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Abstract

Let V be a simple vertex operator algebra satisfying the following
conditions: (i) V() = 0 for n < 0, V(o) = C1 and V' is isomorphic to V'
as a V-module. (ii) Every N-gradable weak V-module is completely
reducible. (iii) V' is Cs-cofinite. (In the presence of Condition (i),
Conditions (ii) and (iii) are equivalent to a single condition, namely,
that every weak V-module is completely reducible.) Using the results
obtained by the author in the formulation and proof of the general
version of the Verlinde conjecture and in the proof of the Verlinde
formula, we prove that the braided tensor category structure on the
category of V-modules is rigid, balanced and nondegenerate. In par-
ticular, the category of V-modules has a natural structure of modular
tensor category. We also prove that the tensor-categorical dimension
of an irreducible V-module is the reciprocal of a suitable matrix ele-
ment of the fusing isomorphism under a suitable basis.

0 Introduction

In the present paper, we prove the rigidity and modularity of the braided
tensor category of modules for a vertex operator algebra satisfying certain
natural conditions (see below). Finding proofs of these properties has been
an open problem for many years. Our proofs in this paper are based on
the results obatined by the author [H7] in the formulation and proof of the
general version of the Verlinde conjecture and in the proof of the Verlinde
formula.

In 1988, Moore and Seiberg [MS1] [MS2] derived a system of polynomial
equations from the axioms for rational conformal field theories. They showed



that the Verlinde conjecture [V] is a consequence of these equations. Inspired
by an observation of Witten on an analogy with Mac Lane’s coherence, Moore
and Seiberg [MS2] also demonstrated that the theory of these polynomial
equations is actually a conformal-field-theoretic analogue of the theory of
the tensor categories. This work of Moore and Seiberg greatly advanced
our understanding of the structure of conformal field theories and the name
“modular tensor category” was suggested by I. Frenkel for the theory of
these Moore-Seiberg equations. Later, the precise notion of modular tensor
category was introduced to summarize the properties of these polynomial
equations and has played a central role in the development of conformal field
theories and three-dimensional topological field theories. See for example [T]
and [BK] for the theory of modular tensor categories, their applications and
references to many important works of mathematicians and physicists.

Mathematically, Kazhdan and Lusztig [KL1]-[KL5] first constructed a
rigid braided tensor category structure on a suitable (nonsemisimple) cate-
gory of modules of a negative level for an affine Lie algebra. Finkelberg [F1]
[F'2] transported these braided tensor category structures to the category of
integrable highest weight modules of positive integral levels (with a few excep-
tions) for the same affine Lie algebra. Direct constructions of these braided
tensor category structures were also given by Lepowsky and the author [HL5|
based on the results in [HL1]-[HL4] [H1] and by Bakalov and Kirillov [BK].
In the general case, for a vertex operator algebra V satisfying suitable con-
ditions (weaker than the conditions in the present paper), the braided tensor
category structure on the category of V-modules was constructed by Lep-
owsky and the author and by the author in a series of papers [HL1]-[HL4]
[H1] [H5]. This construction has been generalized to the nonsemisimple (log-
arithmic) case by Lepowsky, Zhang and the author recently [HLZ1]| [HLZ2],
and as an application, a different construction of Kazhdan-Lusztig’s braided
tensor category structure has been given using this logarithmic theory by
Zhang [Zhal| [Zha2].

To prove that a semisimple braided tensor category actually carries a
modular tensor category structure, we need to prove that it is rigid, balanced
and nondegenerate. The balancing isomorphisms or twists in these braided
tensor categories are actually trivial to construct and the balancing axioms
are easy to prove. On the other hand, the rigidity has been an open problem
for many years after the braided tensor category structure on the category
of modules for a vertex operator algebra satisfying the conditions in [HL1]-
[HL4] [H1] was constructed. The main difficulty is that from the construction,
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it is not clear why the numbers determining the module maps given by the
sequences in the axioms for the rigidity are not 0. The nondegeneracy of the
semisimple braided tensor category of modules for a suitable general vertex
operator algebra has also been open. Even in the special case of the category
of integrable highest weight modules of positive integral levels for affine Lie
algebras, as far as the author knows, there have been no proofs of the rigidity
or the nondegeneracy property in the literature.

In the present paper, we solve all these problems. Let V' be a simple
vertex operator algebra satisfying the following conditions: (i) V() = 0 for
n < 0, Vioy = C1 and V' is isomorphic to V' as a V-module. (ii) Every
N-gradable weak V-module is completely reducible. (iii) V' is Cy-cofinite. In
an early version of the present paper and in the results announced in [H8|
and [H9], the proofs of the rigidity and the nondegeneracy property use a
condition (Condition (i) in the early version of the present paper) slightly
stronger than Condition (i) above. It requires that V{,y = 0 for n < 0,
Vo) = C1 and for any irreducible V-module W, W = 0. But actually both
proofs still work under Condition (i) in the present version'. Also, by results
of Li [Li] and Abe-Buhl-Dong [ABD], Conditions (ii) and (iii) are equivalent
to a single condition that every weak V-module is completely reducible. In
the present paper, using a consequence of a Verlinde formula proved recently
by the author in [H7], we show that the braided tensor category structure
on the category of V-modules is rigid. Using a formula also obtained easily
from this Verlinde formula (see [HT7]), we prove that the semisimple rigid
balanced braided tensor category structure on the category of V-modules
is nondegenerate. In particular, the category of V-modules has a natural
structure of modular tensor category.

The results of the present paper have been announced in [H8] and [H9].
See also [Le] for an exposition.

The paper is organized as follows: Section 1 is a review of the tensor prod-
uct theory developed by Lepowsky and the author in [HL1]-[HL4], [HL6],
[H1] and [H5]. Section 2 is a review of the fusing and braiding matrices, the
Verlinde conjecture and its consequences studied and proved by the author
in [H1]-[H7]. See also [H8] and [H9] for expositions. In Section 3, we prove
the rigidity of the braided tensor category of V-modules for a vertex operator
algebra satisfying the three conditions mentioned above. We remark that we

'T am grateful to Liang Kong for pointing out that the proof of the rigidity in the early
version still works with Condition (i) in the present version.



can introduce a notion of rigidity of vertex tensor categories and we actu-
ally have proved that the vertex tensor category structure on the category
of V-modules is rigid in this sense. At the end of this section, we calcu-
late the tensor-categorical dimension of irreducible V-modules explicitly. In
Section 4, we first show that the semi-simple rigid braided tensor category
of V-modules with the obvious twists is a ribbon category. Then we show
that this ribbon category is nondegenerate. In particular, the category of V-
modules is a modular tensor category. We also remark that we can introduce
a notion of modular vertex tensor categories and we actually have proved
that the category of V-modules is a modular vertex tensor category in this
sense.

Acknowledgment This research is partially supported by NSF grants
DMS-0070800 and DMS-0401302. I am grateful to the referee, to J. Lep-
owsky and especially to L. Kong for their comments.

1 Review of the tensor product theory

In this section, we review the tensor product theory for modules for a vertex
operator algebra developed by Lepowsky and the author in [HL1]-[HLA4],
[HL6], [H1] and [H5].

Let V be a simple vertex operator algebra and C(V') the subspace of V'
spanned by u_sv for u,v € V. In the present paper, we shall always assume
that V satisfies the following conditions:

1. Viny = 0forn <0, V(o) = C1 and V' is isomorphic to V' as a V-module.

2. Every N-gradable weak V'-module is completely reducible.
3. V is Cy-cofinite, that is, dim V/Cq(V) < oc.

These conditions are all natural. Condition 1 says that the vacuum is
unique in V' and the contragredient of V' does not give a new irreducible V-
module. As we mentioned in the introduction, Condition 1 is a consequence
of the following stronger version of the uniqueness-of-the vacuum condition:
Viny = 0 for n < 0, V(gy = C1 and for any irreducible V-module W, Wy = 0.
Note that finitely generated N-gradable weak V-modules are what naturally
appear in the proofs of the theorems on genus-zero and genus-one correlation
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functions. Thus Condition 2 is natural and necessary because the Verlinde
conjecture concerns V-modules, not finitely generated N-gradable weak V-
modules. Condition 3 would be a consequence of the finiteness of the dimen-
sions of genus-one conformal blocks, if the conformal field theory had been
constructed, and is thus natural and necessary. For vertex operator algebras
associated to affine Lie algebras (Wess-Zumino-Novikov-Witten models) and
vertex operator algebras associated to the Virasoro algebra (minimal mod-
els), Condition 2 can be verified easily by reformulating the corresponding
complete reducibility results in terms of the representation theory of affine
Lie algebras and the Virasoro algebra. For these vertex operator algebras,
Condition 3 can also be easily verified by using results in the representation
theory of affine Lie algebras and the Virasoro algebra. In fact, Condition 3
was stated to hold for these algebras in Zhu’s paper [Zhu| and was verified
by Dong-Li-Mason [DLM] (see also [AN] for the case of minimal models). In
addition, as we have mentioned in the abstract and introduction, by results
of Li [Li] and Abe-Buhl-Dong [ABD], Conditions (ii) and (iii) are equivalent
to a single condition that every weak V-module is completely reducible.

Because of this proposition, we see from Theorem 3.9 in [H5] that V
satisfies all the conditions needed in the results proved in [HL1]-[HL4], [H1]
and [HL6]. Thus we have:

Theorem 1.1 Let V be a vertex operator algebra satisfying the conditions
above. Then the category of V-modules has a natural structure of braided
tensor category.

The proofs of the rigidity and nondegeneracy in Sections 3 and 4, respec-
tively, depend not only on this theorem, but also on the detailed construction
of the braided tensor category structure. For reader’s convenience, we now
briefly review the structures which are needed in the proof of the theorem
above and in the main theorems of the present paper in these later sections.

Let Wy and Wy be V-modules. In the present paper, we shall need the
P(z)-tensor product Wi Mp(,y Wy of V-modules W; and W, for z € C*.

The Jacobi identity for intertwining operators motivates a natural action

TP(z2) of
_1 _
:1:515 (xl z) Yi(v, z1)
Zo




on (W, ® Wy)* for v € V given by

1 ml_l -z
(TP(z) (xo 0 ( - ) Yt(“axl)) )‘) (w) ® w) =

1
X — X
= 6 (B ) A O ) O,y © o)

—1 Z = ‘r;l *
+z5 0 Awy @ Y5 (v, 1) wz)

where A € (W1 @ W3)* and
1t
E(vaxl) = U®$1 ol — ).

T

In particular, we have an action 7p(,)(Y:(v,z1)) of Y;(v, 1) on (W7 @ Wy)*.
Consider A € (W; ® Wy)* satisfying the following conditions:

The compatibility condition: (a) The lower truncation condition: For all
v € V, the formal Laurent series 7p(,)(Y;(v, z))A involves only finitely
many negative powers of z.

(b) The following formula holds:

-1 _
Tp(z) (.’17016 (ml 0 Z) Y;(U,.’L‘l)) A=

-1
= 2518 (‘”1 Z) () (Yi(v, 21))A

Zo

forallv e V.

The local grading-restriction condition: (a) The grading condition: A
is a (finite) sum of weight vectors (eigenvectors of L(0)) of (W7 ® Wa)*.

(b) Let W) be the smallest subspace of (W; ® W5)* containing A and
stable under the component operators 7p(,)(v ® t") of the operators
Tp)(Yi(v,2)) for v € V, n € Z. Then the weight spaces (Wy)),
n € C, of the (graded) space W), have the properties

dim (Wy)m) < oo forn € C,
(Wx)@m) =0 for n such that R(n) << 0.



Let WiSp(,)W; be the subspace of (W7 ® W5)* consisting of all elements
satisfying the two conditions above. Then by Theorem 13.5 in [HL4| and
Theorems 3.1 and 3.9 in [H5], WiSp(,)W, is a V-module. The P(z)-tensor
product module W; Mp(,) W5 is defined to be the contragredient module
(Witp)Wa)" of Witlp(,)Wa. We take the P(1)-tensor product Mp(y to be
the tensor product bifunctor and denote it by X.

For any V-module W = HnEQ Wy, we use W to denote its algebraic
completion [], .o Wn). In addition to the P(z)-tensor product module, by
the definition of P(z)-tensor product (Definition 4.1 in [HL1]) and Proposi-
tion 12.2 in [HL4], there is also an intertwining operator ) of type (Wll?;f Igf)zwz)
such that the following universal property holds: For any intertwining oper-
ator Y of type (WZVI%), there is a module map f : Wi Rp(,y Wy — W3 such
that Y = fo). For w; € Wy and w, € Wy, the P(z)-tensor product of

elements w; and wy to be
w1 X Wo = y(wl,z)wg € W1 gp(z) WQ,
where we use the convention

Y(w, 2)wy = Y(w1, T)Wa|gn_enlog, nec

and
logz =log|z| +iargz, 0 < argz < 27.

(We shall continue to use this convention through this paper.)

The existence of these tensor products of elements is a very important
feature of the tensor product theory. They provide a powerful tool for proving
theorems in the tensor product theory: We first prove the results on these
tensor products of elements. Since the homogeneous components of these
tensor products of elements span the tensor product modules, we obtain the
results we are interested. (One subtle thing is worth mentioning here. The
space spanned by all tensor products of elements has almost no intersection
with the tensor product module; in general, only elements of the form 1Xp(,)
w are in V Xp(,) W where W is an arbitrary V-module.)

For P(z)-tensor products with different z, we have parallel transport
isomorphisms between them. In this paper, as we have used above, for
z € C*, we shall use log z to denote that value of the logarithm of z satisfying
0 < (logz) < 2m. Let Wi and Wy be V-modules and zy, 2z, € C*. Giving a
path 7 in C* from z; to z,. The parallel isomorphism 7, : Wi Rp(,,y Wy —
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W1 Xp(,) Wy (see [HL3] [HL6]) is given as follows: Let ) be the intertwining
operator associated to the P(z)-tensor product Wi Mp(,,) W5 and [(2;) the
value of the logarithm of z; determined uniquely by log 2 and the path ~.
Then 7, is characterized by

T (w1 Rp(,) wa) = Y(W1, T)Ws|gn_enitc) pec

for w; € Wi and wy € Wy, where 7_'7 is the natural extension of 7, to the
algebraic completion Wi Mp(,,) Wy of Wik p(,,)W,. The parallel isomorphism
depends only on the homotopy class of 7.

For z € C*, the commutativity isomorphism for the P(z)-tensor product

Cp(z) : Wi Rp(y Wo — Wo Kp,) Wi

is characterized as follows: Let <, be a path from —z to z in the closed
upper half plane with 0 deleted and 7;; the corresponding parallel transport
isomorphism. Then

Cp() (w1 Rp(oy wa) = e VT _(wy Wp(,y w1)

where w; € Wy, wy € W5, When z = 1, we obtain a commutativity isomor-
phism
Cp(l) : W1 X WQ — WQ X W1

and we shall denote it simply as C.

The tensor product w; X wy of w; € Wi and wy € W5 is obtained from
two elements w; and ws of the V-modules W; and W, respectively. We
also need tensor products of more than two elements. Here we describe
tensor products of three elements briefly. Let Wi, W5, W3 be V-modules and
wy € Wi, we € Wy and ws € W3. Let z; and zo be two nonzero complex
numbers. Since in general wy; Mp(,,) w3 does not belong to W5 Xp(,,) W3, we
cannot define w; Mp,,) (w2 Mp(,,) w3) simply to be the P(z;)-tensor product
of w; and w; Xp(,,)ws. But using the convergence of products of intertwining
operators, the series

Z w1 P(zl) Pn(w2 P(z2) wa)

neL

(P, is the projection map from a V-module to the subspace of weight n) is
absolutely convergent in a natural sense when |z;| > |22| and the sum is in
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W1 Rp,y (Wa Mp(,y) W3). We define w; Mp(,,) (w2 Mp(,,) w3) to be this sum.
Similarly, when |23| > |21 — 22| > 0, we have

(w1 @P(zr@) wz) ®P(z2) w3 € (W1 |Z|P(zrz2) W2) &P(@) Ws.

The homogeneous components of these tensor products of three elements also
span the corresponding tensor products of three modules.

Let 21,29 be complex numbers satisfying |z1| > |z2| > |21 — 22| > 0 and
Wy, Wy and W3 V-modules. Then an associativity isomorphism

P(z1—22),P(z
AR T Wy Rpey) (Wa Bp(ay) Ws) = (Wi Rp(e, —s) Wa) Rp(e,) Wi
was constructed by the author in [H1] and [H5| and is characterized by the
property

A ot (wn Rp(ey) (ws Rp(ey) w3)) = (w1 Rps, ) w2) Rip(sy) ws

for wy, € W1, wy € W5 and w3 € W3, where

P(21—22),P(z
APﬁzi,P(Qz)Q) ), W1 Rp(ayy (Wa Rp(z,) W) — (W1 Rp(o,—2y) Wa) Rp(o,) Ws
is the natural extension of AIZEZ; ;z()z’g(”) to the algebraic completion of
Wi Wp,) (Wa Rp(.,) Ws).
To obtain the associativity isomorphism

AWl&(WQ&WE;)—)(ngWQ)gWE;

for the braided tensor category structure, we need certain parallel isomor-
phisms. Let z; and 29 be real numbers satisfying z; > 29 > 21 — 2o > 0.
Let v; and 7, be paths in (0,00) from 1 to z; and 2z, respectively, and 3
and 74 be paths in (0,00) from 2z, and z; — 23 to 1, respectively. Then the
associativity isomorphism for the braided tensor category structure on the
module category for V is given by

P(z1—22),P(22 g
A =Ty, o(T, Xp(z,) Iw,) o Apgzl),P()zQ)( Yo (I, Xp(z) T2) © Tous

that is, given by the commutative diagram

P(z9—23),P(z3)
P(z2),P(z2)

Wl |XP(zl) (W2 |zP(ZQ) W3) (Wl IXP(21*Z2) WQ) gP(zz) W3

B T T | | PaetTumea )
Wi R (W, & W) A, (W, R W,) K Wy



The coherence properties are now easy consequences of the constructions
and characterizations of the associativity and commutativity isomorphisms.
Here we sketch the proof of the commutativity of the pentagon diagram. Let
Wi, Wy, W3 and Wy be V-modules and let z, 29, 23 € C satisfying

‘Zl| > |2’2| > |23| > ‘Zl — 23| > |2’2 —23‘ > |Zl _Z2| >0

and
|zo] > |21 — 20| + |23]-

For example, we can take z; = 7, 2o = 6 and 23 = 4. We first prove the
commutativity of the following diagram:

Wi Kp(z,) (Wa Bp(zy) (W3 Kp(zy) Wa))

/\

(W1 Bp(zy,) Wa) Rp(z,) (W3 Rp(z,) Wa) W1 Bp(zy) (We Bp(zy) W3) Bp(z5) Wa))

| |

(W1 ®p(z10) W2) Wp(zy5) W3) Bp(eg) Wa +—— (Wi Rp(2y5) (Wo Bp(zyy) Wa)) Kp(zy) Wa

(1.1)

where z19 = 21 — 29 and 203 = 29 — z3. For wy € Wy, wy € Wy, w3 € W3 and
wy € Wy, we consider

wy NMp(sy) (W2 Mp(sy) (ws Mp(sy) wa)) € Wi Wp,y (W Rp(sy) (Ws Mp(oy) Wa)).

By the characterizations of the associativity isomorphisms, we see that the
compositions of the natural extensions of the module maps in the two routes
in (1.1) applying to this element both give

((wllgP(zlg)wZ)&P(zgg)w3)®P(z3)w4 € ((W1 IEP(m) WZ) |Z|P(z23) Wa) |Z|P(z3) Wi.
Since the homogeneous components of

w1 Mpey (w2 Mp(z,) (w3 Mp(zy) wa))
for w; € Wy, wy € Wy, wy € W3 and wy € Wy span

Wi Bp(ayy (W Wp(s,) (Ws Rp(.y) Wa)),
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the diagram (1.1) above is commutative.
On the other hand, by the definition of A, the diagrams

Wi Rp(z,) (Wa Bp(a,) (W3 Rpy) Wi)) —— (W1 Bp(.,,) Wa) Bp(o,) (W3 Rp(.y) Wa)

|

W1 X (Wz X (W3 X W4)) > (Wl X Wz) X (W3 X W4)

(1.2)

(W1 ®p(z15) Wa) Bp(z,) (Ws Bp(zg) Wa) —— (W1 Bp(z1,) W2) Bp(zs5) Ws) Hp(zs) Wa

|

(W1 X Wz) X (W3 X W4) > ((Wl X WQ) X W3) X W4

(1.3)

Wi Bpzy) (Wo Rpz,) (Ws Rpzy) Wa)) —— Wi Rp,) (We Rp(z,,) W3) Rp(.y) Wa))

|

W1 (W2 X (Wg X W4)) > W1 X ((W2 X W3) X W4)

(1.4)
Wi Rpoy) (Wa Rp(zp5) W3) Bp(z) Wa)) — (W1 Rp(z15) (Wa Rp(zp9) W3)) Rp(zy) W

|

W1 X ((W2 X W3) DX W4) > (W1 X (W2 X W3)) X W4

(1.5)

(Wl IZP(Z13) (W2 g1:’(24'23) W3)) gP(zs) Wy —— ((Wl gF’(Zm) Wz) IZP(Zzs) W3) IZ1:'(23) Wy

|

(W1 R (W2 R W3)) KW, (W1 R W) KX W3) KW,

(1.6)

are all commutative. Combining all the diagrams (1.1)—(1.6) above, we see
that the pentagon diagram
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Wi R (Wy R (W3 X Wy))

/\

(W1 RW,) X (W5 X Wy) Wy R (W R W3) X Wy)

((W1 gWQ)‘ZW3)®W4 < (W1 g(WQ‘ZW3))|ZW4

is also commutative.

The proof of the commutativity of the hexagon diagrams is similar.

The unit object is V. For any z € C* and any V-module W, the left
P(z)-unit isomorphism Iy, : V ®p,) W — W is characterized by

lW;z(l |Z|p(z) w) =w

for w € W and the right P(z)-unit isomorphism 7y, : W Kp,) V — W is
characterized by

L(-1)

Twie(w Mpy 1) = €* w

for w € W. In particular, we have the left unit isomorphism lyy = lyy; :
VW — W and the right unit isomorphism rw = ry, : WXV — W. The
proof of the commutativity of the diagrams for unit isomorphisms is similar
to the above proof of the commutativity of the pentagon diagram.

2 The fusing and braiding matrices, modular
transformations and the Verlinde conjec-
ture

In the proofs in the next two sections of the rigidity and nondegeneracy of
the semisimple braided tensor category of V-modules for a vertex operator
algebra V' satisfying the conditions in the preceding section, we need fusing
and braiding matrices and certain consequences of the Verlinde conjecture,
which was recently proved by the author [H7] for a vertex operator algebra
satisfying conditions slightly weaker than those assumed in the present paper.
Here we give a brief review. For details, see [H4]-[H7].

Using the theory of associative algebras and Zhu’s algebra for a vertex op-
erator algebra, it is easy to see that for a vertex operator algebra V' such that
every N-gradable V-module is completely reducible, there are only finitely
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many inequivalent irreducible V-modules (see Theorem 3.2 in [DLM]). Let
A be the set of equivalence classes of irreducible V-modules. We denote the
equivalence class containing V' by e. By the main result of [AM] and Theo-
rem 11.3 in [DLM], we know that V-modules are all graded by R. For each
a € A, we choose a representative W of a such that W¢ =V. For a € A, let
hq be the lowest weight of W, that is, h, € R such that W* =] ., . W(“n).
By Propositions 5.3.1 and 5.3.2 in [FHL], the contragredient module of an
irreducible module is also irreducible and the contragredient module of the
contragredient module of a V-module is naturally equivalent to the V-module
itself. So we have a bijective map

A = A
a — a.

Let Vg2, for a,az,a3 € A be the space of intertwining operators of type

ag . . . .
(o iras) and Ngs,. for aj,as, a3 € A the fusion rule, that is, the dimension
was

of the space of intertwining operators of type (WMW%)' The fusion rules
Ngs  for ay,aq,a3 € A are all finite [GN] [Li] [AN] [H5].

ai1a

1Vi/'e now discuss matrix elements of fusing and braiding isomorphisms.
We need to use different bases of one space of intertwining operators. We
shall use p=1,2,3,4,5,6,. to label different bases. For ay, as, a3 € A and
p=123,4,56,.. let {y;f’(’lw |i=1,...,N%, 1}, be bases of Vi . The
associativity of intertwmlng operators proved and studied in [H1], [H4] and

[H5] says that there exist

F(y;lf(;il,) Q yas,(2 yg4, (3) ® y((;f@ k) cC

azas;j? 6a3;!
y - as - a4
for ai,...,a6 € A, i = GNG, =1, NB,. k= LN,
N ag
I=1,...,NZ¢,, such that
as;(1) as;(2)
<wa4’ ajas;i (wala Zl)yazag 3(wa2’ ZQ)wa3>
Ng4,. NJ§

’ 1 ? . ) bl 4
=20 D D PO @ YVisiss Vasisa © Varass)

{wl,, Ve (V2 (wy , 21 — 20)Way, 22)Way)

when |z(| > |zQ| > |21 — 29| > 0, for a1,...,a5 € A, w,, € W“1 W, € W,
Wey € W%, w,, € (W*™), i =1,...,Ng, and j = N, The
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numbers . W
as4; as;(2) | yya4;(3 ae;(4
F(yafasz ®y25a3j’ya:a3k®ya16a2,)

together give a matrix which represents a linear isomorphism

a4 as a4 ag
H Va1a5 ® Vagag H Vaeag ® Valaz’

G,l,ll2,ﬂg,ll4,a5€./4 a1,d2,ﬂs,d4,a6€A

called the fusing isomorphism, such that these numbers are the matrix ele-
ments.
By the commutativity of intertwining operators proved and studied in
[H2], [H4] and [H5], r € Z, there exist
B(r) (ydziy y055(2.)_. ya4;(3) yaﬁy 4)) cC

a1as;t a2a3;j? a2a6l aias;k

for ay,...,a6 € A, 1 =1,... N2t j=1,...,NS., k=1,...,NJ.,
l=1,...,Ngt,,, such that the analytlc extension of the single- valued analytlc
function

(W, Vo) (way, 20) VD) (w4, , 22)0as)

on the region |z;| > |23 > 0, 0 < arg z1, arg zo < 27 along the path

3 6(27"4—1)7rit 3 e(2r—|—1)7rit
> (22— 242
<2 2 2T 2 )

to the region |z5| > |21| > 0, 0 < arg z;, arg z < 27 is

a4 N6

‘7'20‘6 ajag
E : E : E : (r a4;(1) as;5(2) , y)a4;( ae;(
B alas;i ® yaza:m’ yawe,k ® ya1a3, )
ag€A k=1 I[=1

-(wa, yg;l(;z(eg;;c (waw Zl)yaaf(’l.(g %(wal ’ zQ)wa:a)

The numbers
5(1) ) . ) 1(4
B( )(ygfas, & ygjag,]’ yg:ae ik ® y:faa l)
together give a linear isomorphism
B [ VeV, [ Vi e Vi
a1,02,03,04,a5E€A a1,02,03,04,a6E€A
called the braiding isomorphism, such that these numbers are the matrix

elements.
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In this paper, we are mainly interested in the square (B()? of B"). We
shall also use similar notations to denote the matrix elements of the square
(B™M)2 of B") under the bases above as

(BOY?(pesl) @ yesi®). yoss) g yusithy,
Let

b 1 b
(B™)2({wa, Vorit) (way, 21) Vaiacs) (ay , 22)0ay )
Ng3ag Nalay " W
- Z Z Z B(T ;lféls i @ yg:(’zs,]; y;ft’le;i ® ygst’la;j) )
as€A k=1 =
(1 §(2
-<wa;, y:ffai, N(Way, 21) Vi) (Wa, 20) Was)-
Then by definition, it is in fact the monodromy of the multi-valued analytic
extension of

<wa21’ ygfl,lg Z(wal’ Zl)ys::z(s ; (wa2: ZQ)wa3>

from (z1, 23) in the region |z;| > |22] > 0 to itself along the product of the
path in the definition of B") above with itself (see Section 1 in [H7] for more
details).

We need an action of S5 on the space

_ a3
V= H Val az’
a1,a2,a3€A

For r € Z, a1,a0,a3 € A, we have skew-symmetry isomorphisms Q_, :

Vs, — Vg2, and contragredient isomorphisms A_, : Vi3, = — Vg%ag (see
[HL2]). For a1, as,a3 € A, Y € V&, , we define
012(Y) = emA(y)Q—l(y)
— E_MA(y)Qo(y),
op(Y) = e AL ()
= e it Ay (),

where A()) = hqy — hq, — ha,. By Proposition 1.1 in [H7], they generate an
action of S3 on V.

We now want to choose a special basis V;?,,.;, © = 1,. Ngfa2, of Vg3,
for the triples (ai,as,a3) of the forms (e, a,a), (a e, a) and (a,a’,e) where

15



a € A. For a € A, we choose )¢, to be the vertex operator Y. defining

a
the module structure on W* and we choose Vg, to be 013(V5,.;). Since V'

ea;l
as a V-module is equivalent to V', we have ¢ = e and we know from Remark
5.3.3 in [FHL] that there is a nondegenerate symmetric invariant bilinear
form (-,-) on V such that (1,1) = 1. We identify V and V' using this form.
We choose Vg, = yg;,;l to be the intertwining operator defined using the
action of g93 by
yga’;l = 023(37;16;1)’
that is, Vg, is defined by
(U, ga’;l(wa’x)w;) = < ge;l(ewL(l)x_QL(O)waax_l)u’ w:;,)

foru eV, w, € W and w), € (W)

We now discuss modular transformations. Let ¢, = e*™ for 7 € H (H is
the upper-half plane). We consider the g,-traces of the vertex operators Yy
for a € A on the irreducible V-modules W of the following form:

Tryye Yiva (62MZL(0)’U,, e2ﬁiz)q£(0)_fj (21)

for v € V. In [Zhu], under some conditions slightly different from (mostly
stronger than) those we assume in this paper, Zhu proved that these g-traces
are independent of z, are absolutely convergent when 0 < |¢;| < 1 and can
be analytically extended to analytic functions of 7 in the upper-half plane.
We shall denote the analytic extension of (2.1) by

E(Tryya Yyya (24" Oy, eQ"iz)qTL(O)_ ),

In [Zhu], under his conditions alluded to above, Zhu also proved the following
modular invariance property: For

( .« ) € SL(2,7),

let 7' = g:ig Then there exist unique A3 € C for a1, ay € A such that

2miz L(O) 1 L(O) 2miz L(O)_ﬁ
E | Tryya: Yiyae, | ecvHd u,ect+d ) q,
cT+d

c

_ Z AZ? E(Tryyes Yiyas o2mizL(0) u, ezm'Z) qf(O)*M)
az€A

16



for v € V. In [DLM], Dong, Li and Mason, among many other things,
improved Zhu’s results above by showing that the results of Zhu above also
hold for vertex operator algebras satisfying the conditions (slightly weaker
than what) we assume in this paper. In particular, for

( R ) € SL(2,2),

there exist unique Sg2 € C for a; € A such that

2miz ]_ L(O) 2mwiz L(O)— =
E Trwal YW”’I e_TL(O) <_;> u) e_T q_l 24

L(0)— &

= Z ngE(TrwaQ Ywa2 (eZWizL(O)u’ 627riz)q7_ )

as€A
for u € V. When u = 1, we see that the matrix S = (552) actually acts on

the space of spanned by the vacuum characters TrWaqTL (02 for a € A.

For a vertex operator algebra V satisfying the conditions above, the au-
thor proved in [H7] the Verlinde conjecture which states that the action of
the modular transformation 7 — —1/7 on the space of characters of irre-
ducible V-modules diagonalizes the matrices formed by fusion rules. (Note
that in the proof of the Verlinde conjecture, the modular invariance results
obtained in [Zhu] and [DLM] are not enough. One needs the results obtained
in [H5] and [H6] on intertwining operators and on the modular invariance
of the space of g-traces of products of intertwining operators, respectively.)
In this paper, we need the following two useful consequences of the Verlinde
conjecture: For a € A,

F( (?c?;l & yg’a;l; yga;l & yga’;l) # 0
and e R(—INZ
s = SO )
a1+ a2
where (S32) is the matrix representing the action of the modular transforma-
tion 7 — —1/7 on the space of characters of irreducible V-modules,

(B(_l))ZQ,al = (B(_l))Q(yg;e;l ® yg’lal;l; ygje;l & ytf’la,l;l)
for aq, a9 € A, and
Fa = F(yc(zle;l ® yg’a;l; yga;l ® yga’;l)
for a € A.

17



3 The proof of the rigidity and the dimen-
sions of the irreducible modules

In this section, we prove that the braided tensor category structure on the
category of V-module is in fact rigid.

First we recall the definition of rigidity (see for example [T] and [BK]). A
tensor category with tensor product bifunctor X and unit object V is rigid if
for every object W in the category, there are right and left dual objects W*
and *W together with morphisms ey : W*XW — V iy : V - WK W*,
ey : WR*W — V and ij, : V — *W K W such that the compositions of
the morphisms in the sequences

-1

w v vrw 2 (wRWHRW ——
AL wrwrrw) R Ry Y gy

-1

w v, owry MW ypewrw) ——

el X
AL, wrwyRw Y2 ygw v

Ik it R
- VRW WA W RW) R W ——
A rwRew) S, ayry I
we 2y owrry 2R e wrwr) ——
AL, wrrRW)RW e w2,

are equal to the identity isomorphisms Iy, Iy, Isw, Iw~, respectively. Rigid-
ity is a standard notion in the theory of tensor categories. See, for example,
[T] and [BK] for details.

In this section, we shall always use the bases {Vg, ., }, {1 } and {V;, 1}
of V2, V2 and V¢, chosen in the preceding section. We take both the left
and right duals of a V-module W to be the contragredient module W’ of
W. Since our tensor category is semisimple, to prove the rigidity, we need
only discuss irreducible modules. For a € A and z € C*, using the universal
property for the tensor product module (W*)' Mp(,) W¢, we know that there
exists a unique module map é,,, : (W*)' Rp,) W* — V such that

a(wg &P(z) wa) = yg’a;l(w:p Z)wa

18



for w, € W and w!, € (W*)', where é,,, : (W¢)' Kp(,) W* — V is the natural
extension of é,,. When z = 1, we shall denote €, s1mp1y by €é,.

For a € A and 2z € C*, by the universal property for tensor product
modules, for any fixed bases {}?,.} of V¢, for b € A, there exists an iso-

aa’;i
morphism
faze : W Bp(y (W) — [ NEW*
beA
such that o
fa;z(wa &P(z) U);) = y(wa’ z)w;
where
Nb
b
V=22 Vuws
beA i=1
b b
an intertwining operator of type (H”vffﬁgﬁg’;fv ) Since N¢, = 1, there is a
unique injective module map
Vo [ Ne W
beA

such that g,.,(1) =1 €V =W¢ C [[,. 4 No, WP, Let
ia;z = azl O Ga;z : V - Wwe |Z|p(z) (Wa)'.
When z = 1, we shall denote %,,; simply by #,.

Lemma 3.1 The map i, is independent of the choice of the bases yf;a,;,. of
Vb, forbe A, b#e.

Proof. We choose bases j;ga,;i of V2, for b € A such that j;ga,;l = V-

Then we also obtain an isomorphism

fuz : WO Rpy, — [ VoW
beA

Since yaa, 1 = Va1 Ta ofaz = T4 O fq;, Where 7, : HbeA b Wb — We =V
is the projection. By the definition of g,., we see that f, 10 gy = a;z O Gasz-
SO iq;, is independent of the choices of V.,.; of Vi, forbe A, b#e. N
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For a € A and z € C*, using the universal property for the tensor
product module W Xp(,) (W*), we know that there exists a unique module
map €., : W Mp(,) (W*)' — V such that

@(wa &P(z) w;) = yga’;l (wa’ Z)wéz

for w, € W* and w), € (W*®)', where é,., : W Rp(,) (W¢)' — V is the natural
extension of &,.,. When z = 1, we shall denote &, simply by é,.

For any fixed a € A and z € C*, by the universal property for tensor
product modules, for any fixed basis Y5,; of Vi, as we choose in Section 1
for b € A, b # e, there exists an isomorphism

fo o (W) Rpy) W — ]_[ NG W*

be A
such that o
(IL;z (w; Xp() W,) = y(w;: Z)w,
where o
V=3 Yias
beA i=1
an intertwining operator of type (H”(EV{/“;;%ZVIJ). Since Ng, = 1, there is a

unique injective module map

oo 2 V = [ NG
beA
such that g, (1) =1€V =W¢ C [[,c s N, WP, Let
iiz;z = (ftlz;z)_l © gtlz;z V= (Wa)l gp(z) we.

When z = 1, we shall denote iy, simply by .

Lemma 3.2 The map iy, is independent of the choice of the bases yg,a;,. of
Vo, forbe A, b+#e.

Proof. The proof is the same as the one for Lemma 3.1. |
The composition

Ta 0 (Iyya M ég) 0 A7 0 (ig R Iya) o I}
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of the module maps in the sequence

—1 .
we Ly VRWe LWl (WeR (W) RWe ——
AT Wem (Wey Rwe) Bl We RV e W,
(3.1)

is a module map from W? to itself. Since W is irreducible, there must exist
Aq € C such that this module map is equal to A, times the identity map on
We, that is,

T4 0 (Iya M ég) 0 A7 0 (i M Iyya) o 171 = Ay Iyya. (3.2)

We need to calculate A,.
Let z1, 29 be any nonzero complex numbers. We first calculate the com-
position of the module maps given by the sequence

-1
la;zg

we S \%4 gp(z2) we
fas21 29 Bp(zp) Iwe u u a
e P (WO Rp(sy—a) (W) Rpgyy W

= W

P(z1—29),P(22)\ ™~
(Api )

> WeRp(y) (W) Rp(y) W)

Iya IZP(zl) éa;z2 Taszy
%

we |Z|p(z1) V W,

that is, we first calculate

1
Tasz © (Iwe Xp() €a;2) © (Aigi)_,?()z’gm)) 0 (fazzy—2 Xp(z,) Iya) o l;;iz'

Since this is also a module map from an irreducible module to itself, there
exists A, .2, € C such that it is equal to Ay, 2, Tiye.

Proposition 3.3 For a € A and 2z, 2o € C* satisfying |z1| > |22 > |21 —
zo| > 0, we have

)\a;zl,zg = Fa,
F(yge;l ® yg’a;l; yga;l ® ga’;l)' (34)
Proof. Let wi,ws € W* and w} € (W*)'". Then

ea;l (yga’;l(wla k1 — ZQ)’LU&, 2'2)’102 € W-
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By the definition of [,,,, we have

la ig( ga;l (ysa’;l (wli 2 zQ)wII? 22)w2) = (y;a’;l(wlﬁ Rl — Z2)wll) |ZP(22) Wa.
(3.5)
By definitions and the associativity of intertwining operators, we have

- P(z1—22),P(22)\ "+ '
Taan ((fwa Rp (1) Easzs) ( (AP(ZI),p(@) ) (w1 Bp(ey—z3) w1) Bp(ay) w2)))
= Taszy ((Iwa Xp(z1) éa;zz) (w1 Rp(ay) (w} Xp(2) wz)))

= Ta;z (wl |XP(21) (yg’a;l(wlla ZQ)wQ))
= yae l(wla Zl)ya’a l(wi, Z?)wZ
Ng, NP,

ba aa

=D DD (Ve ® Vo Vi © Vow) -

beA k=1 I=1

yba k(yaa’ l(wh 21 — 22)w1) Z2)w2, (36)

when (21| > |22] > |21 — 22| > 0. Since both sides of (3.6) are well-defined
in the region |z5| > |21 — 22| > 0, the left- and right-hand sides of (3.6) are
equal in this larger region as series in (rational) powers of z; and z; — 2s.

Let nf. : WP Rpy) W = W* and 10, : W* Rp,—y) (W*) = WP be
module maps determined by

Mhazke (W3 B p(zy) W2) = Vo (W3, 20) W2
and
nga’;l(wl Xp(zy) wy) = yga’;k(wlv 21 — Zp)wy,

respectively, for wi, wy € W ws € W and w| € (W?)". Then (3.6) gives

Taror | (Iwa Rpay) Cay) | (ABEE 2006 T ® K
a;21 Wwa P(Zl) 6(1'22 P(Zl) (ZZ) ((wl P(Z1—22) wl) P(ZZ) w2)

_ZZZ yge1®ya’a1aybak®ya’l)

beA k=1 I=1

(Mge © (Mery Bp(a—z2) Tway)) (w1 Rpay -y wh) Mgy w) — (3.7)

for wi,wy € W* and wi € (W?)', when |23| > |21 — 22| > 0. Since the
components of elements of the form (w;Xp(,, —,)w] )X p(s,)wo for wy, we € W
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and w) € (W?)" span (W Xp(;; —z,) (W?)') Wp(sy) W, (3.7) gives

-1
N P(z1—22),P(22
Tazz1 © (IW“ Ile(Zl) ea'z2) © (Apgzl)ap()@)( ))

a b
B3 Z et ® Varast: Viask ® Vo)

beA k=1 =1
(Mpaste © (Moaryy Bp(zy—z) Taway))

Thus we obtain

—22),L(R2 -1 -
Tazzr © (Iwa Bp(zy) Cazy) © (Aigﬁi) o, )) © (tasz1—z Bp(zs) Lway) 0 Ly,

aa’

_ZZZF ygel®y§’a17ybak®yaa’l)

beA k=1 I=1
'(ﬂz‘fa 6 © (Mry Bpay—29) Tway ) © (Gaizr— 20 Rp(ag) Iway) 0 lys,)

_ZZZF gel® ala1ay[?a;k®y2a’;l)'

beA k=1 I=1
“(Mask © ((nga"l O fajzy—z) WP(2y—20) Lwey) 0 Iy, 22) (3.8)
Let myy @ [Jyeq NL W — WP for b € A and | = .,N?, be the

projection to the I-th copy of W*. Then

b
T’aa’;l(wl gp(zl—zz) wll) = yga’;l(wl’ 21— zQ)wll
= (7Tb;l © fa;Zl—Z2)(w1 gP(Zﬁ:zz) wi)
for w; € W® and w] € (W*?)". So we have nga,;l = Tpy © faszr—2, and

b . _ -1
Naa'st © Yaze1—22 = Tl © fa;Z1*Z2 O Jasz1—29 © Gase1—22

= Tp;l © Ga;z1—22
= Suduly. (3.9)
Also,

(nga;l la ig) (wl) = nga;l(la iz (wl))
= nga;l(l IZP(Zz) wl)
= YWa(]_, ZQ)UJl

w1
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for w, € We. So we have

Moo © Lz, = Twa. (3.10)

a;22
Using (3.9) and (3.10), the right-hand side of (3.8) becomes

Npy Noas
DD F Vi @ Yo Vik © Viwra):
beA k=1 [=1
“0eb011 (Mpax; © l;;Z)
= F(Vaer ® Varans Vean ® Vawyn) -
'(nga;l © la_;iQ)

= F(yge;l ® 2’(1;1; yga;l ® yga’;l)IW“' (311)

From (3.8), (3.11) and the definition of A, ,,, we obtain (3.4). |

Proposition 3.4 For a € A, we have

A = F,
F(y:e;l ® yg’a;l; yga;l & yga’;l)' (312)

Proof. Choose 29,23 € (0,00) satisfying 20 > 29 > 29 — 20 > 0 and choose
paths ¥, 71,72 in (0, 00) from 29 — 29,29, 29 to 1,1, 1, respectively. Then by
the definitions of all the module maps involved, the following diagrams are

commutative: .

0

We —25 V Rpo W

N

It

we — VXKW

2 0 OIZP(Z(Q))IWG'

4 &P(Q) we 1= ’ (Wa &P(z?—zg) (Wa)l) &P(zg) we
Tz l l(no RlIwa)oTs,
VR We LaBlwe, (WeR (WaY) B We
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( p(zgfzg),p(zg)yl
P(20),P(23) e IZIP( 0 (Way IZIP( 0 W)
21 23

(W Rpro_.0 (W) Rpo W*

(Tho EIW“)OTml l(IW‘z KTy,)0Ty
(We R (We)) R We A WeR (WY = We)
IWa"zP(z?)éa;zg

W Rpoy (W) Rpgy W) ——— W*Kpo) V
(Iwa |Z7772)o71,1 l J(Tn

Iwag éa

We R (We) ’We) WeRV

Ta;zo
W Bpo) V —ts We

7 I
wWervy s Wwe
Combining these diagrams, we obtain

Tq0 (Iya Még) 0o A7 0 (ig ® Iyya) o 1]

= Taz; © (Iwa Mp(zy) €q52,) ©
o (Aigi;;z()z’g(”)) B 0 (Tasz1—2 Mp(zy) Iwa) © l;j;z.
From this equality and the definitions of A, and A,;;0 .0, we obtain
Aa = Agyz0 29-
By Proposition 3.3, we obtain (3.12). |
The composition
loo (€, R Iya)o Ao (Iyya M) or, !

of the module maps in the sequence

e e, WeRV WeR (W) ’W*) ——
A (wer (Wey) R e LEhve, VRWe — e
(3.13)

25



is a module map from W* to itself. Again, since W* is irreducible, there must
exist p, € C such that this module map is equal to p, times the identity
map on W, that is,

lao (€ R Iya)o Ao (Iyya ®i')or,t = pglya. (3.14)

We need to calculate .

Our method to calculate p, is similar to the one used to calculate A,
above. Let z1, 25 be any nonzero complex numbers. We first calculate the
composition of the module maps given by the sequence

-1

we o W Rp V

IWagP(zl) i;;zz

(WeRpe,) (W) Rp,) W)

AP (z1-22),P(22) (315)
M} (Wa‘ ®P(z z ) (Wa)l) IXP(Z ) Wa
1—22 2
é;;zl_zzp(h)lwa) \%4 |Z|P(z2) we i we,

that is, we first calculate

la;ZZ © ( a21 29 .P(Zl IW“) © A ZI zz(zz)( ? (IW“ IZP (21) a22) © Ta_;iz'

Since this is also a module map from an irreducible module to itself, there
exists gz, € C such that it is equal to pg;z, 2 fiwa.

Proposition 3.5 For a € A and 2,20 € C* satisfying |z1| > |22] > |21 —
Z3| > 0, we have

Ha;z1,20 — Fa
= (ygel® al’yga1®ya’1) (316)

Proof. Let wi,ws € W® and w} € (W*)'. Then
Viaea (Wi, 21) Vg (W, 22)wz € W
By the definition of r,.,,, we have

Tarzs Vaes (W1, 21) Yoy a1 (W, 22)w2) = w1 Wp(ey) Vg (W, 22)wz).  (3.17)
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By definitions and the associativity of intertwining operators, we have
[ ((éﬁ;zl—n Xp(y) Twa) ( Allzg:)j?()z’g(zz)(wl Mp () (W) Bp(,) wz))))
lasz ((é,a,;zl—z2 |Z]P(z1) Iwa) ((UJ1 |Z|P(z1—z2) wi) |Z|P(z2) w2)>

= m((yga’;l(wla 21 — 29)wy) Bp(zy) wa)

= ga l(ysa’ l(wla 21 — 22)11]/1, 22)w2

N&, NP

_ZZZF yga1®yga’1’ygbk®ya’al)

beA k=1 I=1

.y:b;k(wl’Zl)yg’a;l(wi”zQ)w% (318)
when |z1]| > |z9| > |21 — 22| > 0. Since both sides of (3.18) are well-defined in
the region |z;| > |zo| > 0, the left- and right-hand sides of (3.18) are equal
in this larger region as series in (rational) powers of z; and z,.

Let 0y, : W*Rpg,) WP — W* and 0l : (W) Rpy W — WP be
module maps determined by
Navye (W1 M p(z) w3) = Yoy (W1, 20) w3
and
772'(1;1(71/1 P(Z2) w2) = yg’a;k(wi’ 22)w27
respectively, for wi,ws € W%, ws € WP and w} € (W?*)". Then (3.18) gives

T (A P(z1—22),P(z
Lo (e —ey Bien) Twe) (AR F ) (n By (] Ry w2)))

N%, Nb,

_ZZZF yga1®yaa’1’ gb;k®yg’a;l)'

beA k=1 I=1
(N3 © (Twa Rp(zy) Nhrag)) (w1 Rpzy)y (w) Rp(sy) w2)) (3.19)

for wy, we € W% and w) € (W*)', when |z1]| > |z2| > 0. Since the components
of elements of the form w; Rp(,,) (w] Mp(,,) wa) for wi,we € W* and wi €
(W) span W Rp(,,) (W?) Rp(,) W), (3.19) gives

~ P(z1—22),P(z
la;22 © (elu;zl—zz &P(zl) IW“) © Aszi PZ(ZQ)( )

Ney Narg
=D NN F T (e @ Vet Vet ® Vi) -

beA k=1 l=1
'(ngb;k © (IWa IgP(2:1) ng’a;l))
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Thus we obtain

. P(z1—22),P _
la;ZQ ° (e;;zl—zg |ZP(Zl) IW“) ° APEji),;?(LQ)( ? (IW“ gP(Zl) a; z2) ° ra;iz

No, N°
ab a'a
— § § § -1 . b
- F (yga;l ® yga,’;l’ gb;k ® ya’a;l) :

beA k=1 I=1
'(ngbk © (IWa |XP(Zl) ng’a;l) (IWa &P(zl) azz) © ’rc:;:l@)

_ZZZ yga1®yaa’1aygbk®yaal)

beA k=1 I=1
'(ngb;k © (IW“ IX1’(31) (ng’a;l o i:z;zz)) o Ta_;iz)' (320)
Let mpy = [T4ea NG WE — WP for b € Aand I = 1,...,N}, be the

projection to the I-th copy of W?. Then from

ng’a;l(wll gP(zz) wl) = yga:;l(wi, ZQ)’LUl

= (mpy 0 fé;z2)(w£ P (21— 29) w1)

for wy € W* and wi € (W*)', we obtain n},,, = m, o f}.,, and

ng’a;l o i;;n = Tp© fclz.;z2 © (f(,z;zz)_1 © g;;zQ
== 7Tb;l o g;;zz
= Su46uly. (3.21)
We also have
(nge;l © 7'(1_;%2)(eZQL(_1)w1) = nae 1( 07%2 (ezzL(_l)wl))

= Tlae l(wl |ZP(22) 1)

= yael(wl’ZQ)l

= =l l)Ywa(l, —29) w1

= ey (3.22)

for w; € We. Since the homogeneous components of elements of the form
e (=1, span W, we see that (3.22) gives

Moot © Tarzy = Iwa. (3.23)
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From (3.21) and (3.23), the right-hand side of (3.20) becomes

Ngb Ns’a
-1 . b
ZZZF (yga;l ®yga’;1’ gb;k ®ya’a;l).

beA k=1 I=1
-1
'6eb611(77:11b;k © ra,;zz)
_ —1 a e . \a b a -1
=F (yea;l ® yaa’;l’ yab;k & ya’a;l)(nae;l © Ta;Z2)

= F_l(yga;l ® yga’;l; y(tzlb;k ® yg’a;l)IWa' (324)

From (3.20), (3.24) and the definition of y,.,, »,, we obtain
Ha;z1,22 = F_l(yge;l ® yg’a;l; yga;l ® yga’;l)' (325)
By Proposition 3.2 in [H7] and the properties of the bases V.., Va1, Yoo

and Vg, under the action of the S3 symmetry for a € A, we have

F_l(yge;l & yg’a;l; yga;l & yga’;l) = F(yge;l & y;’a;l; yga;l & y:a’;l)' (326)
From (3.25) and (3.26), we obtain (3.16). |

Proposition 3.6 Fora € A, we have

pa = F
F(y((zle;l & yg’a;l; yga;l & yga’;l)' (327)
Proof. Choose 2?,29 € (0,00) satisfying 2 > 29 > 2? — 20 > 0 and choose

paths ¥, 71,72 in (0,00) from 29 — 29,20, 29 to 1,1, 1, respectively. Then by

the definitions of all the module maps involved for general z;, 25, the following
diagrams are commutative:

-1
r
a;z

0
we 2 W Rpe, V

1

-1

we Loy WeRV

TwaR®, 0, &0
WeNp,o V — T e Mpo) (W) Wpg W*)
Tr2 l J’(IW‘1 X T,)0 Ty,
WeR Y fweB e WeR (We) ’RWe)
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P(z?—zg),P(zg)
P(29),P(z9)

W Rpg0) (W) pg) W)

(Iwa®T55)0Ts, J l(mwwa )oTrs

(W Bpo .9 (W?)) Rpg) W*

WeR (We) R We) SN (W R (We)) K e

sl
ea;zl—zzxf’(a)IW“

(W Rpo_.g) (W?)) Bpg) W* > V Mpg) W
(TooBIwa)oTs, l le

¢/ Rlya

(We R (We)) K We VR We

la'z.o
Vv p(zg) Wwe —2) Wwe

of

VRWe s we
Combining these diagrams, we obtain
lao(é) X Iya)o Ao (Iyya ®il)or,?
=l © (é:lm—zz Np(z) Iya) o AIP’EZ)_,;’Z()Z,S(Z” o (Iwa Xp() i;;22) °© Ta_;iz'

From this equality and the definitions of 11, and p4;,0 .0, We obtain

Ha = ,ua;z?,zg .

By Proposition 3.5, we obtain (3.27). n
For the compositions

)\Ia = Ty O (I(Wa)’ X é;) (¢] A_l e} (Z:z X Iwa) o l;,l,
,LL; = lal o (éa X I(W“)’) oAo (Iwa ia) o 7"071

of the module maps in the sequences
1
(Wa)l a y V & (Wa)l y
R (WY RO R (W) ——

A—l I(Wa)lg é
_wey™ fa,

L (WY)'R (WK (W) Wy RV 2 (Wey,

(3.28)
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-1
!

(Wa)l "a \ (Wa)lv
S (WY R(WOR (V) ——

A (W) RWe) R (WaY

R yay
respectively, we have the following:
Proposition 3.7 Fora € A, we have
X = M
= F,
F(yge;l ®yg’a;1;yga;1 ®yga’;1)' (330)
The proof of Proposition 3.7 is completely analogous to the proofs of

Propositions 3.4 and 3.6 and is omitted here.
Since F, # 0, we let

1
e = —6€
F, ™
1
! A~
e, = —é
a a
F,

for a € A.

Theorem 3.8 Let V be a simple vertex operator algebra satisfying the con-
ditions in Section 1. Then with the left duals, the right duals and the module

maps i, €q, 1, and e, above, the braided tensor category structure on the

category of V-modules constructed in [HL1]-[HL4], [H1] and [H5] is rigid.

Proof. Since our tensor category is semisimple, to prove the rigidity, we
need only discuss irreducible modules. By Propositions 3.4, 3.6 and 3.7 and
the definitions of the maps e, and e}, the composition of the maps in the
sequences

-1 .
we VRWe LB, (WeR (W) RWe ——s
A WeR (Wey R we) LeBe WeR YV ey W,
-1 X ¢
we e, WeRV IweBh, yra g (We) RWe) ——s

e:zgfwa

A (WeR (Wa)) R We VR We LN 7 /(3
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-1
’

l
(Wa)l a y V & (Wa)l y

WHIwe, (Woy W) R (W) ——
-1 IywayX el T,
A WyR((WeR (W) S (wey R Y s (W),

-1
7

(Wa)l "a \ (WG)IIXV
S (WY R (WOR (W) ——

ea®I a\/ ’
A (W RWe) R (W) Yy ey —s (e
are the identity maps. So the tensor category is rigid. |

The calculations above also allow us to calculate the tensor-categorical
dimensions of V-modules:

1

Theorem 3.9 For a € A, the tensor-categorical dimension of W is 7

Proof. For any a € A, choose w, € w* and w), € (W*)" to be lowest weight
vectors such that (w!,w,) = 1. Then by the definitions of i, and &,

i.(1) = Py(w, Xwl),

E(wa Bwy) = Yoy (wa, 1wy

Thus we have

Calia(1)) = & (Po(wa Ruwy))
= Py(é (w, X))
= PO(ygal;1(wa> 1)’11):1)

— 2ha—1 !
= Res,z™  Veu (Wa, T)w

Since V is irreducible and V(o) = C1, there exists v € C such that

Res, "~ a1 (Wa, 2)w, = V1,
We now calculate v. By the definition of the intertwining operator Y; ., and
the assumption that w, and w!, are lowest weight vectors and (w},w,) = 1,
we have

2ha—1( e

Res,x ar1 (Wa, 2)wy, 1)
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— em’ha Resma:Zh“_l <w; a (emL(l)e—m'L(O)m—2L(0)wa’ x—l) 1>

) Y ae;l
:Reswl‘71<w;a ge;l(waaxil):l)
= Res,z~ " (w!, e* TDqy,)

= Respz~ (e "W’ w,)
= (Wg; Wa)
=1.

Since (1,1) = 1, we obtain ¥ = 1. Since V is irreducible, the calculation
above shows that
é; 9 ia = Iv.

Thus 1

el 0l = EIV.
By the definition of the tensor-categorical dimension (see [T]), we see that
the dimension of W4 is . u

Fa

Remark 3.10 In [HL3], the notion of vertex tensor category was introduced
and it was proved in [HL3| and [H5] that for a vertex operator algebra V/
satisfying the conditions (weaker than) in this paper, the category of V-
modules has a natural structure of vertex tensor category. In the proof of
the rigidity above, we have calculated the compositions of module maps in
the sequences (3.3), (3.15) and the corresponding sequences (which we have
omitted) for the proof of (3.7). If we replace é,.,, ., and é by

A321,22
Cazize = L Camz
a
! . 1 él
a;z1,22 F o %z1,22?
a

these compositions are equal to identity maps. Actually for any vertex tensor
category whose objects have left and right duals and also have the associated
morphisms, these sequences still make sense. So we can introduce a notion
of rigidity for vertex tensor categories by requiring the compositions of the
morphisms in these sequences to be equal to the identity on the object for
every object in the category. Then our result above shows that the vertex
tensor category of V-modules is rigid. We know that a vertex tensor category
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gives a braided tensor category [HL3]. Then the proofs of Propositions 3.4
and 3.6 and the corresponding parts in the proof (which we have omitted)
of Proposition 3.7 shows that if a vertex tensor category is rigid, then the
corresponding braided tensor category is also rigid.

4 Balancing axioms, the nondegeneracy prop-
erty and the modular tensor category

In this section we prove that the category of V-modules for a vertex operator
algebra V' satisfying the conditions in Section 1 has a natural structure of
modular tensor category. The main work is a proof of the nondegeneracy
property.

We first recall the notion of modular tensor category (see [T] and [BK]
for details). A ribbon category is a rigid braided tensor category (with tensor
product bifunctor X, the braiding isomorphism C, the unit object V' and
the right dual functor ) together with an isomorphism 6y, € Hom(W, W)
for each object W satisfying the following balancing azioms: (i) Ow,mw, =
C? o (Ow, X Ow,). (ii) Oy = Iy. (iii) Oy~ = (Ow)*. A semisimple ribbon cate-
gory with finitely many inequivalent irreducible objects is a modular tensor
category if it has the following nondegeneracy property: Let {Wq,..., W}
be a complete set of representatives of equivalence classes of irreducible
objects. Then the m x m matrix formed by the traces of the morphism
C? € Hom(W; X W,;, W; K W;) in the ribbon category is invertible. See, for
example, [T] and [BK] for details of the theory of modular tensor categories.

Now we consider a vertex operator algebra V satisfying the conditions in
Section 1. For a V-module W, let

HW — eZm'L(O) )

Theorem 4.1 The rigid braided tensor category of V-modules together with
the balancing isomorphism or the twist Oy for each V-module W is a ribbon
category.

Proof. Let Wy and W5 be V-modules and let ) be the intertwining operator
WiRW,

of type ( WaWs ) such that w; R wy = Y(wq, 1)wy for wy € Wy and wy € Wi.
From the definition of the braiding isomorphism C, we have

@(’U]l X wz) = @(J/(wl, ].)’U)Q)

= y(wla x)w2|z":e2””', neR
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for wy € W1 and Wy € WQ. Then for wy € Wl and Wy € WQ,

0W1|ZW2 (wl & w2) = eQWiL(O) (wl IE 'LUQ)

_ 62““0))2((11)1, 1)w2)

y(e%iL(O)wb x)@QWiL(O) w2|wn:e2wm’, neRr
@((EQm‘L(o)wl) X (€2m‘L(0)w2))

C% 0 Oy, W Oy (w1, B w)

C2 o Oy, X Oy, (w1 R w,).

Since the homogeneous components of w; K wy for all w; € Wi and wy € W,
span the V-module W; X W5, we obtain

0W1®W2 = C2 © (0W1 X 0W2)
Since V is Z-graded, we have 0y = I,. For any V-module W,

(GW)* — (627riL(0))*
— 627riL’ (0)

— Oy,

Thus all the balancing axioms are satisfied. So the category of V-module is
a ribbon category. |

To prove the nondegeneracy property, we calculate the compositions of
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the maps in the sequence

U
a2

(W) & W
IiyazyRray ]
(W) ®’ (W R V)
Igyazy®(Iyas R, )
(WY 8 (W & (W) R We))
IgyasyRA

(W 8 (W 8 (W) R )
Tiwazy R(C* R yaz )
(WY 8 (W 8 (W) R )
Tyyasy®A

(WY 8 (W & (W) R W)
TweayR(lyea Reay) |
(WY R (W* R V)
Iz y Bra,
(Wey & e

€ay

V
(4.1)
This composition will give us the trace of C* € Hom((W® ), WW42). Similarly
to the calculations of the maps in the proof of the rigidity in the preceding

section, we first calculate the composition of certain other module maps.
For 2y, 29,23 € C* satisfying |z1| > |22| > |23] > |22 — 23] > 0, consider
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the module map given by the sequence

V

!
Z0.2;21
d

(W) Rpg,) W
Igwazy®p(y)Tag,2
! .
(W) Rp(z) (W2 Kp(,) V)
I(Wa2)’®P(z1)(IWa2xP(zz)i:zl;zg)

(W) Bp(oy)y (W2 Rp(,) (W) Rpe,) W))

P(3y—23),P(23)
Tiwazy®p) Ap 2y by -

(W) Kpr,) (W2 Rpy o) (W?)) Rp(oy) W)

Twazy®p(a)((CP(zg—z23))*Bp(eg) faz)

(W) Bp(y) (W Bp(zy—zq) (W)') Bp(g) W)
I(W“?)'gp(zl)(A%Z;;ﬁ’;u?’))_lv
(W) Bp(zy) (W Rp(,) (W) Bp,) W)
Towen @p(ep) (e Bp o) |
(Wwez)! Xp(z) (we Xp(z) V)
I(WGQ)Igp(Zl)Ta2;z2 !

(Wa2 )I &P(zl) Wag

éaz;zl

-
(4.2)

Proposition 4.2 The composition of the module maps in the sequence (4.2)
is equal to (BCD)2 I,

a2,a1

Proof. Since V is an irreducible V-module, we know that the composition
must be proportional to Iyy. So we need only show that the proportional
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constant is (B(’l))imal. To show this, we need only calculate the compo-
sition applied to any nonzero element of V' or the natural extension of the
composition applied to any nonzero element of V.

By definition, we have
NP,
w, &P(z) w = ( é;z)il Z Z yg’a;k(wl’ Z)w
beA k=1

forae A 2z € C, we W*and w € (W?'. Then for any module maps
a: (WY — (W*) and g: W* — W9,

NY,
(a &P(z) ﬁ) ( clz;z)il Z Z yg’a;k(wl’ Z)w
beA k=1
= (aMp() ) (w' Wpg) w)
= a(w') Mp(,) f(w)

T [ Y Mslatw), 98w) | (43)

beA k=1

Since f,., is an equivalence of V-modules and the homogeneous components of
elements of the form w'Mp(,) w for w € W* and w' € (W*)" span (W?)' Kp(,)
W, the homogeneous components of elements of the form

N,
Z Zyg’u;k(wlvz)w (44)

beA k=1

for w € W* and w' € (W) span [[,c 4 N%,W®. In particular, by the
definition of g,.,, for w, € W* and w, € (W*)', g, (V5. (w), 2)wa) can
be obtained as a sum of homogeneous components of elements of the form
(4.4) and g (V. (a(w)),2)B(w,)) is the sum of the same homogeneous
components of the same elements of the form (4.4) with w' and w replaced

by a(w') and B(w), respectively. Thus from (4.3) we obtain

(0 Bp() B)((far) ™ (Ghsz (Varaa (wh, 2)wa)))
= ()™ (9. Vara (awyr), 2) B(wa))). (4.5)
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From the definition of 7, and (4.5), we obtain

(o ®p) B) 0 i) Varan (Wa, 2)wa) = i (Viran (a(wr), 2)B(wa))  (4.6)

for module maps o : (W*)" — (W®) and f: W* - W a € A, z € C,
w, € W and w!, € (W*)'. Using (4.6), we obtain

(Iwazy Mpey) (Iwaz Rp(oy) ih,.,,)) ((I (wezy Mp(ar) 75,%2,)
(7o (Vom0 20) Vs (W 2) 8y s (Wi 2800, ) ))
= m(yg’zag;l(w;p z1)
(wa2 X p(z) (m()@lal;l(waa,23)wa1))>) (4.7)

for w,, € W, w,, € W, w;, € (W*)" and w,, € (W*)'.
We also have the following commutative diagram

Tagiza®(Iyas IZP(zz)eg,' 23)

W a2 @p(zz) ((Wal)' p(z3) Wal) > W2

Ml eraz,al

Tag;zpo(Iyaz gp(@)éa’l;P(z?’))

Waz @p(22) ((Wal)' @p(zS) Wal) > Va2

(4.8)
where
M= (AN o (Copepmny)? By Tivea) 0 AR5 205
and the module map my, o, is defined as follows: Consider the element
wet (Wa 22) Vit ay:1 (Wa, > 23) Wa, (4.9)
of Wa2 and the path v in M? = {(29,23) € C? | 29,23 # 0, 22 # 23} given by
Y(t) = (23 + €72 (29 — 23), 23).

Starting with the element (4.9) above, the analytic extension along the path
v gives a value at the endpoint of 7. This is again an element of W42 which
we denote

May,aq (ya2e l(waw ZQ)ya la1; l(wzlzla Z3)wa1)'
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The correspondence

gje;l(waza ZQ)ya al,l(wap Z3)wa1

= ma27a1( 326 l(wa2’ ZQ)ya, 101; l(w:n’ 23)wa1)

determines a unique module map m,, 4, from W2 to itself.
Note that by definition, the module map M can also be directly obtained
in the same way as that for m,, ,,: Starting with the element

Wq, gP(Z:Q) (w;I gP(ze,) wa1)7

the analytic extension along the path v gives a value at the endpoint of ~.
This value is

ﬂ(w@ gp(zz) (’U);l IXP(;/g) wa1))

and the correspondence
Way Bp(zy) (Wo, Bp(zg) Way) = M(Way Bp(sy) (wh, Mp(sy) wa))

determines the map M. From this construction of M, we see that the
diagram (4.8) is commutative since analytic extensions certainly commute
with the module map

Tas;zs © (IW‘12 IZlP(Zz) ea'l;zs)'

Now this commutativity of (4.8) gives

P(22—23),P(23)\
Taz;zz © (Lo &P(Zz) ea'l;zs) © (AP§z§,P(322) ( 3))
P(z2—23),P(z
O((Cp(z2_23)) IZP(Zs) IWaQ) o) APEzz, (3 2) (23)
= May,a; © (raz;ZQ o (Iyas Xp(zy) ea’l;za))- (4.10)
On the other hand,

May,a1 © (Ta2;z2 o (Iyes Xp(zy) ea’l;z3))(wa2 Xp(z,) (w:“ X p(zs) Wq,))

= May,aq (yg;e;l(waza ZQ)yg’lal;l(w:zla Z3)wal)'

(4.11)

But by definition, for any w), € (W®)’, we have

<wa2ﬂ May,a4 (ygje;l (wazﬂ ZQ)y;Z’ a;l (wél.l’ Z3)wal)>

= (B(_l))2(<w:12’ :22@;1 (wa2= ZZ)ya lai; 1(’[1);1, Z3)’U)a1>).
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Thus by the commutativity of intertwining operators, we have

M ( ng 1 (Was, 22)ya’a1, (wali 23)Wa, )

= (B( 1)) (yaze 1 ® ya1a1,1’yaze 1 ® ya’al, ) )

:;e;l(waza ZQ)ya’lal;l(w:zla 23)wa1' (4'12)

Combining (4.10)—(4.12), we obtain
(ra2;22 ((Iwa2 IXP(@) éa’l;zs))
P(z0—23),P(z -1
(AR ((Crteree)? Bpgey) )

P(z0—23),P(z < <
(AR 2D (e Bp(ey) (W), By wa))) )))
= (B(il))2(yg22€;1 ® yg’lal;l; yg;e;l ® yg’lul;l) '
'yg;e;l(waz’ ZQ)yg’lal;l(wizl ) Z3)wal . (413)

Since .., (Ve 11 (Way s 23)Wa, ) 18 in (W) Mp(sy) W, it can be written as
a sum of of homogeneous components of elements of the form w' Mp(,,) w
for w' € (W?)" and w € W*. Since f,. .. is an equivalence of V-modules,
Ga:zs (yg,l ay:1(Wal s 23)Wa, ) is the same sum of the same homogeneous compo-
nents of the elements of the form

alal

Z Z ya’a1, 723)wa1'

beA k=1
Then we see that the same sum of the same homogeneous components of the
elements of the form Y . 4 (war, 23)w,, must be equal to itself. Using these

facts and taking the coefficients of z3 to all powers in both sides of (4.13)
and then taking the sum above, we obtain

Tag;2o ((IW“2 IZP(22) éa'l;zs)

P(z2—23),P(z -1
((APEQ),;()@)( 3)) (((CP@Hs))Q X p(zg) Iaz)

T P(z2—23),P(z3) 7 (e
(Apéi),p?’()zz)( 3)(w“2 NP (z2) 1524 (ya’lal?l(wall’ Z?’)w“l))))))
= (B(il))Q(y:;e;l ® yg’ a1; 19 ysie 1 ® ya’ at; 1)

: gze l(waza ZZ)ya la1; l(wzlzla Z3)wa1' (414)
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From (4.14), we obtain

(éa'ﬁzl © (Zwezy Bp(an) Taziza) © (Tweay Mpgay) (Twes Mp(ay) €a324))
—1
o (twer o0y (A85325) )
X zz 2 P z
O(I(Wa2)’ ®P(z1) ((CP(Z2_z3))2 P(ZS) IW‘”)) (I(W“Z P(z1) A 322)( 3)>

(w:u gP(Zl) (wa2 &P(m) 7;111;23( g’lal;l(waﬂ Z3)wa1>))
= (B(_l))Q(yg;e;l & yg'lal'l; yg;e'l ® yg’lal;l) :
: (yggag;l(wazﬁ Zl)ygze 1(wa2, z2)ya la1; l(wtlz17 z3)wa1) (415)

Noticing that (4.15) holds for all w,, € W, w,, € W, w, € (W*)" and
o € (W)’ and using the same arguments as we have used to obtain (4.14)
from (4.13), from (4.15), we obtain

(éag;zl O (I(Waz)' &p(zH Ta2;zz) o] (I(WGQ)I &P(zl) (Iwaz &p(zz) éa'l;z;;))
P(23-23),P(23)) "
o (I(W%)’ ®P(z1) (-AP(zz),P?’(zz) ’ ) )
o(Tyyazy Rpz ((C )2 Rpiog) Tyez)) 0 (Iwazy Rp(s,y AR 2)F(s)
(Wea2)! P (z1) \\YP(22—23) P(z3) tWe2 (Wez) SP(z1) YP(22),P(22)

(Z.G/Q;Z1 (yglzaz;l(wgg’ Zl) (wa2 ®P(22) 7;21.1;2:3 (ygllal;l(w:h’ 23)wa1
= (B(_l))Q(yggze;l &® yg'lal;l; y((llgze'l ® yg’lal;l) )
) < g’Zag;l(waza Zl)yU,Qe l(waw ZQ)ya a1; l(wzlzla Z3)wa1) : (416)

N———"
N———"
N———
N———

Combining (4.7) and (4.16), we obtain

(éa’z;m o (Liwery Mp(a) Tagiz) © (Iwazy Bp(ar) (Iwes Bp(ay) €atszs))

P(z3—23),P(z3)) "
o (I(W“z)’ gP(Zl) (AP(z;),P3(22) ’ ) )
22 23), P(Zg))

o(Lwazy Mp(zy) ((CP(zr—25))? Mp(zs) Iwaz)) 0 (I(WGZ) Rp(zr) Ap 2),P(22)

O(Iweay M) (Twee Bp(z) fas24)) © (Tgwezy Bp(en) Tay.z, ) © iag;m)
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( 2’2a2;1(wa2’ Zl)yaze 1(wa2, 22) (ya’ a; 1( al’ Z3)wal))
= (B(il))2(yg‘22€;1 029 y(f’lal'l; ygse;l @ yg’lal;l) :
(et (W 20) Vi (W 22) Vo011 (W 2500, ) (417)

Since we can always choose w,, € W%, w,, € W, w, € (W*")" and

ai
€ (W) such that
y22a2, ( Weys Zl) g;e;l(waw ZZ)yg’lal;l(w:n’ Z3)wa1 7é Oa

(4.17) gives
(éag;zl o (Liwary Bp(z) Tagiz) © (Iwazy Mp(ar) (Iwes Bp(zy) €alszs))
o <I(Wa2)' Xp(z) (Afzgi)_ﬁk)z’s(zg)) 1)
o(Iwasy Mp(z) ((CP(ZQ_z3))2 Xp(es) Iwas)) © (I(W“?) Mp(z1) 'A 22 ZB(ZS(ZB)>

O(I(Waz)/ &p(zl) (Iwa2 |Zp(z2) ia'l;z?,)) o (I(WLLQ)I gp(zl) 7‘;21,22) o iag;n)
= (B(_l))2(y222€ i1 oY yg'lal;l; ygje;l ® yg'lal;l)lv
= (BCY)2 Ty (4.18)

Proposition 4.3 The composition of the module maps in the sequence (4.1)
is equal to (BCV)2 Iy

a2,a1

Proof. Choose 29,29, 29 € (0,00 satisfying 29 > 20 > 20 > 20 — 29 > 0.

Let 71, 72,73, Y23 be paths in (0,00) from 22, 29, 29, 20 — 29, respectively, to
1. From the definitions of the module maps involved, we have the following

equalities:

-/

lay = Ty © Zaz 129

weay B 15,) 0 Ty = ((Lweay B T,) 0 Ty ) © (Iwezy Bpiooy o o)

(Lwezy B (Iyas Ry ) o (Lweay B Ty,) 0 Ty )
= ((LIwezy ® (Iwe: B Tp5)) o (Liwasy K T,,) 0T,y ) ©
o(Iwezy Mp(9) (Twez Wp(sg) iy, ,0));
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(Iwazy B A) o (Iwazy B (Iye: R To,)) 0 (Igweay R T,,) 0 T5y)
= ((I(W“2 X (Tyzs X IWa2)) © (I(Waz)' X TYS) © 7TYl) ©
o (Tavony Ry AL D)
) ApE),P) )
(Zwezy B (C* B Iyyaz)) o ((Lwezy B (Trps B Iyaz)) 0 (Lwazy B To,) 0 Ty)
= (((Hwazy B (T W Iyyez)) 0 (Liweay B Toy) 0 Ty ) 0

2
O <I(Wa2) |ZP ((CP g)> &P(zg) Iwaz)) y

(Tveay ®A™) 0 ((Igweay B (Trpg B Iiyea)) 0 (Igyeay B T) 0 T,
= ((Iweory B (Iyes B Ty,)) © (Lgweay B T,,) 0 T,) o

P(29-29),P(29) -1
° (1<wa2>' M (ag) (Amzj) P2 ) ) ;

Lwazy B (Iwaz W éq,)) © (Lwary B (Ie: K To,)) © (Liweay B T5,) 0 T, )
= ((wazy ®T,) 0 Toy) © (Iweoy Bpa0) (Twes Bp(eg) €ay;00)),

(I(W%)' X T'az) o ((I(W“Z)’ X 7’-y2) © 7;1) = 7771 © (I(Waz)' |Z|P(2?) Ta2;23)7
éag;z? ° Tn = éaz'
Each of these equalities is equivalent to a commutative diagram. For example,

the first and the second equalities above are equivalent to the commutative
diagrams

Z'I

a ;zo
V=5 (We2) Wpge) W

| [~

N

V2, (We) RWe
and

-1
I(Wa2)lgp(zo) as, 0

(Wa2)l &P(Z?) wez % (Wa2) IZP(Z?) (Wa2 IXP(zg) V)

7 | | Gawery T,

I(WO.-Q ) X 7‘;21

(Wea2)' R e (Wa)'® (W R V)
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(Since the size of some of the diagram is too big, we leave the other commu-
tative diagrams to the reader.)

Combining all the diagrams above or equivalently, all the equalities above,
we see that the composition of the module maps in the sequence (4.1) and
the composition of the module maps in the sequence (4.2) are equal. Then
by Proposition 4.2, we obtain the conclusion of the proposition. |

Corollary 4.4 The composition of the module maps in the sequence obtained
from (4.1) by replacing é,, and é,, by eq, and eq,, respectively, is equal to

(B)2
a2,a1 I
Vs
o F,,

that 1s,

ea{2 o (I(Wa2)/ X Taz) o) (I(Waz)/ X (IWa2 X eall))
(Iwazy ® A o (Liyazy B (C* K Iyyar)) o (Igyesy X A)
(I(Wa2)l X (Iwa2 X ’[,all)) e} (I(Wa2)/ X 7”(;21) e} ia’2

(B

— 42,81 1 4.19
R, (4.19)

O
@)

Proof. From (4.18) and the definitions of e,, and e,,, we obtain (4.19). &

Theorem 4.5 Let V' be a simple vertex operator algebra salisfying the con-
ditions in Section 1. Then the ribbon category structure on the category of
V-modules constructed in [HL1]-[HL//, [H1] and [H5] is nondegenerate.

Proof. By definition, the traces of C? € Hom((W*)' W%) for ai,as € A
can be calculated as follows: For any a1, as € A, consider the composition of
the module maps in the sequence obtained from (4.1) by replacing é,, and
€a; DY €4, and e, , respectively, that is, consider the module map given by
the left-hand side of (4.19). This is a module map from V to V. Since V is
an irreducible V-module, the module map we are considering is equal to the

identity operator on V' multiplied by a number. This number is the trace of
C? € Hom((Wa), Wa2).
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Thus by Proposition 4.3, the traces of C* € Hom((W®)', W%) for ay,ay €
A are
(B")2, 0
FpFoy
By (2.2), they are actually equal to
SS—‘g, ay,as € A,

which form an invertible matrix. So the tensor category is nondegenerate.

From Theorem 4.5 and the definition of modular tensor category (see for
example [T] and [BK]), we immediately obtain the main result of the present

paper:

Theorem 4.6 Let V be a simple vertex operator algebra satisfying the con-
ditions in Section 1. Then the category of V-modules has a natural structure
of modular tensor category.

Remark 4.7 As in the discussion in Remark 3.10, we can also introduce
a notion of nondegeneracy for semisimple rigid vertex tensor categories and
a notion of modular vertex tensor category. In fact, for any semisimple
rigid vertex tensor category, the sequence (4.2) still makes sense. So we
can introduce the notion of nondegeneracy for vertex tensor categories by
requiring the compositions of the morphisms in this sequence to be equal
to the identity on the unit object. Twists and balancing axioms for vertex
tensor categories can also be introduced in an obvious way. A modular vertex
tensor category is a semisimple vertex tensor category which is also rigid,
balanced and nondegenerate. Then our result above shows that the vertex
tensor category of V-modules is nondegenerate and thus the category has a
natural structure of modular vertex tensor categories. Moreover, the proof
of Proposition 4.3 actually shows that if a semisimple rigid vertex tensor
category is nondegenerate, then the corresponding semisimple rigid braided
tensor category is also nondegenerate. In particular, a modular vertex tensor
category gives a modular tensor category.
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