(v, x0)w′(3) ⊗ w(2))〉

= x−1
0 δ

(
x1 − z
x0

)
〈Y o

1 (v, x1)w(1), J(w′(3) ⊗ w(2))〉

−x−1
0 δ

(
z − x1

−x0

)
〈w(1), J(w′(3) ⊗ Y2(v, x1)w(2))〉.

Applying (2.73) to the first term of the right-hand side we see that this can be written as

z−1δ

(
x1 − x0

z

)
〈w(1), J(Y ′3(v, x0)w′(3) ⊗ w(2))〉

= x−1
0 δ

(
x1 − z
x0

)
〈w(1), Y

′
1(v, x1)J(w′(3) ⊗ w(2))〉

−x−1
0 δ

(
z − x1

−x0

)
〈w(1), J(w′(3) ⊗ Y2(v, x1)w(2))〉

for any v ∈ V , w(1) ∈ W1, w(2) ∈ W2 and w′(3) ∈ W ′
3. This is exactly the Jacobi identity for

J .
The sl(2)-bracket relations can be proved similarly, as follows: The sl(2)-bracket relations

for I give

〈w′(3), L(−j)I(w(1) ⊗ w(2))〉 =

j+1∑
i=0

(
j + 1

i

)
(−z)i〈w′(3), I((L(−j + i)w(1))⊗ w(2))〉

−
j+1∑
i=0

(
j + 1

i

)
(−z)i〈w′(3), I(w(1) ⊗ L(j − i)w(2))〉
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for any w(1) ∈ W1, w(2) ∈ W2, w′(3) ∈ W ′
3 and j = −1, 0, 1. Using (2.75) and then applying

(4.77) we get

〈w(1), J(L′(j)w′(3) ⊗ w(2))〉 =

j+1∑
i=0

(
j + 1

i

)
(−z)i〈L(−j + i)w(1), J(w′(3) ⊗ w(2))〉

−
j+1∑
i=0

(
j + 1

i

)
(−z)i〈w(1), J(w′(3) ⊗ L(j − i)w(2))〉,

or

J(L′(j)w′(3) ⊗ w(2)) =

j+1∑
i=0

(
j + 1

i

)
(−z)iL(j − i)J(w′(3) ⊗ w(2))

−
j+1∑
i=0

(
j + 1

i

)
(−z)iJ(w′(3) ⊗ L(j − i)w(2)),

for j = −1, 0, 1. This is the alternative form (4.8) of the sl(2)-bracket relations for J . Hence
J is a P (z)-intertwining map.

The other direction of the proposition is proved by simply reversing the order of the
arguments. �

Let W1, W2 and W3 be generalized V -modules, as above. We shall call an element λ of
(W1 ⊗W2 ⊗W3)∗ Ã-compatible if

λ((W1)(β) ⊗ (W2)(γ) ⊗ (W3)(δ)) = 0

for β, γ, δ ∈ Ã satisfying
β + γ + δ 6= 0.

Recall from Definitions 2.18 and 2.32 that for a generalized V -module W , W ′ can be viewed
as a (usually proper) subspace of W ∗. We shall call a linear map

I : W1 ⊗W2 → W ∗
3

Ã-compatible if its image lies in W ′
3, that is,

I : W1 ⊗W2 → W ′
3, (4.80)

and if I satisfies the usual grading compatibility condition (4.2) or (4.71) for P (z)- or Q(z)-
intertwining maps. Now an element λ of (W1 ⊗ W2 ⊗ W3)∗ amounts exactly to a linear
map

Iλ : W1 ⊗W2 → W ∗
3 .

If λ is Ã-compatible, then for w(1) ∈ W (β)
1 , w(2) ∈ W (γ)

2 and w(3) ∈ W (δ)
3 such that

δ 6= −(β + γ),
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we have
〈w(3), Iλ(w(1) ⊗ w(2))〉 = λ(w(1) ⊗ w(2) ⊗ w(3)) = 0,

so that
Iλ(w(1) ⊗ w(2)) ∈ (W ′

3)(β+γ)

and Iλ is Ã-compatible. Similarly, if Iλ is Ã-compatible, then so is λ. Thus we have the
following straightforward result relating Ã-compatibility of λ with that of Iλ:

Lemma 4.41 The linear functional λ ∈ (W1 ⊗W2 ⊗W3)∗ is Ã-compatible if and only if Iλ
is Ã-compatible. The map given by λ 7→ Iλ is the unique linear isomorphism from the space
of Ã-compatible elements of (W1⊗W2⊗W3)∗ to the space of Ã-compatible linear maps from
W1 ⊗W2 to W ′

3 such that

〈w(3), Iλ(w(1) ⊗ w(2))〉 = λ(w(1) ⊗ w(2) ⊗ w(3))

for w(1) ∈ W1, w(2) ∈ W2 and w(3) ∈ W3. Similarly, there are canonical linear isomorphisms

from the space of Ã-compatible elements of (W1 ⊗W2 ⊗W3)∗ to the space of Ã-compatible
linear maps from W1⊗W3 to W ′

2 and to the space of Ã-compatible linear maps from W2⊗W3

to W ′
1 satisfying the corresponding conditions. In particular, there is a canonical linear

isomorphism from the space of Ã-compatible linear maps from W1 ⊗W2 to W3 to the space
of Ã-compatible linear maps from W ′

3 ⊗W2 to W ′
1 given by (4.77). �

Using this lemma and Proposition 4.40, we have:

Corollary 4.42 The formula (4.77) gives a canonical linear isomorphism between the space
of Q(z)-intertwining maps of type

(
W3

W1W2

)
and the space of P (z)-intertwining maps of type(

W ′1
W ′3W2

)
. �

Remark 4.43 If the generalized modules under consideration are lower bounded, then the
spaces of intertwining maps satisfy the stronger conditions (4.7) and (4.76).

We can now use Proposition 4.8 together with Proposition 4.40 and Corollary 4.42 to
construct a correspondence between the logarithmic intertwining operators of type

(
W ′1

W ′3W2

)
and the Q(z)-intertwining maps of type

(
W3

W1W2

)
; this generalizes the corresponding result in

the finitely reductive case, with ordinary modules, in [HL1]. Fix an integer p. Let Y be a

logarithmic intertwining operator of type
(

W ′1
W ′3W2

)
, and use (4.15) to define a linear map

IY,p : W ′
3 ⊗W2 → W ′

1;

by Proposition 4.8, this is a P (z)-intertwining map of the same type. Then use Proposition
4.40 and Corollary 4.42 to define a Q(z)-intertwining map

I
Q(z)
Y,p : W1 ⊗W2 → W 3
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of type
(

W3

W1W2

)
(uniquely) by

〈w′(3), I
Q(z)
Y,p (w(1) ⊗ w(2))〉W3 = 〈w(1), IY,p(w

′
(3) ⊗ w(2))〉W ′1

= 〈w(1),Y(w′(3), e
lp(z))w(2)〉W ′1 (4.81)

for all w(1) ∈ W1, w(2) ∈ W2, w′(3) ∈ W ′
3. (We are using the symbol Q(z) to distinguish this

from the P (z) case above.) Then the correspondence

Y 7→ I
Q(z)
Y,p

is an isomorphism from VW
′
1

W ′3W2
toM[Q(z)]W3

W1W2
. From Proposition 4.8 and (4.18), its inverse

is given by sending a Q(z)-intertwining map I of type
(

W3

W1W2

)
to the logarithmic intertwining

operator
YQ(z)
I,p : W ′

3 ⊗W2 → W ′
1[log x]{x}

defined by

〈w(1),YQ(z)
I,p (w′(3), x)w(2)〉W ′1

= 〈y−L′(0)x−L
′(0)w′(3), I(yL(0)xL(0)w(1) ⊗ y−L(0)x−L(0)w(2))〉W3

∣∣∣
y=e−lp(z)

for any w(1) ∈ W1, w(2) ∈ W2 and w′(3) ∈ W ′
3. Thus we have:

Proposition 4.44 For p ∈ Z, the correspondence

Y 7→ I
Q(z)
Y,p

is a linear isomorphism from the space VW
′
1

W ′3W2
of logarithmic intertwining operators of type(

W ′1
W ′3 W2

)
to the space M[Q(z)]W3

W1W2
of Q(z)-intertwining maps of type

(
W3

W1W2

)
. Its inverse is

given by
I 7→ YQ(z)

I,p .

�

Remark 4.45 If the generalized modules under consideration are lower bounded, then the
stronger conditions (3.43) and (4.76) hold.

We now give the definition of Q(z)-tensor product.

Definition 4.46 Let C1 be eitherMsg or GMsg. For W1,W2 ∈ ob C1, a Q(z)-product of W1

and W2 is an object (W3, Y3) of C1 together with a Q(z)-intertwining map I3 of type
(

W3

W1W2

)
.

We denote it by (W3, Y3; I3) or simply by (W3, I3). Let (W4, Y4; I4) be another Q(z)-product
of W1 and W2. A morphism from (W3, Y3; I3) to (W4, Y4; I4) is a module map η from W3 to
W4 such that the diagram
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W 3
-W 4

W1 ⊗W2
�
�

�
�
�+

Q
Q
Q
Q
Qsη̄

I3 I4

commutes, that is,
I4 = η ◦ I3.

where, as before, η is the natural map from W 3 to W 4 extending η.

Definition 4.47 Let C be a full subcategory of either Msg or GMsg. For W1,W2 ∈ ob C,
a Q(z)-tensor product of W1 and W2 in C is a Q(z)-product (W0, Y0; I0) with W0 ∈ ob C
such that for any Q(z)-product (W,Y ; I) with W ∈ ob C, there is a unique morphism from
(W0, Y0; I0) to (W,Y ; I). Clearly, a Q(z)-tensor product of W1 and W2 in C, if it exists, is
unique up to unique isomorphism. In this case we will denote it by

(W1 �Q(z) W2, YQ(z);�Q(z))

and call the object
(W1 �Q(z) W2, YQ(z))

the Q(z)-tensor product (generalized) module of W1 and W2 in C. Again we will skip the
phrase “in C” if the category C under consideration is clear in context.

The following immediate consequence of Definition 4.47 and Proposition 4.44 relates mod-
ule maps from a Q(z)-tensor product module with Q(z)-intertwining maps and logarithmic
intertwining operators:

Proposition 4.48 Suppose that W1 �Q(z) W2 exists. We have a natural isomorphism

HomV (W1 �Q(z) W2,W3)
∼→ M[Q(z)]W3

W1W2

η 7→ η ◦�Q(z)

and for p ∈ Z, a natural isomorphism

HomV (W1 �Q(z) W2,W3)
∼→ VW

′
1

W ′3W2

η 7→ YQ(z)
η,p

where YQ(z)
η,p = YQ(z)

I,p with I = η ◦�Q(z). �

Suppose that the Q(z)-tensor product (W1 �Q(z) W2, YQ(z);�Q(z)) of W1 and W2 exists.
We will sometimes denote the action of the canonical Q(z)-intertwining map

w(1) ⊗ w(2) 7→ �Q(z)(w(1) ⊗ w(2)) = �Q(z)(w(1), z)w(2) ∈ W1 �Q(z) W2 (4.82)

on elements simply by w(1) �Q(z) w(2):

w(1) �Q(z) w(2) = �Q(z)(w(1) ⊗ w(2)) = �Q(z)(w(1), z)w(2). (4.83)

Using Propositions 3.44 and 3.46, we have the following result, generalizing Proposition
4.9 and Corollary 4.10 in [HL1]:
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Proposition 4.49 For any integer r, there is a natural isomorphism

Br : VW3
W1W2

→ VW
′
1

W ′3W2

defined by the condition that for any logarithmic intertwining operator Y in VW3
W1W2

and
w(1) ∈ W1, w(2) ∈ W2, w′(3) ∈ W ′

3,

〈w(1), Br(Y)(w′(3), x)w(2)〉W ′1
= 〈e−x−1L(1)w′(3),Y(exL(1)w(1), x

−1)e−xL(1)e(2r+1)πiL(0)(x−L(0))2w(2)〉W3 . (4.84)

Proof From Proposition 3.44, for any integer r1 we have an isomorphism Ωr1 from VW3
W1W2

to VW3
W2W1

, and from Proposition 3.46, for any integer r2 we have an isomorphism Ar2 from

VW3
W2W1

to VW
′
1

W2W ′3
. By Proposition 3.44 again, for any integer r3 there is an isomorphism,

which we again denote Ωr3 , from VW
′
1

W2W ′3
to VW

′
1

W ′3W2
. Thus for any triple (r1, r2, r3) of integers,

we have an isomorphism Ωr3 ◦ Ar2 ◦ Ωr1 from VW3
W1W2

to VW
′
1

W ′3W2
. Let Y be a logarithmic

intertwining operator in VW3
W1W2

and w(1), w(2), w
′
(3) elements of W1, W2, W ′

3, respectively.
From the definitions of Ωr1 , Ar2 and Ωr3 , we have

〈(Ωr3 ◦ Ar2 ◦ Ωr1)(Y)(w′(3), x)w(2), w(1)〉W1 =

= 〈exL(−1)Ar2(Ωr1(Y))(w(2), e
(2r3+1)πix)w′(3), w(1)〉W1

= 〈Ar2(Ωr1(Y))(w(2), e
(2r3+1)πix)w′(3), e

xL(1)w(1)〉W1

= 〈w′(3),Ωr1(Y)(e−xL(1)e(2r2+1)πiL(0)e−2(2r3+1)πiL(0)(x−L(0))2w(2),

e−(2r3+1)πix−1)exL(1)w(1)〉W3

= 〈w′(3), e
−x−1L(−1)Y(exL(1)w(1), e

(2r1+1)πie−(2r3+1)πix−1) ·
·e−xL(1)e(2r2+1)πiL(0)e−2(2r3+1)πiL(0)(x−L(0))2w(2)〉W3

= 〈e−x−1L(1)w′(3),Y(exL(1)w(1), e
2(r1−r3)πix−1) ·

·e−xL(1)e(2(r2−2r3−1)+1)πiL(0)(x−L(0))2w(2)〉W3 . (4.85)

From (4.85) we see that Ωr3 ◦ Ar2 ◦ Ωr1 depends only on r2 − 2r3 − 1 and r1 − r3, and the
operators Ωr3 ◦ Ar2 ◦ Ωr1 with different r1 − r3 but the same r2 − 2r3 − 1 differ from each
other only by automorphisms of VW3

W1W2
(recall Remarks 3.30, 3.40 and 3.45). Thus for our

purpose, we need only consider those isomorphisms such that r1− r3 = 0. Given any integer
r, we choose two integers r2 and r3 such that r = r2 − 2r3 − 1 and we define

Br = Ωr3 ◦ Ar2 ◦ Ωr3 . (4.86)

From (4.85) we see that Br is independent of the choices of r2 and r3 and that (4.84) holds.
�

Combining the last two results, we obtain:
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Corollary 4.50 For any W1,W2,W3 ∈ ob C such that W1 �Q(z) W2 exists and any integers
p and r, we have a natural isomorphism

HomV (W1 �Q(z) W2,W3)
∼→ VW3

W1W2

η 7→ B−1
r (YQ(z)

η,p ). � (4.87)

4.3 P (z)-tensor products and Q(z−1)-tensor products

Here we prove the following result:

Theorem 4.51 Let W1 and W2 be objects of a full subcategory C of either Msg or GMsg.
Then the P (z)-tensor product of W1 and W2 exists if and only if the Q(z−1)-tensor product
of W1 and W2 exists.

Proof Recalling our choice of branch (4.9), let

p = − log(z−1) + log z

2πi
.

Then p is an integer and we have

−(log(z−1) + 2πpi) = log z,

and
e−n(log(z−1)+2πpi) = en log z

for n ∈ C.
From Propositions 4.8, 4.49 and 4.44, we see that for W1,W2,W3 ∈ ob C, there is a linear

isomorphism µW3
W1W2

:M[P (z)]W3
W1W2

→M[Q(z−1)]W3
W1W2

defined by

µW3
W1W2

(I) = I
Q(z−1)
B2p(YI,0),p

for I ∈ M[P (z)]W3
W1W2

. By definition, µW3
W1W2

(I) is determined uniquely by (recalling (4.9)–
(4.10))

〈w′(3), µ
W3
W1W2

(I)(w(1) ⊗ w(2))〉

= 〈w′(3), I
Q(z−1)
B2p(YI,0),p(w(1) ⊗ w(2))〉

= 〈w(1), B2p(YI,0)(w′(3), e
lp(z−1))w(2)〉

= 〈w(1), B2p(YI,0)(w′(3), e
log(z−1)+2πpi)w(2)〉

= 〈e−zL(1)w′(3),YI,0(ez
−1L(1)w(1), e

log z)e−z
−1L(1)e(2(2p)+1)iπL(0)e−2(log z−1+2πpi))L(0)w(2)〉

= 〈e−zL(1)w′(3),YI,0(ez
−1L(1)w(1), z)e

−z−1L(1)eiπL(0)e−2(log z−1)L(0)w(2)〉

= 〈e−zL(1)w′(3), I((ez
−1L(1)w(1))⊗ (e−z

−1L(1)eiπL(0)e−2(log z−1)L(0)w(2)))〉
(4.88)
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for w(1) ∈ W1, w(2) ∈ W2 and w′(3) ∈ W ′
3. From (4.88), we also see that for J ∈M[Q(z−1)]W3

W1W2
,

(µW3
W1W2

)−1(J) is determined uniquely by

〈w′(3), (µ
W3
W1W2

)−1(J)(w(1) ⊗ w(2))〉

= 〈ezL(1)w′(3), J((e−z
−1L(1)w(1))⊗ (e2(log z−1)L(0)e−iπL(0)ez

−1L(1)w(2)))〉
(4.89)

for w(1) ∈ W1, w(2) ∈ W2 and w′(3) ∈ W ′
3.

Assume that the P (z)-tensor product (W1 �P (z) W2, YP (z);�P (z)) exists. Then

�Q(z−1) = µ
W1�P (z)W2

W1W2
(�P (z)) = I

Q(z−1)
B2p(Y�P (z),0

),p

is a Q(z−1)-intertwining map of type
(
W1�P (z)W2

W1W2

)
. We claim that (W1�P (z)W2, YP (z);�Q(z−1))

is the Q(z−1)-tensor product of W1 and W2.
In fact, for any Q(z−1)-product (W,Y ; I) of W1 and W2,

(µWW1W2
)−1(I) = I

B−1
2p (YQ(z−1)

I,p ),0

is a P (z)-intertwining map of type
(

W
W1W2

)
and thus (W,Y ; (µWW1W2

)−1(I)) is a P (z)-product of
W1 and W2. Since (W1�P (z)W2, YP (z);�P (z)) is the P (z)-tensor product of W1 and W2, there
is a unique morphism of P (z)-products from (W1�P (z)W2, YP (z);�P (z)) to (W,Y ; (µWW1W2

)−1(I)),
that is, there exists a unique module map

ηP (z) : W1 �P (z) W2 → W

such that
(µWW1W2

)−1(I) = ηP (z) ◦�P (z),

or equivalently,

I = µWW1W2
(ηP (z) ◦�P (z))

= µWW1W2
(ηP (z) ◦ (µ

W1�P (z)W2

W1W2
)−1(µ

W1�P (z)W2

W1W2
(�P (z))))

= µWW1W2
(ηP (z) ◦ (µ

W1�P (z)W2

W1W2
)−1(�Q(z−1))). (4.90)

From (4.88) and (4.89), we see that the right-hand side of (4.90) is determined uniquely
by

〈w′, (µWW1W2
(ηP (z) ◦ (µ

W1�P (z)W2

W1W2
)−1(�Q(z−1))))(w(1) ⊗ w(2))〉

= 〈e−zL(1)w′, (ηP (z) ◦ (µ
W1�P (z)W2

W1W2
)−1(�Q(z−1)))

((ez
−1L(1)w(1))⊗ (e−z

−1L(1)eiπL(0)e−2(log z−1)L(0)w(2)))〉

= 〈e−zL(1)w′, ηP (z)((µ
W1�P (z)W2

W1W2
)−1(�Q(z−1))
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((ez
−1L(1)w(1))⊗ (e−z

−1L(1)eiπL(0)e−2(log z−1)L(0)w(2))))〉

= 〈(ηP (z))′(e−zL(1)w′), (µ
W1�P (z)W2

W1W2
)−1(�Q(z−1))

((ez
−1L(1)w(1))⊗ (e−z

−1L(1)eiπL(0)e−2(log z−1)L(0)w(2)))〉
= 〈(ηP (z))′(w′),�Q(z−1)(w(1) ⊗ w(2))〉
= 〈w′, (ηP (z) ◦�Q(z−1))(w(1) ⊗ w(2))〉 (4.91)

for w(1) ∈ W1, w(2) ∈ W2 and w′ ∈ W ′. From (4.90) and (4.91), we see that

I = ηP (z) ◦�Q(z−1). (4.92)

We also need to show the uniqueness—that any module map η : W1 �P (z) W2 → W such
that I = η ◦ �Q(z−1) must be equal to ηP (z). For this, it is sufficient to show that η1 = 0,
where

η1 = ηP (z) − η,

given that
η1(w(1) �Q(z−1) w(2)) = 0

for w(1) ∈ W1 and w(2) ∈ W2. But for w′ ∈ (W1 �P (z) W2)′

〈ezL(1)w′, η1(w(1) �Q(z−1) w(2))〉 = 0,

so that

〈ezL(1)η1
′(w′), w(1) �Q(z−1) w(2)〉 = 〈η1

′(ezL(1)w′), w(1) �Q(z−1) w(2)〉 = 0.

From the definition of �Q(z) and (4.88), we have

〈ezL(1)η1
′(w′), w(1) �Q(z−1) w(2)〉

= 〈η1
′(w′), (ez

−1L(1)w(1)) �P (z) (e−z
−1L(1)eiπL(0)e−2(log z−1)L(0)w(2))〉,

and thus

〈η1
′(w′), (ez

−1L(1)w(1)) �P (z) (e−z
−1L(1)eiπL(0)e−2(log z−1)L(0)w(2))〉 = 0. (4.93)

Since ez
−1L(1) and e−z

−1L(1)eiπL(0)e−2(log z−1)L(0) are invertible operators on W1 and W2, (4.93)
for all w(1) ∈ W1, w(2) ∈ W2 is equivalent to

〈η1
′(w′), w(1) �P (z) w(2)〉 = 0

for all w(1) ∈ W1, w(2) ∈ W2. Thus by Proposition 4.23,

η1
′(w′) = 0
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for all homogeneous w′ and hence for all w′, showing that indeed η1 = 0 and proving the
uniqueness of η. Thus (W1 �P (z) W2, YP (z);�Q(z−1)) is the Q(z−1)-tensor product of W1 and
W2.

Conversely, by essentially reversing these arguments we see that if the Q(z−1)-tensor
product of W1 and W2 exists, then so does the P (z)-tensor product. �

From Theorem 4.51 and Proposition 4.21, we immediately obtain:

Corollary 4.52 Let W1 and W2 be objects of a full subcategory C of either Msg or GMsg.
Then the P (z)-tensor product of W1 and W2 exists if and only if the Q(z)-tensor product of
W1 and W2 exists. �

Remark 4.53 From the proof we see that as generalized V -modules, W1 �P (z) W2 and
W1 �Q(z−1) W2 are equivalent, but the main issue is that the intertwining maps �P (z)

and �Q(z−1), which encode the geometric information, are very different; as generalized
V -modules only, W1 �P (z) W2 and W1 �Q(z) W2 are equivalent. Compare this with Remark
4.22.
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