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Affine Lie algebras and modules

Affine Lie algebras

Let g be a complex simple Lie algebra of rank r and (·, ·)
the invariant symmetric bilinear form on g.
The affine Lie algebra ĝ is the vector space
g⊗ C[t , t−1]⊕ Ck equipped with the bracket operation

[a⊗ tm,b ⊗ tn] = [a,b]⊗ tm+n + (a,b)mδm+n,0k,

[a⊗ tm,k] = 0,

for a,b ∈ g and m,n ∈ Z.
Let ĝ± = g⊗ t±1C[t±1]. Then

ĝ = ĝ− ⊕ g⊕ Ck⊕ ĝ+.
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ĝ = ĝ− ⊕ g⊕ Ck⊕ ĝ+.
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Let ĝ± = g⊗ t±1C[t±1]. Then
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Modules

If k acts as a complex number ` on a ĝ-module, then ` is
called the level of the module.
Let M be a g-module and let ` ∈ C. Let ĝ+ act on M trivially
and let k act as the scalar multiplication by `. Then M
becomes a g⊕ Ck⊕ ĝ+-module.
We have a C-graded induced ĝ-module

M̂` = U(ĝ)⊗U(g⊕Ck⊕ĝ+) M.
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Modules

Let h be a Cartan subalgebra of g. For λ ∈ h∗, let L(λ) be
the irreducible highest weight g-module with the highest
weight λ.

We use M(`, λ) to denote the ĝ-module L̂(λ)`.
Let J(`, λ) be the maximal proper submodule of M(`, λ)
and L(`, λ) = M(`, λ)/J(`, λ).
L(`, λ) is the unique irreducible graded ĝ-module such that
k acts as ` and the space of all elements annihilated by ĝ+
is isomorphic to the g-module L(λ).
M(`,0) and L(`,0) have natural structures of vertex
operator algebras. M(`, λ) and L(`, λ) are M(`,0)-modules
and L(`, λ) is an L(`,0)-module for dominant integral λ.
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k acts as ` and the space of all elements annihilated by ĝ+
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Module categories

Let h and h∨ be the Coxeter number and dual Coxeter
number, respectively, of g.
For ` ∈ C such that `+ h∨ 6∈ Q≥0, let O` be the category of
all the ĝ-modules of level ` having a finite composition
series all of whose irreducible subquotients are of the form
L(`, λ) for dominant integral λ ∈ h∗.
For ` ∈ Z+, let Õ` be the category of ĝ-modules of level `
that are isomorphic to direct sums of irreducible ĝ-modules
of the form L(`, λ) for dominant integral λ ∈ h∗ such that
(λ, θ) ≤ `, where θ is the highest root of g.
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Module categories

Admissible modules for affine Lie algebras were studied
first by Kac and Wakimoto. The level of these modules are
called admissible numbers.
Let ` be an admissible number, that is, `+ h∨ = p

q for
p,q ∈ Z+, (p,q) = 1, p ≥ h∨ if (r∨,q) = 1 and p ≥ h if
(r∨,q) = r∨, where r∨ is the "lacety" or lacing number of g,
that is, the maximum number of edges in the Dynkin
diagram of g.
For such an admissible number, let O`,ord be the category
of ĝ-modules of level ` that are isomorphic to direct sums of
irreducible modules for the vertex operator algebra L(`,0).
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of ĝ-modules of level ` that are isomorphic to direct sums of
irreducible modules for the vertex operator algebra L(`,0).



Affine Lie algebras and tensor categories

Affine Lie algebras and modules

Conjectures by Moore and Seiberg and their proofs

The work of Moore-Seiberg on two-dimensional conformal
field theory led to a conjecture: The category Õ` for
` ∈ Z+ has a natural structure of a modular tensor
category in the sense of Turaev. This conjecture was
proved by me in 2005.
Moore and Seiberg obtained this conjecture based on two
major conjectures on chiral rational conformal field
theories: Operator product expansion of chiral vertex
operators and modular invariance of chiral vertex
operators. These conjectures were proved by me in 2002
and 2003, respectively.
Mathematically, chiral vertex operators are called
intertwining operators. Conformal field theory can be
viewed as the study of intertwining operators.
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Tensor categories

A tensor category is an abelian category with a tensor
product bifunctor, a unit object, an associaitivity
isomorphism, a left unit isomorphism and a right unit
isomorphism such that the pentagon and triangle diagram
are commutative.
A braided tensor category is a tensor category with a
braiding isomorphism such that two hexagon diagrams are
commutative.
A tensor category is rigid if every object has a two-sided
dual object.
A ribbon tensor category is a rigid braided tensor category
with a twist satisfying the balancing axioms.
A modular tensor category is a semisimple ribbon tensor
category such that the matrix of the Hopf link invariants is
invertible.
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The case ` + h∨ 6∈ Q≥0

The construction of Kazhdan-Lusztig

Theorem (Kazhdan-Lusztig)

Let ` ∈ C such that `+ h∨ 6∈ Q≥0. Then O` has a natural rigid
braided tensor category structure. Moreover, this rigid braided
tensor category is equivalent to the rigid braided tensor
category of finite-dimensional integrable modules for a quantum
group constructed from g at q = e

iπ
`+h∨ .

This result was announced in 1991. The detailed
constructions were published in 1993 and 1994.
The construction of the rigid braided tensor category
structure, especially the rigidity, depends heavily on the
results on the quantum group side.
This construction cannot be adapted directly to give
constructions for the module categories at other levels.
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The case ` + h∨ 6∈ Q≥0

The vertex-operator-algebraic construction

In 2008, using the logarithmic generalization by
H.-Lepowsky-Zhang of the semisimple tensor category
theory of H.-Lepowsky and of mine, Zhang gave a
vertex-operator-algebraic construction of the braided
tensor category structure in this case (with a mistake
corrected by me in 2017).
In this vertex-operator-algebraic construction, the main
work is the proof of the associaitivity of logarithmic
intertwining operators (logarithmic operator product
expansion) and the construction of the associativity
isomorphism.
Open problem: Give a proof of the rigidity in this case in
the framework of the logarithmic tensor category theory of
H.-Lepowsky-Zhang, without using the results for modules
for the corresponding quantum group.
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H.-Lepowsky-Zhang, without using the results for modules
for the corresponding quantum group.
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Affine Lie algebras and tensor categories

The case ` ∈ Z+

The braided tensor category structure

This ` ∈ Z+ case is what the original conjectures of Moore
and Seiberg were about.
In 1997, Lepowsky and I gave a construction of the braided
tensor category structure on the category Õ` when ` ∈ Z+,
using the semisimple tensor product bifunctor constructed
by H.-Lepowsky and the associativity isomorphism
constructed by me in the general setting of module
categories for a vertex operator algebra satisfying suitable
conditions.
In 2001, using the method developed in an early work of
Beilinson-Feigin-Mazur in 1991, Bakalov and Kirillov, Jr.
also gave in a book a construction of this braided tensor
category structure on the category Õ` in this case.
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Affine Lie algebras and tensor categories

The case ` ∈ Z+

Rigidity and modularity

Indeed Beilinson and other people knew how to construct
the braided tensor category structure in mid 90’s. But
Beilinson informed Lepowsky and me in 1996 that he did
not know how to prove the rigidity.
Bakalov and Kirillov, Jr. also did not give a proof of the
rigidity and the nondegeneracy property, though these are
stated as parts of the main theorem in their book.
Since there are a lot of confusions, let me quote their
words about rigidity in their book: “As a matter of fact, we
have not yet proved the rigidity (recall that modular functor
only defines weak rigidity); however, it can be shown that
this category is indeed rigid.” They also said explicitly in
private communications in 2012 that they do not know how
to prove the rigidity.
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The case ` ∈ Z+

Rigidity and modularity

Theorem (H.)

Let ` ∈ Z+. Then the category Õ` has a natural structure of a
modular tensor category.

This theorem was proved in 2004 and posted to the arXiv
in 2005.
The proof of this theorem is based on a formula used by
me to derive the Verlinde formula.
This was the first indication that the rigidity is in fact deeply
related to the Verlinde formula which in turn is a
consequence of the operator product expansion
(associaitivity) and modular invariance of intertwining
operators.
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Let ` ∈ Z+. Then the category Õ` has a natural structure of a
modular tensor category.

This theorem was proved in 2004 and posted to the arXiv
in 2005.
The proof of this theorem is based on a formula used by
me to derive the Verlinde formula.
This was the first indication that the rigidity is in fact deeply
related to the Verlinde formula which in turn is a
consequence of the operator product expansion
(associaitivity) and modular invariance of intertwining
operators.



Affine Lie algebras and tensor categories

The case ` ∈ Z+

Rigidity and modularity

Theorem (H.)

Let ` ∈ Z+. Then the category Õ` has a natural structure of a
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The case ` ∈ Z+

Another construction

Assuming the existence of the rigid braided tensor
category structure on Õ`, Finkelberg in1996 gave a proof
that this rigid braided tensor categroy is equivalent to a
semisimple subquotient of a rigid braided tensor category
of modules for a quantum group constructed from g, using
the equivalence constructed by Kazhdan-Lusztig.
This work had been reinterpreted as giving a construction
of the rigid braided tensor category structure on Õ`.
But in 2012, I found a gap in Finkelberg’s paper. I also told
Finkelberg through Ostrik that I have to use the Verlinde
formula to prove the rigidity. Then instead of obtaining the
Verlinde formula in the affine Lie algebra case as a major
consequence, Finkelberg filled the gap by using this
formula whose proofs had been given using other methods
by Faltings, Teleman and me.
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Direct construction of the equivalence of categories
in the case ` ∈ Z+

Even after the correction in 2013, Finkelberg’s proof of the
rigidity is not complete. There are a few cases, including
the g = e8 and ` = 2 case, that his method does not work.
Finkelberg’s equivalence between the modular tensor
category Õ` and a semisimple subquotient of a rigid
braided tensor category of modules for a quantum group is
also not complete because of the same few cases,
including the g = e8 and ` = 2 case in which his method
does not work.
Open problem: Find a direct construction of this
equivalence without using the equivalence given by
Kazhdan-Lusztig so that this equivalence covers all the
cases, including the important g = e8 and ` = 2 case.
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Affine Lie algebras and tensor categories

The admissible case

The braided tensor category structure

Theorem (Creutzig-H.-Yang)
Let ` be an admissible number. Then the category O`,ord has a
natural structure of a braided tensor category with a twist.

This theorem was proved in 2017 using the logarithmic
tensor category theory of H.-Lepowsky-Zhang, some
results of Kazhdan-Lusztig and the recent results of
Arakawa.
The logarithmic tensor category theory of
H.-Lepowsky-Zhang reduces the construction of such a
braided tensor category structure to the verification of
several conditions.
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The admissible case

The braided tensor category structure

This is a semisimple category. At first one might want to
use the early tensor category theory for semisimple
category of modules by Lepowsky and me and by myself.
My main result in 1994 in this semisimple theory
constructing the associativity isomorphism in this theory
needs a convergence and extension condition without
logarithm.
If generalized modules (not necessarily lower bounded) for
the affine Lie algebra vertex operator algebras in this case
are all complete reducible, a result of mine in 2002 can be
applied to this case to conclude that convergence and
extension condition without logarithm holds.
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The admissible case

The braided tensor category structure

But in this case, we do not have such a strong complete
reducibility theorem and thus we cannot directly use this
semisimple theory.
Instead, we use the logarithmic generalization of the
semisimple theory, even though our theory is semisimple.
In this theory, we need only a convergence and extension
property possibly with logarithm. Then we construct the
associativity isomorphism from logarithmic intertwining
operators.
Finally, since the modules in the category are all
semisimple, the logarithmic intertwining operators are all
ordinary. In particular, our theory still has no logarithm.
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The braided tensor category structure

Another condition that needs to be verified is that the
category should be closed under a suitable tensor product
operation. This condition is verified using a result of
Arakawa in 2012.
The most subtle condition is the condition that suitable
submodules in the dual space of the tensor product of two
modules in O`,ord should also be in O`,ord.
The verification of this condition uses my modification in
2017 of one main result in the theory of
H.-Lepowsky-Zhang that had been used to correct a
mistake in Zhang’s construction in the case of
`+ h∨ 6∈ Q≥0. It also uses some results of
Kazhdan-Lusztig in 1993 and Arakawa in 2012.
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The admissible case

Rigidity and modularity in the case of g = sl2

Theorem (Creutzig-H.-Yang)

Let g = sl2 and ` = −2 + p
q with p,q coprime positive integers.

Then the braided tensor category O`,ord is a ribbon tensor
category and is a modular tensor category if and only if q is
odd.

The idea of the proof of this theorem is to prove that this
tensor category is braided equivalent to a full tensor
subcategory of the modular tensor category of modules for
a minimal Virasoro vertex operator algebra. The modular
tensor category structures for minimal Virasoro vertex
operator algebras were constructed by me in 2005.
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Affine Lie algebras and tensor categories

The admissible case

Two conjectures in the case of admissible case

Let g be a simple Lie algebra and ` an admissible number.
Then in particular, ` = −h∨ + p

q with coprime positive
integers p,q.
Conjecture: The braided tensor category structure on
O`,ord is rigid and thus is a ribbon tensor category.
Conjecture: The ribbon tensor category structure on O`,ord
is modular except for the following list:

1 g ∈ {sl2n, so2n, e7, spn} and q even.
2 g = so4n+1 and q = 0 mod 4.
3 g = so4n+3 and q = 2 mod 4.
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A conjecture on equivalence and an open problem
in the case of admissible case

These conjectures follow from a conjecture on the
equivalence of these braided tensor categories with the
braided tensor categories coming from module categories
for quantum groups constructed from the same
finite-dimensional simple Lie algebra g. The rigidity and
modularity of these tensor categories were established in
the quantum group side by Sawin in 2003.
Conjecture: The category O`,ord and the
semi-simplification C`(g) of the category of tilting modules
for Uq(g) are equivalent as braided tensor categories,

where q = e
πi

r∨(`+h∨) .
Open problem: Let ` be an admissible number. What is
the tensor category structure on O`?
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structures can we construct? Are they rigid, semisimple or
modular?
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