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1 Definitions of conformal field theory, modular func-

tor and weakly conformal field theory

1.1 An algebraic structure on the moduli space of Riemann sur-
faces with boundaries

Consider the following category B constructed geometrically: Objects of B are finite sets (in-
cluding the empty set) of copies of the unit circle S1. Given two objects, morphisms from one
object to another are conformal equivalence classes of Riemann surfaces (including degen-
erate ones, e.g., circles, and possibly disconnected) with oriented, ordered and parametrized
boundary components such that the copies of S1 in the domain and codomain parametrize
the negatively oriented and positively oriented boundary components, respectively. For
simplicity, we shall call a Riemann surface with the additional data in the description of
morphisms above a rigged Riemann surface. For an object containing n copies of the unit
circle, the identity on it is the degenerate surface given by the n unit circles with the trivial
riggings of the boundary components. Given two composable morphisms, that is, two rigged
Riemann surfaces Σ1 and Σ2 such that the codomain of Σ1 is the same as the domain of
Σ2, we can compose them by identifying the positively oriented boundary components of Σ1

with the negatively oriented boundary components of Σ2. Then the composition or sewing
operation satisfies the associativity and any morphism composed with an identity is equal
to itself. Thus we indeed have a category.

This category has a symmetric strict monoidal category structure where the monoid or
tensor product bifunctor is defined by disjoint unions of objects and morphisms. Such a
category is an example of PROPs.

We shall use [Σ] to denote the morphism in the category B containing a rigged Riemann
surface Σ.

1.2 Definition of conformal field theory

We consider the category H of Hilbert spaces over C with trace-class maps as morphisms.
Here trace class maps are continuous maps for which we can take traces. There is a tensor
product bifunctor ⊗ such that H becomes a symmetric tensor category. More generally we
also have a category Nform of complete nuclear spaces over C with nondegenerate bilinear
forms with trace-class maps as morphisms. There is also a tensor product bifunctor ⊗
such that Nform becomes a symmetric tensor category. The category H (or Nform) induces a
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projective category P(H) (or P(Nform)) whose objects are projective spaces of Hilbert spaces
and whose morphisms are those maps induces from trace class maps between Hilbert spaces.
Then P(H) and P(Nform) are also symmetric tensor categories.

Let Σ be a rigged Riemann surface such that [Σ] is a morphism in B from m copies
of S1 to n copies of S1. Then by identifying the i-th incoming boundary component of Σ
parametrized S1 with the j-th outgoing boundary component of Σ parametrized by S1 in
the codomain of [Σ], we obtain a rigged Riemann surface [Σî,j]. (Note that the two copies

of S1 identified might or might not be on a same connected component of Σ.) See Figure 1
in the case i = 4 and j = 3.

Figure 1: Sewing the 4-th incoming boundary component of a riggeed Riemann surface Σ
with the 3-rd outgoing boundary component of Σ to obtain ΣΣ

4̂,3

Let Σ be as above. By changing the i-th incoming boundary component of the Σ to
the n + 1-st outgoing boundary component the same Riemann surface, we obtain a rigged
Riemann surface Σi→n+1 with m − 1 ordered incoming boundary conponenents and n + 1
ordered outgoing boundary componenents.

We now give a definition of two-dimensional conformal field theory due to Kontsevich
and Segal (see [S1] and [S2]).

Definition 1.1. A two-dimensional conformal field theory (or simply conformal field theory
when it is clear that it is two dimensional) is a Hilbert space H and a functor φ from B to
P(H) (or more generally, P(Nform) satisfying the following conditions for morphisms fo the
form [Σ] from m ordered copies of S1 to n ordered copies of S1:

1. The trace between the i-th tensor factor of the domain and the j-th tensor factor of
the codomain of φ([Σ]) exists and is equal to φ([Σî,j]).
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2. The maps φ([Σ]) and φ([Σi→n+1]) are related by the map from Hom(P (H)⊗m), P (H)⊗n))
to Hom(P (H)⊗m−1), P (H)⊗(n+1)) obtained using the map H → H∗ corresponding to
the bilinear form (·, ·).

We shall denote a conformal field theory defined in Definition 1.1 by (H,φ) or simply by
H.

Let Σ be as above and Σ the rigged Riemann surface obtained by taking the complex
conjugate complex structure of the one on [Σ] and takeing the incoming and outgoing bound-
ary components of Σ to be the outgoing and incoming blundary components of Σ with the
same orders (note that the orientations of the boundary components are reversed). The
correspondence Σ→ Σ is a functor from the category of rigged Riemann surfaces to it self.

Definition 1.2. A two-dimensional real conformal field theory (or a real conformal field
theory is a (two-dimensional) conformal field theory (H,φ) together with an anti-linear in-
volution θ from H to itself such that φ([Σ]) = P (θ)⊗m ◦ φ∗([Σ]) ◦ (P (θ)−1)⊗n where φ∗([Σ])
is the adjoint of Φ([Σ]) and P (θ) is the map from P (H) to itself induced from θ.

More precise definitions can be given using determinant line and canonical isomorphisms
between them. We omit these here.

1.3 Definition of modular functor and the corresponding colored
PROP

The definition of conformal field theory in the preceding subsection above do not reveal
many important ingredients in concrete models. In particular, they do not give the detailed
structure of chiral and anti-chiral parts of conformal field theories, that is, parts of conformal
field theories depending on the moduli space parameters analytically and anti-analytically. It
is known that meromorphic fields in a conformal field theory form a vertex operator algebra.
The representations of this vertex operator algebra form the chiral parts of the theory.
Therefore to construct conformal field theories from vertex operator algebras, it is necessary
to study first chiral and anti-chiral parts of conformal field theories. Axiomatically, chiral and
anti-chiral parts of conformal field theories are weakly conformal field theories introduced by
G. Segal in [S1] and [S2] and are generalizations of conformal field theories defined above.

To describe weakly conformal field theories, we first need to describe modular functors,
which was also introduced by Segal in [S1] and [S2]. We need to consider rigged Riemann
surfaces with additional labels on their boundary components by a set. LetA be a set. AnA-
labeled and rigged Riemann surfaces (or simply a labeled and rigged Riemann surfaces when
the set A of “labels” is clear) is a rigged Riemann surfaces with a the boundary components
labeled by elements of A. We consider a category whose objects are conformal equivalence
classes of A-labeled and rigged Riemann surfaces and whose morphisms are given by the
sewing operation, that is, if one such equivalent class can be obtained from another using
the sewing operation, then the procedure of obtaining the second surface from the first one
is a morphism. We also use [Σ] to denote the conformal equivalence class of a surface Σ.
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Definition 1.3. Let A be a set. A modular functor with the labeling set A (or simply a
modular functor when the set A is clear) is a functor E from the category of A-labeled and
rigged Riemann surfaces to the category of finite-dimensional vector spaces over C satisfying
the following conditions:

1. E([Σ]) is independent of the orientation of the boundary components of [Σ].

2. E([Σ1 t Σ2]) is naturally isomorphic to E([Σ1])⊗ E([Σ2]).

3. If Σ is obtained from another surface Σa by sewing two boundary components with
opposite orientations (meaning one incoming and one outgoing) but with the same
label a ∈ A of Σa, then E([Σ]) is naturally isomorphic to ⊕b∈AE([Σb]) where for b 6= a,
Σb is the surface obtained from Σa by changing the label a to b on the boundary
components to be sewn.

4. E([Sa]) is canonically isomorphic to C, where Sa is the degenerate A-labeled and rigged
Riemann surface given by the unit circle with one incoming boundary component and
one outgoing boundary component (both are the same as the degenerate surface itself,
the obvious parametrizations and the labels by a ∈ A.

5. E([Σ]) depends on Σ holomorphically.

The simplest nontrivial example of a modular functor is given by the determinant line
bundles.

From a modular functor E, we can construct a symmetric strict monoidal category BE
extending the category B as follows: Objects of BE are are finite sets (including the empty set)
of pairs of the form of a copy of the unit circle S1 and an element of the set A. Morphisms of
BE are pairs of the form of an equivalence class [Σ] of A-labeled and rigged Riemann surface
(including the degenerate ones) and an element λ of the vector space E([Σ]), such that each
boundary component of Σ and the element of A labeling the boundary component of Σ
match with a pair of a copy of S1 and an element of A in the domain or codomain depending
on whether the boundary component is incoming or outgoing, respectively. The identity on
an object is given by the obvious degenerate A-labeled and rigged Riemann surface S (given
by the same number of copies of S1 as the object) with the obvious labeling by elements of
A determined by the object and the element in E(S) corresponding to 1 ∈ C (since E(S) is
canonically isomorphic to C) . Let ([Σ1], λ1) and ([Σ2], λ2) be two composable morphisms.
Let Σ be the A-labeled and rigged Riemann surface obtained by sewing Σ1 and Σ2. The
sewing procedure to obtain Σ from Σ1 and Σ2 is a morphism of the category of A-labeled
and rigged Riemann surfaces above. Since E is a functor, applying E to this morphism, we
have a linear map from E([Σ1 t Σ2]) to E([Σ]). Since E([Σ1 t Σ2]) is naturally isomorphic
to E([Σ1])⊗E([Σ2]), we also have a linear map from E([Σ1])⊗E([Σ2]) to E([Σ]). We define
the composition of ([Σ1], λ1) and ([Σ2], λ2) is ([Σ], λ), where Σ, as discussed above, is the
A-labeled and rigged Riemann surface obtained by sewing Σ1 and Σ2 and λ is the image of
λ1 ⊗ λ2 ∈ E([Σ1]) ⊗ E([Σ2]) under the linear map from E([Σ1 t Σ2]) to E([Σ]). Then the
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composition clearly satisfies the associativity and any morphism composed with an identity
is equal to itself. In particular, we obtain a category detcB⊗det

c̄

B.
The category BE is also a symmetric strict monoidal category: The monoid or tensor

product bifunctor is defined by disjoint unions of objects, the disjoint union of the rigged
surface part of the morphisms and the tensor products of the elements in the corresponding
finite-dimensional vector spaces.

The category BE has a structure of A-colored PROP.

1.4 Definition of weakly conformal field theory

We consider the category N of complete nuclear spaces over C with trace-class maps as
morphisms. Just as the category Nform, T is also a symmetric monoidal category.

We also have operations on A-labeled and rigged Riemann surfaces similar to those on
rigged Riemann surface in Subsection 1.2. We shall use the same notations to describe them.

Let Σ be an A-labeled and rigged Riemann surface such that [Σ] is a morphism in B from
m copies of S1 to n copies of S1. Assuming that the labels at the i-th incoming boundary
component and the j-th outgoing boundary component of Σ are the same. Then by identify-
ing the i-th incoming boundary component of Σ with the j-th outgoing boundary component
of Σ in the codomain of [Σ] using the parametrizations of these boundary components, we
obtain a A-labeled and rigged Riemann surface [Σî,j].

Since from Σ to Σî,j is an sewing procedure, it is a morphism in the category of A-labeled
and rigged Riemann surfaces. By the definition of modular functor, we have a linear map
ρE[Σ];i,j : E([Σ])→ E([Σî,j]).

Let Σ be as above. By changing the i-th incoming boundary component of the Σ to the
n + 1-st outgoing boundary component the same Riemann surface, we obtain a A-labeled
and rigged Riemann surface Σi→n+1 with m − 1 ordered incoming boundary conponenents
and n + 1 ordered outgoing boundary componenents. Since E([Σ]) is independent of the
orientation of the boundary components of [Σ], E([Σ]) is in fact the same as E([Σi→n+1]).
We shall denote the identity map from E([Σ]) to E([Σi→n+1]) by ρ[Σ];i→n+1.

Definition 1.4. Let E be a modular functor labeled by A. A weakly conformal field theory
over E is a set {Ha | a ∈ A} of Hilbert spaces and a functor φ from EB to H (or to N )
satisfying the following conditions for morphisms in EB of the form ([Σ], λ), where [Σ] is a
morphism in B from m ordered copies of S1 to n ordered copies of S1 and λ ∈ E([Σ]):

1. If the i-th tensor factor of the domain and the j-th tensor factor of the codomain of
φ([Σ], λ) are labeled by the same element of A, then the trace between the i-th tensor
factor of the domain and the j-th tensor factor of the codomain of φ([Σ], λ) exists and
is equal to φ([Σî,j], ρ

E
[Σ];i,j(λ)).

2. The maps Φ([Σ], λ) and Φ([Σi→n+1], ρ[Σ];i→n+1(λ)) are related by the map from

Hom(Ha1 ⊗ · · · ⊗Ham , Hb1 ⊗ · · · ⊗Hbn)
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to
Hom(Ha1 ⊗⊗Ĥai ⊗ · · · ⊗Ham , Hb1 ⊗ · · · ⊗Hbn ⊗Hai)

obtained using the map H → H∗ corresponding to the bilinear form (·, ·), where we

use Ĥai to denote the tensor factor Hai is missing.

2 The precise formulation and proof of the associativ-

ity of intertwining operators

2.1 The formulation of the theorem

Let V be a vertex operator algebra. We need to introduce some conditions on V and lower-
bounded generalized V -modules.

We say that V is of positive energy (or CFT type) if V(n) = 0 for n ∈ −Z+ and V(0) = C1.
It is clear that the affine vertex operator algebras V (`, 0) and L(`, 0) are of positive energy.

A grading-restricted (or lower-bounded) generalized V -module W is said to be irreducible
if the only grading-restrticted (or lower-bounded) generalized V -submodule of W are 0 and
W . It is easy to show that an irreducible grading-restrticted generalized V -module must be
an (ordinary) V -module. Note that if a lower-bounded generalized V -mdoule is a direct sum
of finitely many irreduicible (ordinary) V -modules, then it is an (ordinary) V -module.

Let W be a lower-bounded generalized V -module. For n ∈ Z+, let Cn(W ) be the subspace
of W spanned by elements of the form Resxx

−nYW (v, x)w for v ∈ V+ =
∐

n∈Z+
V(n) and

w ∈ W . We say that W is Cn-cofinite if W/Cn(W ) is finite dimensional. From the definition,
it is not difficult to show that W is Cn-cofinite implies that W is Cn−1-cofinite. We are
interested in C1- and C2-cofinite lower-bounded generalized V -modules.

In the case that ` ∈ Z+ and g a finite-dimensional simple Lie algebra, every lower-bounded
generalized L(`, 0)-module is a direct sum of irrecucible L(`, 0)-modules. Also in this case,
there are only finitely many inequivalent irreducible L(`, 0)-modules. See [FZ] and [LL] for
details.

The vertex operator algebra V is always C1-cofinite. In fact, by the creation property
for vertex operator algebra, for v ∈ V , v = Resxx

−1YV (v, x)1. So elements of V+ are
all in C1(V ). Thus V/C1(V ) is linear isomorphic to

∐
n∈−N V(n). But

∐
n∈−N V(n) is finite

dimensional since V is grading restricted. Thus V/C1(V ) is finite dimensional. On the other
hand, even ordinary modules are in general not C1-cofinite. But for affine Lie algebra vertex
operator algebras, we have the following result:

Proposition 2.1. Let W be an (ordinary) V (`, 0)-module generated by a finite-dimensional
g-module constructed in Subsection 11.4 in [H8]. Then W is C1-cofinite.

Proof. Let M be the finite-dimensional g-module generating W . Then by Proposition 11.17
in [H8], we know that W is spanned by elements of the form

a1(−n1) · · · ak(−nk)w,
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where a1, . . . , ak ∈ g, n1, . . . , nk ∈ Z+ and w ∈ M . By the definition of the vertex operator
map YW , we have

a1(−n1) = Resxx
−n1YW (a1(−1)1, x).

Using the L(−1)-derivative property for vertex operators, we have

dn1−1

dxn1−1
YW (a1(−1)1, x) = YW (LV (`,0)(−1)n1−1a1(−1)1, x).

Then we have

(n1 − 1)!a1(−n1) = Resxx
−1 d

n1−1

dxn1−1
YW (a1(−1)1, x)

= Resxx
−1YW (LV (`,0)(−1)n1−1a1(−1)1, x).

Since LV (`,0)(−1)n1−1a1(−1)1 ∈ V(n1) ⊂ V+, in the case k 6= 0, we have

a1(−n1) · · · ak(−nk)w = Resxx
−1YW (LV (`,0)(−1)n1−1a1(−1)1, x)w ∈ C1(W ).

Then M + C1(W ) = W . Since M is finite dimensional, we see that W/C1(W ) is finite
dimensional.

Next we consider the case that the level ` is a positive integer. A (ordinary) V (`, 0)-
module W generated by a finite-dimensional irreducible g-module as in Proposition 2.1 is
also a ĝ-module. Such a ĝ-module has a maximal proper ĝ-submodule so that the quotient
of W by this maximal proper ĝ-submodule is an irreducible ĝ-module. It can be shown that
this quotient is in fact an irreducible L(`, 0)-module. In fact, every irreducible L(`, 0)-module
can be constructed in this way. See [FZ] and [LL] for details.

Proposition 2.2. Let ` be a positive integer and W a (ordinatry) L(`, 0)-module. Then W
is C1-cofinite.

Proof. Using the construction of the irreducible L(`, 0)-modules discussed above and the
same proof as the one for Proposition 2.1, we see that irreduible L(`, 0)-modules are C1-
cofinite. In this case, as is mentioned above, every lower-bounded generalized L(`, 0)-module
is a direct sum of irreduible L(`, 0)-modules. Since there are only finitely many inequivalent
irreducible L(`, 0)-modules (see also the discussion above, a (ordinary) L(`, 0)-module must
be a direct sum of finitely many irreduible L(`, 0)-modules. In particular, W is a a direct sum
of finitely many irreduible L(`, 0)-modules. Since direct sums of finitely many C1-cofinite
V -modules for any vertex operator algebra V are also C1-cofinite (exercise), W is C1-cofinite.

In fact we have the following stronger result:

Proposition 2.3. Let ` be a positive integer and W a (ordinary) L(`, 0)-module. Then W
is C2-cofinite.
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The proof of this result is more complicated and is omitted here. It is obtained from the
C2-cofiniteness of L(`, 0) (see for example Proposition 12.6 in [DLM]) and Theorem 5.2 in
[ABD] stating in particular that if a vertex operator algebra V is a C2-cofinite, then every
irreducible V -module is C2-cofinite.

Irreducible modules for the Heisenberg vertex operator algebras are C1-cofinite but Heisen-
berg vertex operator algebras are not C2-cofinite.

Irreducible modules for the Virasoro vertex operator algebra V (c, 0) are C1-cofinite if and
only if it is not a Verma module for the Virasoro algebra. Here a Verma module for the
Virasoro algebra is a module obtained from a one dimensional space with the positive part
of the Virasoro algebra acts as 0, L(0) acts as a number h and the module is obtained using
the induced module construction. See Corollary 2.2.7 in [CJHRY].

For z ∈ C×, we use log z to denote log |z| + i arg z, where 0 ≤ arg z < 2π. For a formal
series f(x1, x2) in (nonintegral) powers of x1 and x2 and nonnegative powers of log x1 and
log x2, we use f(z1, z2) to denote the series obtained by sunstituting en log z1 , log z1, en log z2 ,
log z2 for xn1 , log x1, xn2 , log x2, respectively.

We are ready to formulate the theorem on the associativity of intertwining operators.

Theorem 2.4 ([H7]). Let V be a C2-cofinite vertex operator algebra of positive energy. Let
W1, W2, W3, W4, W5 be grading-restricted generalized V -modules and Y1 and Y2 intertwining
operators of types

(
W4

W1 W5

)
and

(
W5

W2 W3

)
, respectively. Then we have the following:

1. For w1 ∈ W1, w2 ∈ W2, w3 ∈ W3 and w′4 ∈ W ′
4, the series

〈w′4,Y1(w1, z1)Y2(w2, z2)w3〉

is absolutely convergent in the region |z1| > |z2| > 0 and its sum can be analytically
continued to a multivalued analytic function

F (〈w′4,Y1(w1, z1)Y2(w2, z2)w3〉)

on the region
M2 = {(z1, z2) | z1, z2 6= 0, z1 − z2 6= 0} ⊂ Cn

and the only possible singular points z1 = 0, z2 = 0 and z1 = z2 are regular singular
points.

2. There exist a grading-restricted generalized V -module W6 and intertwining operators Y3

and Y4 of the types
(

W4

W6 W3

)
and

(
W6

W1 W2

)
, respectively, such that for w1 ∈ W1, w2 ∈ W2,

w3 ∈ W3 and w′4 ∈ W ′
4,

〈w′4,Y1(w1, x1)Y2(w2, x2)w3〉 = 〈w′4,Y3(Y4(w1, x0)w2, x2)w3〉

in the region |z1| > |z2| > |z1 − z2| > 0.
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A regular singular point of a multivalued analytic function is a point on which the function
is not defined but in the neighborhood of the point, the function can be expanded as a series
in powers of the variables and a polynomial in the logarithms of the variables.

This theorem has generalizations to the case that every irreducible V -modules are C1-
cofinite but some other technical conditions are needed. For details, see also [H7]. When
we prove this theorem below, we mostly assume only that grading-restricted generalized
V -modules involved are C1-cofinite.

2.2 Finitely generated modules over the ring of rational functions

We first give some identities for the product of two intertwining operators.

Proposition 2.5. Let W1, W2, W3, W4, W5 be generalized V -modules and Y1 and Y2 inter-
twining operators of types

(
W4

W1 W5

)
and

(
W5

W2 W3

)
, respectively. Then we have

〈w′4,Y1(u−1w1, z1)Y2(w2, z2)w3〉

=
∑
k∈N

zk1 〈u∗−1−kw
′
4,Y1(w1, z1)Y2(w2, z2)w3〉

+
∑
k∈N

(z1 − z2)−1−k〈w′4,Y1(w1, z1)Y2(ukw2, z2)w3〉

+
∑
k∈N

z−1−k
1 〈w′4,Y1(w1, z1)Y2(w2, z2)ukw3〉, (2.1)

〈w′4,Y1(w1, z1)Y2(u−1w2, z2)w3〉

=
∑
k∈N

zk2 〈u∗−1−kw
′
4,Y1(w1, z1)Y2(w2, z2)w3〉

−
∑
k∈N

(−1)k(z1 − z2)−1−k〈w′4,Y1(ukw1, z1)Y2(w2, z2)w3〉

+
∑
k∈N

z−1−k
2 〈w′4,Y1(w1, z1)Y2(w2, z2)ukw3〉, (2.2)

〈w′4,Y1(w1, z1)Y2(w2, z2)u−1w3〉
= 〈u∗−1w

′
4,Y1(w1, z1)Y2(w2, z2)w3〉

−
∑
k∈N

(−1)kz−1−k
1 〈w′4,Y1(ukw1, z1)Y2(w2, z2)w3〉

−
∑
k∈N

(−1)kz−1−k
2 〈w′4,Y1(w1, z1)Y2(ukw2, z2)w3〉, (2.3)

〈u−1w
′
4,Y1(w1, z1)Y2(w2, z2)w3〉

=
∑
k∈N

(−1)kz1+k
1 〈w′4,Y1(ez

−1
1 L(1)(−z2

1)L(0)uk(−z−2
1 )L(0)e−z

−1
1 L(1)w1, z1)Y2(w2, z2)w3〉

+
∑
k∈N

(−1)kz1+k
2 〈w′4,Y1(w1, z1)Y2(ez

−1
2 L(1)(−z2

2)L(0)uk(−z−2
2 )L(0)e−z

−1
2 L(1)w2, z2)w3〉
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+ 〈w′4,Y1(w1, z1)Y2(w2, z2)u∗−1w3〉. (2.4)

Proof. We prove only (2.1). We have the associator formula

Y1(YW1(u, x0)w1, x1)

= YW4(u, x0 + x1)Y1(w1, x1)− Resy1x
−1
0 δ

(
−x1 + y1

x0

)
Y1(w1, x1)YW5(u, y) (2.5)

(see (12.56) in [H8]). Take Resx0x
−1
0 on both sides of (2.5), we obtain

Y1(u−1w1, x1)

= Resx0x
−1
0 YW4(u, x0 + x1)Y1(w1, x1)− Resy1(−x1 + y1)−1Y1(w1, x1)YW5(u, y1)

=
∑
n∈Z

Resx0x
−1
0 un(x0 + x1)−n−1Y1(w1, x1)− Resy1(−x1 + y1)−1Y1(w1, x1)YW5(u, y1)

=
∑
k∈N

xk1u−1−kY1(w1, x1)− Resy1(−x1 + y1)−1Y1(w1, x1)YW5(u, y1). (2.6)

Then we have

Y1(u−1w1, x1)Y2(w2, x2)

=
∑
k∈N

xk1u−1−kY1(w1, x1)Y2(w2, x2)− Resy1(−x1 + y1)−1Y1(w1, x1)YW5(u, y1)Y2(w2, x2).

(2.7)

Using the commutator formula

YW5(u, y1)Y2(w2, x2) = Y2(w2, x2)YW3(u, y1) + Resy2y
−1
1 δ

(
x2 + y2

y1

)
Y2(YW2(u, y2)w2, x2)

(see (12.55) in [H8]), we see that the second term in the right-hand side of (2.7) is equal to

− Resy1(−x1 + y1)−1Y1(w1, x1)Y2(w2, x2)YW3(u, y1)

− Resy1(−x1 + y1)−1Y1(w1, x1)Resy2y
−1
1 δ

(
x2 + y2

y1

)
Y2(YW2(u, y2)w2, x2)

= −
∑
k∈N

∑
n∈Z

(
−1

k

)
Resy1(−x1)−1−kyk1Y1(w1, x1)Y2(w2, x2)uny

−n−1
1

− Resy1Resy2(−x1 + x2 + y2)−1Y1(w1, x1)y−1
1 δ

(
x2 + y2

y1

)
Y2(YW2(u, y2)w2, x2)

= −
∑
k∈N

(
−1

k

)
(−x1)−1−kY1(w1, x1)Y2(w2, x2)uk

−
∑
k∈N

∑
n∈N

(
−1

k

)
Resy2(−x1 + x2)−1−kyk2Y1(w1, x1)Y2(uny

−n−1
2 w2, x2)
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=
∑
k∈N

x−1−k
1 Y1(w1, x1)Y2(w2, x2)uk

+
∑
k∈N

(x1 − x2)−1−kY1(w1, x1)Y2(ukw2, x2). (2.8)

From (2.7) and (2.8), we obtain

Y1(u−1w1, x1)Y2(w2, x2)

=
∑
k∈N

xk1u−1−kY1(w1, x1)Y2(w2, x2) +
∑
k∈N

x−1−k
1 Y1(w1, x1)Y2(w2, x2)uk

+
∑
k∈N

(x1 − x2)−1−kY1(w1, x1)Y2(ukw2, x2). (2.9)

Applying both sides of (2.9) to w3, pairing with w′4 and then substituting en log z1 , log z1,
en log z2 , log z2 for xn1 , log x1, xn2 , log x2, respectively, we obtain (2.1).

Let R = C[z±1
1 , z±1

2 , (z1− z2)−1] and T = R⊗W ′
4⊗W1⊗W2⊗W3. Then T is a (free) R-

module. For simplicity, we shall write f(z1, z2)⊗w′4⊗w1⊗w2⊗w3 as f(z1, z2)w′4⊗w1⊗w2⊗w3

in T .
Let J be the R-submodule of T generated by elements of the form

A(u,w′4, w1, w2, w3)

=
∑
k≥0

zk1u
∗
−1−kw

′
4 ⊗ w1 ⊗ w2 ⊗ w3 − w′4 ⊗ u−1w1 ⊗ w2 ⊗ w3

+
∑
k≥0

(z1 − z2)−1−kw′4 ⊗ w1 ⊗ ukw2 ⊗ w3

+
∑
k≥0

z−1−k
1 w′4 ⊗ w1 ⊗ w2 ⊗ ukw3,

B(u,w′4, w1, w2, w3)

=
∑
k≥0

zk2u
∗
−1−kw

′
4 ⊗ w1 ⊗ w2 ⊗ w3

+
∑
k≥0

(−1)k(z1 − z2)−1−kw′4 ⊗ ukw1 ⊗ w2 ⊗ w3 − w′4 ⊗ w1 ⊗ u−1w2 ⊗ w3

+
∑
k≥0

z−1−k
2 w′4 ⊗ w1 ⊗ w2 ⊗ ukw3,

C(u,w′4, w1, w2, w3)

= u∗−1w
′
4 ⊗ w1 ⊗ w2 ⊗ w3 −

∑
k≥0

(−1)kz−1−k
1 w′4 ⊗ ukw1 ⊗ w2 ⊗ w3

−
∑
k≥0

(−1)kz−1−k
2 w′4 ⊗ w1 ⊗ ukw2 ⊗ w3 − w′4 ⊗ w1 ⊗ w2 ⊗ u−1w3,
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D(u,w′4, w1, w2, w3)

= u−1w
′
4 ⊗ w1 ⊗ w2 ⊗ w3

−
∑
k≥0

(−1)kz1+k
1 w′4 ⊗ ez

−1
1 L(1)(−z2

1)L(0)uk(−z−2
1 )L(0)e−z

−1
1 L(1)w1 ⊗ w2 ⊗ w3

−
∑
k≥0

(−1)kz1+k
2 w′4 ⊗ w1 ⊗ ez

−1
2 L(1)(−z2

2)L(0)uk(−z−2
2 )L(0)e−z

−1
2 L(1)w2 ⊗ w3

− w′4 ⊗ w1 ⊗ w2 ⊗ u∗−1w3

for u ∈ V+, w1 ∈ W1, w2 ∈ W2, w3 ∈ W3 and w′4 ∈ W ′
4.

The gradings on W1, W2, W3, W ′
4 induce a grading (also called weight) on W ′

4 ⊗W1 ⊗
W2⊗W3 and then by defining the weights of elements of R to be 0, we also obtain a grading
on T (still called weight). Let T(r) be the homogeneous subspace of weight r for r ∈ C. Then
T =

∐
r∈R T(r).

We say that a generalized V -module W =
∐

n∈CW[n] is quasi-finite dimensional if for any
real number r,

∐
<(n)≤rW[n] is finite dimensional. In it clear that a quasi-finite dimensional

generalized V -module is grading restricted.
We now assume that W1, W2, W3, W ′

4 are lower-bounded and C1-cofinite. Then it can
be shown that they must be quasi-finite dimensional. (In the case that V is C2-cofinite
and of positive energy, a grading-restricted generalized V -module must be C2-cofinite and
thus is also C1-cofinite. ) In this case, T(s) for s ∈ C are finitely-generated R-modules and
T(s) = 0 when <(s) is sufficiently negative. Let Fr(T ) =

∐
s≤r T(s) for r ∈ R. Then Fr(T ),

r ∈ R, are finitely-generated R-modules, Fr1(T ) ⊂ Fr2(T ) for r1 ≤ r2 and ∪r∈RFr(T ) = T .
Let Fr(J) = J ∩ Fr(T ) for r ∈ R. Then Fr(J) for r ∈ R are finitely-generated R-modules,
Fr1(J) ⊂ Fr2(J) for r1 ≤ r2 and ∪r∈RFr(J) = J .

Proposition 2.6. There exists M ∈ Z such that for any r ∈ R, Fr(T ) ⊂ Fr(J) + FM(T ).
In particular, T = J + FM(T ).

Proof. Since W1, W2, W3, W ′
4 are all C1-cofinite, there exists M ∈ Z such that∐

<(s)>M

T(s) ⊂ R(C1(W ′
4)⊗W1 ⊗W2 ⊗W3) +R(W ′

4 ⊗ C1(W1)⊗W2 ⊗W3)

+R(W ′
4 ⊗W1 ⊗ C1(W2)⊗W3) +R(W ′

4 ⊗W1 ⊗W2 ⊗ C1(W3)). (2.10)

If r < M , then certainly we have Fr ⊂ FM(T ) = Fr(J) + FM(T ). For s > M , we assume
that Fr(T ) ⊂ Fr(J) + FM(T ) for r < s. We want to show that any homogeneous element
of T(s) can be written as a sum of an element of Fs(J) and an element of FM(T ). Since
s > M , by (2.10), any element of T(s) is an element of the right-hand side of (2.10). We shall
discuss only the case that this element is in R(W ′

4⊗C1(W1)⊗W2⊗W3); the other cases are
completely similar.

We need only discuss elements of the form w′4⊗u−1w1⊗w2⊗w3 where u ∈ V+, w1 ∈ W1,
w2 ∈ W2, w3 ∈ W3 and w′4 ∈ W ′

4. By assumption, the weight of w′4 ⊗ u−1w1 ⊗ w2 ⊗ w3 is s
and the weights of u∗−1−kw

′
4⊗w1⊗w2⊗w3, w′4⊗w1⊗w2⊗ukw3 and w′4⊗w1⊗ukw2⊗w3 for
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k ≥ 0, are all less than the weight of w′4⊗ u−1w1⊗w2⊗w3. So A(u,w′4, w1, w2, w3) ∈ Fs(J).
Thus we see that w′4 ⊗ u−1w1 ⊗ w2 ⊗ w3 can be written as a sum of an element of Fs(J)
and elements of T of weights less than s. Since elements of T of weights r < s is in
Fr(J) + FM(T ) ⊂ Fs(J) + FM(T ), w′4 ⊗ u−1w1 ⊗ w2 ⊗ w3 can be written as the sum of an
element of Fs(J) and an element of FM(T ).

Now we have

T = ∪r∈RFr(T )

⊂ ∪r∈R(Fr(J) + FM(T ))

= J + FM(T ).

But we know that J + FM(T ) ⊂ T . So we obtain T = J + FM(T ).

Corollary 2.7. The quotient R-module T/J is finitely generated.

Proof. Since T = J + FM(T ) and FM(T ) is finitely-generated, T/J is finitely-generated.

For an element W ∈ T , we shall use [W ] to denote the coset W + J in T/J .

Corollary 2.8. For w1 ∈ W1, w2 ∈ W2, w3 ∈ W3 and w′4 ∈ W ′
4, let M1 and M2 be the

R-submodules of T/J generated by [w′4 ⊗ LW1(−1)jw1 ⊗ w2 ⊗ w3], j ≥ 0, and by [w′4 ⊗
w1 ⊗ LW2(−1)jw2 ⊗ w3], j ≥ 0, respectively. Then M1 and M2 are finitely generated. In
particular, for w1 ∈ W1, w2 ∈ W2, w3 ∈ W3 and w′4 ∈ W ′

4, there exist ak(z1, z2), bl(z1, z2) ∈ R
for k = 1, . . . ,m and l = 1, . . . , n such that

[w′4 ⊗ L(−1)mw1 ⊗ w2 ⊗ w3] + a1(z1, z2)[w′4 ⊗ L(−1)m−1w1 ⊗ w2 ⊗ w3]

+ · · ·+ am(z1, z2)[w′4 ⊗ w1 ⊗ w2 ⊗ w3] = 0, (2.11)

[w′4 ⊗ w1 ⊗ L(−1)nw2 ⊗ w3] + b1(z1, z2)[w′4 ⊗ w1 ⊗ L(−1)n−1w2 ⊗ w3]

+ · · ·+ bn(z1, z2)[w′4 ⊗ w1 ⊗ w2 ⊗ w3] = 0. (2.12)

Proof. Since R is a Noetherian ring, any R-submodule of the finitely-generated R-module
T/J is also finitely generated. In particular, M1 and M2 are finitely generated. The second
conclusion follows immediately.

2.3 Differential equations of regular singular points and the con-
vergence of the products of intertwining operators

Now we show that the series obtained from the products and iterates of intertwining operators
satisfy systems of differential equations.

Theorem 2.9 ([H3]). Let W1, W2, W3, W ′
4 be C1-cofinite grading-restricted generalized

V -modules. Then for w1 ∈ W1, w2 ∈ W2, w3 ∈ W3 and w′4 ∈ W ′
4, there exist

ak(z1, z2), bl(z1, z2) ∈ R = C[z±1
1 , z±1

2 , (z1 − z2)−1]
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for k = 1, . . . ,m and l = 1, . . . , n such that for grading-restricted V -modules W5 and W6,
intertwining operators Y1, Y2, Y3, Y4 of types

(
W4

W1W5

)
,
(

W5

W2W3

)
,
(

W4

W6W3

)
,
(

W6

W1W2

)
, respectively,

both series

〈w′4,Y1(w1, z1)Y2(w2, z2)w3〉, (2.13)

〈w′4,Y3(Y4(w1, z1 − z2)w2, z2)w3〉 (2.14)

satisfy the expansions of the system of differential equations

∂mϕ

∂zm1
+ a1(z1, z2)

∂m−1ϕ

∂zm−1
1

+ · · ·+ am(z1, z2)ϕ = 0, (2.15)

∂nϕ

∂zn2
+ b1(z1, z2)

∂n−1ϕ

∂zn−1
2

+ · · ·+ bn(z1, z2)ϕ = 0 (2.16)

in the regions |z1| > |z2| > 0 and |z2| > |z1 − z2| > 0, respectively.

Proof. We consider the maps

φY1,Y2 : T → C{z1, z2}[log z1, log z2],

ψY3,Y4 : T → C{z2, z1 − z2}[log z2, log(z1 − z2)],

defined by

φY1,Y2(f(z1, z2)w′4 ⊗ w1 ⊗ w2 ⊗ w3)

= ι|z1|>|z2|>0(f(z1, z2))〈w′4,Y1(w1, z1)Y2(w2, z2)w3〉,
ψ(f(z1, z2)w0 ⊗ w1 ⊗ w2 ⊗ w3)

= ι|z2|>|z1−z2|>0(f(z1, z2))〈w′4,Y4(Y3(w1, z1 − z2)w2, z2)w3〉,

respectively, where

ι|z1|>|z2|>0 : R→ C[[z±1
1 , z±1

2 ]],

ι|z2|>|z1−z2|>0 : R→ C[[z±1
2 , (z1 − z2)±1]],

are the maps expanding elements of R as series in the regions |z1| > |z2| > 0, |z2| > |z1−z2| >
0, respectively.

By Proposition 2.5, we have φY1,Y2(J) = ψY3,Y4(J) = 0. Thus we have induced maps

φ̄Y1,Y2 : T/J → C{z1, z2}[log z1, log z2],

ψ̄Y3,Y4 : T/J → C{z2, z1 − z2}[log z2, log(z1 − z2)].

Applying φ̄Y1,Y2 and ψ̄Y3,Y4 and to (2.11) and (2.12) and then use the L(−1)-derivative prop-
erty for intertwining operators, we see that (2.13) and (2.14) indeed satisfy the expansions of
the system the equations (2.15) and (2.16) in the regions |z1 > |z2| > 0 and |z2| > |z1−z2| > 0,
respectively.
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Remark 2.10. Note that in the theorems above, ak(z1, z2) for k = 1, . . . ,m−1 and bl(z1, z2)
for l = 1, . . . , n− 1, and consequently the corresponding system, are independent of Y1, Y2,
Y3 and Y4.

The following result can be proved using the same method and the proof is omitted:

Theorem 2.11. Let Wi for i = 0, . . . , p + 1 be C1-cofinite grading-restricted generalized
V -modules. Then for any wi ∈ Wi for i = 0, . . . , p+ 1, there exist

akl, l(z1, . . . , zp) ∈ C[z±1
1 , . . . , z±1

p , (z1 − z2)−1, (z1 − z3)−1, . . . , (zp−1 − zp)−1], (2.17)

for kl = 1, . . . ,ml and l = 1, . . . , p, such that for anygrading-restricted V -modules W̃q for

q = 1, . . . , p−1, any intertwining operators Y1,Y2, . . . ,Yp−1,Yp, of types
( W0

W1W̃1

)
,
( W̃1

W2W̃2

)
, . . . ,( W̃p−2

Wp−1W̃p−1

)
,
(

W̃p−1

WpWp+1

)
, respectively, the series

〈w′0,Y1(w1, z1) · · · Yp(wp, zp)wp+1〉 (2.18)

satisfy the expansions of the system of differential equations

∂mlϕ

∂zmll
+

ml∑
kl=1

akl, l(z1, . . . , zp)
∂ml−klϕ

∂zml−kll

= 0, l = 1, . . . , p

in the region |z1| > · · · |zp| > 0.

We also need to prove that the singular points of the differential equations are regular. A
singular point of a system of differential equations are said to be regular if every solution can
be expanded in the neighborhood of the singular point as a series in powers of the variables
and a polynomial in the logarithms of the variables.

For a differential equation of one independent variable of the form

dn

dzn
φ(z) + an−1(z)

dn−1

dzn−1
φ(z) + · · ·+ a0(z)φ(z) = 0,

if z = z0 is an isolated singular point of an−1(z), . . . , a0(z) such that z = z0 is a removable
singular point of (z − z0)ian−i(z) for i = 1, . . . , n, then z = z0 must be a regular singular
point of this equation.

We need to prove the system of equations satisfied by products and iterates of inter-
twining operators are of regular singular points. We need only prove each equation as an
ordinary differential equation is of regular singular points. This is because we can prove the
convergence of the products of intertwining operators using induction.

We prove that the singular point z1 = z2 of (2.15) is regular. We need certain filtrations
associated to the singular point z1 = z2 on R and on the R-module T .

For n ∈ Z+, let F
(z1=z2)
n (R) be the vector subspace of R spanned by elements of the

form f(z1, z2)(z1 − z2)−n for f(z1, z2) ∈ C[z±1 , z
±
2 ]. Then with respect to this filtration, R is
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a filtered algebra, that is, F
(z1=z2)
m (R) ⊂ F

(z1=z2)
n (R) for m ≤ n, R = ∪n∈ZF (z1=z2)

n (R) and

F
(z1=z2)
m (R)F

(z1=z2)
n (R) ⊂ F

(z1=z2)
m+n (R) for any m,n ∈ Z+.

For convenience, we shall use σ to denote wtw′4 + wtw1 + wtw2 + wtw3, when the

dependence on w′4, w1, w2 and w3 are clear. Let F
(z1=z2)
r (T ) for r ∈ R be the subspace of

T spanned by elements of the form f(z1, z2)(z1 − z2)−nw′4 ⊗ w1 ⊗ w2 ⊗ w3 where f(z1, z2) ∈
C[z±1 , z

±
2 ], n ∈ Z+ and w′4 ∈ W ′

4, w1 ∈ W1, w2 ∈ W2 and w3 ∈ W3 satisfying n + σ ≤ r.

These subspaces give a filtration of T in the following sense: F
(z1=z2)
r (T ) ⊂ F

(z1=z2)
s (T ) for

r ≤ s; T = ∪r∈RF (z1=z2)
r (T ); F

(z1=z2)
n (R)F

(z1=z2)
r (T ) ⊂ F

(z1=z2)
r+n (T ).

Let F
(z1=z2)
r (J) = F

(z1=z2)
r (T ) ∩ J for r ∈ R. We need the following refinement of

Proposition 2.6:

Proposition 2.12. For any r ∈ R, F
(z1=z2)
r (T ) ⊂ F

(z1=z2)
r (J) + FM(T ).

Proof. The proof is a refinement of the proof of Proposition 2.6. The only additional prop-
erty we need is that the elementsA(u,w′4, w1, w2, w3), B(u,w′4, w1, w2, w3), C(u,w′4, w1, w2, w3)

and D(u,w′4, w1, w2, w3) are all in F
(z1=z2)
wtu+σ (J). This is clear.

We also consider the ring C[z±1 , z
±
2 ] and the C[z±1 , z

±
2 ]-module

T (z1=z2) = C[z±1 , z
±
2 ]⊗W ′

4 ⊗W1 ⊗W2 ⊗W3.

Let T
(z1=z2)
(r) for r ∈ R be the space of elements of T (z1=z2) of weight r. Then T (z1=z2) =∐

r∈R T
(z1=z2)
(r) .

Let w′4 ∈ W ′
4, w1 ∈ W1, w2 ∈ W2 and w3 ∈ W3. Then by Proposition 2.12,

w′4 ⊗ w1 ⊗ w2 ⊗ w3 =W1 +W2

where W1 ∈ F (z1=z2)
σ (J) and W2 ∈ FM(T ).

Lemma 2.13. For any s ∈ [0, 1), there exist S ∈ R such that s + S ∈ Z+ and for any
w′4 ∈ W ′

4, w1 ∈ W1, w2 ∈ W2 and w3 ∈ W3, σ ∈ s+ Z, (z1 − z2)σ+SW2 ∈ T (z1=z2).

Proof. Let S be a real number such that s+S ∈ Z+ and such that for any r ∈ R satisfying

r ≤ −S, T(r) = 0. By definition, elements of F
(z1=z2)
r (T ) for any r ∈ R are sums of elements

of the form f(z1, z2)(z1 − z2)−nw̃′4 ⊗ w̃1 ⊗ w̃2 ⊗ w̃3 where f(z1, z2) ∈ C[z±1 , z
±
2 ], n ∈ Z+ and

w̃′4 ∈ W ′
4, w̃1 ∈ W1, w̃2 ∈ W2 and w̃3 ∈ W3 satisfying n+ wt w̃′4 + wt w̃1 + wt w̃2 + wt w̃3 ≤ r.

Since wt w̃′4 + wt w̃1 + wt w̃2 + wt w̃3 > −S, we obtain r − n > −S or r + S − n > 0. Thus

(z1 − z2)r+SF
(z1=z2)
r (T ) ∈ T (z1=z2) if r + S ∈ Z.

By definition,
W2 = w′4 ⊗ w1 ⊗ w2 ⊗ w3 −W1,

where
W1 ∈ F (z1=z2)

σ (J) ⊂ F (z1=z2)
σ (T ).
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By the discussion above, (z1 − z2)σ+SW1 ∈ T (z1=z2) and by definition,

w′4 ⊗ w1 ⊗ w2 ⊗ w3 ∈ T (z1=z2).

Thus (z1 − z2)σ+SW2 ∈ T (z1=z2).

Theorem 2.14. Let W1, W2, W3, W ′
4 and w1 ∈ W1, w2 ∈ W2, w3 ∈ W3 and w′4 ∈ W ′

4 be
the same as in Theorem 2.9. For any possible singular point of the form z1 = 0 or z2 = 0 or
z1 =∞ or z2 =∞ or z1 = z2 or z−1

1 (z1 − z2) = 0 or z−1
2 (z1 − z2) = 0, there exist

ak(z1, z2) ∈ C[z±1
1 , z±1

2 , (z1 − z2)−1]

for k = 1, . . . ,m, such that this singular point of the equation (2.15) satisfied by (2.13) and
(2.14) is regular.

Proof. We shall only prove the theorem for the singular point z1 = z2. By Proposition 2.12,

w′4 ⊗ L(−1)kw1 ⊗ w2 ⊗ w3 =W(k)
1 +W(k)

2

for k ≥ 0, where W(k)
1 ∈ F (z1=z2)

σ+k (J) and W(k)
2 ∈ FM(T ).

By Lemma 2.13, there exists S ∈ R such that σ + S ∈ Z+ and

(z1 − z2)σ+k+SW(k)
2 ∈ T (z1=z2)

and thus
(z1 − z2)σ+k+SW(k)

2 ∈
∐
r≤M

T
(z1=z2)
(r)

for k ≥ 0. Since C[z±1 , z
±
2 ] is a Noetherian ring and

∐
r≤M T

(z1=z2)
(r) is a finitely-generated

C[z±1 , z
±
2 ]-module, the submodule of

∐
r≤M T

(z1=z2)
(r) generated by (z1−z2)σ+k+SW(k)

2 for k ≥ 0

is also finitely generated. Let (z1− z2)σ+k+SW(k)
2 for k = 0, . . . ,m− 1 be a set of generators

of this submodule. Then there exist ck(z1, z2) ∈ C[z±1 , z
±
2 ] for k = 0, . . . ,m− 1 such that

(z1 − z2)σ+m+SW(m)
2 = −

m−1∑
k=0

ck(z1, z2)(z1 − z2)σ+k+SW(k)
2

or equivalently

W(m)
2 +

m−1∑
k=0

ck(z1, z2)(z1 − z2)k−mW(k)
2 = 0.

Thus

w′4 ⊗ L(−1)mw1 ⊗ w2 ⊗ w3

+
m−1∑
k=0

ck(z1, z2)(z1 − z2)k−mw′4 ⊗ L(−1)kw1 ⊗ w2 ⊗ w3
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=W(m)
1 +

m−1∑
k=0

ck(z1, z2)(z1 − z2)k−mW(k)
1 . (2.19)

Since W(k)
1 ∈ F (z1=z2)

σ+k (J) ⊂ J , the right-hand side of (2.19) is in J . Thus we obtain

[w′4 ⊗ L(−1)mw1 ⊗ w2 ⊗ w3]

+
m−1∑
k=0

ck(z1, z2)(z1 − z2)k−m[w′4 ⊗ L(−1)kw1 ⊗ w2 ⊗ w3] = 0. (2.20)

Now it is clear that the singular point z1 = z2 is regular.

Theorem 2.15. Let W1, W2, W3, W ′
4 and w1 ∈ W1, w2 ∈ W2, w3 ∈ W3 and w′4 ∈ W ′

4 be the
same as in Theorem 2.9. Then (2.13) and (2.14) are absolutely congvergent in the region
|z1| > |z2| > 0 and |z2| > |z1 − z2| > 0, respectively, and can be analyticlally extended to
multivalued functions on the region

M2 = {(z1, z2) ∈ C2 | z1, z2 6= 0, z1 6= z2}.

Conclusion 1 of Theorem 2.4 follows immediately from Theorem 2.15.

2.4 Tensor product modules and a characterization of intertwining
operators

We have proved the convergence of products of intertwining operators. But this is only
the first step in the proof of the associativity or operator product expansion of intertwining
operators. We still need to show that the analytic extension of products of intertwining
operators can be written as iterates of other two intertwining operators. To do this, we first
need a characterization of intertwining operators. This characterization can be described
using a suitable subspace of the full dual space of the tensor product of the underlying
vector spaces of two lower-bounded generalized modules. But this characterization also
gives a construction of tensor product of two such modules. Since we do need to discuss the
tensor category structure on a suitable module category for a vertex operator agebra, we use
the tensor product to discuss the characterization of intertwining operators.

In [H8], for z ∈ C× and lower-bounded generalized V -modules W1 and W2, we have
introduced the notion of P (z)-tensor product W1 �P (z)W2 of W1 and W2. Here we recall the
definition in the category of grading-restricted generalized V -modules.

Definition 2.16. Let z ∈ C× and W1 and W2 grading-restricted generalized V -modules.
A P (z)-product of W1 and W2 in the category of grading-restricted generalized V -modules
is a pair (W3, I) consisiting of a grading-restricted generalized V -module W3 and the value
I = Y(·, z)· : W1⊗W2 → W 3 of an intertwining operator Y(·, x)· : W1⊗W2 → W3{x}[log x]
at z (with the choice of the value log z = log |z| + i arg z where 0 ≤ arg z < 2π). A P (z)-
tensor product of W1 and W2 in the category of grading-restricted generalized V -modules is a
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P (z)-product (W1 �P (z) W2,�P (z)) such that the following universal property holds: Given
any P (z)-product (W3, I) of W1 and W2 in the category of grading-restricted generalized
V -modules, there exists a unique module map f : W1 �P (z) W2 → W3 such that I = f̄ ◦
boxtimesP (z), where f̄ : W1 �P (z) W2 → W 3 is the unique extenstion of f to W1 �P (z) W2

(note that f as a module map must preserve wegihts).

We now give a construction of the P (z)-tensor product W1 �P (z) W2 in the category
of grading-restricted generalized V -modules. For a grading-restricted generalized V -module
W3, w′3 ∈ W ′

3 and an intertwining operator Y of type
(

W3

W1W2

)
, we have an element λzY(w′3) ∈

(W1 ⊗W2)∗ given by
λY;w′3

(w1 ⊗ w2) = 〈w′3,Y(w1, z)w2〉.

Then we obtain a linear map λzY : W ′
3 → (W1 ⊗W2)∗. Let W1 P (z)W2 be the subspace of

(W1 ⊗W2)∗ spanned by all elements of the form λzY(w′3) for a grading-restricted generalized

V -module W3, w′3 ∈ W ′
3 and an intertwining operator Y of type

(
W3

W1W2

)
. Then λzY is in fact

a linear map from W ′
3 to W1 P (z)W2.

We define a vertex operator map

YW1 P (z)W2
: V ⊗ (W1 P (z)W2)→ (W1 P (z)W2)[[x, x−1]]

v ⊗ λ 7→ YW1 P (z)W2
(v, x)λ

by
(YW1 P (z)W2

(v, x)λzY(w′3))(w1 ⊗ w2) = 〈YW3(v, x)w′3,Y(w1, z)w2〉

for w1 ∈ W1, w2 ∈ W2, w′3 ∈ W ′
3 and v ∈ V .

Proposition 2.17. The space W1 P (z)W2 equipped with YW1 P (z)W2
is a generalized V -

module.

Let W3 be a grading-restricted generalized V -module and J : W ′
3 → W1 P (z)W2 a V -

module map. Let YJ(·, z)· : W1 ⊗W2 → W 3 be defined by

〈w′3,YJ(w1, z)w2〉 = (J(w′3))(w1 ⊗ w2).

Then we define

YJ(w1, x)w2 = xLW3
(0)z−LW3

(0)YJ(x−LW1
(0)zLW1

(0)w1, z)x
−LW2

(0)zLW2
(0)w2.

In this way, we obtain a linear map

YJ : W1 ⊗W2 → W3{x}[log x].

Proposition 2.18. The linear map YJ is an intertwining operator of type
(

W3

W1W2

)
such that

YλzY = Y and λzYJ = J .
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This proposition says that an intertwining operator of type
(

W3

W1W2

)
is equivalent to a

V -module map from W ′
3 to W1 P (z)W2.

Assume that W1 P (z)W2 is a grading-restricted generalized V -module. Then its graded
dual (W1 P (z)W2)′ is also a grading-restricted generalized V -module. Consider the identity
operator 1W1 P (z)W2

on W1 P (z)W2. This is certainly a V -module map from the graded dual
W1 P (z)W2 of (W1 P (z)W2)′ toW1 P (z)W2. Then by Proposition 2.18, we have an intertwining

operator Y1
W1 P (z)W2

of type
(

(W1 P (z)W2)′

W1W2

)
. We denote the evaluation Y1

W1 P (z)W2
(·, z) of

Y1
W1 P (z)W2

at z by �P (z).

Theorem 2.19. The pair ((W1 P (z)W2)′,�P (z)) is a P (z)-tensor product of W1 and W2.

By the universal property of the P (z)-tensor product, we know that all P (z)-tensor
products are naturally isomorphic. Therefore we shall denote (W1 P (z)W2)′ by W1 �P (z) W2.

The construction above depends on the assumption thatW1 P (z)W2 is a grading-restricted
generalized V -module. We have the the following result:

Theorem 2.20 ([HL2]). Assume that V satisfies the following condition:

1. There are only finitely many irreducible V -modules (up to equivalence).

2. Every (ordinary) V -module is completely reducible (and is in particular a finite direct
sum of irreducible modules).

3. All the fusion rules for V are finite (for triples of irreducible modules and hence arbi-
trary modules).

Then W1 P (z)W2 is a (ordinary) V -module.

Theorem 2.21 ([H7]). Assume that V is of positive energy (V(n) = 0 for n < 0 and V(0) =
V1) and C2-cofinite. Then W1 P (z)W2 is a grading-restricted generalized V -module.

Let
Yt(v, x) =

∑
n∈Z

(v ⊗ tn)x−n−1 ∈ (V ⊗ C[t, t−1])[[x, x−1]]

for v ∈ V .
Note that the coefficients of the formal series

x−1
0 δ

(
x−1

1 − z
x0

)
Yt(v, x1)

in x0 and x1 span
V ⊗ ι+C[t, t−1, (z−1 − t)−1].
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Definition 2.22. Define the linear action τP (z) of

V ⊗ ι+C[t, t−1, (z−1 − t)−1]

on (W1 ⊗W2)∗ by(
τP (z)

(
x−1

0 δ

(
x−1

1 − z
x0

)
Yt(v, x1)

)
λ

)
(w(1) ⊗ w(2))

= z−1δ

(
x−1

1 − x0

z

)
λ(Y1(ex1L(1)(−x−2

1 )L(0)v, x0)w(1) ⊗ w(2))

+ x−1
0 δ

(
z − x−1

1

−x0

)
λ(w(1) ⊗ Y o

2 (v, x1)w(2)) (2.21)

for ξ ∈ V ⊗ ι+C[t, t−1, (z−1 − t)−1], λ ∈ (W1 ⊗W2)∗, w(1) ∈ W1 and w(2) ∈ W2.

Let LW1 P (z)W2
(n) for n ∈ Z be the operators on W1 P (z)W2 defined by

τP (z)(Yt(ω, x)) =
∑
n∈Z

LW1 P (z)W2
(n)x−n−2.

From the definition of τP (z) and YW1 P (z)W2
, we have

YW1 P (z)W2
(v, x) = τP (z)(Yt(v, x))

∣∣∣∣
W1 P (z)W2

(2.22)

for v ∈ V .
The element λzY(w′3) ∈ W1 P (z)W2 ⊂ (W1 ⊗ W2)∗ satisfies the following properties for

λ ∈ (W1 ⊗W2)∗:

P (z)-compatibility condition

(a) The Laurent series YW1 P (z)W2
(v, x)λ involves only finitely many negative powers

of x.

(b) The following formula holds:

τP (z)

(
x−1

0 δ

(
x−1

1 − z
x0

)
Yt(v, x1)

)
λ = x−1

0 δ

(
x−1

1 − z
x0

)
YW1 P (z)W2

(v, x1)λ (2.23)

for all v ∈ V .

The P (z)-local grading restriction condition

(a) The P (z)-grading condition: λ is a (finite) sum of generalized eigenvectors for the
operator LW1 P (z)W2

(0) on (W1 ⊗W2)∗.
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(b) LetWλ be the smallest graded subspace of (W1⊗W2)∗ (with respect to LW1 P (z)W2
(0))

containing λ and stable under the component operators of YW1 P (z)W2
(v, x) for

v ∈ V . Then Wλ has the properties

dim(Wλ)[n] <∞, (2.24)

(Wλ)[n+k] = 0, (2.25)

for k ∈ Z sufficiently negative, n ∈ C.

Theorem 2.23. Assume that W1 P (z)W2 is a grading-restricted generalized V -module. Then
an element λ ∈ (W1 ⊗W2)∗ satisfying the P (z)-compatibility condition and the P (z)-local
grading-restriction condition is in W1 P (z)W2, that is, it is of the form λzY(w′3), where W3 is
a grading-restricted generalized V -module, w′3 ∈ W ′

3 and Y an intertwining operator of type(
W3

W1W2

)
.

The proof of this theorem is rather technical. We will not give the proof here. The reader
can find a proof in [HL4] using the results in [HL2] and [HL3] and a direct proof in Section
6 in [HLZ1].

2.5 The proof of the associativity of intertwining operators

We now outline the proof of Conclusion 2 of Theorem 2.4.
Let W1, W2, W3, W4, W5 be grading-restricted generalized V -modules and Y1 and Y2

intertwining operators of types
(

W4

W1 W5

)
and

(
W5

W2 W3

)
, respectively. w1 ∈ W1, w2 ∈ W2, w3 ∈

W3 and w′4 ∈ W ′
4,

〈w′4,Y1(w1, z1)Y2(w2, z2)w3〉

is absolutely convergent in the region |z1| > |z2| > 0 and can be analytically extended to a
multivalued function

F (〈w′4,Y1(w1, z1)Y2(w2, z2)w3〉)

on the region
M2 = {(z1, z2) | z1, z2 6= 0, z1 − z2 6= 0}.

For fixed z1, z2 ∈ C× satisfying |z1| > |z2| > |z1 − z2| > 0, let

µw′4,w3
(w1, w2) = 〈w′4,Y1(w1, x1)Y2(w2, x2)w3〉.

Then for fixed w′4, w3, we obtain an element µw′4,w3
∈ (W1 ⊗W2)∗.

Proposition 2.24. The element µw′4,w3
satisfies the P (z1 − z2)-compatibility condition.

But µw′4,w3
does not satisfy the P (z1 − z2)-local grading restriction condition. Since our

differential equations are of regular singular points, the multivalued analytic function

F (〈w′4,Y1(w1, z1)Y2(w2, z2)w3〉)
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can be expanded in the region |z2| > |z1 − z2| > 0 as a series of the from

I∑
i=1

J∑
j=1

∑
n1,n2∈N

K∑
k1,k2=0

ai,,jn1,n2,k1,k2(w
′
4, w1, w2, w3)zri+n1

2 (log z2)k1(z1 − z2)sj+n2(log(z1 − z2))k2 ,

where ri, sj ∈ C. Let

µw′4,w3;sj+n2
(w1, w2) =

N∑
i=1

∑
n1∈N

K∑
k2,k12=0

ai,j,n1,n2,k1,k2(w
′
4, w1, w2, w3)zri+n1

2 (log z2)k1(z1−z2)si+n2(log(z1−z2))k2

for j = 1, . . . , J and n2 ∈ N. Then for fixed w′4, w3 and j = 1, . . . , J , n2 ∈ N, we obtain an
element µw′4,w3;sj+n2

∈ (W1 ⊗W2)∗. Moreover, we have

Proposition 2.25. The element µw′4,w3;sj+n2
satisfies the P (z1 − z2)-compatibility condition

and P (z1 − z2)-local grading restriction condition.

Under the conditions in Theorem 2.4, we know that W1 P (z)W2 is a grading-restricted
generalized V -module. Then by Theorem 2.23,

µw′4,w3;sj+n2
∈ W1 P (z1−z2)W2.

Moreover, it is easy to calculate to see that µw′4,w3;sj+n2
is homogeneous. By definition, we

have

µw′4,w3
=

J∑
j=1

∑
n2∈N

µw′4,w3;sj+n2
.

Thus we see that µw′4,w3
∈ W1 P (z)W2.

As we have discussed above, the identity operator 1W1 P (z1−z2)W2
on W1 P (z1−z2)W2 gives

an intertwining operator Y4 of type
(W1�P (z1−z2)W2

W1W2

)
such that for w1 ∈ W1, w2 ∈ W2, λ ∈

W1 P (z1−z2)W2,
〈λ,Y4(w1, z)w2〉 = λ(w1 ⊗ w2).

Then we have
〈µw′4,w3;sj+n2

,Y4(w1, z)w2〉 = µw′4,w3;sj+n2
(w1, w2).

Taking sum over j and n2, we obtain

〈µw′4,w3
,Y4(w1, z)w2〉 = µw′4,w3

(w1, w2) = 〈w′4,Y1(w1, x1)Y2(w2, x2)w3〉.

On the other hand, for any element w ∈ W1 �P (z1−z2) W2, we have an element νw ∈
(W ′

4 ⊗W3)∗ defined by
νw(w′4 ⊗ w3) = 〈µw′4,w3

, w〉
for w′4 ∈ W ′

4 and w3 ∈ W3. Then we have

Proposition 2.26. The element νw satisfies the Q(z2)-compatibility condition and Q(z2)-
local grading-restricted condition.
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Here the Q(z2)-compatibility condition and Q(z)-local grading-restriction condition are
analogous to the P (z2)-compatibility condition and Q(z)-local grading-restriction condition,
respectively. But Q(z2) is the conformal equivalence class of the sphere C ∪ {∞} with the
negatively oriented puncture at z and the positively oriented punctures at 0 and∞ and with
the standard local coordinates. We also have a theorem completely analogous to Theorem
2.23 stating that an element of (W ′

4⊗W3)∗ satisfying the Q(z2)-compatibility condition and
Q(z)-local grading-restriction condition must be an element obtained using an intertwining
operator Y of the type

(
W4

WW3

)
for some grading-restricted generalized V -module W by

w′4 ⊗ w3 7→ 〈w′4,Y(w, z2)w3〉.

Here we omit the details. Using this result, we see that there exists an intertwining operator
Y3 of the type

(
W4

(W1�P (z1−z2)W2) W3

)
such that

νw(w′4 ⊗ w3) = 〈w′4,Y3(w, z2)w3〉.

Thus we have

〈w′4,Y1(w1, x1)Y2(w2, x2)w3〉 = 〈µw′4,w3
,Y4(w1, z)w2〉

= νY4(w1,z)w2(w
′
4 ⊗ w3)

= 〈w′4,Y3(Y4(w1, z)w2, z2)w3〉.

This is the associativity of intertwining operators at the point (z1, z2).

3 Tensor categories

We review the basic concepts and properties in the theory of tensor categories in this section.
The main references for this section are [J], [M], [T] and [EGNO].

3.1 Basic concepts in category theory

Definition 3.1. A category consists of the following data:

1. A collection of objects.

2. For two objects A and B, a set Hom(A,B) of morphisms from A to B.

3. For an object A, an identity 1A ∈ Hom(A,A).

4. For three objects A,B,C, a map

◦ : Hom(B,C)× Hom(A,B) → Hom(A,C)

(f, g) 7→ f ◦ g

called composition or multiplication.
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These data must satisfy the following axioms:

1. The composition is associative, that is, for objects A,B,C,D and f ∈ Hom(C,D),
g ∈ Hom(B,C), h ∈ Hom(A,B), we have f ◦ (g ◦ h) = (f ◦ g) ◦ h.

2. For an object A, the identity 1A is the identity for the composition of morphisms when
the morphisms involving A, that is, for an object B, f ∈ Hom(A,B), g ∈ Hom(B,A),
we have 1A ◦ g = g and f ◦ 1A = f .

We shall use C, D and so on to denote categories. For a category C, we use Ob C to
denote the collection of objects of C.

Definition 3.2. Let C be a category. For any A,B ∈ Ob C, an element f ∈ Hom(A,B)
is called an isomorphism if there exists f−1 ∈ Hom(B,A) such that f ◦ f−1 = 1B and
f−1 ◦ f = 1A.

Definition 3.3. Let C and D be categories. A covariant functor (or a contravariant functor)
from C to D consists of the following data:

1. A map F from the collection Ob C of objects of C to the collection Ob D of objects of
D.

2. Given objectsA andB of C, a map, still denoted by F , from Hom(A,B) to Hom(F(A),F(B))
(or from Hom(A,B) to Hom(F(B),F(A)) for a contravariant functor).

These data must satisfy the following axioms:

1. For objects A,B,C of C and morphisms f ∈ Hom(B, c), g ∈ Hom(A,B), we have

F(f ◦ g) = F(f) ◦ F(g)

(or
F(f ◦ g) = F(g) ◦ F(f)

for a contravariant functor).

2. For an object A of C, F(1A) = 1F(A).

We shall denote the functor defined above by F .

Definition 3.4. Let F and G be functors from C to D. A natural transformation η from F
to G consists of an element ηA ∈ Hom(F(A),G(A)) for each object A ∈ Ob C such that the
following diagram is commutative for A,B ∈ Ob C and f, g ∈ Hom(A,B):

F(A)
ηA−−−→ G(A)

F(f)

y yF(g)

F(B) −−−→
ηB

G(B).

A natural isomorphism from C to D is a natural transformation η from C to D such that
ηA ∈ Hom(F(A),G(A)) for each object A ∈ Ob C is an isomorphism.
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Definition 3.5. Let F be a functor from a category C to a category D and G a functor from
a category D to a category E . The composition G ◦ F of G and F is a functor from C to E
given by (G ◦F)(A) = G(F(A)) for A ∈ Ob C and (G ◦F)(f) = G(F(f)) for f ∈ Hom(A,B)
and A,B ∈ Ob C. Let C and D be categories. We say that C is isomorphic to D if there is
a functor F from C to D and a functor F−1 such that F ◦F−1 = 1D and F−1 ◦ F = 1C. We
say that C is equivalent to D if there is a functor F from C to D and a functor G such that
F ◦ G is naturally isomorphic to 1D and G ◦ F is naturally isomorphic to 1C.

Definition 3.6. Let Aj for j ∈ I be objects of a category C. A product of Aj for j ∈ I
is an object

∏
j∈I Aj together with morphisms pj :

∏
j∈I Aj → Aj satisfying the following

universal property: For any object A of C and any morphism fj : A → Ai, there exists a
unique morphism f : A→

∏
j∈I Aj such that such that fj = pj ◦ f for i ∈ I. A coproduct of

Aj for j ∈ J is an object
∐

j∈I Aj together with morphisms ij : Aj →
∏

j∈I Aj satisfying the
following universal property: For any object A of C and any morphism fj : Aj → A, there
exists a unique morphism f :

∏
j∈I Ai → A such that fj = f ◦ ij for i ∈ I.

Exercise 3.7. Prove that products and coproducts of objects Aj for j ∈ I in a category C
are unique up to isomorphisms.

Definition 3.8. An initial object in a category C is an object I in C such that for any object
X in C, Hom(I,X) has one and only one element. An terminal object in a category C is an
object T in C such that for any object X in C, Hom(X,T ) has one and only one element. A
zero object in a category C is both an initial object and a terminal object.

Definition 3.9. Let C be a category containing a zero object 0. Let A and B be objects of
C and let f ∈ Hom(A,B). A kernel of f is an object K and a morphism k ∈ Hom(K,A)
satisfying f ◦ k = 0 and the following universal property: For any object K ′ and morphism
k′ ∈ Hom(K ′, A) satisfying f ◦ k′ = 0, there exists a unique g ∈ Hom(K ′, K) such that
k′ = k◦g. A cokernel of f is an object Q and a morphism q ∈ Hom(B,Q) satisfying q◦f = 0
and the following universal property: For any object Q′ and morphism q′ ∈ Hom(B,Q′)
satisfying q′ ◦ f = 0, there exists a unique u ∈ Hom(Q,Q′) such that q′ = u ◦ q.

Exercise 3.10. Prove that kernels and cokernels of of a morphism are unique up to isomor-
phisms.

Definition 3.11. Let C be a category containing a zero object 0. Let A1, . . . , An be objects
of C. A biproduct of A1, . . . , An is an object A1 ⊕ · · · ⊕An of C and pk : A1 ⊕ · · · ⊕An → Ak
and ik : Ak → A1⊕· · ·⊕An for k = 1, . . . , n such that pk◦ik = 1Ak for k = 1, . . . , n, pl◦ik = 0
for l 6= k, A1 ⊕ · · · ⊕ An equipped with pk for k = 1, . . . , n is a product of A1, . . . , An and
A1 ⊕ · · · ⊕ An equipped with ik for k = 1, . . . , n is a coproduct of A1, . . . , An.

Definition 3.12. Let C be a category. Let A and B be objects of C. A morphism f ∈
Hom(A,B) is said to be a monomorphism if for any object C and any g1, g2 ∈ Hom(C,A),
f ◦ g1 = f ◦ g2 implies g1 = g2. A morphism f ∈ Hom(A,B) is said to be aN epimorphism if
for any object C and any g1, g2 ∈ Hom(B,C), g1 ◦ f = g2 ◦ f implies g1 = g2.
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Definition 3.13. An abelian category is a category C satisfying the following conditions:

1. For any objects A and B, Hom(A,B) is an abelian group and for any objects A, B and
C, the map from Hom(B,A)× Hom(C,B) to Hom(C,A) given by the composition of
morphisms is bilinear.

2. Every finite set of objects has a biproduct.

3. Every morphism has a kernel and cokernel.

4. Every monomorphism is a kernel of some morphism and every epimorphism is a cok-
ernel of some morphism.

3.2 Monoidal categories and tensor categories

Definition 3.14. An monoidal category consists of the following data:

1. A category C.

2. A bifunctor ⊗ : C × C → C called the tensor product bifunctor.

3. A natural isomorphism A from ⊗ ◦ (1C × ⊗) to ⊗ ◦ (⊗ × 1C) called the associativity
isomorphism.

4. An object 1 called the unit object.

5. A natural isomorphism l from 1⊗· to 1C called the left unit isomorphism and a natural
isomorphism r from · ⊗ 1 to 1C called the right unit isomorphism.

These data satisfy the following axioms:

1. The following pentagon diagram is commutative for objects A1, A2, A3, A4:

((A1 ⊗ A2)⊗ A3)⊗ A4 (A1 ⊗ (A2 ⊗ A3))⊗ A4

(A1 ⊗ A2)⊗ (A3 ⊗ A4) A1 ⊗ ((A2 ⊗ A3)⊗ A4)

A1 ⊗ (A2 ⊗ (A3 ⊗ A4))

�
? ?

��������)

PPPPPPPPq

2. The following triangle diagram is commutative for objects A1, A2:

(A1 ⊗ 1)⊗ A2 −−−→ A1 ⊗ (1⊗ A2)y y
A1 ⊗ A2 −−−→

=
A1 ⊗ A2.
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Definition 3.15. A tensor category is an abelian category equipped with a monoidal cate-
gory structure such that the abelain category structure and the monoidal category structure
are compatible in the sense that for objects A, B, C and D, the map ⊗ : Hom(A,B) ×
Hom(C,D)→ Hom(A× C,B ⊗D) is bilinear.

Definition 3.16. Let C be a monoidal category. A graph diagram in C is a graph whose
vertices are functors obtained from the tensor product bifunctor and the unit objects and
the edges are natural isomorphisms obtained from the associativity isomorphisms, the left
and the right unit isomorphisms. A graph diagram is commutative if the compositions of the
isorphisms in any two paths with the same starting and ending vertices must be equal.

Theorem 3.17 (Mac Lane). Let C be a monoidal category. Any graph diagram in C is
commutative

We omit the proof here; see [M] and [EGNO].

Definition 3.18. A monoidal functor from a monoidal categoory C to a monoidal category
D is a triple (F , J, ϕ) where F is a functor from C to D, J a natural transformation from
the functor F(·)⊗D F(·) to the functor F(· ⊗C ·) and ϕ an isomorphism from 1D to F(1C)
such that the diagram

(F(A1)⊗D F(A2))⊗D F(A3) −−−→ F(A1)⊗D (F(A2)⊗D F(A3))y y
(F(A1 ⊗C A2)⊗D F(A3) F(A1)⊗D F(A2 ⊗C A3)y y
(F((A1 ⊗C A2)⊗C A3) −−−→ F(A1 ⊗C (A2 ⊗C A3))

for objects A1, A2 and A3 in C and the diagram

1D ⊗D F(A) −−−→ F(A)y x
F(1C ⊗D F(A) −−−→ F(1C ⊗C A)

for an object A in C are commutative. A monoidal eqivalence from a monoidal categoory
C to a monoidal category D is a monoidal functor (F , J, ϕ) from C to D such that F is an
equivalence of categories and J is a natural isomorphism.

Definition 3.19. A monoidal category is strict if

⊗ ◦ (1C ×⊗) = ⊗ ◦ (⊗× 1C),

1⊗ · = 1C

· ⊗ 1 = 1C

and the associativity, the left and the right unit isomorphisms are identities.
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Theorem 3.20 (Mac Lane). Any monoidal category is monoidal equivalent to a strict
monoidal category.

Exercise 3.21. Consider the category of bimodules for an associative algebra and the tensor
product bifunctor we defined in the section on associative algebras. Show that there exists
an associaitivity isomorphism such that the pentagon diagram is commutative.

3.3 Symmetries and braidings

Definition 3.22. Let C be a monoidal category. A symmetry of C is a natural isomorphism
C from ⊗ to ⊗ ◦ σ12 (σ12 being the functor from C × C to C × C induced from the nontrivial
element of S2) such that for objects A1, A2, the morphism

CA2,A1 ◦ CA1,A2 : A1 ⊗ A2 → A2 ⊗ A1 → A1 ⊗ A2

is equal to the identity 1A1⊗A2 and for objects A1, A2 and A2, the hexagon diagram
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(A1 ⊗A2)⊗A3

(A2 ⊗A1)⊗A3 A1 ⊗ (A2 ⊗A3)

A2 ⊗ (A1 ⊗A3) (A2 ⊗A3)⊗A1

A2 ⊗ (A3 ⊗A1)

? ?

@
@
@
@
@
@
@
@R

�
�
�

�
�

�
�
�	

�
�

�
�

�
�
�
�	

@
@
@
@
@
@
@
@R

is commutative. A symmetric monoidal category is a monoidal category with a symmetry.
A symmetric tensor category is a tensor category with a symmetry.

Definition 3.23. Let C be a monoidal category. A braiding of C is a natural isomorphism
R from ⊗ to ⊗ ◦ σ12 such that for objects A1, A2 and A2, the hexagon diagrams
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(A1 �A2)�A3

(A2 �A1)�A3 A1 � (A2 �A3)

A2 � (A1 �A3) (A2 �A3)�A1

A2 � (A3 �A1)

R±1 � 1A3

1A2 �R±1

R±1

? ?

@
@
@
@
@
@
@
@R

�
�
�

�
�

�
�
�	

�
�

�
�

�
�
�
�	

@
@
@
@
@
@
@
@R

is commutative. A braided monoidal category is a monoidal category with a braiding. A
braided tensor category is a tensor category with a braiding.

3.4 Rigidity

Definition 3.24. Let C be a monoidal category. For an object A, a right dual of A is an
object A∗ and morphisms evA : A∗⊗A→ 1 and coevA : 1→ A⊗A∗ such that the morphism
obtained by composing the morphisms in

A→ 1⊗ A→ (A⊗ A∗)⊗ A→ A⊗ (A∗ ⊗ A)→ A⊗ 1→ A

is equal to the identity 1A and the morphism obtained by composing the morphisms in

A∗ → A∗ ⊗ 1→ A∗ ⊗ (A⊗ A∗)→ (A∗ ⊗ A)⊗ A∗ → 1⊗ A∗ → A∗

is equal to the identity 1A∗ . A left dual of A is an object ∗A and morphisms ev′A : A⊗∗A→ 1
and coev′A : 1→∗ A⊗ A such that the morphism obtained by composing the morphisms in

A→ A⊗ 1→ A⊗ (∗A⊗ A)→ (A⊗∗ A)⊗ A→ 1⊗ A→ A

is equal to the identity 1A and the morphism obtained by composing the morphisms in

∗A→ 1⊗∗ A→ (∗A⊗ A)⊗∗ A→∗ A⊗ (A⊗∗ A)→∗ A⊗ 1→∗ A

is equal to the identity 1∗A.
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Definition 3.25. A monoidal category C is said to be rigid if there are contravariant functors
∗· : C → C and ·∗ : C → C such that for an object A, ∗A and A∗ are left and right duals of A.

Exercise 3.26. Show that the category of finite-dimensional representations for a finite
group and the category of finite-dimensional modules for a finite-dimensional Lie algebra are
rigid symmetric tensor categories.

3.5 Ribbon categories and modular tensor categories

Definition 3.27. Let C be a braided onoidal category. A twist of C is a natural isomorphism
θ : 1C → 1C such that for objects A1 and A2,

θA1⊗A2 = RA2,A1 ◦RA1,A2 ◦ (θA1 ⊗ θA2).

Definition 3.28. A ribbon category is a rigid braided monoidal category equipped with a
twist.

Lemma 3.29. In a ribbon category, the left dual and right dual can be taken to be the same.

We omit the proof of this lemma.
Let C be a ribbon category and let K = Hom(1,1). Then K is a monoid (a set with an

associative product and an identity).

Lemma 3.30. K is in fact commutative.

In a ribbon category, we can define the “trace” of a morphism and the “dimension” of
an object as follows:

Definition 3.31. Let f ∈ Hom(A,A) be a morphism in a ribbon category. The trace of f
is defined to be

Tr f = evA ◦RA,A∗ ◦ ((θA ◦ f)⊗ 1A∗) ◦ coevA ∈ K.

The dimension dimA of an object A is defined to be Tr 1A.

The trace of a morphism satisfies the properties that a trace should have.

Proposition 3.32. Let C be a ribbon category. Then we have:

1. For f ∈ Hom(A,B) and g ∈ Hom(B,A), Tr fg = Tr gf .

2. For f ∈ Hom(A1, A2) and g ∈ Hom(A3, A4), Tr (f ⊗ g) = (Tr f)(Tr g).

3. For k ∈ K, Tr k = k.

Example 3.33. The category of finite-dimensional representations of a finite group and
the category of finite-dimensional modules for a finite-dimensional Lie algebra are ribbon
categories whose braidings and twists are trivial.
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Example 3.34. Let G be an mulplicative abelian group (an abelian group whose operation
is written as a multiplication instead of an addition), K a commutative ring with identity
and c : G×G→ K∗ a bilinear form (K∗ being the set of invertible elements of K), that is,
for g, g′, h, h′ ∈ G, we have

c(gg′, h) = c(g, h)c(g′, h),

c(g, hh′) = c(g, h)c(g, h′).

We construct a ribbon category as follows: The objects of the category are elements of G.
For any g, h ∈ G, Hom(g, h) is K if g = h and 0 if g 6= h. The composition of two morphisms
g → h →→ f is the product of the two elements of K is g = h = f and 0 otherwise. The
tensor product of two objects g, h ∈ G is their product gh. The tensor product gg′ → hh′

of two morphisms g → g′ and h → h′ is the product of the two elements in K if g = h
and g′ = h′ and is 0 otherwise. The unit object is the identity of G. The associativity and
left and right unit isomorphisms are the identity natural isomorphisms. For g, h ∈ G, the
briading gh→ hg = gh is defined to be c(g, h). For g ∈ G, the twist g → g is defined to be
c(g, g). For g ∈ G, the (left and right) dual of g is g−1. The morphisms evg, coevg, ev′g and
coev′g are the indentity of K. Then we have a ribbon category.

Exercise 3.35. Verify that the example above is indeed a ribbon category.

We now consider ribbon tensor categories, that is, rigid braided tensor categories with
twists.

Let C be a ribbon tensor category. Then K = Hom(1,1) acts on Hom(A,B) for any
objects A and B by kf = lB ◦ (k⊗ f) ◦ l−1

A for k ∈ K and f ∈ Hom(A,B). This action gives
Hom(A,B) a K-module structure.

Definition 3.36. An object A of a ribbon tensor category is said to be irreducible if
Hom(A,A) is a free K-module of rank 1. A ribbon tensor category is said to be semisimple
if the following conditions are satisfied:

1. For any simple objects A and B, Hom(A,B) = 0 if A is not isomorphic to B.

2. Every object is a direct sum of finitely many irreducible objects.

Example 3.37. The unit object is an irreducible object.

Example 3.38. The ribbon tensor category of finite-dimensional representations over a
field of a finite group such that the characteristic of the field does not divide the order of the
group and the ribbon tensor category of finite-dimensional modules for a finite-dimensional
semisimple Lie algebra are semisimple.

Definition 3.39. A modular tensor category is a semisimple ribbon tensor category C, with
finitely many equivalence classes of irreducible objects satisfying the following nondegeneracy
property: Let {Ai}ni=1 be a set of representatives of the equivalence classes of irreducible
objects of C. Then the matrix (Sij) where

Sij = Tr RAj ,Ai ◦RAi,Aj

for i, j = 1, . . . , n is invertible.
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Let I be the set of equivalence classes of irreduible objects in a modular tensor category.
We shall use 0 to denote the equivalence class in I containing the unit object.

Proposition 3.40. The dual object of an irreducible object is also irreducible.

We omit the proof.
From this proposition, we see that there is a map ∗ : I → I such that for any i ∈ I, i∗ is

the equivalence class in I such that objects in i∗ are duals of objects in i.
We now choose one object Ai for each equivalence class i ∈ I. Then by definition, we

have
S0,i = Si,0 = dimAi

for i ∈ I.

Definition 3.41. Let C be a modular tensor category. Assuming that there exists D ∈ K
such that

D2 =
∑
i∈I

(dimAi)
2.

We call D the rank of C.

If there is no such D in K, we can always enlarge K and the sets of morphisms such that
in the new category, there exists such a D.

For i ∈ I, the twist θAi as an element of Hom(Ai, Ai) must be proportional to 1Ai , that
is, there exists Ai ∈ K such that θi = Ai1Ai . Since θAi is an isomorphism, Ai is invertible.
Let ∆ =

∑
i∈I v

−1
i (dimAi)

2, T = (δji vi) and J = (δji∗). Then we have

(D−1S)4 = I,

(D−1T−1S)3 = ∆D−1(D−1S)2.

Let

s =

(
0 −1
1 0

)
,

t =

(
1 1
0 1

)
.

Then s and t are the generators of the modular group

SL(2,Z) =

{(
a b
c d

)
| a, b, c, d ∈ Z, ad− bc = 1

}
satisfying the relations

s4 = I, (ts)3 = s2.

Thus we see that s 7→ D−1S and t 7→ T−1 give a projective matrix representation of SL(2,Z).
Since C is semisimple and I is the set of equivalence classes of irreducible objects in C,

we see that Ai⊗Aj for i, j ∈ I must be isomorphic to ⊕k∈INk
ijAk, where Nk

ij are nonnegative
integers giving the numbers of copies of Ak. These numbers Nk

ij afre called fusion rules.
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Theorem 3.42. For i, l,m ∈ I, we have∑
j,k∈I

S−1
mjN

k
ijSkl = (dimAm)−1Silδlm.

In fact, if we let
Ni = (Nk

ij)

for i ∈ I, then the theorem above says that the matrix S diagonalizes Ni for i ∈ I simulta-
neously.

Corollary 3.43. For i, j, k ∈ I, we have

Nk
ij = D−2

∑
l∈I

(dimAl)
−1SilSjlSk∗l.

We omit the proofs of these results.

4 Vertex tensor category and braided tensor category

of grading-restricted generalized V -modules

Let V be a vertex operator algebra such that for some z ∈ C×, W1 P (z)W2 for grading-
restricted generalized V -modules W1 and W2 is grading-restricted and the associativity of
intertwining operators hold in the category of grading-restricted generalized V -modules.
From the results in the preceding section, a C2-cofinite vertex operator algebra of positive
energy is such a vertex operator algebra. Let C be the category of grading-restricted general-
ized V -modules. We give C a vertex tensor category structure and a braided tensor category
structure in this section.

The material in this section is from [H6] and [HLZ2].

4.1 The vertex tensor category structure

We have constructed a tensor product bifunctor �P (z) : C ×C → C for z ∈ C×. To construct
a tensor category, we need only one tensor product bifunctor. We shall choose this bifunctor
to be �P (1) and denote it simply as �. But we will first work with the tensor product functor
�P (z) for general z since these are parts of a structure called called “vertex tensor category”
(see [HL1]).

We take the unit object to be V . To obtain a tensor category, we also have to give the left
and right unit isomorphisms and the associativity isomorphism. Given a grading-restricted
generalized V -module W , let Y be the intertwining operator of type

(
V �P (z)W

VW

)
given in the

construction of the tensor product V �P (z)W . Then V�P (z) is spanned by the homogeneous
components of Y(v, z)w for v ∈ V and w ∈ W . Using v = Resxx

−1YW (v, x)1 and the
associator formula for the intertwining operator Y , we see that homogeneous components
of Y(v, z)w for v ∈ V and w ∈ W are in fact spanned by elements of the form Y(1, z)w
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for w ∈ W . But by the L(−1)-derivative property, Y(1, z)w is independent of z and by
the L(0)-commutator formulas, it is homogeneous of wieght wtw if w is homogeneous. In
particular, it is a well defined element of V �P (z) W . Then Y(1, z) is a linear map from W
to V �P (z) W . We denote this map by ψ. For v ∈ V and w ∈ W , using the commutator
formula for Y and YV (v, x)1 ∈ V [[x0]], we obtain

YV �P (z)W (v, x)ψ(w) = YV �P (z)W (v, x)Y(1, z)w

= Y(1, z)YW (v, x)w + Resxx
−1δ

(
z + x

x

)
Y(YV (v, x)1, z)w

= Y(1, z)YW (v, x)w

= ψ(YW (v, x)w).

So ψ is a V -module map. Since YW is an intertwining operator of type
(
W
VW

)
, (W,YW (·, z)·) is

a P (z)-product (W,YW (·, z)·) of V and W . By the universal property of the tensor product
(V �P (z) W,Y(·, z)·), there exists a unique V -module map φ : V �P (z) W → W such that

YW (v, z)w = φ(Y(v, z)w) for v ∈ V and w ∈ W . In particular,

w = YW (1, z)w = φ(Y(1, z)w) = φ(ψ(w)).

So φ and ψ are inverse to each other and thus are equivalences. We define the left P (z)-unit
isomorphism lW ;z : V �P (z) W → W to be φ.

We can also define the right P (z)-unit isomorphism rW ;z : W �P (z) V → W similarly. We
omit the details here.

Let W1, W2 and W3 be grading-restricted generalized V -modules. Let z1, z2 ∈ C× satis-
fying |z1| > |z2| > |z1 − z2| > 0. We now construct an associativity isomorphism

α
P (z1−z2),P (z2)
P (z1),P (z2) : (W1 �P (z1−z2) W2) �P (z2) W3 → W1 �P (z1) (W2 �P (z2) W3).

To construct AP (z1−z2),P (z2)
P (z1),P (z2) , we need only construct

(α
P (z1−z2),P (z2)
P (z1),P (z2) )′ : W1 P (z1)(W2 �P (z2) W3)→ (W1 �P (z1−z2) W2) P (z2)W3.

Let Y1, Y2 be intertwining operators of types
(W1�P (z1)

(W2�P (z2)
W3)

W1(W2�P (z2)
W3)

)
and

(W2�P (z2)
W3

W2W3

)
, re-

spectively, for the tensor product W1 �P (z1) (W2 �P (z2) W3) and W2 �P (z2) W3, respectively.
Let w1 ∈ W1, w2 ∈ W2, w3 ∈ W3 and w′ ∈ W1 P (z1)(W2 �P (z2) W3). By the associativity of
intertwining operators, there exist grading-restricted generalized V -modules W4 and inter-
twining operators Y3 and Y4 of types

((W1�P (z1−z2)W2)�P (z2)
W3

W4W3

)
and

(
W4

W1W2

)
, respectively, such

that
〈w′,Y1(w1, z2)Y2(w2, z2)w3〉 = 〈w′,Y3(Y4(w1, z1 − z2)w2, z2)w3〉.

We now have a product (W4,Y4) of W1 and W2. Let Y2 be the intertwining operator
associated to the tensor product W1 �P (z1−z2) W2. Then by the universal property of the
tensor product, there exists a unique V -module map f : W1 �P (z1−z2) W2 → W4 such that

Y4(w1, z1 − z2)w2 = f(Y 2(w1, z1 − z2)w2).

37



Since f is a V -module map, Y1 = Y3 ◦ (f ⊗ 1W3) is an intertwining operator of type((W1�P (z1−z2)W2)�P (z2)
W3

(W1�P (z1−z2)W2) W3

)
. It can be shown that Y1 is in fact the intertwining operator as-

sociated to the tensor product (W1 �P (z1−z2) W2) �P (z2) W3. Then we have

〈w′,Y1(w1, z2)Y2(w2, z2)w3〉
= 〈w′,Y3(Y4(w1, z1 − z2)w2, z2)w3〉
= 〈w′,Y1(Y2(w1, z1 − z2)w2, z2)w3〉.

By the definition of (W1 �P (z1−z2) W2) P (z2)W3, we know that for

〈w′,Y1(·, z2)·〉 ∈ ((W1 �P (z1−z2) W2)⊗W3)∗

is in fact in (W1 �P (z1−z2) W2) P (z2)W3. We define (α
P (z1−z2),P (z2)
P (z1),P (z2) )′ by

(α
P (z1−z2),P (z2)
P (z1),P (z2) )′(w′) = 〈w′,Y1(·, z2)·〉.

It can be proved that (α
P (z1−z2),P (z2)
P (z1),P (z2) )′ is a V -module map and is invertable.

We now define the associativity isomorphism

α
P (z1−z2),P (z2)
P (z1),P (z2) : (W1 �P (z1−z2) W2) �P (z2) W3 → W1 �P (z1) (W2 �P (z2) W3)

to be the adjoint of (α
P (z1−z2),P (z2)
P (z1),P (z2) )′. From the definition of (α

P (z1−z2),P (z2)
P (z1),P (z2) )′ and α

P (z1−z2),P (z2)
P (z1),P (z2) ,

we have

〈w′,Y1(w1, z1)Y2(w2, z2)w3〉
= 〈w′,Y1(Y2(w1, z1 − z2)w2, z2)w3〉
= ((α

P (z1−z2),P (z2)
P (z1),P (z2) )′(w′))(Y2(w1, z1 − z2)w2 ⊗ w3)

= 〈(αP (z1−z2),P (z2)
P (z1),P (z2) )′(w′),Y1(Y2(w1, z1 − z2)w2, z2)w3〉.

Thus we obtain

α
P (z1−z2),P (z2)
P (z1),P (z2) (Y1(Y2(w1, z1 − z2)w2, z2)w3) = Y1(w1, z1)Y2(w2, z2)w3.

We want to rewrite this formula using tensor products of elements. Let W1 and W2 be two
grading-restricted generalized V -modues and z ∈ C×. Let Y be the intertwining operator
associated to the P (z)-tensor product W1 �P (z) W2. For w1 ∈ W1 and w2 ∈ W2, we define
the tensor product w1 �P (z) w2 of w1 and w2 by

w1 �P (z) w2 = Y(w1, z)w2.

Note that w1 �P (z) w2 ∈ W1 �P (z) W2 but in general w1 �P (z) w2 6∈ W1 �P (z) W2. Though
w1 �P (z) w2 is not in the tensor product W1 �P (z) W2, it is a (in general infinite) sum of
homogeneous elements of W1 �P (z) W2. It is not difficult to show that these homogeneous
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componenets for all w1 ∈ W1 and w2 ∈ W2 span W1 �P (z) W2. This is the reason why these
elements are useful and important.

Using this notation, in the setting of the construction of the associativity isomorphism
above, we have

Y1(Y2(w1, z1 − z2)w2, z2)w3 = (w1 �P (z1−z2) w2) �P (z2) w3,

Y1(w1, z1)Y2(w2, z2)w3 = w1 �P (z1) (w2 �P (z2) w3).

The we have

α
P (z1−z2),P (z2)
P (z1),P (z2) ((w1 �P (z1−z2) w2) �P (z2) w3) = w1 �P (z1) (w2 �P (z2) w3).

We often use the inverse

AP (z1−z2),P (z2)
P (z1),P (z2) : W1 �P (z1) (W2 �P (z2) W3)→ (W1 �P (z1−z2) W2) �P (z2) W3

of α
P (z1−z2),P (z2)
P (z1),P (z2) and we have

AP (z1−z2),P (z2)
P (z1),P (z2) (w1 �P (z1) (w2 �P (z2) w3)) = (w1 �P (z1−z2) w2) �P (z2) w3.

To prove the pentagon diagram is commutative, we also need the tensor product element
of four elements. For example, we also have

w1 �P (z1) (w2 �P (z2) (w3 �P (z3) w4)) ∈ W1 �P (z1) (W2 �P (z2) (W3 �P (z3) W4))

when |z1| > |z2| > |z3| > 0 and

((w1 �P (z12) w2) �P (z23) w3) �P (z3) w4 ∈ ((W1 �P (z12) W2) �P (z23) W3) �P (z3) W4

when |z3| > |z2−z3| > |z1−z2| > 0. These are also given by intertwining operators evaluated
at the corresponding complex numbers. Moreover, the natural extensions of the associativity
isomorphisms to the algebriac completions of the corresponding modules in C send such an
element to another such element. Also the homogeneous componenets of these elements span
the tensor product modules.

We first prove the commutativity of the pentagon diagram involving these z’s. This
is in fact the prntagon diagram for vertex tensor categories. Let W1, W2, W3 and W4 be
V -modules and let z1, z2, z3 ∈ C satisfying

|z1| > |z2| > |z3| > |z1 − z3| > |z2 − z3| > |z1 − z2| > 0,

|z1| > |z2 − z3|+ |z3|,
|z2| > |z1 − z2|+ |z3|,

|z2| > |z1 − z2|+ |z2 − z3|.

For example, we can take z1 = 7, z2 = 6 and z3 = 4. We wang to prove the commutativity
of the diagram:
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((W1 �P (z12) W2)�P (z23) W3)�P (z3) W4 (W1 �P (z13) (W2 �P (z23) W3))�P (z3) W4

(W1 �P (z12) W2)�P (z2) (W3 �P (z3) W4) W1 �P (z1) ((W2 �P (z23) W3)�P (z3) W4))

W1 �P (z1) (W2 �P (z2) (W3 �P (z3) W4))

�
? ?

��������)

PPPPPPPPq

(4.26)

where z12 = z1 − z2 and z23 = z2 − z3. For w1 ∈ W1, w2 ∈ W2, w3 ∈ W3 and w4 ∈ W4, we
consider

w1 �P (z1) (w2 �P (z2) (w3 �P (z3) w4)) ∈ W1 �P (z1) (W2 �P (z2) (W3 �P (z3) W4)).

Since the natural extensions of the associativity isomorphisms send tensor products of ele-
ments to tensor products of elements, we see that the compositions of the natural extensions
of the V -module maps in the two routes in (4.26) applying to this element both give

((w1 �P (z12) w2) �P (z23) w3) �P (z3) w4 ∈ ((W1 �P (z12) W2) �P (z23) W3) �P (z3) W4.

Since the homogeneous components of

w1 �P (z1) (w2 �P (z2) (w3 �P (z3) w4))

for w1 ∈ W1, w2 ∈ W2, w3 ∈ W3 and w4 ∈ W4 span

W1 �P (z1) (W2 �P (z2) (W3 �P (z3) W4)),

the diagram (4.26) above is commutative.
We also need parallel transport isomorphisms. Let W1 and W2 be grading-restricted

generalized V -modules. Let z1, z2 ∈ C× and γ is a path in C× from z1 to z2. Let Y be
the intertwining operator associated to the tensor product W1 �P (z2) W2. Using the value
log z2 = log |z2| + i arg z2 (satisfying 0 ≤ arg z2 < 2π) and the path γ, we obtain a unique
value l(z1 determined uniquely by log z2 and the homotopy class of the path γ. We define a
linear map

Tγ : W1 �P (z1) W2 → W1 �P (z2) W2

by

Tγ(w1 �P (z1) w2) = Y(w1, x)w2

∣∣∣∣
xn=enl(z1), log x=l(z1)

for w1 ∈ W1 and w2 ∈ W2. Since the homogeneous components of the tensor products
w1 �P (z1) w2 of elements w1 ∈ W1 and w2 ∈ W2 span W1 �P (z1) W2 and the image is given
by an intertwining operator associated to w1 evaluated at z1 and acting on w2, this linear
map is well defined and is a V -module map. Clearly this is invertable and is therefore an
isomorphism. The parallel transport isomorphism Tγ depends only on the homotopy class
of γ.
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We also have a commutativity isomorphism. Let z ∈ C×. For grading-restricted general-
ized V -modules W1 and W2, let Y be the intertwining operator associated to the P (z)-tensor
product W2 �P (−z) W1. The we have an intertwining operator Ω(Y) of type

(
W2�P (−z)W1

W2W1

)
,

where Ω(Y) is defined by

Ω(Y)(w2, x)w1 = e
xLW2�P (−z)W1

(−1)Y(w1, y)w2

∣∣∣∣
yn=enπixn, log y=log x+πi

.

Then the pair (W2�P (−z)W1,Ω(Y)(·, z)·) is a P (z)-product opf W1 and W2. By the universal
property of the tensor product W1 �P (z) W2, there exists a unique V -module map

CP (z) : W1 �P (z) W2 → W2 �P (−z) W1

such that
Ω(Y)(·, z)· = CP (z) ◦�P (z),

where CP (z) is the natrual extension of CP (z) and �P (z) is the value at z of the intertwining
operator associated to the tensor product W1 �P (z) W2.

4.2 The braided tensor category structure

We now discuss the tensor category structure. As we mentioned in the beginning of the
preceding subsection, we choose the tensor product bifunctor to be � = �P (1). The unit
object is still V and the unit isomorphisms are lW = lW ;1 and rW = rW ;1.

To construct the associativity isomorphism

A : W1 � (W2 �W3)→ (W1 �W2) �W3

for the braided tensor category structure, we need to use certain parallel isomorphisms. Let
z1 and z2 be real numbers satisfying z1 > z2 > z1− z2 ≥ 0. Let γ1 and γ2 be paths in (0,∞)
from 1 to z1 and z2, respectively, and γ3 and γ4 be paths in (0,∞) from z2 and z1 − z2 to 1,
respectively. Then the associativity isomorphism for the braided tensor category structure
on the module category for V is given by

A = Tγ3 ◦ (Tγ4 �P (z2) IW3) ◦ A
P (z1−z2),P (z2)
P (z1),P (z2) ◦ (IW1 �P (z1) Tγ2) ◦ Tγ1 ,

that is, given by the commutative diagram

W1 �P (z1) (W2 �P (z2) W3)
AP (z2−z3),P (z3)

P (z2),P (z2)−−−−−−−−−→ (W1 �P (z1−z2) W2) �P (z2) W3

(IW1
�P (z1)

Tγ2 )◦Tγ1

x yTγ3◦(Tγ4�P (z2)
IW3

)

W1 � (W2 �W3)
A−−−→ (W1 �W2) �W3
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On the other hand, by the definition of A, the diagrams

W1 �P (z1) (W2 �P (z2) (W3 �P (z3) W4)) (W1 �P (z12) W2)�P (z2) (W3 �P (z3) W4)

W1 � (W2 � (W3 �W4)) (W1 �W2)� (W3 �W4)-

-

? ?

(4.27)

(W1 �P (z12) W2)�P (z2) (W3 �P (z3) W4) ((W1 �P (z12) W2)�P (z23) W3)�P (z3) W4

(W1 �W2)� (W3 �W4) ((W1 �W2)�W3)�W4
-

-

? ?

(4.28)

W1 �P (z1) (W2 �P (z2) (W3 �P (z3) W4)) W1 �P (z1) ((W2 �P (z23) W3)�P (z3) W4))

W1 � (W2 � (W3 �W4)) W1 � ((W2 �W3)�W4)-

-

? ?

(4.29)

W1 �P (z1) ((W2 �P (z23) W3)�P (z3) W4)) (W1 �P (z13) (W2 �P (z23) W3))�P (z3) W4

W1 � ((W2 �W3)�W4) (W1 � (W2 �W3))�W4
-

-

? ?

(4.30)

(W1 �P (z13) (W2 �P (z23) W3))�P (z3) W4 ((W1 �P (z12) W2)�P (z23) W3)�P (z3) W4

(W1 � (W2 �W3))�W4 ((W1 �W2)�W3)�W4
-

-

? ?

(4.31)

are all commutative. Combining all the diagrams (4.26)–(4.31) above, we see that the pen-
tagon diagram
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((W1 �W2)�W3)�W4 (W1 � (W2 �W3))�W4

(W1 �W2)� (W3 �W4) W1 � ((W2 �W3)�W4)

W1 � (W2 � (W3 �W4))

�
? ?

��������)

PPPPPPPPq

is also commutative.
Let γ be a path from −1 to 1 in the closed upper half plane with 0 deleted. Let W1

and W2 be grading-restricted generalized V -modules. We define the brading isomorphsim
R : W1 �W2 → W2 �W1 by

R = Tγ ◦ CP (1).

We still need to prove the commutativity of the hexagon diagrams for the braiding iso-
morphsim. To prove this, we need to introduce tensor products w1 �P (z1) (w2 �P (z2) w3) and
(w1 �P (z1−z1) w2) �P (z2) w3) for w1 ∈ W1, w2 ∈ W2 and w3 ∈ W3 and z1, z2 ∈ C× satisfying
|z1| = |z2| = |z1 − z2|. Here we introduce these tensor products of elements for z1, z2 ∈ C×
such that z1 6= z2.

Let Y1, Y2, Y3, Y4 be intertwining operators of types(
W1 �P (z1) (W2 �P (z2) W3)

W1 W2 �P (z2) W3

)
,

(
W2 �P (z2) W3

W2 W3

)
,(

(W1 �P (z4) W2) �P (z3) W3

W1 �P (z4) W2 W3

)
,

(
W1 �P (z4) W2

W1 W2

)
respectively, associated to the tensor products W1 �P (z1) (W2 �P (z2) W3), W2 �P (z2) W3,
(W1 �P (z4) W2) �P (z3) W3, W1 �P (z4) W2, respectively. Then

〈w′,Y1(w(1), ζ1)Y2(w(2), ζ2)w(3)〉

and
〈w̃′,Y3(Y4(w(1), ζ4)w(2), ζ3)w(3)〉

are absolutely convergent for

w′ ∈ (W1 �P (z1) (W2 �P (z2) W3))′

and
w̃′ ∈ ((W1 �P (z4) W2) �P (z3) W3)′,

when |ζ1| > |ζ2| > 0 and when |ζ3| > |ζ4| > 0, respectively, and can be analytically extended
to multivalued analytic functions in the regions given by ζ1, ζ2 6= 0 and ζ1 6= ζ2 and by
ζ3, ζ4 6= 0 and ζ3 6= −ζ4, respectively. Cutting these regions along ζ1, ζ2 ≥ R+ and ζ3, ζ4 ∈ R+,
respectively, we obtain simply-connected regions and we can choose single-valued branches
of these multivalued analytic functions. In particular, we have the branches of these two
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multivalued analytic functions such that their values at points satisfying |ζ1| > |ζ2| > 0 and
|ζ3| > |ζ4| > 0 are

〈w′,Y1(w(1), ζ1)Y2(w(2), ζ2)w(3)〉

and
〈w̃′,Y3(Y4(w(1), ζ4)w(2), ζ3)w(3)〉,

respectively.
Let w(1) ∈ W1, w(2) ∈ W2 and w(3) ∈ W3. Then for any z1, z2, z3, z4 ∈ C× satisfying

z1 6= z2 and z3 6= −z4, there exist unique elements

w(1) �P (z1) (w(2) �P (z2) w(3)) ∈ W1 �P (z1) (W2 �P (z2) W3)

and
(w(1) �P (z4) w(2)) �P (z3) w(3) ∈ (W1 �P (z4) W2) �P (z3) W3

such that for any
w′ ∈ (W1 �P (z1) (W2 �P (z2) W3))′

and
w̃′ ∈ ((W1 �P (z4) W2) �P (z3) W3)′,

the numbers
〈w′, w(1) �P (z1) (w(2) �P (z2) w(3))〉

and
〈w̃′, (w(1) �P (z4) w(2)) �P (z3) w(3)〉

are the values at (ζ1, ζ2) = (z1, z2) and (ζ3, ζ4) = (z3, z4), respectively, of the branches of the
multivalued analytic functions above of ζ1 and ζ2 and of ζ3 and ζ4 above, respectively.

From the definition of
w(1) �P (z1) (w(2) �P (z2) w(3))

and
(w(1) �P (z4) w(2)) �P (z3) w(3),

we see that when |z1| = |z2| (with z1 6= z2) or |z3| = |z4| (with z3 6= z4), they are uniquely
determined by

〈w′, w(1) �P (z1) (w(2) �P (z2) w(3))〉
= lim

ζ1→z1, ζ2→z2, |ζ1|>|ζ2|>0
〈w′,Y1(w(1), ζ1)Y2(w(2), ζ2)w(3)〉

and

〈w̃′, (w(1) �P (z4) w(2)) �P (z3) w(3)〉
= lim

ζ3→z4, ζ4→z4, |ζ3|>|ζ4|>0
〈w̃′,Y3(Y4(w(1), ζ4)w(2))ζ3)w(3)〉
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for
w′ ∈ (W1 �P (z1) (W2 �P (z2) W3))′

and
w̃′ ∈ ((W1 �P (z4) W2) �P (z3) W3)′,

where the limits take place in the complex plane with a cut along R+.
For any z1, z2, z3, z4 ∈ C× satisfying z1 6= z2 and z3 6= −z4, the homogeneous componenets

of the elements of the form w(1) �P (z1) (w(2) �P (z2) w(3)), (w(1) �P (z4) w(2)) �P (z3) w(3) for
w(1) ∈ W1, w(2) ∈ W2, w(3) ∈ W3 span W1 �P (z1) (W2 �P (z2) W3), (W1 �P (z4) W2) �P (z3) W3,
respectively.

Here we sketch the proof of the commutativity of the hexagon diagram. We first consider
the following diagram:

(W1 �P (z12) W2)�P (z2) W3

(W2 �P (−z12) W1)�P (z2) W3 W1 �P (z1) (W2 �P (z2) W3)

(W2 �P (−z12) W1)�P (z1) W3

W2 �P (z2) (W1 �P (z1) W3) (W2 �P (z2) W3)�P (−z1) W1

W2 �P (−z12) (W3 �P (−z1) W1)

W2 �P (z2) (W3 �P (−z1) W1)

RP (z12) �P (z2) 1W3

(
AP (z12),P (z2)
P (z1),P (z2)

)−1

(
AP (−z12),P (z1)
P (z2),P (z1)

)−1

(
AP (z2),P (−z1)
P (−z12),P (−z1)

)−1

1W2
�P (z2) RP (z1)

RP (z1)

Tγ1

Tγ2

?

??

@
@
@
@
@
@
@
@R

�
�
�	

�
�

�
�

�
�
�
�	

@
@
@
@
@
@
@
@R

�
�
�	

(4.32)

where γ1 and γ2 are paths from z2 to z1 and from −z12 to z2, respectively, in C with a cut
along the nonnegative real line.

For w(1) ∈ W1, w(2) ∈ W2 and w(3) ∈ W3, the images of the element

(w(1) �P (z12) w(2)) �P (z2) w(3)

under the natural extension to (W1 �P (z12) W2) �P (z2) W3 of the compositions of the maps in
both the left and right routes in (4.32) from (W1�P (z12)W2)�P (z2)W3 to W2�P (z2)(W3�P (−z1)

W1) are
w(2) �P (z2) (ez1L(−1)(w(3) �P (−z1) w(1))).
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Since the homogeneous components of (w(1) �P (z12)w(2))�P (z2)w(3) for w(1) ∈ W1, w(2) ∈ W2

and w(3) ∈ W3 span (W1 �P (z12) W2) �P (z2) W3, the diagram (4.32) commutes.
To prove the commutativity of the hexagon diagram for the braiding isomorphism R, we

need to consider the following diagrams:

(W1 �P (z12) W2) �P (z2) W3 −−−→ (W1 �W2) �W3y y
(W2 �P (−z12) W1) �P (z2) W3 −−−→ (W2 �W1) �W3

(4.33)

(W2 �P (−z12) W1) �P (z2) W3 −−−→ (W2 �W1) �W3y y
(W2 �P (−z12) W1) �P (z1) W3 −−−→ (W2 �W1) �W3

(4.34)

(W2 �P (−z12) W1) �P (z1) W3 −−−→ (W2 �W1) �W3y y
W2 �P (z2) (W1 �P (z1) W3) −−−→ W2 � (W1 �W3)

(4.35)

W2 �P (z2) (W1 �P (z1) W3) −−−→ W2 � (W1 �W3)y y
W2 �P (z2) (W3 �P (−z1) W1) −−−→ W2 � (W3 �W1)

(4.36)

(W1 �P (z12) W2) �P (z2) W3 −−−→ (W1 �W2) �W3y y
W1 �P (z1) (W2 �P (z2) W3) −−−→ W1 � (W1 �W3)

(4.37)

W1 �P (z1) (W2 �P (z2) W3) −−−→ W1 � (W1 �W3)y y
(W2 �P (z2) W3) �P (−z1) W1 −−−→ (W2 �W3) �W1

(4.38)

(W2 �P (z2) W3) �P (−z1) W1 −−−→ (W2 �W3) �W1y y
W2 �P (−z12) (W3 �P (−z1) W1) −−−→ W2 � (W3 �W1)

(4.39)
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W2 �P (−z12) (W3 �P (−z1) W1) −−−→ W2 � (W3 �W1)y y
W2 �P (z2) (W3 �P (−z1) W1) −−−→ W2 � (W3 �W1)

(4.40)

The commutativity of the diagrams (4.33), (4.36) and (4.38) follows from the definition of the
commutativity isomorphism for the braided tensor category structure and the naturality of
the parallel transport isomorphisms. The commutativity of (4.35), (4.37) and (4.39) follows
from the definition of the associativity isomorphism for the braided tensor product structure.
The commutativity of (4.34) and (4.40) follows from the facts that compositions of parallel
transport isomorphisms are equal to the parallel transport isomorphisms associated to the
products of the paths and that parallel transport isomorphisms associated to homotopically
equivalent paths are equal. The commutativity of the hexagon diagram involving R follows
from (4.32)–(4.40).

Similarly, we can prove the commutativity of the triangle diagram for the unit isomor-
phisms. We omit the proof here.

We have proved the following result:

Theorem 4.1. Let V be a vertex operator algebra such that for some z ∈ C×, W1 P (z)W2

for grading-restricted generalized V -modules W1 and W2 is grading-restricted and the as-
sociativity of intertwining operators hold in the category of grading-restricted generalized
V -modules. Then the category of grading-restricted generalized V -modules with the tensor
product bifunctor �, the unit object V , the left and right unit isomorphisms l and r, the
associativity isomorphism A and the brading isomorphism R is a braided tensor category.

5 Modular invariance, Verlinde formula, and modular

tensor category structure

In this section, we discuss the modular invariance of intertwining operators, the Verlinde
formula and their applications to the construction of tensor category structure on the cat-
egory of mofules for a vertex operator algebra satisfying suitable finiteness and reductive
conditions.

5.1 Modular invariance

In this subsection, let V be a vertex operator algebra satisfying the folliwing conditions:

1. For n < 0, V(n) = 0 and V(0) = C1.

2. Every lower-bounded generalized V -module is completely reducible.

3. V is C2-cofinite.
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In this case, every irreducible lower-bounded generalized V -module is an ordinary V -
module, that is, it is grading-restricted and L(0) acts semisimply. We shall consider only
ordinary V -modules in this section.

We first recall geometrically-modified intertwining operators from [H4] (see also [H8]).
Given an intertwining operator Y of type

(
W3

W1 W2

)
and w1 ∈ W1, we have an operator (actually

a series with linear maps from W2 to W3 as coefficients) Y1(w1, z). The corresponding
geometrically-modified operator is

Y1(U(qz)w1, qz),

where qz = e2πiz, U(qz) = (2πiqz)
L(0)e−L

+(A) and Aj ∈ C for j ∈ Z+ are defined by

1

2πi
log(1 + 2πiy) =

exp

∑
j∈Z+

Ajy
j+1 ∂

∂y

 y.

See [?] for details.
First, we have the convergence and extension property of q-traces of products of n

geometrically-modified intertwining operators:

Theorem 5.1 ([H4]). Let Wi and W̃i for i = 1, . . . , n be (ordinary) V -modules, and Yi for

i = 1, . . . , n intertwining operators of types
(W̃i−1

WiW̃i

)
, respectively, where we use the convention

W̃0 = W̃n. For wi ∈ Wi, i = 1, . . . , n,

TrW̃n
Y1(U(qz1)w1, qz1) · · · Yn(U(qzn)wn, qzn)q

L(0)− c
24

τ

is absolutely convergent in the region 1 > |qz1| > . . . > |qzn| > |qτ | > 0 and can be extended
to a multivalued analytic function

FY1,...,Yn(w1, . . . , wn; z1, . . . , zn; τ).

in the region =(τ) > 0, zi 6= zj + l +mτ for i 6= j, l,m ∈ Z.

The space of all these multivalued functions have the following modular invariance prop-
erty:

Theorem 5.2 ([H4]). For (ordinary) V -modules Wi and wi ∈ Wi for i = 1, . . . , n, let
Fw1,...,wn be the vector space spanned by functions of the form

F
φ

Y1,...,Yn(w1, . . . , wn; z1, . . . , zn; τ)

for all (ordinary) V -modules W̃i for i = 1, . . . , n, all intertwining operators Yi of types
(W̃i−1

WiW̃i

)
for i = 1, . . . , n , respectively. Then for(

α β
γ δ

)
∈ SL(2,Z),
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FY1,...,Yn

((
1

γτ + δ

)L(0)

w1, . . . ,

(
1

γτ + δ

)L(0)

wn;
z1

γτ + δ
, . . . ,

zn
γτ + δ

;
ατ + β

γτ + δ

)
is in Fw1,...,wn.

When Wi = V for i = 1, . . . , n and W̃i for i = 1, . . . , n are irreducible, intertwining

operators of type
(W̃i−1

V W̃i

)
must be 0 if W̃i−1 is not equivalenet to W̃i and are proportional to

the vertex operator map YWi
if W̃i−1 is equivalenet to W̃i. Thus in the case that Wi = V for

i = 1, . . . , n, we need only consider all the analytic functions of the form

F YW ,...,YW (v1, . . . , vn; z1, . . . , zn; τ)

for a V -module W , v1, . . . , vn ∈ V . In particular, Theorem 5.2 states that the space of
all such analytic functions are invariant under the modular transformations. This is the
modular invariance theorem proved first by Zhu [Z]. But the method Zhu used cannot be
used to prove Theorems 5.1 and 5.2 when n ≥ 2.

5.2 The Verlinde formula

In the case that n = 1, W1 = V , w1 = 1 W̃ = W , we see that Theorem 5.2 says that the
space of vacuum characters or shifted graded dimensions

TrW q
LW (0)− c

24
τ

of V -modules is invariant under the modular transformation. Moreover, ifWi for i = 1, . . . ,m
are all the inequivalent irreducible V -modules, then

TrWi
q
LWi (0)− c

24
τ

for a ∈ A in fact form a basis of this space of vacuum characters or shifted graded dimensions.
For the WZW models, minimal models and lattice theories, this result was well known before
Zhu’s theorem.

Note that the modular group SL(2,Z) is generated by two elements

S =

(
0 1
−1 0

)
and

T =

(
1 1
0 1

)
.

The action of T on the vacuum character of an irreducible V -module is in fact given by a
number. So the only nontrivial action is given by S. Let Sij for i, j = 1, . . . ,m be the entries
of the matrix of the action of S under the basis

TrWi
q
LWi (0)− c

24
τ
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for i = 1, . . . ,m, that is,

TrWi
q
LWi (0)− c

24

− 1
τ

=
m∑
j=1

SijTrWj
q
LWi (0)− c

24
τ .

For simplicity, we shall still denote this matrix by S.
For i, j, k = 1, . . . , n, we also have the fusion rules Nk

ij = dimVWk
WiWj

, where VWk
WiWj

is the

space of intertwining operators of type
(
Wk

WiWj

)
. Let Nj = (Nk

ij) for j = 1, . . . ,m. Then Ver-

linde conjectured in [V] that for rational conformal field theories, the matrix S diagonalizes
the matrices Nj for j = 1, . . . ,m simultaneously. Using this conjecture, Verlinde also derived
in [V] a formula for the fusion rules, called Verlinde formula. Moore and Seiberg derived a
set of polynomial equations in [MS1] and [MS2] from the operator product expansion and
modular invariance of intertwining operators. The Verlinde conjecture and Verlinde formula
were derived in [MS1] and [MS2] from this set of Moore-Seiberg equations.

Mathematically, the operator product expansion and modular invariance of intertwining
operators were proved in [H3] and [H4] under the conditions stated in the preceding subsec-
tion, as we have discussed above. Then in [H5], the Verlinde conjecture and Verlinde formula
were proved under the three conditions on V in the preceding subsection together with the
additional condition that V is simple (meaning irreducible as V -module) and as a V -module
is equivalent to its contragredient V -module V ′. When V is simple, it is equivalent to one of
the irreducible V -modules Wi. We shall assume that the irreducible V -module equivalent to
V is W1. Also since the contragredient of an irreducible V -module is still irreducible, given
1 ≤ i ≤ m, there exists 1 ≤ i′ ≤ m such that Wi′ is equivalent to W ′

i . If V ′ is equivalent to
V as a V -module, then we have 1′ = 1.

Theorem 5.3 ([H5]). Let V be a simple vertex operator algebra staisfying the following
condition:

1. For n < 0, V(n) = 0 and V(0) = C1 and as a V -module, V is equivalent to its contra-
gredient V -module V ′.

2. Every lower-bounded generalized V -module is completely reducible.

3. V is C2-cofinite.

Then the matrix S diagonalizes the matrix Nj for j = 1, . . . ,m and we have

Nk
ij =

m∑
l=1

SliSljSk′l
Sl1

, (5.41)

for i, j, k = 1, . . . ,m.

In fact, the dioganoal entries of the diagonal matrices obtained from Ni after diagonaliza-
tion were calculated explicitly (see [MS1], [MS2] and [H5]). We now describe these diagonal
entries.
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For i = 1, . . . ,m, we use Y1
1i to denote the vertex operator map for the V -module Wi.

Let Y ii1, Y1
ii′ , Y1

i′i and Y1
ii′ be the intertwining operators obtained from Y1

1i using the skew-
symmetry, from Y ii1 using contragredient and from Y1

ii′ using skew-symmetry, respectively.
Then for wi ∈ Wi, wj ∈ Wj, w

′
i ∈ W ′

i and w′j ∈ W ′
j , we have a multivalued analytic function

in z1 and z2 obtained by analytically extending

〈w′i,Y ii1(wi, z1)Y1
j′j(w

′
j, z2)wj〉.

Starting from the value
〈w′i,Y ii1(wi, 2)Y1

j′j(w
′
j, 1)wj〉

of this multivalued analytic function, we obtain another value of the multivalued analytic
function at the same point (2, 1) along the path

t 7→
(

3

2
+
e−2πit

2
,
3

2
− e−2πit

2

)
.

But such a value can also be written as the value of the product of two intertwining operators
Y1 and Y2 in the form

〈w′i,Y1(wi, 2)Y2(w′j, 1)wj〉.

Since every V -module is a direct sum of irreducible V -modules and Y1 and Y2 can always
be written as the linear combinations of bases of intertwining operators, we have

〈w′i,Y1(wi, 2)Y2(w′j, 1)wj〉 = (B(−1))2
ij〈w′i,Y1(wi, 2)Y2(w′j, 1)wj〉+ · · · ,

where (B(−1))2
ij ∈ C and · · · are sums of products of other basis elements of intertwining

operators. The number (B(−1))2
ij is in fact one entry of a matrix (B(−1))2. We use the

notation (B(−1))2 because this matrix is in fact the square of a matrix called braiding matrix
obtained from the commutativity of intertwining operators, which is in fact a consequence
of the associativity and skew-symmetry of intertwining operators.

Also, by the associativity of intertwining operators, for wi, w̃i ∈ Wi and w′i, w̃i ∈ W ′
i ,

〈w̃′i,Y ii1(wi, z1)Y1
j′j(w

′
i, z2)w̃i〉 = 〈w̃′i,Y3(Y4(wi, z1 − z2)w′i, z2)w̃j〉.

Agian, since every V -module is a direct sum of irreducible V -modules and Y3 and Y4 can
always be written as the linear combinations of bases of intertwining operators, we have

〈w̃′i,Y3(Y4(wi, z1 − z2)w′i, z2)w̃j〉 = Fi〈w̃′i,Y i1i(Y1
ii′(wi, z1 − z2)w′i, z2)w̃j〉+ · · · ,

where Fi ∈ C and · · · sums of iterates of other basis elements of intertwining operators. The
number Fi is also one entry of a matrix F called fusing matrix.

In fact, the proof of the theorem is to derive first the formula

m∑
l=1

Sli(B
(−1))2

lj(S
−1)kl = Nk

ijFj (5.42)
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using the associativity and modular invariance of intertwining operators. Then it is easy to
see that Fj cannot be 0. In fact, if Fj = 0, then (B(−1))2

lj = 0 for l = 1, . . . ,m. This means

that the matrix (B(−1))2 is not invertable. But (B(−1))2 is the square of the braiding matrix
and thus is always invertable. Then from (5.43), we obtain

m∑
i,k=1

(S−1)liN
k
ijSkn = δln

(B(−1))2
lj

Fj
. (5.43)

One then prove

(S−1)li = Sl′j, (5.44)

(B(−1))2
lj

Fj
=
Slj
Sl1

. (5.45)

From (5.43), (5.44) and (5.45), we obtain (5.41). Another important formula is

Sij =
S11(B(−1))2

ij

FiFj
. (5.46)

5.3 Modular tensor category structure
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[M] S. Mac Lane, Categories for the working mathematician, Second Edition, Gradu-
ate Texts in Mathematics, Vol. 5, Springer-Verlag, New York, 1998.

[MS1] G. Moore and N. Seiberg, Polynomial equations for rational conformal field the-
ories, Phys. Lett. B 212 (1988), 451–460.

[MS2] G. Moore and N. Seiberg, Classical and quantum conformal field theory, Comm.
Math. Phys. 123 (1989), 177–254.

[S1] G. B. Segal, Two-dimensional conformal field theories and modular functors,
in: Proceedings of the IXth International Congress on Mathematical Physics,
Swansea, 1988, Hilger, Bristol, 1989, 22–37.

[S2] G. Segal, The definition of conformal field theory, in: Topology, Geometry and
Quantum Field Theory: Proceedings of the 2002 Oxford Symposium in Honour
of the 60th Birthday of Graeme Segal, ed. U. Tillmann, London Mathematical
Society Lecture Note Series, Vol. 308, Cambridge University Press, Cambridge,
2004, 421–577.

[T] V. G. Turaev, Quantum Invariants of Knots and 3-manifolds, de Gruyter Studies
in Math., Vol. 18, Walter de Gruyter, Berlin, 1994.

[V] E. Verlinde, Fusion rules and modular transformations in 2D conformal field the-
ory, Nucl. Phys. B300 (1988), 360–376.

[Z] Y. Zhu, Modular invariance of characters of vertex operator algebras, J. Amer.
Math. Soc. 9 (1996), 237–307.

Department of Mathematics, Rutgers University, 110 Frelinghuysen Rd., Piscat-

away, NJ 08854-8019

E-mail address: yzhuang@math.rutgers.edu

54


	Definitions of conformal field theory, modular functor and weakly conformal field theory
	An algebraic structure on the moduli space of Riemann surfaces with boundaries
	Definition of conformal field theory
	Definition of modular functor and the corresponding colored PROP
	Definition of weakly conformal field theory

	The precise formulation and proof of the associativity of intertwining operators
	The formulation of the theorem
	Finitely generated modules over the ring of rational functions
	Differential equations of regular singular points and the convergence of the products of intertwining operators
	Tensor product modules and a characterization of intertwining operators
	The proof of the associativity of intertwining operators

	Tensor categories
	Basic concepts in category theory
	Monoidal categories and tensor categories
	Symmetries and braidings
	Rigidity
	Ribbon categories and modular tensor categories

	Vertex tensor category and braided tensor category of grading-restricted generalized V-modules
	The vertex tensor category structure
	The braided tensor category structure

	Modular invariance, Verlinde formula, and modular tensor category structure
	Modular invariance
	The Verlinde formula
	Modular tensor category structure


