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Abstract

We introduce notions of open-string vertex algebra, conformal open-
string vertex algebra and variants of these notions. These are “open-
string-theoretic,” “noncommutative” generalizations of the notions of
vertex algebra and of conformal vertex algebra. Given an open-string
vertex algebra, we show that there exists a vertex algebra, which we
call the “meromorphic center,” inside the original algebra such that
the original algebra yields a module and also an intertwining operator
for the meromorphic center. This result gives us a general method
for constructing open-string vertex algebras. Besides obvious exam-
ples obtained from associative algebras and vertex (super)algebras, we
give a nontrivial example constructed from the minimal model of cen-
tral charge c = 1

2 . We establish an equivalence between the associative
algebras in the braided tensor category of modules for a suitable ver-
tex operator algebra and the grading-restricted conformal open-string
vertex algebras containing a vertex operator algebra isomorphic to the
given vertex operator algebra. We also give a geometric and operadic
formulation of the notion of grading-restricted conformal open-string
vertex algebra, we prove two isomorphism theorems, and in particular,
we show that such an algebra gives a projective algebra over what we
call the “Swiss-cheese partial operad.”

0 Introduction

In the present paper, we introduce and study “open-string-theoretic,” “non-
commutative” generalizations of ordinary vertex algebras and vertex oper-
ator algebras, which we call “open-string vertex algebras” and “conformal
open-string vertex algebras.” This is a first step in a program to establish
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the fundamental and highly nontrivial assumptions used by physicists in the
study of boundary (or open-closed) conformal field theories as mathemati-
cal theorems and to construct such theories mathematically. See [H9] and
[HK2] for definitions of open-closed conformal field theory in the spirit of
the definition of closed conformal field theory first given by Segal [S1]–[S3]
and Kontsevich in 1987 and further rigorized by Hu and Kriz [HK1] recently.
More recently, Moore suggested in [M3] that in order to generalize a certain
formula relating a nonlinear σ model and the K-theory on its target space
to conformal field theories without obvious target space interpretation, one
should define some kind of algebraic K-theory for “open string vertex opera-
tor algebras.” We hope that the notions and results in the present paper will
provide a solid foundation for the formulation and study of such a K-theory.

Vertex (operator) algebras were introduced in mathematics by Borcherds
in [B]. They arose naturally in the vertex operator construction of representa-
tions of affine Lie algebras and in the construction and study of the “moon-
shine module” for the Monster finite simple group by Frenkel-Lepowsky-
Meurman [FLM] and Borcherds [B]. The notion of vertex (operator) algebra
corresponds essentially to the notion of what physicists call “chiral algebra”
in (two-dimensional) conformal field theory, a fundamental physical theory
studied systematically first by Belavin, Polyakov and Zamolodchikov [BPZ].
Vertex operator algebras can be viewed as “closed-string-theoretic” analogues
of both Lie algebras and commutative associative algebras, and they play im-
portant roles in a range of areas of mathematics and physics.

Recently, in addition to the continuing development of (closed) conformal
field theories, boundary conformal field theories (open-closed conformal field
theories) have attracted much attention. Boundary conformal field theory
was first developed by Cardy in [C1], [C2] and [C3] and play a fundamental
role in many problems in condensed matter physics. It has also become one of
the main tools in the study of open strings and D-branes (certain important
nonperturbative objects in string theory). Besides the obvious problem of
constructing and classifying open-closed conformal field theories, the study
of D-branes in physics and their possible applications in geometry have led
to exciting and interesting mathematical problems. If open-closed conformal
field theories associated to Calabi-Yau manifolds or other geometric objects
are constructed eventually, they will provide even more powerful tools in
geometry than the corresponding closed conformal field theories (see, for
example, the survey [D] by Douglas). The paper [M3] by Moore mentioned
above gave another example of the exciting and interesting mathematical
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problems associated to open-closed conformal field theories.
In the framework of topological field theories, boundary topological field

theories (open-closed topological field theories) have been studied in detail
by Lazaroiu [L] and by Moore and Segal [M1] [M2] [S4]. In this topological
case, an open-closed topological field theory is roughly speaking a (typically
noncommutative) Frobenius algebra and a commutative Frobenius algebra
equipped with some other data and satisfying suitable conditions. The com-
mutative Frobenius algebra is the state space for the closed string part of the
theory and the (typically noncommutative) Frobenius algebra is the state
space for the open string part of the theory.

To construct and study open-closed conformal field theories, one first has
to find the analogues in the conformal case of commutative and noncommuta-
tive associative algebras. Since the corresponding algebras in the conformal
case must be infinite-dimensional, their construction and study are much
more difficult than the topological ones. In the conformal case, one lesson we
have learned from various methods used by physicists is that the construction
and study of chiral theories are necessary and crucial steps. If chiral theories
are constructed, full theories can be constructed using unitary bilinear forms
on substructures of chiral theories called “modular functors.” In fact, it is
also the chiral theories which are more similar to topological theories than
full theories. It is clear that analogues of commutative associative algebras
in the chiral conformal case are vertex (operator) algebras. To construct
and study open-closed conformal field theories, one first has to answer the
following question: What are the analogues of noncommutative associative
algebras in the conformal case?

Assuming the existence of the structure of a modular tensor category
on the category of modules for a vertex operator algebra and the existence
of conformal blocks with monodromies compatible with the modular tensor
category, Felder, Fröhlich, Fuchs and Schweigert [FFFS] and Fuchs, Runkel
and Schweigert [FRS1] [FRS2] studied open-closed conformal field theory
using the theory of tensor categories and three-dimensional topological field
theories. They showed the existence of consistent operator product expansion
coefficients for boundary and bulk operators. In particular, special symmetric
Frobenius algebras in the modular tensor categories of modules are proposed
as analogues in the conformal case of (typically noncommutative) Frobenius
algebras in the topological case. However, since these works are based on
the fundamental assumptions mentioned above, even in the genus-zero case,
the corresponding open-string-theoretic and noncommutative analogues of
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vertex operator algebras have not been fully constructed and studied, and
even chiral open-closed conformal field theories on the disks (the simplest
parts of open-closed conformal field theories) have not been fully constructed.

The present paper is a first step in a program for establishing the funda-
mental and highly nontrivial assumptions mentioned above as mathematical
theorems, using the results on representations of vertex operator algebras and
closed conformal field theories. In particular, we solve the problem of con-
structing open-closed conformal field theories on the disks satisfying certain
differentiability and meromorphicity conditions by introducing, constructing
and studying open-string vertex algebras, conformal open-string vertex alge-
bras and some other variants. These algebras are the open-string-theoretic or
noncommutative analogues of vertex (operator) algebras we are looking for
and, as we shall discuss in future publications, D-branes can be formulated
and studied as irreducible modules for suitable open-string vertex algebras.
Given an open-string vertex algebra, we show that there exists a vertex alge-
bra, which we call the “meromorphic center,” inside the open-string vertex
algebra such that the open-string vertex algebra yields a module and also
an intertwining operator for the meromorphic center. This relation between
open-string vertex algebras and the representation theory of vertex alge-
bras gives us a general method for constructing open-string vertex algebras.
Besides obvious examples obtained from associative algebras and vertex (su-
per)algebras, we give a nontrivial one constructed from the minimal model of
central charge c = 1

2
. We establish an equivalence between grading-restricted

conformal open-string vertex algebras containing a suitable vertex operator
algebra and associative algebras in the braided tensor category of modules for
the vertex operator algebra. We also give a geometric and operadic formula-
tion of the notion of grading-restricted conformal open-string vertex algebra,
we prove two isomorphism theorems (establishing the equivalence of geomet-
ric notions and algebraic notions), and in particular, we show that such an
algebra gives a projective algebra over what we call the “Swiss-cheese partial
operad.”

Here is the organization of the present paper: In Section 1, we introduce
the notions of open-string vertex algebra, conformal open-string vertex alge-
bra and other variants. The connection between open-string vertex algebras
the representation theory of vertex (operator) algebras is given in Section 2.
Examples of (conformal) open-string vertex algebras are presented in Sec-
tion 3. In Section 4, we show that for a vertex operator algebra satisfying
certain finiteness and complete reductivity properties, associative algebras in
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the braided tensor category of modules for the vertex operator algebra are
equivalent to grading-restricted conformal open-string vertex algebras con-
taining the vertex operator algebra in their meromorphic centers. The geo-
metric and operadic formulation of the notion of grading-restricted conformal
open-string vertex algebra, the construction of projective algebras over the
Swiss-cheese partial operad and the proof of the corresponding isomorphism
theorems are given in Section 5.

We shall use C, H, H, Ĥ , R, R×, R+, Z, Z+ and N to denote the sets
(with structures) of the complex numbers, the open upper half plane, the
closed upper half plane, the one point compactification of the closed upper
half plane, the nonzero real numbers, the positive real numbers, the integers,
the positive integers and the nonnegative integers, respectively. For any
z ∈ C× and n ∈ C, we shall always use log z and zn to denote log |z|+ arg z,
0 ≤ arg z < 2π, and en log z, respectively.

Acknowledgment We would like to thank Jürgen Fuchs and Christoph
Schweigert for helpful discussions and comments. We are also grateful to
Jim Lepowsky for comments. The research of Y.-Z. H. is supported in part
by NSF grant DMS-0070800.

1 Definitions and basic properties

We introduce the notion of open-string vertex algebra and its variants and
discuss some basic properties of these algebras in this section. We assume
that the reader is familiar with the basic notions and properties in the theory
of vertex operator algebras as presented in [FLM] and [FHL].

In the present paper, all vector spaces are over the field C. For a vector
space V , we shall use V − to denote its complex conjugate space, which is
characterized by the fact that if

√
−1 acts as J on the underlying real vector

space of V , then
√
−1 acts as −J on the underlying real vector space of V −.

For an R-graded vector space V =
∐

n∈R V(n) and any n ∈ R, we shall use

Pn to denote the projection from V or V =
∏

n∈R V(n) to V(n). We give V
and its graded dual V ′ =

∐
n∈R V

∗
(n) the topology induced from the pairing

between V and V ′. We also give Hom(V, V ) the topology induced from the
linear functionals on Hom(V, V ) given by f 7→ 〈v′, f(v)〉 for f ∈ Hom(V, V ),
v ∈ V and v′ ∈ V ′.
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Definition 1.1 An open-string vertex algebra is an R-graded vector space
V =

∐
n∈R V(n) (graded by weights) equipped with a vertex map

Y O : V × R+ → Hom(V, V )

(u, r) 7→ Y O(u, r)

or equivalently,

Y O : (V ⊗ V )× R+ → V

(u⊗ v, r) 7→ Y O(u, r)v,

a vacuum 1 ∈ V and an operator D ∈ End V of weight 1, satisfying the
following conditions:

1. Vertex map weight property: For n1, n2 ∈ R, there exist a finite subset
N(n1, n2) ⊂ R such that the image of

(∐
n∈n1+Z V(n) ⊗

∐
n∈n2+Z V(n)

)
×

R+ under Y O is in
∏

n∈N(n1,n2)+Z V(n).

2. Properties for the vacuum: For any r ∈ R+, Y O(1, r) = idV (the
identity property) and limr→0 Y

O(u, r)1 exists and is equal to u (the
creation property).

3. Local-truncation property for D′: Let D′ : V ′ → V ′ be the adjoint of
D. Then for any v′ ∈ V ′, there exists a positive integer k such that
(D′)kv′ = 0.

4. Convergence properties: For v1, . . . , vn, v ∈ V and v′ ∈ V ′, the series

〈v′, Y O(v1, r1) · · ·Y O(vn, rn)v〉
=

∑
m1,...,mn−1∈R

〈v′, Y O(v1, r1)Pm1Y
O(v2, r2) · · ·Pmn−1Y

O(vn, rn)v〉

converges absolutely when r1 > · · · > rn > 0. For v1, v2, v ∈ V and
v′ ∈ V ′, the series

〈v′, Y O(Y O(v1, r0)v2, r2)v〉

converges absolutely when r2 > r0 > 0.
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5. Associativity: For v1, v2, v ∈ V and v′ ∈ V ′,

〈v′, Y O(v1, r1)Y O(v2, r2)v〉 = 〈v′, Y O(Y O(v1, r1 − r2)v2, r2)v〉

for r1, r2 ∈ R satisfying r1 > r2 > r1 − r2 > 0.

6. d-bracket property: Let d be the grading operator on V , that is, du =
mu for m ∈ R and u ∈ V(m). For u ∈ V and r ∈ R+,

[d, Y O(u, r)] = Y O(du, r) + r
d

dr
Y O(u, r). (1.1)

7. D-derivative property: We still use D to denote the natural extension of
D to Hom(V , V ). For u ∈ V , Y O(u, r) as a map from R+ to Hom(V, V )
is differentiable and

d

dr
Y O(u, r) = [D,Y O(u, r)] = Y O(Du, r). (1.2)

Homomorphisms, isomorphisms, subalgebras of open-string vertex alge-
bras are defined in the obvious way.

We shall denote the open-string vertex algebra by (V, Y O,1, D) or simply
V . For u ∈ V and r ∈ R+, we call the map Y O(u, r) : V → V the vertex
operator associated to u and r.

Remark 1.2 Note that in the definition above, the real number r in the
vertex operator Y O(u, r) is positive, not in R×. So a natural question is
whether one has natural vertex operators associated to negative real numbers
so that we have a vertex map Y O from (V ⊗ V ) × R× to V . The answer is
yes. For any u, v ∈ V and r ∈ −R+, we define

Y O(u, r)v = erDY O(v,−r)u. (1.3)

(Note that erDY O(v,−r)u is a well-defined element of V by the local-truncation
property for D′.) Note that (1.3) resembles the skew-symmetry for vertex
operator algebras. We know that the skew-symmetry is analogous to commu-
tativity for commutative associative algebras. But (1.3) does not give a skew-
symmetry property and is not an analogue of the commutativity mentioned
above. Instead, (1.3) is an analogue of the relation between the product and
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the opposite product for an associative algebra. In fact, for an associative
algebra V , we can define an opposite product

(uv)op = vu (1.4)

for u, v ∈ V . We can also define an open-string vertex algebra in terms of
a vertex map of the form V ⊗ V × R× → V and then (1.3) becomes an
axiom. In applications, it is convenient to have vertex operators associated
to negative numbers. For example, since

〈v′, Y O(Y O(v1, r0)v2, r2)v〉 =
∑
m∈R
〈v′, Y O(PmY

O(v1, r0)v2, r2)v〉

=
∑
m∈R
〈er2D′v′, Y O(v,−r2)PmY

O(v1, r0)v2〉,

the left-hand side (a matrix elements of an iterate of vertex operators) is
absolutely convergent when r2 > r0 > 0 if and only if the right-hand side
(a matrix element of a product of vertex operators) is. (Note that by the
local-truncation property for D′, er2D

′
v′ ∈ V ′.) In fact, one can prove that

for v1, . . . , vn, v ∈ V and v′ ∈ V ′, the series

〈v′, Y O(v1, r1) · · ·Y O(vn, rn)v〉
=

∑
m1,...,mn−1∈R

〈v′, Y O(v1, r1)Pm1Y
O(v2, r2) · · ·Pmn−1Y

O(vn, rn)v〉

converges absolutely when |r1| > · · · > |rn| > 0. One can also prove the
absolute convergence of all the products and iterates of vertex operators
associated to real numbers in natural regions. For the skew-symmetry for
Y O, see Remark 1.6.

We still use d to denote the natural extension of d to an element of
Hom(V , V ).

Proposition 1.3 The d-bracket property (1.1) for all u ∈ V and r ∈ R+, is
equivalent to the d-conjugation property

adY O(u, r)a−d = Y O(adu, ar) (1.5)

for all u ∈ V , r ∈ R+ and a ∈ R+. We also have 1 ∈ V(0) and D1 = 0.
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Proof. If (1.5) holds for all u ∈ V , r ∈ R+ and a ∈ R+, then

esdY O(u, r)e−sd = Y O(esdu, esr) (1.6)

for all u ∈ V , r ∈ R+ and s ∈ R. Taking the derivative with respect to s of
both sides of (1.6) and then letting s = 0, we obtain (1.1).

Conversely, assume that (1.1) holds for all u ∈ V and r ∈ R+. Let
u, v ∈ V and v′ ∈ V ′ be homogeneous. We have

〈v′, [d, Y O(u, r)]v〉 = 〈d′v′, , Y O(u, r)v〉 − 〈v′, , Y O(u, r)dv〉
= (wt v′ − wt v)〈w, Y O(u, r)v〉, (1.7)

where d′ is the adjoint of d. On the other hand,〈
v′,

(
Y O(du, r) + r

d

dr
Y O(u, r)

)
v

〉
=

(
wt u+ r

d

dr

)
〈v′, Y O(u, r)v〉.

(1.8)
By (1.1), (1.7) and (1.8), we see that f(r) = 〈v′, Y O(u, r)v〉 satisfies the
differential equation

r
df(r)

dr
= (wt v′ − wt u− wt v)f(r)

Any solution of this equation is of the form Crwt w−wt u−wt v for some C ∈ C.
In particular, 〈v′, Y O(u, r)v〉 is of this form. Therefore,

〈v′, adY O(u, r)a−dv〉 = 〈adv′, Y O(u, r)a−dv〉
= awt v′−wt v〈v′, Y O(u, r)v〉
= Cawt v′−wt vrwt w−wt u−wt v

= Cawt u(ar)wt w−wt u−wt v

= 〈v′, Y O(adu, ar)v〉.

Since such u, v span V and such v′ spans V ′, we obtain (1.5).
The identity property, the creation property and (1.1) imply d1 = 0

which means 1 ∈ V(0). The identity property and the D-derivative property
imply D1 = 0.

The d-conjugation property also has the following very important conse-
quence:
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Proposition 1.4 For u ∈ V , there exist u+
n ∈ End V of weights wt u−n−1

for n ∈ R such that for r ∈ R+,

Y O(u, r) =
∑
n∈R

u+
n r
−n−1. (1.9)

Proof. For homogeneous u ∈ V and n ∈ R, let u+
n ∈ End V be defined by

u+
n v = Pwt u−n−1+wt vY

O(u, 1)v

for homogeneous v ∈ V . Then by the d-conjugation property, for any homo-
geneous u, v ∈ V ,

Y O(u, r)v = rdY O(r−du, 1)r−dv

= r−wt u−wt vrd
∑
n∈R

Pwt u−n−1+wt vY
O(u, 1)v

=
∑
n∈R

Pwt u−n−1+wt vY
O(u, 1)vr−n−1

=
∑
n∈R

u+
n vr

−n−1.

Remark 1.5 In the proposition above, (1.9) holds only for r ∈ R+. In fact,
there are also u−n ∈ End V of weights wt u − n − 1 for n ∈ R such that for
r ∈ −R+,

Y O(u, r) =
∑
n∈R

u−n r
−n−1.

But in general u−n 6= u+
n . In this paper, we shall not use u−n , n ∈ R.

From Proposition 1.4, we see that for any u ∈ V , there is a formal-variable
vertex operator

Yf (u, x) =
∑
n∈R

u+
nx
−n−1 ∈ (End V )[[x, x−1]]

where x is a formal variable. We shall also use the notation Yf (u, z) to denote
the vertex operator associated to u ∈ V and a nonzero complex number z,
that is,

Yf (u, z) =
∑
n∈R

u+
n z
−n−1.
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(Note that by our convention, for z ∈ C×, z−n−1 = e(−n−1) log z for n ∈ R,
where log z = log |z| + i arg z, 0 ≤ arg z < 2π.) Thus for u ∈ V , Y O(u, r) =
Yf (u, r) for r ∈ R+ but in general Y O(u, r) 6= Yf (u, r) for r ∈ −R+.

Remark 1.6 As we have discussed in Remark 1.2, (1.3) has nothing to do
with skew-symmetry. In fact, if Yf satisfies

Yf (u, x)v = exL(−1)Yf (v, y)u
∣∣∣
yn=enπixn, n∈R

for u, v ∈ V , then we say that Y O has skew-symmetry. (For simplicity,
in the remaining part of this paper, we shall use Yf (v,−x)u to denote
Yf (v, y)u|yn=enπixn, n∈R.) Note that skew-symmetry for Y O gives a relation
between Y O(u, r)v and its analytic extension to the negative real line for
u, v ∈ V and r ∈ R+ while (1.3) gives a relation between Y O(u, r)v and
Y O(v,−r)u for u, v ∈ V and r ∈ R+. Clearly, these two relations are in
general different.

Proposition 1.7 The d-bracket and D-derivative properties hold for Yf ,
that is, (1.1) and (1.2) hold when Y O is replaced by Yf and r is replaced
by the formal variable x. We also have the following d- and D-conjugation
properties: For u ∈ V and y another formal variable,

ydYf (u, x)y−d = Yf (ydu, yx),

and
Yf (u, x+ y) = eyDYf (u, x)e−yD = Yf (eyDu, x). (1.10)

In particular, these conjugation formulas also hold when we substitute suitable
complex numbers for x and y such that both sides of these formulas make
sense as (or converges to) maps from V to V .

Proof. The d-bracket formula and D-derivative property follow from the
definition of the formal-variable vertex operators and the corresponding prop-
erties for the defining vertex map. The d-conjugation property for the formal
vertex operator follows immediately from (1.5). The D-conjugation property
follows from the D-derivative property.

We have the following easy consequence of Proposition 1.7:
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Corollary 1.8 For any u ∈ V ,

Yf (u, x)1 = exDu. (1.11)

Proof. By the creation property, we see that for any r ∈ R+ and any u ∈ V ,

Y O(u, r)1 =
∑

n∈(−R+−1)∪{−1}

u+
n1r−n−1

and u+
−11 = u. But by the D-derivative property,

lim
r→0

dk

drk
Y O(u, r)1 = lim

r→0
Y O(Dku, r)1

= Dku

for k ∈ N. Thus we see that

Y O(u, r)1 =
∑

n∈−Z+

u+
n1r−n−1.

So Yf (u, x)1 is a power series in x and limx→0 Yf (u, x)1 = u. By these
properties, D1 = 0 and the D-conjugation property for Yf , we obtain

Yf (u, y)1 = lim
x→0
Yf (u, x+ y)1

= lim
x→0

eyDYf (u, x)e−yD1

= lim
x→0

eyDYf (u, x)1

= eyDu,

proving (1.11).

Proposition 1.9 The formal vertex operator map Yf has the following prop-
erties:

1. Convergence: The series

〈v′,Yf (v1, z1)Yf (v2, z2)v〉, (1.12)

〈v′,Yf (v2, z2)Yf (v1, z1)v〉, (1.13)

〈v′,Yf (Yf (v1, z1 − z2)v2, z2)v〉, (1.14)

〈v′,Yf (Yf (v2, z2 − z1)v1, z1)v〉 (1.15)

are absolutely convergent in the regions |z1| > |z2| > 0, |z2| > |z1| > 0,
|z2| > |z1 − z2| > 0, |z1| > |z1 − z2| > 0, respectively.
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2. Associativity: For v1, v2, v ∈ V and v′ ∈ V ′, (1.12) and (1.14) are equal
in the region |z1| > |z2| > |z1−z2| > 0, and (1.13) and (1.15) are equal
in the region |z2| > |z1| > |z1 − z2| > 0.

Proof. By definition, (1.12), (1.13), (1.14) and (1.15) converge absolutely
when z1, z2 ∈ R+ satisfying z1 > z2 > 0, z2 > z1 > 0, z2 > z1 − z2 > 0 and
z1 > z1 − z2 > 0, respectively. Consequently, (1.12),(1.13), (1.14) and (1.15)
converge absolutely for z1, z2 ∈ C satisfying |z1| > |z2| > 0, |z2| > |z1| > 0,
|z2| > |z1 − z2| > 0 |z1| > |z1 − z2| > 0, respectively. The convergence is
proved.

In particular, (1.12) and (1.14) give (possibly multivalued) analytic func-
tions defined on the regions |z1| > |z2| > 0 and |z2| > |z1 − z2| > 0, respec-
tively. By associativity for Y O, (1.12) and (1.14) are equal for z1, z2 ∈ R+

satisfying z1 > z2 > z1−z2 > 0. By the basic properties of analytic functions,
(1.12) and (1.14) are equal for z1, z2 ∈ C satisfying |z1| > |z2| > |z1− z2| > 0
(the intersection of the regions |z1| > |z2| > 0 and |z2| > |z1 − z2| > 0 on
which the analytic functions (1.12) and (1.14) are defined). The second part
of the associativity for Yf can be obtained from the first part by substituting
v2, v1, z2 and z1 for v1, v2, z1 and z2.

Definition 1.10 A grading-restricted open-string vertex algebra is an open-
string vertex algebra satisfying the following conditions:

8. The grading-restriction conditions: For all n ∈ R, dimV(n) < ∞ (the
finite-dimensionality of homogeneous subspaces) and V(n) = 0 when n
is sufficiently negative (the lower-truncation condition for grading).

A conformal open-string vertex algebra is an open-string vertex algebra
equipped with a conformal element ω ∈ V satisfying the following conditions:

9. The Virasoro relations: For any m,n ∈ Z,

[L(m), L(n)] = (m− n)L(m+ n)− c

12
(m3 −m)δm+n,0,

where L(n), n ∈ Z are given by

Y O(ω, r) =
∑
n∈Z

L(n)r−n−2

and c ∈ C.
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10. The commutator formula for Virasoro operators and formal vertex op-
erators (or component operators): For v ∈ V , Yf (ω, x)v involves only
finitely many negative powers of x and

[Yf (ω, x1),Yf (v, x2)] = Res0x
−1
2 δ

(
x1 − x0

x2

)
Yf (Yf (ω, x0)v, x2).

11. The L(0)-grading property and L(−1)-derivative property: L(0) = d
and L(−1) = D.

A grading-restricted conformal open-string vertex algebra or open-string
vertex operator algebra is a conformal open-string vertex algebra satisfying
the grading-restriction condition.

We shall denote the conformal open-string vertex algebra defined above
by (V, Y O,1, ω) or simply V . The complex number c in the definition is
called the central charge of the algebra. Note that the grading-restriction
conditions imply the local-truncation property for D′.

Proposition 1.11 Let V be a grading-restricted open-string vertex algebra.
Then for u, v ∈ V , u+

n v = 0 if n is sufficiently negative.

Proof. This follows immediately from the lower-truncation condition for
grading and the fact that the weights of u+

n for n ∈ R is wt u − n − 1.

2 Intertwining operators and open-string ver-

tex algebras

In this section, we establish a connection between open-string vertex algebras
and intertwining operator algebras. We assume that the reader is familiar
with the basic notions and properties in the representation theory of vertex
operator algebras and we also assume that the reader is familiar with the
notion of intertwining operator algebra. See [FHL], [H7] and [H8] for details.

Let V be an open-string vertex algebra and S a subset of V . Then the
open-string vertex subalgebra of V generated by S is the smallest open-string
vertex subalgebra of V containing S.

14



Proposition 2.1 Let V be a conformal open-string vertex algebra and 〈ω〉
the open-string vertex subalgebra of V generated by ω. Then 〈ω〉 is in fact a
vertex operator algebra. In particular, V is a module for the vertex operator
algebra 〈ω〉.

Proof. All the axioms for a vertex operator algebra are satisfied by 〈ω〉 obvi-
ously except for the commutativity or equivalently the commutator formula.
But the Virasoro relations imply the commutator formula for the vertex op-
erators for 〈ω〉.

More generally, we have the following generalization: Let V be an open-
string vertex algebra and let

C0(V ) =

{
u ∈

∐
n∈Z

V(n)

∣∣∣ Yf (u, x) ∈ (End V )[[x, x−1]],

Yf (v, x)u = exDYf (u,−x)v, ∀v ∈ V
}
.

In particular, for elements of C0(V ), skew-symmetry holds. Clearly C0(V ) is
not zero since by (1.11), 1 ∈ C0(V ).

For an open-string vertex algebra V , the formal vertex operator map Yf
for V induces a map from C0(V )⊗C0(V ) to V [[x, x−1]]. We denote this map
by Yf |C0(V ). We first need:

Proposition 2.2 Let v1 ∈ C0(V ), v2, v ∈ V and v′ ∈ V ′. Then there exists
a (possibly multivalued) analytic function on

M2 = {(z1, z2) ∈ C2 | z1, z2 6= 0, z1 6= z2}

such that it is single valued in z1 and is equal to the (possibly multivalued)
analytic extensions of (1.12), (1.13), (1.14) and (1.15) in the regions |z1| >
|z2| > 0, |z2| > |z1| > 0, |z2| > |z1 − z2| > 0 and |z1| > |z1 − z2| > 0,
respectively. Moreover, if v2 is in C0(V ), then this analytic function is single
valued in both z1 and z2. If V satisfies the grading-restriction condition,
then this analytic function is a rational function with the only possible poles
z1, z2 = 0 and z1 = z2.

Proof. By Proposition 1.9, (1.12), (1.13) and (1.14) are absolutely conver-
gent in the regions |z1| > |z2| > 0, |z2| > |z1| > 0, |z2| > |z1 − z2| > 0,
respectively, and the associativity for Yf holds.
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Since v1 ∈ C0(V ), by definition, Yf (v1, x)v2 ∈ V [[x, x−1]] and we have the
skew-symmetry

Yf (v1, x)v2 = exDYf (v2,−x)v1,

Yf (v2, x)v1 = exDYf (v1,−x)v2.

In [H7] it was proved that commutativity for intertwining operators fol-
lows from associativity and skew-symmetry for intertwining operators. For
reader’s convenience, here we give a proof of commutativity in the special
case in which we are interested.

By associativity, (1.12) and (1.14) are equal in the region |z1| > |z2| >
|z1 − z2| > 0. By associativity also, (1.13) and (1.15) converge absolutely to
analytic functions defined on the regions |z2| > |z1| > 0 and |z1| > |z1−z2| >
0, respectively, and are equal in the region |z2| > |z1| > |z1 − z2| > 0.
By skew-symmetry and the D-derivative property, for z1, z2 ∈ C satisfying
|z1| > |z1 − z2| > 0 and |z2| > |z1 − z2| > 0, we have

〈v′,Yf (Yf (v1, z1 − z2)v2, z2)v〉
= 〈v′,Yf (e(z1−z2)DYf (v2,−(z1 − z2))v1, z2)v〉
= 〈v′,Yf (Yf (v2, z2 − z1)v1, z2 + (z1 − z2))v〉
= 〈v′,Yf (Yf (v2, z2 − z1)v1, z1)v〉,

that is, in the region given by |z1| > |z1 − z2| > 0 and |z2| > |z1 − z2| > 0,
(1.14) and (1.15) are equal. Since (1.12) is equal to (1.14) in the region
|z1| > |z2| > |z1 − z2| > 0, (1.14) is equal to (1.15) in the region given by
|z1| > |z1 − z2| > 0 and |z2| > |z1 − z2| > 0, and (1.15) is equal to (1.13)
in the region |z2| > |z1| > |z1 − z2| > 0, we see that (1.12) and (1.13) are
analytic extensions of each other. So commutativity is proved.

Now we prove the existence of the function stated in the proposition. By
skew-symmetry, we have

Yf (v, z)1 = ezDYf (1,−z)v = ezDv

for any v ∈ C0(V ). Thus by definition, for v1 ∈ C0(V ), v2, v ∈ V and
v′ ∈ (C0(V ))′,

〈v′,Yf (v1, z1)Yf (v2, z2)ez3Dv〉 = 〈v′,Yf (v1, z1)Yf (v2, z2)Yf (v, z3)1〉

converges absolutely for z1, z2, z3 ∈ R× satisfying |z1| > |z2| > |z3| > 0.
Consequently it also converges absolutely for z1, z2, z3 ∈ C satisfying |z1| >
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|z2| > |z3| > 0. Now the same proof as the one for Lemma 4.1 in [H7]
shows that there exists a (possibly multivalued) analytic functions on M2

such that it is equal to (possibly multivalued) analytic extensions of (1.12),
(1.13), (1.14) and (1.15) in the regions |z1| > |z2| > 0, |z2| > |z1| > 0,
|z2| > |z1 − z2| > 0 and |z1| > |z1 − z2| > 0, respectively. Since (1.12),
(1.13) and (1.14) give analytic functions which are all single valued in z1,
this function as the analytic extension of these functions must also be single
valued in z1.

If v2 is in C0(V ), then by definition, Yf (v2, x)v ∈ V [[x, x−1]] and thus
(1.12), (1.13) and (1.15) give analytic functions which are also single valued
in z2. So their analytic extension is also single valued in both z1 and z2. If V
satisfies the grading-restriction condition, then the singularities z1, z2 = 0,∞
and z1 = z2 of this analytic extension are all poles and is therefore a rational
function in z1 and z2 with the only possible poles z1, z2 = 0 and z1 = z2.

Theorem 2.3 Let V be a grading-restricted open-string vertex algebra. Then
the image of C0(V )⊗C0(V ) under Yf |C0(V ) is in C0(V )[[x, x−1]] and the image
of C0(V ) under D is in C0(V ). Moreover,

(C0(V ),Yf |C0(V ),1, D)

is a grading-restricted vertex algebra, V is a C0(V )-module and Yf is an
intertwining operator of type

(
V
V V

)
for the vertex algebra C0(V ).

Proof. Let v1, v2 be homogeneous elements of C0(V ). We would like to
show that Yf (v1, x)v2 ∈ C0(V )[[x, x−1]]. First of all, since v1 ∈ C0(V ),
Yf (v1, x)v2 ∈ V [[x, x−1]]. Since v1, v2 ∈ C0(V ), wt v1,wt v2 ∈ Z. Thus by
Proposition 1.4, Yf (v1, x)v2 ∈

(∐
n∈Z V(n)

)
[[x, x−1]]. By Proposition 2.2, the

analytic extension of (1.14) to M2 is a single-valued analytic function. In
particular, (1.14) gives a single-valued analytic function in z1 and z2. Thus

Yf (Yf (v1, x)v2, x2)v ∈ (V [[x2, x
−1
2 ]])[[x, x−1]].

For v ∈ V , v′ ∈ V ′ and z1, z2 ∈ R+ satisfying z1 > z2 > z1 − z2 > 0,

〈v′,Yf (Yf (v1, z1 − z2)v2, z2)v〉 = 〈v′,Yf (v1, z1)Yf (v2, z2)v〉
= 〈v′,Yf (v1, z1)ez2DYf (v,−z2)v2〉.

(2.1)
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The right-hand side of (2.1) is well defined when z1, z2 ∈ C and |z1| > |z2| > 0
and is equal to

〈v′, ez2DYf (v1, z1 − z2)Yf (v,−z2)v2〉
= 〈v′, ez1DYf (Yf (v,−z2)v2,−(z1 − z2))v1〉
= 〈v′, ez1DYf (v,−z1)Yf (v2,−(z1 − z2))v1〉
= 〈v′, ez1DYf (v,−z1)e−(z1−z2)DYf (v1, z1 − z2)v2〉 (2.2)

when z1, z2 ∈ R+ and z1 > z1 − z2 > z2 > 0. The right-hand side of (2.2) is
well defined when z1, z2 ∈ C and |z1| > |z1 − z2| > 0 and is equal to

〈v′, ez2DYf (v,−z2)Yf (v1, z1 − z2)v2〉 (2.3)

when z1, z2 ∈ C and |z1| > |z2| > |z1 − z2| > 0. From (2.1)–(2.3), we see
that the left-hand side of (2.1) and the right-hand side of (2.3) are analytic
extensions of each other. Since both the left-hand side of (2.1) and the right-
hand side of (2.3) are well defined single-valued analytic functions on the
region |z2| > |z1− z2| > 0, they are equal when |z2| > |z1− z2| > 0. Thus we
obtain

Yf (Yf (v1, x)v2, x2)v = ex2DYf (v,−x2)Yf (v1, x)v2

where x and x2 are two commuting formal variables. So Yf (v1, x)v2 ∈
C0(V )[[x, x−1]].

Let u be a homogeneous element of C0(V ). Then wt u ∈ Z. Since D has
weight 1, Du ∈

∐
n∈Z V(n). By the D-derivative property, we see that

Yf (Du, x) =
d

dx
Yf (u, x) ∈ (End V )[[x, x−1]].

For any v ∈ V , using the D-derivative property and the D-bracket formula,
we obtain

Yf (Du, x)v =
d

dx
Yf (u, x)v

=
d

dx
exDYf (v,−x)u

= exDDYf (v,−x)u− exDYf (Dv,−x)u

= exDYf (v,−x)Du.

So Du ∈ C0(V ).
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To show that C0(V ) is a vertex algebra, we need only verify commu-
tativity, associativity and rationality since all the other axioms are clearly
satisfied. But associativity, commutativity and rationality have been proved
in Proposition 2.2. The proof of the fact that V is a C0(V )-module and Yf
is an intertwining operator of type

(
V
V V

)
for C0(V ) is completely the same.

Proposition 2.4 Let V be a conformal open-string vertex algebra. Then
ω ∈ C0(V ).

Proof. By definition, ω ∈
∐

n∈Z V(n) and Yf (ω, x) ∈ (End V )[[x, x−1]]. For
any v ∈ V , the commutator formula for ω and formal vertex operators implies
the commutativity for Yf (ω, z1) and Yf (v, z2). In particular, for any v′ ∈ V ′,

〈v′,Yf (ω, z1)Yf (v, z2)1〉 (2.4)

and
〈v′,Yf (v, z2)Yf (ω, z1)1〉 (2.5)

are absolutely convergent in the regions |z1| > |z2| > 0 and |z2| > |z1| > 0,
respectively, and are analytic extensions of each other. Also by associativity
we know that

〈v′,Yf (Yf (ω, z1 − z2)v, z2)1〉 (2.6)

and
〈v′,Yf (Yf (v, z2 − z1)ω, z1)1〉 (2.7)

are absolutely convergent in the region |z2| > |z1 − z2| > 0 and |z1| >
|z1 − z2| > 0, respectively, and are equal to (2.4) and (2.5), respectively,
in the region |z1| > |z2| > |z1 − z2| > 0 and |z2| > |z1| > |z1 − z2| > 0,
respectively. Thus (2.6) and (2.7) are also analytic extensions of each other.
Note that by (1.10),

〈v′,Yf (e(z1−z2)L(−1)Yf (v, z2 − z1)ω, z2)1〉
= 〈e(z1−z2)L′(−1)v′,Yf (Yf (v, z2 − z1)ω, z2)1〉 (2.8)

is absolutely convergent in the region |z2| > |z1−z2| > 0 and is equal to (2.7)
in the region |z1|, |z2| > |z1− z2| > 0. So (2.6) and the left-hand side of (2.8)
are analytic extensions of each other.

We know that both (2.6) and the left-hand side of (2.8) are convergent
absolutely in the region |z2| > |z1 − z2| > 0 and, moreover, we know that
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(2.4), (2.5), (2.6) and (2.7) give single-valued analytic functions in z1 and z2.
Thus in the region |z2| > |z1 − z2| > 0, (2.6) and the left-hand side of (2.8)
are equal, that is,

〈v′,Yf (Yf (ω, z1 − z2)v, z2)1〉 = 〈v′,Yf (e(z1−z2)L(−1)Yf (v, z2 − z1)ω, z2)1〉.
(2.9)

By taking coefficients of z1− z2 and z2 in both sides of (2.9) and then taking
the generating functions of these coefficients, we obtain

〈v′,Yf (Yf (ω, x)v, y)1〉 = 〈v′,Yf (exL(−1)Yf (v,−x)ω, y)1〉, (2.10)

where x and y are commuting formal variables. Since v′ ∈ V ′ is arbitrary,
(2.10) gives

Yf (Yf (ω, x)v, y)1 = Yf (exL(−1)Yf (v,−x)ω, y)1. (2.11)

Taking the formal limit y → 0 (that is, taking the constant term of of series
in y) of both sides of (2.11), we obtain

Yf (ω, x)v = exL(−1)Yf (v,−x)ω.

So we conclude that ω ∈ C0(V ).

One immediate consequence of this result is the following:

Corollary 2.5 Let V be a grading-restricted conformal open-string vertex
algebra. Then the vertex operator algebra 〈ω〉 is a subalgebra of C0(V ).

Recall the following main theorem in [H8]:

Theorem 2.6 Let V be a vertex operator algebra satisfying the following
conditions:

1. Every generalized V -module is a direct sum of irreducible V -modules.

2. There are only finitely many inequivalent irreducible V -modules and
these irreducible V -modules are all R-graded.

3. Every irreducible V -module satisfies the C1-cofiniteness condition.
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Then the direct sum of all (inequivalent) irreducible V -modules has a natural
structure of an intertwining operator algebra. In particular, the following
associativity for intertwining operators holds: For any V -modules W0, W1,
W2, W3 and W4, any intertwining operators Y1 and Y2 of types

(
W0

W1W4

)
and(

W4

W2W3

)
, respectively,

〈w′(0),Y1(w(1), z1)Y2(w(2), z2)w(3)〉 (2.12)

is absolutely convergent when |z1| > |z2| > 0 for w′(0) ∈ W ′
0, w(1) ∈ W1,

w(2) ∈ W2 and w(3) ∈ W3, and there exist V -module W5 and intertwining

operators Y3 and Y4 of types
(

W5

W1W2

)
and

(
W0

W5W3

)
, respectively, such that

〈w′(0),Y4(Y3(w(1), z1 − z2)w(2), z2)w(3)〉

is absolutely convergent when |z2| > |z1 − z2| > 0 for w′(0) ∈ W ′
0, w(1) ∈ W1,

w(2) ∈W2 and w(3) ∈ W3 and is equal to (2.12) when |z1| > |z2| > |z1− z2| >
0.

Theorems 2.3 and 2.6 suggest a method to construct conformal open-
string vertex algebra: We start with a vertex operator algebra (V, Y,1, ω)
satisfying the conditions in Theorem 2.6 and look for a module W and an
intertwining operator Yf of type

(
W
WW

)
such that if we define

Y O : (W ⊗W )× R+ → W

(w1 ⊗ w2, r) 7→ Y O(w1, r)w2

by
Y O(w1, r)w2 = Yf (w1, r)w2 (2.13)

for r ∈ R+, then (W,Y O,1, ω) is a conformal open-string vertex algebra.
We give more details here. Let (V, Y,1, ω) be a vertex operator algebra

satisfying the conditions in Theorem 2.6. For simplicity, we assume that V
is simple. Let A be the set of equivalence classes of irreducible V -modules
and, for a ∈ A, let W a be a representative in a. Then by Theorem 2.6,∐

a∈AW
a has a natural structure of an intertwining operator algebra. Let

W =
∐

a∈AE
a⊗W a where Ea for a ∈ A are vector spaces to be determined.

We give W the obvious V = C⊗ V -module structure. We also let

Yf ∈ Hom(W ⊗W,W{x})
=

∐
a1,a2,a3∈A

Hom(Ea1 ⊗ Ea2 , Ea3)⊗ Hom(W a1 ⊗W a2 ,W a3{x})
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be given by

Yf =
∑

a1,a2,a3∈A

Na3
a1a2∑
i=1

Ca3;i
a1a2
⊗ Ya3;i

a1a2

where for a1, a2, a3 ∈ A, N a3
a1a2

is the fusion rule of type
(

Wa3

Wa1Wa2

)
, Ca3;i

a1a2
∈

Hom(Ea1⊗Ea2 , Ea3) for i = 1, . . . ,N a3
a1a2

are to be determined, and Ya3;i
a1a2

for
i = 1, . . . ,N a3

a1a2
is a basis of the space Va3

a1a2
of intertwining operators of type(

Wa3

Wa1Wa2

)
.

Let e be the equivalence class of irreducible V -modules containing V .
Note that N a

ea for a ∈ A are always one-dimensional. We choose the basis
Ya;1
ea for a ∈ A to be the vertex operator for the V -module W a. In particular,
Ya;1
ea (1, x)wa = wa for a ∈ A and wa ∈ W a. We also choose the basis Ya;1

ae for
a ∈ A to be the ones given by

Ya;1
ae (wa, x)u = exL(−1)Ya;1

ea (u,−x)w

for u ∈ V and wa ∈ W a. Thus we have limx→0 Ya;1
ae (wa, x)1 = wa for a ∈ A

and wa ∈W a.
We would like to choose Ea for a ∈ A and Ca3;i

a1a2
for a1, a2, a3 ∈ A and

i = 1, . . . ,N a3
a1a2

such that the map Y O given by (2.13) in terms of Yf satisfies
the associativity

Y O(w1, r1)Y O(w2, r2)w3 = Y O(Y O(w1, r1 − r2)w2, r2)w3 (2.14)

for r1, r2 ∈ R+ satisfying r1 > r2 > r1 − r2 > 0 and w1 ∈ W1, w2 ∈ W2,
w3 ∈ W3. Note that both sides of (2.14) are well-defined since

∐
a∈AW

a is
an intertwining operator algebra. The left-hand side of (2.14) gives∑

a1, a2, a3

a4, a; i, j

(Ca4;i
a1a
◦ (idEa1 ⊗ Ca;j

a2a3
))⊗ Ya4;i

a1a
(w1, r1)Ya;j

a2a3
(w2, r2)w3

=
∑

a1, a2, a3

a4, a; i, j

(Ca4;i
a1a
◦ (idEa1 ⊗ Ca;j

a2a3
))

⊗
∑
a5;k,l

F ij;kla;a5
(a1, a2, a3; a4)Ya4;l

a5a3
(Ya5;k

a1a2
(w1, r1 − r2)w2, r2)w3

where for any a ∈ A, idEa is the identity on Ea and F ij;kla;a5
(a1, a2, a3; a4),

for a, a1, . . . , a5 ∈ A, i = 1, . . . ,N a4
a1a

, j = 1, . . . ,N a
a2a3

, k = 1, . . . ,N a5
a1a2
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and l = 1, . . . ,N a4
a5a3

, are the matrix elements of the corresponding fusing
isomorphisms. (In the formulas above and below, for simplicity, we omit the
ranges over which the sums are taken, since these are clear and some of them
have been given above.) The right-hand side of (2.14) gives∑

a1, a2, a3

a4, a5; k, l

(Ca4;l
a5a3
◦ (Ca5;k

a1a2
⊗ idEa3 ))⊗ Ya4;l

a5a3
(Ya5;k

a1a2
(w1, r1 − r2)w2, r2)w3.

It is clear that in this case Ya4;l
a5a3

(Ya;k
a1a2

(·, r1−r2)·, r2) · for a1, a2, a3, a4, a5 ∈ A
are linearly independent. Thus (2.14) gives∑
a;i,j

F ij;kla;a5
(a1, a2, a3; a4)(Ca4;i

a1a
◦(idEa1⊗Ca;j

a2a3
)) = Ca4;l

a5a3
◦(Ca5;k

a1a2
⊗idEa3 ) (2.15)

for a1, a2, a3, a4, a5 ∈ A, k = 1, . . . ,N a5
a1a2

and l = 1, . . . ,N a4
a5a3

.
We need a vacuum for W . Let 1e ∈ Ee. If we want the vacuum to be

of the form 1W = 1e ⊗ 1, then we must have the following identity property
and creation property:

Y O(1W , r)(α
a ⊗ wa) = αa ⊗ wa, (2.16)

lim
r→0

Y O((αa ⊗ wa), r)1W = αa ⊗ wa (2.17)

for a ∈ A, αa ∈ Ea and wa ∈ W a. The equations (2.16) and (2.17) together
with the properties of intertwining operators for V gives

Ca;1
ea (1e ⊗ αa) = αa, (2.18)

Ca;1
ae (αa ⊗ 1e) = αa (2.19)

for a ∈ A and αa ∈ Ea.
Let 1W = 1e⊗1 and ωW = 1e⊗ω. Then we have just proved the following:

Proposition 2.7 Let V be a simple vertex operator algebra satisfying the
conditions in Theorem 2.6 and let A, e and W a for a ∈ A be as above. If
we choose the vector spaces Ea for a ∈ A, Ca3;i

a1a2
∈ Hom(Ea1 ⊗ Ea2 , Ea3)

for a1, a2, a3 ∈ A, i = 1, . . . ,N a3
a1a2

, and 1e ∈ Ee such that (2.15), (2.18)
and (2.19) hold, then the quadruple (W,Y O,1W , ωW ) is a grading-restricted
conformal open-string vertex algebra.
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3 Examples

In this section, we give some examples of open-string vertex algebras. Ex-
amples can also be constructed using the main results in Sections 4 and 5.

First of all, we have the following examples for which the axioms are
trivial to verify:

1. Associative algebras.

2. Vertex (super)algebras.

3. Tensor products of algebras above, for example, A ⊗ V where A is an
associative algebra and V a vertex (super)algebra.

The examples above are trivial to construct because they satisfy some
much stronger axioms than those in the definition of open-string vertex alge-
bra. Nontrivial examples of open-string vertex algebras can be constructed
from the direct sum of a vertex algebra and an R-graded module for the ver-
tex algebra in the same ways as in the construction of the example of vertex
operator algebras in Example 3.4 in [H3] and as in the conceptual construc-
tion of the vertex operator algebra structure on the moonshine module in
[H5], except that here the module does not have to be Z-graded. Note that
in the construction of the vertex operator algebra structure on the moonshine
module in [H5], the hard part is to prove the duality properties, which follow
from the duality properties of a larger intertwining operator algebra. If we
start with a vertex operator algebra satisfying the conditions in Theorem 2.6,
then the construction becomes very easy because the duality properties have
been established by Theorem 2.6.

We now give an example constructed using a different method. It is an
example constructed from modules for the minimal Virasoro vertex operator
algebra of central charge c = 1

2
. This example is nontrivial because it is not

an associative algebra, a vertex (super)algebra or a tensor product of these
algebras. Here we describe the data. For the details, we refer the reader
to the second author’s thesis [K]. For the minimal Virasoro vertex operator
algebras, their representations, intertwining operators and chiral correlation
functions, see, for example, [DF], [BPZ], [W], [H4], [FRW] and [DMS].

Let L(1
2
, 0) be the minimal Virasoro vertex operator algebra of central

charge 1
2
. It has three inequivalent irreducible modules W0 = L(1

2
, 0), W1 =
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L(1
2
, 1

2
) andW2 = L(1

2
, 1

16
). It is well known that the fusion rulesN k

ij = NWk
WiWj

for i, j, k = 0, 1, 2 are equal to 1 for

(i, j, k) = (0, 0, 0), (0, 1, 1), (1, 0, 1), (1, 1, 0), (0, 2, 2),

(2, 0, 2), (2, 2, 0), (1, 2, 2), (2, 1, 2), (2, 2, 1)

and are equal to 0 otherwise. It was proved in [H4] that the direct sum of W0,
W1 and W3 has a structure of intertwining operator algebra. When N k

ij = 1,
we choose a basis Ykij of Vkij. Given i, j, k, l ∈ {0, 1, 2}, m ∈ {0, 1, 2} is said to
be coupled with n ∈ {0, 1, 2} through (i, j, k; l) if V lim, Vmjk, Vnij and V lnk are all

nonzero. We use the notation m 1l
i,j,k n to denote the fact that m is coupled

with n through (i, j, k; l).
For i, j, k, l ∈ {0, 1, 2}, the matrix elements Fm;n(i, j, k; l) form,n = 0, 1, 2

of the fusing isomorphisms

F(i, j, k; l) :
2∐

m=0

V lim ⊗ Vmjk →
2∐

n=0

Vnij ⊗ V lnk

are determined by the following associativity relations (see [H7])

〈w′l,Y lim(wi, z1)Ymjk(wj, z2)wk〉
=

∑
m1li,j,kn

Fm;n(i, j, k; l)〈w′l,Y lnk(Ynij(wi, z1 − z2)wj, z2)wk〉

for i, j,m = 0, 1, 2, z1, z2 ∈ R satisfying z1 > z2 > z1 − z2 > 0 and wi ∈ Wi,
wj ∈ Wj, wk ∈ Wk, where the sum is over all k, l, n = 0, 1, 2 such that
m 1l

i,j,k n. For simplicity, we use F̃(i, j, k; l) for i, j, k, l = 0, 1, 2 to denote

matrices whose entries F̃mn(i, j, k; l) for m,n = 0, 1, 2 is the symbol DC
(meaning decoupled) if m is not coupled with n through (i, j, k; l) and is
Fm;n(i, j, k; l) if m is coupled with n through (i, j, k; l). We call these matrices
the fusing-coupling matrices. For m,n = 0, 1, 2, we use ±Emn to denote the
3× 3 matrices with the entry in the m-th row and the n-th column being ±1
and the other entries being DC.

Proposition 3.1 For i, j, k = 0, 1, 2 such that N k
ij = 1, there exist basis Ykij

of Vkij such that

F̃(0, 0, 0, 0) = F̃(1, 1, 1, 1) = E00,
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F̃(1, 1, 0, 0) = F̃(0, 0, 1, 1) = E01,

F̃(1, 0, 0, 1) = F̃(0, 1, 1, 0) = E10,

F̃(1, 0, 1, 0) = F̃(0, 1, 0, 1) = E11,

F̃(2, 2, 0, 0) = F̃(0, 0, 2, 2) = F̃(1, 1, 2, 2) = F̃(2, 2, 1, 1) = E02,

F̃(0, 2, 2, 0) = F̃(2, 0, 0, 2) = F̃(1, 2, 2, 1) = F̃(2, 1, 1, 2) = E20,

F̃(0, 1, 2, 2) = F̃(1, 0, 2, 2) = F̃(2, 2, 0, 1) = F̃(2, 2, 1, 0) = E12,

F̃(0, 2, 2, 1) = F̃(1, 2, 2, 0) = F̃(2, 0, 1, 2) = F̃(2, 1, 0, 2) = E21,

F̃(1, 2, 1, 2) = F̃(2, 1, 2, 1) = −E22,

F̃(0, 2, 0, 2) = F̃(2, 0, 2, 0) = F̃(0, 2, 1, 2) = F̃(1, 2, 0, 2)

= F̃(2, 0, 2, 1) = F̃(2, 1, 2, 0) = E22,

F̃(2, 2, 2, 2) =

 1√
2

1√
2

DC
1√
2
− 1√

2
DC

DC DC DC

 ;

all other fusing-coupling matrices have entries which are either 0 or DC.

The proposition above gives the complete information about the fusing
isomorphisms for the minimal model of central charge 1

2
. Now consider the

irreducible modules Wi ⊗ Wi for i = 0, 1, 2 for the tensor product vertex
operator algebra L(1

2
, 0)⊗ L(1

2
, 0). Let W =

∐2
i=0 Wi ⊗Wi and let

Yf : (W ⊗W )→ W{x}

be given by

Yf =
2∑

i,j,k=0

Ykij ⊗ Ykij

where we have taken Ykij = 0 for i, j, k ∈ {0, 1, 2} such that Vkij = 0 and where
Ykij ⊗ Ykij for i, j, k ∈ {0, 1, 2} act on W ⊗W in the obvious way. Let

Y O : (W ⊗W )× R+ → W

(w1 ⊗ w2, r) 7→ Y O(w1, r)w2

be given by
Y O(w1, r)w2 = Yf (w1, r)w2

for r ∈ R+ and w1, w2 ∈ W . Let 1 and ω be the vacuum and conformal
element of L(1

2
, 0). Then we have:
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Proposition 3.2 The quadruple (W,Y O,1⊗ 1, ω⊗ 1 + 1⊗ω) is a grading-
restricted conformal open-string vertex algebra with C0(W ) = W0 ⊗W0.

The proof is a straightforward verification. See [K] for details.

Remark 3.3 In the construction above, Yf and Y O involve fractional pow-
ers. So W is not a vertex operator algebra.

4 Braided tensor categories and open-string

vertex algebras

In this section, we show that an associative algebra in the braided tensor
category of modules for a suitable vertex operator algebra V is equivalent to
an open-string vertex algebra with V in its meromorphic center. The main
result of this section (Theorem 4.3) is a straightforward generalization of the
main result in [HKL]. In this section, we assume that the reader is familiar
with the tensor product theory developed by Lepowsky and the first author.
See [HL3]–[HL6] and [H3] for details.

First of all, we have the following result established in [H9]:

Theorem 4.1 Let V be a vertex operator algebra satisfying the conditions
in Theorem 2.6. Then the category of V -modules has a natural structure of
vertex tensor category with V as its unit object. In particular, this category
has a natural structure of braided tensor category.

Given a braided tensor category C, we use 1C to denote its unit object.
We need the following concept:

Definition 4.2 Let C be a braided tensor category. An associative algebra
in C (or associative C-algebra) is an object A ∈ C along with a morphism
µ : A ⊗ A → A and an injective morphism ιA : 1C → A such that the
following conditions hold:

1. Associativity: µ◦(µ⊗idA) = µ◦(idA⊗µ)◦A whereA is the associativity
isomorphism from A⊗ (A⊗ A) to (A⊗ A)⊗ A.

2. Unit properties: µ ◦ (ιA ⊗ idA) ◦ l−1
A = µ ◦ (ιA ⊗ idA) ◦ r−1

A = idA where
lA : 1C ⊗ A → A and rA : A ⊗ 1C → A are the left and right unit
isomorphism, respectively.
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We say that the unit of an associative algebra A in C is unique if

dim HomC(1C, A) = 1.

We use (A, µ, ιA) or simply A to denote the associative algebra in C just
defined.

Let V be a vertex operator algebra satisfying the conditions in Theorem
2.6. Then we know that the direct sum of all irreducible V -modules is an
intertwining operator algebra. We say that this intertwining operator algebra
satisfies the positive weight condition if for any irreducible V -module W , the
weights of nonzero elements of W are nonnegative, W(0) 6= 0 if and only if
W is isomorphic to V , and V(0) = C1. We say that an open-string vertex
algebra V satisfy the positive weight condition if the weights of elements of
V are nonnegative and V(0) = C1.

Theorem 4.3 Let (V, Y,1, ω) be a vertex operator algebra satisfying the con-
ditions in Theorem 2.6 and let C be the braided tensor category of V -modules.
Then the categories of the following objects are isomorphic:

1. A grading-restricted conformal open-string vertex algebra Ve and an in-
jective homomorphism of vertex operator algebras from V to the mero-
morphic center C0(Ve) of Ve.

2. An associative algebra Ve in C.

If the intertwining operator algebra on the direct sum of all irreducible V -
modules satisfies the positive weight condition, then an algebra Ve in Category
1 above satisfy the positive weight condition if and only if the unit of the
corresponding associative algebra Ve in C is unique.

Proof. Let Ve be a grading-restricted conformal open-string vertex algebra,
1e the vacuum of Ve and ιVe an injective homomorphism of vertex operator
algebras from V to C0(Ve). Then we have ιVe(1) = 1e. Then by Theorem 2.3,
Ve is an ιVe(V )-module and thus a V -module. So Ve is an object in C. Since
Ve is an open-string vertex algebra, we have a vertex operator map Y O

e for Ve.
By Theorem 2.3 again, the corresponding formal vertex operator map Yfe is
in fact an intertwining operator for V of type

(
Ve
VeVe

)
. Let µ : Ve£Ve → Ve be

the module map corresponding to the intertwining operator Yfe . We claim
that (Ve, µ, ιVe) is an associative algebra in C. The proof is similar to the
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proof of the result in [HKL] that suitable commutative associative algebras
in C are equivalent to vertex operator algebras extending V . For reader’s
convenience, we give a proof here.

For r ∈ R+, let µr be the morphism from Ve£P (r) Ve to Ve corresponding
to the intertwining operator Y f

e and let µr : Ve £P (r) Ve → V e be the natural
extension of µP (r). Then by definition, µ = µ1 and

µr(u£P (r) v) = Yfe (u, r)v = Y O
e (u, r)v.

for u, v ∈ Ve. For simplicity, we shall use id to denote idVe in this proof. Thus
for u, v, w ∈ Ve and r1, r2 ∈ R+ satisfying r1 > r2 > r1 − r2 > 0,

(µr1 ◦ (id£P (r1) µr2))(u£P (r1) (v £P (r2) w))

= Y O
e (u, r1)Y O

e (v, r2)w (4.1)

(µr2 ◦ (µr1−r2 £P (r2) id))((u£P (r1−r2) v)£P (r2) w)

= Y O
e Y

O
e (u, r1 − r2)v, r2)w, (4.2)

where (and below) we use the notation that a linear map preserving gradings
with a horizontal line over it always mean the natural extension of the map
to a map between the algebraic completions of the original graded spaces.
The associativity for Y O

e gives

Y O
e (u, r1)Y O

e (v, r2)w = Y O
e (Y O

e (u, r1 − r2)v, r2)w. (4.3)

The associativity isomorphism

AP (r1−r2),P (r2)
P (r1),P (r2) : Ve £P (r1) (Ve £P (r2) Ve)→ (Ve £P (r1−r2) Ve)£P (r2) Ve

is characterized by

AP (r1−r2),P (r2)

P (r1),P (r2) (u£P (r1) (v £P (r2) w)) = (u£P (r1−r2) v)£P (r2) w (4.4)

for u, v, w ∈ Ve, whereAP (r1−r2),P (r2)

P (r1),P (r2) is the natural extension ofAP (r1−r2),P (r2)
P (r1),P (r2) .

Combining (4.1)–(4.4), we obtain

(µr1 ◦ (id£P (r1) µr2)) = (µr2 ◦ (µr1−r2 £P (r2) id)) ◦ AP (r1−r2),P (r2)
P (r1),P (r2) . (4.5)

From (4.5), we obtain

(µr1 ◦ (id£P (r1) µr2)) ◦ (id£P (r1) Tγ2) ◦ Tγ1

= (µr2 ◦ (µr1−r2 £P (r2) id)) ◦ AP (r1−r2),P (r2)
P (r1),P (r2) ◦ (id£P (r1) Tγ2) ◦ Tγ1 .

(4.6)
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where r1, r2 are real numbers satisfying r1 > r2 > r1 − r2 > 0, γ1 and γ2 are
paths in R+ from 1 to r1 and r2, respectively, and Tγ1 and Tγ2 the parallel
transport isomorphisms associated to γ1 and γ2, respectively. (For reader’s
convenience, we recall the definition of parallel transport isomorphism here.
Let γ be a path from z1 ∈ C× to z2 ∈ C×. The parallel isomorphism Tγ :
W1 £P (z1) W2 → W1 £P (z2) W2 is given as follows: Let Y be the intertwining
operator corresponding to the intertwining map £P (z2) and l(z1) the value of
the logarithm of z1 determined uniquely by log z2 (satisfying 0 ≤ =(log z2) <
2π) and the path γ. Then Tγ is characterized by

T γ(w1 £P (z1) w2) = Y(w1, x)w2

∣∣∣
xn=enl(z1), n∈C

for w1 ∈ W1 and w2 ∈ W2, where T γ is the natural extension of Tγ to the
algebraic completionW1 £P (z1) W2 ofW1£P (z1)W2. The parallel isomorphism
depends only on the homotopy class of γ.)

By definition, we have

(µr1 ◦ (id£P (r1) µr2)) ◦ (id£P (r1) Tγ2) ◦ Tγ1 = µ ◦ (id£ µ). (4.7)

Similarly, we have

(µr2 ◦ (µr1−r2 £P (r2) id)) ◦ (Tγ3 ◦ (Tγ4 £P (r2) id))−1 = (µ ◦ (µ£ id)), (4.8)

where γ3 and γ4 are paths in R+ from r2 and r1 − r2 to 1, respectively,
and Tγ3 and Tγ4 the parallel transport isomorphisms associated to γ3 and γ4,
respectively. Combining (4.6)–(4.8) with the definition

A = Tγ3 ◦ (Tγ4 £P (z2) id) ◦ AP (z1−z2),P (z2)
P (z1),P (z2) ◦ (id£P (z1) Tγ2) ◦ Tγ1 . (4.9)

of the associativity isomorphism for the tensor product structure, we obtain
the associativity

µ ◦ (id£ µ) = (µ ◦ (µ£ id)) ◦ A.
For the unit property, we note that the inverse l−1

Ve
: Ve → V £ Ve of the

left unit isomorphism is defined by l−1
Ve

(u) = 1£ u for u ∈ Ve and thus

(µ ◦ (ιVe £ idVe) ◦ l−1
Ve

)(u) = µ((ιVe £ idVe)(1£ u))

= µ(1e £ u)

= Ye(1e, 1)u

= idVe(u)
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for u ∈ Ve. The other unit property is proved similarly.
Conversely, let (Ve, µ, ιVe) be an associative C-algebra. In particular, Ve is

a V -module. The module map µ : Ve£Ve → Ve corresponds to an intertwining
operator Yfe of type

(
Ve
VeVe

)
such that

µ(u£ v) = Yfe (u, 1)v (4.10)

for u, v ∈ Ve. Let 1e = ιVe(1) and ωe = ιVe(ω). We define

Y O
e : (Ve ⊗ Ve)× R+ → V e

(u⊗ v, r) 7→ Y O
e (u, r)v

by
Y O
e (u, r)v = Yfe (u, r)v

for r ∈ R+, u, v ∈ Ve. Then we claim that (Ve, Y
O
e ,1e, ωe) is an grading-

restricted conformal open-string vertex algebra satisfying the positive weight
condition above and with V in its meromorphic center. Again, the proof is
similar to the proof of the result in [HKL] mentioned above. For reader’s
convenience, we give a proof here.

The identity property for the vacuum follows immediately from the left
unit property µ ◦ (ιVe £ idVe) ◦ l−1

Ve
= idVe . The creation property follows from

the right unit property µ ◦ (ιVe ⊗ idVe) ◦ r−1
Ve

= idVe . The Virasoro relations
and the L(0)-grading property follows from the fact that Ve is a V -module.
The L(−1)-derivative property and the commutator formula for the Virasoro
operators and Yfe follow from the fact that Yfe is an intertwining operator.

We now prove associativity. As above, for any r ∈ R+, let

µr : Ve £P (r) Ve → Ve

be the module map corresponding to the intertwining operator Yfe . By defi-
nition, we have

µr(u£P (r) v) = Yfe (u, r)v = (µ ◦ Tγ)(u£P (r) v) (4.11)

for u, v ∈ Ve and r ∈ R+, where γ is a path from r to 1 in R+. By definition,
for r1, r2 ∈ R+ satisfying r1 > r2 > r1 − r2 > 0, paths γ1 and γ2 in R+ from
1 to r1, r2, respectively, and paths γ3 and γ4 in R+ from r2 and r1 − r2 to 1,
respectively, (4.7)–(4.8) hold.
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Compose both sides of the associativity

µ ◦ (id£ µ) = (µ ◦ (µ£ id)) ◦ A

for the C-algebra Ve with

((id£P (z1) Tγ2) ◦ Tγ1)−1,

where r1, r2 ∈ R+ satisfying r1 > r2 > r1 − r2 > 0 and γ1 and γ2, as above,
are paths from 1 to r1 and r2, respectively, in R+. Then we obtain

µ ◦ (id£ µ) ◦ ((id£P (r1) Tγ2) ◦ Tγ1)−1

= (µ ◦ (µ£ id)) ◦ A ◦ ((id£P (r1) Tγ2) ◦ Tγ1)−1. (4.12)

Using (4.7)–(4.9) and (4.12), we obtain

µr1 ◦ (id£P (r1) µr2)

= µ ◦ (id£ µ) ◦ ((id£P (r1) Tγ2) ◦ Tγ1)−1

= (µ ◦ (µ£ id)) ◦ A ◦ ((id£P (r1) Tγ2) ◦ Tγ1)−1

= (µr2 ◦ (µr1−r2 £P (r2) id)) ◦ (Tγ3 ◦ (Tγ4 £P (r2) id))−1

◦A ◦ ((id£P (r1) Tγ2) ◦ Tγ1)−1

= (µr2 ◦ (µr1−r2 £P (r2) id)) ◦ AP (r1−r2),P (r2)
P (r1),P (r2) . (4.13)

For the next step, we use the convergence of products and iterates of
intertwining operators for V . Because of the convergence, id£P (r1)µr2 is well

defined and it is clear that µr1 ◦ (id£P (r1)µr2) is equal to µr1 ◦ (id£P (r1) µr2).
Similarly, µr1−r2 £P (r2) id is well-defined and µr1 ◦ (µr1−r2 £P (r2) id) is equal

to µr1 ◦ (µr1−r2 £P (r2) id). Taking the natural completions of both sides of
(4.13), we obtain

µr1 ◦ (id£P (r1) µr2) = µr1 ◦ (µr1−r2 £P (r2) id) ◦ AP (r1−r2),P (r2)

P (r1),P (r2) . (4.14)

Applying both sides of (4.14) to u£P (r1) (v£P (r2) w) for u, v, w ∈ Ve, pairing
the result with v′ ∈ Ve and using (4.11) and

AP (r1−r2),P (r2)

P (r1),P (r2) (u£P (r1) (v £P (r2) w)) = (u£P (r1−r2) v)£P (r2) w,

we obtain the associativity

〈v′, Y O
e (u, r1)Y O

e (v, r2)w〉 = 〈v′, Y O
e (Y O

e (u, r1 − r2)v, r2)w〉
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for u, v, w ∈ Ve, v′ ∈ V ′e and r1, r2 ∈ R+ satisfying r1 > r2 > r1 − r2 > 0.
We now prove that ιVe(V ) is in the meromorphic center of Ve. Clearly

ιVe(V ) is a vertex operator algebra isomorphic to V , ιVe is an isomorphism of
vertex operator algebras from V to ιVe(V ) and thus Ve is an ιVe(V )-module.
We know that the restriction Yfe |Ve⊗ιVe (V ) of Yfe to Ve ⊗ ιVe(V ) is in fact the

intertwining operator of type
(

Ve
VeιVe (V )

)
for the vertex operator algebra ιVe(V )

corresponding to the module map µ|Ve£ιVe (V ) : Ve£ ιVe(V )→ Ve which is the
restriction of µ to Ve £ ιVe(V ). By the creation property for Y O

e , we have

lim
r→0
Yfe (u, r)1e = lim

r→0
Y O
e (u, r)1e = u

for u ∈ Ve. Since the space of intertwining operators of type
(

Ve
VeιVe (V )

)
is

isomorphic to the space of intertwining operators of type
(

Ve
ιVe (V )Ve

)
, which

in turn is isomorphic to the space of module maps from Ve to itself, any
intertwining operator Y of this type satisfying the creation property

lim
r→0
Y(u, r)1e = u

must be equal to Yfe |Ve⊗ιVe (V ). In fact, the intertwining operator Y of such
type defined by

Y(u, x)v = exL(−1)YVe(v,−x)u

for u ∈ Ve, v ∈ ιVe(V ), where YVe is the vertex operator map for the ιVe(V )-
module Ve, is such an intertwining operator. Thus we have

Yfe |Ve⊗ιVe (V )(u, x)v = exL(−1)YVe(v,−x)u (4.15)

for u ∈ Ve, v ∈ ιVe(V ). But both YVe and Yfe |ιVe (V )⊗Ve are intertwining op-

erators of type
(

Ve
ιVe (V )Ve

)
satisfying the identity property and the space of

intertwining operators of such type, as we mentioned above, is isomorphic to
the space of module maps from Ve to itself. So YVe and Yfe |ιVe (V )⊗Ve must be
equal. Thus (4.15) says that ιVe(V ) is in the meromorphic center of Ve. So
ιVe is an injective homomorphism from V to the meromorphic center of Ve.

The constructions above give two functors and it is easy to see that they
are inverse to each other. Thus the two categories are isomorphic.

Finally we prove the last statement. We assume that the intertwining
operator algebra on the direct sum of all irreducible V -modules satisfies the
positive weight condition. In particular, as an open-string vertex algebra, V
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itself satisfies the positive weight condition. Let Ve be a grading-restricted
conformal open-string vertex algebra and ιVe an injective homomorphism of
vertex operator algebras from V to C0(Ve). Since the weights of the nonzero
elements of all the irreducible V -modules are nonnegative, the weights of the
nonzero elements of the V -module Ve are also nonnegative. Assume that
Ve satisfies the positive weight condition. Let f ∈ HomC(V, Ve). Since f
preserves the grading and since V and Ve both satisfy the positive weight
condition, it is clear that f maps 1 to a scalar multiple of 1e. Since V
as a module is generated by 1, f is determined completely by the scalar
above. On the other hand, given any scalar, we can also construct an el-
ement of HomC(V, Ve) such that it maps 1 to the scalar times 1e. Thus
dim HomC(V, Ve) = 1. Conversely, assume that dim HomC(V, Ve) = 1. We
already know that the weights of nonzero elements of the V -module Ve are
also nonnegative. Assume that there is an element of (Ve)(0) which is not
proportional to 1e. Then this element generates a V -submodule of the V -
module Ve. Since all V -modules are completely reducible, we can find an
irreducible V -submodule of this V -submodule such that it is generated by
an element of (Ve)(0) which is not proportional to 1e. Since any irreducible
V -module having a nonzero element of weight 0 must be isomorphic to V ,
this V -submodule is isomorphic to V . But this V -submodule is not equal
to ιe(V ) ⊂ C0(Ve) since its generator of weight 0 is not proportional to 1e.
Thus we see that dim HomC(V, Ve) > 1. Contradiction. So Ve satisfies the
positive weight condition.

Remark 4.4 Recall that a commutative associative algebra in a braided ten-
sor category C or a commutative associative C-algebra is an associative C-
algebra satisfying µ ◦R = µ (commutativity), where R is the commutativity
isomorphism from A⊗ A to itself. Let V be a vertex operator algebra as in
Theorem 4.3 and C the category of V -modules. Then an associative C-algebra
Ve is in general not commutative In fact, for the category C of modules for
V , the commutativity isomorphism R is characterized by

R(u£ v) = eL(−1)T γ+(v £P (−1) u) (4.16)

where u, v ∈ Ve, γ+ is a path from −1 to 1 in the closed upper half plane
without passing through 0, Tγ+ is the corresponding parallel transport iso-
morphism and T γ+ is the natural extension of Tγ+ to the algebraic comple-
tion Ve £ Ve of Ve £ Ve. The natural extensions of the left- and right-hand
sides of commutativity applied to u£ v for u, v ∈ Ve gives µ(R(u£ v)) and
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µ(u £ v), respectively. By the characterization (4.16) of R and the relation
between µ and Yfe , the left- and right-hand sides of commutativity are further
equal to eL(−1)Yfe (v,−1)u and Y f

e (u, 1)v, respectively. Note that in general
Yfe (v,−1)u 6= Y O

e (v,−1)u. So eL(−1)Yfe (v,−1)u and Y f
e (u, 1)v are not equal

in general. Thus commutativity is not true in general.

5 A geometric and operadic formulation

In this section, we give a geometric and operadic formulation of the notion
of grading-restricted conformal open-string vertex algebra. For the notion of
open-string vertex algebra and other variations, we have similar geometric
and operadic formulations. In the present section, we discuss only grading-
restricted conformal open-string vertex algebras. We assume that the reader
is familiar with the geometric and operadic formulation of the notion of vertex
operator algebra given by the first author. See [H1], [H2], [H6], [HL1] and
[HL2] for details.

We first introduce a geometric partial operad. Note that Ĥ is analytically
diffeomorphic to the closed unit disk. We use ∆r

a and ∆̄r
a to denote the

relatively open upper-half disk in H̄ and the closed upper-half disk in H̄,
respectively, centered at a ∈ R with radius r ∈ R+, that is, ∆r

a = Br
a ∩ H

and ∆̄r
a = B̄r

a ∩ H where Br
a and B̄r

a are the open and closed disks centered
at a ∈ R with radius r ∈ R+.

A disk with strips of type (m,n) (m,n ∈ N) is a disk S (a genus-zero
compact connected one-dimensional complex manifold with one connected
component of boundary) with m + n distinct, ordered points p1, . . . , pm+n

(called boundary punctures) on the boundary of S with p1, . . . , pm negatively
oriented and the other punctures positively oriented, and with local analytic
coordinates

(U1, ϕ1), . . . , (Um+n, ϕm+n)

vanishing at the boundary punctures p1, . . . , pm+n, respectively, where for
each i = 1, . . . ,m + n, Ui is a local coordinate neighborhood at pi and ϕi :
Ui → H̄, mapping the boundary part of Ui analytically to R and satisfying
ϕi(pi) = 0, is a local analytic coordinate map vanishing at pi. In the present
paper, we consider only disks with strips of types (1, n) for n ∈ N. For
such a disk with strips, we use the subscript 0 and the subscripts 1, . . . , n to
indicate that the corresponding boundary punctures are negatively oriented
and positively oriented, respectively.
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Let S1 and S2 be disks with strips of type (1,m) and of type (1, n),
respectively. Let p0, . . . , pm be the boundary punctures of S1, q0, . . . , qn the
boundary punctures of S2, (Ui, ϕi) the local coordinate at pi for some fixed
i satisfying 0 < i ≤ m, and (V0, ψ0) the local coordinate at q0. Note that
in our convention discussed above, p0 and q0 are the negatively oriented
boundary punctures on S1 and S2, respectively. Assume that there exists
r ∈ R+ such that ϕi(Ui) contains ∆̄r

0 and ψ0(V0) contains ∆̄
1/r
0 . Assume also

that pi and q0 are the only boundary punctures in ϕ−1
i (∆̄r

0) and ψ−1
0 (∆̄

1/r
0 ),

respectively. In this case we say that the i-th boundary puncture of the first
disk with strips can be sewn with the 0-th boundary puncture of the second
disk with strips. From these two disks with strips we obtain a disk with
strips of type (1,m+ n− 1) by cutting ϕ−1

i (∆r
0) and ψ−1

0 (∆
1/r
0 ) from S1 and

S2, respectively, and then identifying the new parts of the boundaries (the
parts not on the boundaries of the original surfaces) of the resulting surfaces
using the map ϕ−1

i ◦ (−J) ◦ψ0 where J is the map from C× to itself given by
J(w) = 1/w. The boundary punctures (with ordering) of this disk with strips
are p0, . . . , pi−1, q1, . . . , qn, pi+1, . . . , pm. The local coordinates vanishing at
these punctures are given in the obvious way. This sewing procedure gives a
partial operation which we call the sewing operation. Note that we have to
use −J instead of J (as in [H6]) in the definition of the sewing operation.

We define the notion of conformal equivalence between two disks with
strips in the obvious way. The space of equivalence classes of disks with
strips is called the moduli space of disks with strips. Similar to the moduli
spaces of spheres with tubes in [H6], the moduli space of disks with strips of
type (1, n) (n ≥ 1) can be identified with Υ(n) = Λn−1 × Π× Πn

R+
where Π

is the set of all sequences A = {Aj}j∈Z+ of real numbers such that

exp

(∑
j>0

Ajx
j+1 d

dx

)
x

is a convergent power series in some neighborhood of 0, ΠR+ = R+ ×Π, and
Λn−1 is the set of elements of Rn−1 with nonzero and distinct components.
We think of each element of Υ(n), n ≥ 1, as the disk Ĥ equipped with or-
dered punctures∞, r1, . . . , rn−1, 0, with an element of Π specifying the local
coordinate at∞ and with n elements of ΠR+ specifying the local coordinates
at the other punctures. Analogously, the moduli space of disks with strips of
type (1, 0) can be identified with Υ(0) = {A ∈ Π | A1 = 0}. Then the moduli
space of disks with strips can be identified with ∪n≥0Υ(n). From now on we
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will refer to ∪n∈NΥ(n) as the moduli space of disks with strips. The sewing
operation for disks with strips induces a partial operation on ∪n∈NΥ(n). It
is still called the sewing operation.

Let IΥ ∈ Υ(1) be the equivalence class containing the standard disk
Ĥ with the negatively oriented puncture ∞, the only positively oriented
puncture 0 , and with standard local coordinates vanishing at ∞ and 0.
Here for a ∈ R ⊂ Ĥ, the standard local coordinate vanishing at a is given by
w 7→ w − a. and for ∞ ∈ Ĥ, the standard local coordinate vanishing at ∞
is given by w 7→ − 1

w
. Note the minus sign in the definition of the standard

local coordinate at ∞. For n ∈ N, the symmetric group Sn acts on Υ(n) in
an obvious way. Then by construction, the following result is clear:

Proposition 5.1 The sequences Υ = {Υ(n) | n ∈ N} of moduli spaces,
together with the sewing operation, the identity IΥ and the actions of the
symmetric groups, has a structure of an associative smooth R+-rescalable
partial operad.

We shall call the R+-rescalable partial operad Υ the boundary disk partial
operad. Note that the boundary disk partial operad is very different from
the so-called little disk operad which are constructed using the embeddings
of disks in the unit disk. In fact, Υ can be viewed as a partial suboperad of
the sphere partial operad K discussed in [H6]. Geometrically, any disk with
strips of type (1, n) is conformally equivalent to a disk with strips of type
(1, n) whose underlying disk is Ĥ and whose negatively oriented puncture is
∞. But any such disk with strips of type (1, n) corresponds to a sphere with
tubes of type (1, n) whose underlying sphere is Ĉ, whose punctures are the
same as those on the disk with strips, whose local coordinates vanishing at
positively oriented punctures are the analytic extensions of those on the disk
with strips and whose local coordinate vanishing at the negatively oriented
puncture is the analytic extension of the negation of that on the disk with
strips. Thus we obtain a map from Υ(n) to K(n) and this map is clearly
injective. In fact the images of Υ(n) in K(n) for n ≥ 2 are

{(r1, . . . , rn−1;A(0), (a
(1)
0 , A(1)), · · · , (a(n)

0 , A(n))) ∈ K(n) |
r1, . . . , rn−1 ∈ R, a(1)

0 , . . . , a
(n)
0 ∈ R+, A

(0), . . . , A(n) ∈ Π}.

The images of Υ(0) in K(0) and of Υ(1) in K(1) are

{A(0) ∈ K(0) | A(0) ∈ Π, A
(0)
1 = 0}
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and
{(A(0), (a

(1)
0 , A(1))) ∈ K(1) | a(1)

0 ∈ R+, A
(0), A(1) ∈ Π},

respectively. In addition, by the definitions of the maps from Υ(n) to K(n)
for n ∈ N and the sewing operations in Υ and K, it is clear that the maps
from Υ(n) to K(n) for n ∈ N respect the sewing operations, the identities
and the actions of Sn and thus give an injective morphism of partial operads.
From now on, we shall identify the partial operad Υ with its image in K
under this injective morphism.

For any c ∈ C, the restriction of the partial operad K̃c of the c
2
-th power

of the determinant line bundles over K to Υ gives a partial suboperad Υ̃c of
K̃c. This partial operad is called the C-extension of Υ of central charge c.

We now consider certain (pseudo-)algebras over the partial operad Υ̃c

for c ∈ C. In the terminology of [HL1], [HL2] and [H6], we consider Υ̃c-
associative (pseudo-)algebras satisfying an additional differentiability condi-
tion. Since the rescaling group of Υ̃c is R+, we need to consider modules for
R+. Since an equivalence class of irreducible modules for R+ is determined
by a real number s such that a ∈ R+ acts on modules in this class as the
scalar multiplication by a−s, any completely reducible module for R+ is of
the form V =

∐
s∈R V(s) where V(s) is the sum of the R+-submodules in the

class determined by the real number s. We shall consider only those alge-
bras over Υ̃c whose underlying vector space is of the form V =

∐
s∈R V(s)

such that dimV(s) < ∞. Recall from [HL1], [HL2] and [H6] that given any
R+-submodule W of V , the endomorphism partial pseudo-operad associated
to the pair (V,W ) is the sequence H

R+

V,W = {HR+

V,W (n)}n∈N. where H
R+

V,W (n) is

the set of all multilinear maps from V ⊗n to V such that W⊗n is mapped to
W , equipped with natural operadic structures.

Definition 5.2 A differentiable (or C1) Υ̃c-associative pseudo-algebra is a
completely reducible R+-module V =

∐
s∈R V(s) satisfying the condition

dimV(r) <∞ for s ∈ R equipped with an R+-submodule W and a morphism

Φ of R+-rescalable pseudo-partial operad from Υ̃c to the endomorphism par-
tial pseudo-operad H

R+

V,W (that is, an Υ̃c-associative pseudo-algebra) satisfy-
ing the following conditions:

1. For s sufficiently negative, V(s) = 0.

2. For any n ∈ N, Φn : Υ̃c(n)→ H
R+

V,W (n) is linear on the fibers of Υ̃c(n).
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3. For any s1, . . . , sn ∈ R, there exists a finite subset R(s1, . . . , sn) ⊂ R
such that the image of

∐
s∈s1+Z V(s)⊗· · ·⊗

∐
s∈sn+Z V(s) under Φn(ψn(Q))

for any Q ∈ Υ̃c(n) is in
∐

s∈R(s1,...,sn)+Z V(s).

4. For any v′ ∈ V ′, v1, . . . , vn ∈ V , 〈v′,Φn(ψn(Q))(v1 ⊗ . . . ⊗ vn)〉 as a
function of

Q = (r1, . . . , rn−1;A(0), (a
(1)
0 , A(1)), · · · , (a(n)

0 , A(n))) ∈ Υ̃c(n)

is of the form
m∑
i=1

fi(r1, . . . , rn−1)gi(A
(0), (a

(1)
0 , A(1)), · · · , (a(n)

0 , A(n)))

where fi(r1, . . . , rn−1) for i = 1, . . . ,m are continuous differentiable

functions of r1, . . . , rn−1 and gi(A
(0), (a

(1)
0 , A(1)), · · · , (a(n)

0 , A(n))) for i =

1, . . . ,m are polynomials in A(0), (a
(1)
0 )±1, A(1), · · · , (a(n)

0 )±1, A(n).

Morphisms (respectively, isomorphisms) of differentiable Υ̃c-associative
pseudo-algebras are morphisms (respectively, isomorphisms) of the underly-
ing Υ̃c-associative pseudo-algebras.

We denote the differentiable Υ̃c-associative pseudo-algebra just defined
by (V,W,Φ) or simply V . It is easy to see that a differentiable Υ̃c-associative
pseudo-algebra is actually analytic in the sense that for any v′ ∈ V ′, v1, . . . , vn
∈ V , 〈v′, ν(Q)(v1, . . . , vn)〉 is analytic in Q because of the sewing axiom (that

is, the sewing operation in Υ corresponds to the contraction in H
R+

V,W under
Φ). Using this fact and the fact that the expansion of analytic functions
are always absolutely convergent in the domain of convergence, it is easy to
obtain:

Proposition 5.3 Any differentiable Υ̃c-associative pseudo-algebra (V,W,Φ)
is an Υ̃c-associative algebra, that is, the image of Υ̃c under Φ is a partial
operad (the image of Υ̃c under Φ satisfies the composition-associativity).

We omit the proof of this result since it is the same as the proof of the
corresponding result in [H6]. Because of this result, we shall call a differ-
entiable Υ̃c-associative pseudo-algebra simply a differentiable Υ̃c-associative
algebra.

Now we have the following main theorem which gives a geometric and op-
eradic formulation of the notion of grading-restricted conformal open-string
vertex algebras:

39



Theorem 5.4 The category of grading-restricted conformal open-string ver-
tex algebras of central charge c is isomorphic to the category of differentiable
Υ̃c-associative algebras.

Proof. The proof of this theorem is basically the same as that of the isomor-
phism theorem for the geometric and operadic formulation of vertex operator
algebras in [H6]. Here we give a sketch. Some more details will be given in
[K].

Let (V, Y O,1, ω) be a grading-restricted conformal open-string vertex al-
gebra of central charge c. We construct a differentiable Υ̃c-associative al-
gebras of central charge c as follows: The R-graded vector space V is nat-
urally a completely reducible R+-module. The module W for the Virasoro
algebra generated by 1 is an R-graded subspace of V and therefore is an
R+-submodule of V . In [H2] and [H6], a section ψ of the line bundle K̃c over
K is chosen. The restriction of this section to Υ is a section of Υ̃c and, for
simplicity, we still denote it by ψ. For an element

Q = (r1, . . . , rn−1;A(0), (a
(1)
0 , A(1)), . . . , (a

(n)
0 , A(n))) (5.1)

of Υ(n), any element of the fiber of Υ̃c over Q is of the form λψn(Q) where
λ ∈ C. When r1 > · · · > rn−1 > 0, we define Φn(λψn(Q)) by

(Φn(λψn(Q)))(v1 ⊗ · · · ⊗ vn)

= λe
−
∑
j∈Z+

A
(0)
j L(−j)

Y O(e
−
∑
j∈Z+

A
(1)
j L(j)

(a
(1)
0 )−L(0)v1, r1) · · ·

·Y O(e
−
∑
j∈Z+

A
(n−1)
j L(j)

(a
(n−1)
0 )−L(0)vn−1, rn−1) ·

·e−
∑
j∈Z+

A
(n)
j L(j)

(a
(n)
0 )−L(0)vn

for v1, . . . , vn ∈ V . In general, for any Q ∈ Υ(n), we can always find σQ ∈ Sn
such that σQ(Q) is of the form of the right-hand side of (5.1) such that
r1 > · · · > rn−1 > 0. We define Φn(λψn(Q)) by

(Φn(λψn(Q)))(v1 ⊗ · · · ⊗ vn) = Φn(λψn(σQ(Q)))(vσ−1
Q (1) ⊗ · · · ⊗ vσ−1

Q (n))

for v1, . . . , vn ∈ V . It can be verified in the same way as in [H6] that the
triple (V,W, ν) is a differentiable Υ̃c-associative algebra of central charge
c. This construction gives a functor from the category of grading-restricted
conformal open-string vertex algebras of central charge c to the category of
differentiable Υ̃c-associative algebras.
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Conversely, given a differentiable Υ̃c-associative algebra (V,W,Φ), we con-
struct a grading-restricted conformal open-string vertex algebra as follows:
As in [H6], for ε ∈ R and i ∈ Z+, let A(ε; i) be the element of Π whose i-th
component is equal to ε and all other components are 0 and 0 the element
of Π whose components are all 0, and for r ∈ R+, let

P (r) = (r; 0, (1,0), (1,0)) ∈ Υ(2) ⊂ K(2).

We define the vertex operator map

Y O : (V ⊗ V )× R+ → V ,

(v1 ⊗ v2, r) 7→ Y O(v1, r)v2

by
Y O(v1, r)v2 = (Φ2(ψ2((P (r))))(v1 ⊗ v2)

for v1, v2 ∈ V and r ∈ R+. The vacuum 1 ∈ V is given by

1 = Φ0(ψ0(0)).

The conformal element ων is given by

ω = − d

dε
Φ0(ψ0((A(ε; 2))))

∣∣∣
ε=0
.

It can be proved in the same way as in [H6] that (V, Y O,1, ω) is a grading-
restricted conformal open-string vertex algebra. This construction gives a
functor from the category of differentiable Υ̃c-associative (pseudo-)algebras
to the category of conformal open-string vertex algebras of central charge c.

It can be shown in the same way as in [H6] that these two functors
constructed above are inverse to each other. Thus the conclusion of the
theorem is true.

The result above can actually be generalized to show that a grading-
restricted conformal open-string vertex algebra of central charge c gives an
algebra over a partial operad extending the operad of the c-th power of
the determinant line bundles over the so-called “Swiss-cheese” operad (see
[V]). We actually have a stronger isomorphism theorem than Theorem 5.4
involving meromorphic centers of grading-restricted conformal open-string
vertex algebras. To formulate this result, we first introduce the underlying
partial operads.
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A disk with strips and tubes of type (m,n; k, l) (m,n, k, l ∈ N) is a disk
S with m + n distinct, ordered points pB1 , . . . , p

B
m+n (called boundary punc-

tures) on the boundary of S and k + l distinct, ordered points pI1, . . . , p
I
k+l

(called interior punctures) in the interior of S with pB1 , . . . , p
B
m and pI1, . . . , p

I
k

negatively oriented and the other (boundary or interior) punctures positively
oriented, and with local analytic coordinates

(UB
1 , ϕ

B
1 ), . . . , (UB

m+n, ϕ
B
m+n), (U I

1 , ϕ
I
1), . . . , (U I

k+l, ϕ
i
k+l)

vanishing at the (boundary or interior) punctures pB1 , . . . , p
B
m+n, pI1, . . . , p

I
k+l,

respectively, where for each i = 1, . . . ,m + n (or j = 1, . . . , k + l), UB
i (or

U I
j ) is a local coordinate neighborhood at pBi (or pIj) and ϕBi : UB

i → H̄
(or ϕIj : U I

j → C), mapping the boundary part of UB
i (or mapping U I

j )
analytically to R (or C) and satisfying ϕBi (pBi ) = 0 (or ϕIi (p

I
i ) = 0), is a local

analytic coordinate map vanishing at pBi (or pIi ). Note that when k = l = 0,
we have a disk with strips of type (m,n). In the present paper, we consider
only disks with strips and tubes of types (1, n; 0, l) for n, l ∈ N. For such
a disk with strips, we use the subscript 0 and the subscripts 1, . . . , n to
indicate that the corresponding boundary punctures are negatively oriented
and positively oriented, respectively.

Similar to disks with strips, we have a sewing operation which sews two
disks with strips and tubes at boundary punctures of opposite orientations.
Here we shall call this sewing operation the boundary sewing operation. On
the other hand, we can also sew the negatively oriented puncture of a sphere
with tubes to an interior puncture of a disk with strips and tubes just as we
sew two spheres with tubes in [H6]. We shall call this sewing operation the
interior sewing operation.

The conformal equivalences for these disks with strips and tubes are de-
fined in the obvious way. For n ≥ 1 and l ∈ N, the moduli space of disks with
strips and tubes of type (1, n; 0, l) can be identified with Υ(n; l) = Λn−1×Π×
Πn
R+
×M l

H×H l
c where Λ, Π and ΠR+ are defined above, H ands Hc are defined

in [H6] and M l
H is the set of elements of Hl with nonzero and distinct compo-

nents. Analogously, for l ∈ N, the moduli space of disks with strips and tubes
of type (1, 0; 0, l) can be identified with Υ(0; 1) = {A ∈ Π | A1 = 0} × H l

c.
Note that Υ(n) = Υ(n; 0) for n ∈ N. In particular, the identity IΥ is an
element of Υ(1; 0). Also, for n ∈ N, Sn acts on Υ(n; l) in the obvious way.
Let S(n) = ∪l∈NΥ(n; l) for n ∈ N. Then Sn acts on S(n) for n ∈ N. The
following result is clear:
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Proposition 5.5 The sequences S = {S(n)}n∈N together with the boundary
sewing operation, the identity IΥ ∈ Υ(1) = Υ(1; 0) and the actions of the
symmetric groups, has a structure of a smooth R+-rescalable partial operad.
In addition, for each n ∈ N, there is an action of the sphere partial operad
K on S(n) given by the interior sewing operation.

Borrowing the terminology used by Voronov in [V], we shall call the R+-
rescalable partial operad S the Swiss-cheese partial operad. But note that
our partial operad is much more larger than the Swiss cheese operad. In fact,
Swiss cheese operad is an analogue of the little disk operad while our Swiss
cheese partial operad is an analogue of the sphere partial operad in [H6].

For each pair n, l ∈ N, we have an injective map from Υ(n; l) to K(n+2l)
obtained by doubling disks with strips and tubes as follows: For any disk with
strips and tubes of type (1, n; 0, l), by the uniformization theorem, we can
find a conformally equivalent disk with strips and tubes of the same type
such that its underlying disk is Ĥ. This latter disk with strips and tubes can
be doubled to obtain a sphere with tubes of type (1, n + 2l) such that its
underlying sphere is the double C ∪ {∞} of Ĥ. By definition, we see that
conformally equivalent disks with strips give conformally equivalent spheres
with tubes. Thus we obtain a map from Υ(n; l) to K(n + 2l). Clearly this
map is injective.

It is clear from the definition that these maps respect the (boundary)
sewing operations. In addition, these maps also intertwine the actions of K
on S(n) for n ∈ N and the actions of K on the images of S(n) obtained by
doubling the actions of K on K(n). We shall identify Υ(n; l) with its image
in K(n+ 2l).

For any c ∈ C, the restriction of the partial operad K̃c of the c
2
-th power

of the determinant line bundles over K to S has a natural structure of a
partial operad. This partial operad is called the C-extension of S of central
charge c and is denoted S̃c. For any n ∈ N, the action of K on S(n) also
induces an action of K̃c on S̃c(n). For any n ∈ N, the restrictions of the
sections ψn+2l of K̃c(n+ 2l) for l ∈ N to Υ(n; l) gives a section of S̃c(n) and
we shall use ψS

n to denote this section.
We now consider a completely reducible R+-module or, equivalently,

an R-graded vector spaces V O =
∐

s∈R V
O

(s) and completely reducible C×-

modules or, equivalently, Z-graded vector spaces V LC =
∐

m∈Z V
LC

(m) and

V RC =
∐

m∈Z V
RC

(m) . (Here O, LC and RC means open, left closed and

right closed, respectively.) Let WO, WLC and WRC be an R+-submodule
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of V O, a C×-submodule of V LC and a C×-submodule of V RC , respectively.
Associated to V LC , WLC , V RC , WRC , we have the endomorphism par-
tial pseudo-operads HC

×

V LC ,WLC , HC
×

V RC ,WRC and HC
×

V LC⊗(V RC)−,WLC⊗(WRC)− (see

[HL1], [HL2] and [H6]), where (V RC)− and (WRC)− are the complex con-
jugate of V RC and WRC . We also need an endomorphism partial operad
constructed from V O, WO, V LC , WLC , V RC and WRC . For n, l ∈ N, let
H
R+

V O,WO;V LC⊗(V RC)−,WLC⊗(WRC)−(n; l) be the space of all linear maps from

(V O)⊗n⊗ (V LC ⊗ (V RC)−)⊗l to V O such that (WO)⊗n⊗ (WLC ⊗ (WRC)−)⊗l

is mapped to WO and for n ∈ N, let

H
R+

V O,WO;V LC⊗(V RC)−,WLC⊗(WRC)−(n)

=
∐
l∈N

H
R+

V O,WO;V LC⊗(V RC)−,WLC⊗(WRC)−(n; l).

Then it is clear that for n ∈ N, the endomorphism partial pseudo-operad
HC

×

V LC⊗(V RC)−,WLC⊗(WRC)− acts on H
R+

V O,WO;V LC⊗(V RC)−,WLC⊗(WRC)−(n) and

H
R+

V O,WO;V LC⊗(V RC)−,WLC⊗(WRC)−

= {HR+

V O,WO;V LC⊗(V RC)−,WLC⊗(WRC)−(n)}n∈N
is an R+-rescalable partial pseudo-operad. We call it the endomorphism
partial pseudo-operad for (V O,WO;V LC ⊗ (V RC)−,WLC ⊗ (WRC)−).

Notice that HC
×

V LC ,WLC ⊗ (HC
×

V RC ,WRC )− (here (HC
×

V RC ,WRC )− is the com-

plex conjugate of HC
×

V RC ,WRC ) can be embedded naturally into the space

HC
×

V LC⊗(V RC)−,WLC⊗(WRC)− . Below we shall view HC
×

V LC ,WLC ⊗ (HC
×

V RC ,WRC )−

as a partial pseudo-suboperad of HC
×

V LC⊗(V RC)−,WLC⊗(WRC)− .

Let c̄ be the complex conjugate of c ∈ C. The complex conjugate K̃ c̄ of
K̃ c̄ is also a C×-rescalable partial operad. Consequently the tensor product

K̃c ⊗ K̃ c̄ (the tensor product of line bundles) is also a C×-rescalable partial
operad. Interpreting the action of K on S using the method of doubling

disks, we see that K̃c ⊗ K̃ c̄ acts naturally on S̃c.
We are interested in certain algebras over S̃c for c ∈ C.

Definition 5.6 A pseudo-algebra over S̃c generated by a differentiable Υ̃c-
associative pseudo-algebra and meromorphic actions of two K̃c-associative
algebras or simply a differentiable-meromorphic pseudo-algebra over S̃c con-
sists of the following data:
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1. A completely reducible R+-module V O =
∐

s∈R V
O

(s) satisfying the con-

dition dimV O
(s) < ∞ for s ∈ R and completely reducible C×-modules

V LC =
∐

m∈Z V
LC

(m) and V RC =
∐

m∈Z V
RC

(m) satisfying the condition

dimV LC
(m) <∞ and dimV RC

(m) <∞ for m ∈ Z.

2. An R+-submodule WO of V O and C×-submodules WLC and WRC of
V LC and V RC , respectively.

3. A morphism Φ of R+-rescalable partial pseudo-operads from S̃c to the
endomorphism partial pseudo-operad H

R+

V O,WO;V LC⊗(V RC)−,WLC⊗(WRC)−

and a morphism Ψ of C×-rescalable partial pseudo-operads from K̃c⊗
K̃ c̄ to the endomorphism partial pseudo-operadHC

×

V LC⊗(V RC)−,WLC⊗(V RC)− .

These data satisfy the following conditions:

1. For s ∈ R sufficiently negative, V O
(s) = 0 and for m ∈ Z sufficiently

negative, V LC
(m) = V RC

(m) = 0.

2. For any n ∈ N, Φn : S̃c(n) → H
R+

V O,WO;V LC⊗V RC ,WLC⊗WRC (n) is linear

on the fibers of S̃c(n).

3. The morphism Ψ is equal to ΨL ⊗ ΨR where ΨL (ΨR) is a morphism
of C×-rescalable partial pseudo-operads from K̃c (K̃ c̄) to HC

×

V LC ,WLC

(HC
×

V RC ,WRC ) and ΨR is the complex conjugate of ΨR. In addition,

the triples (V LC ,WLC ,ΨL) and (V RC ,WRC ,ΨR) are meromorphic K̃c-
associative algebra and K̃ c̄-associative algebra, respectively.

4. For any n ∈ N, the map

Φn : S̃c(n)→ H
R+

V O,WO;V LC⊗(V RC)−,WLC⊗(WRC)−(n)

intertwines the action of the partial operad K̃c ⊗ K̃ c̄ on S̃c(n) and
the action of the partial pseudo-operad HC

×

V LC⊗(V RC)−,WLC⊗(V RC)− on

H
R+

V O,WO;V LC⊗(V RC)−,WLC⊗(V RC)−(n).

5. For any s1, . . . , sn ∈ R, there exists a finite subset R(s1, . . . , sn) ⊂ R
such that the image of

∐
s∈s1+Z V

O
(s)⊗· · ·⊗

∐
s∈sn+Z V

O
(s) under Φn(ψS

n (Q))

for any Q ∈ Υ̃c(n; 0) is in
∐

s∈R(s1,...,sn)+Z V
O

(s).
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6. For any v′ ∈ (V O)′, u1, . . . , un ∈ V O, vL1 ⊗ v̄R1 , . . . , vLl ⊗ v̄Rl ∈ V LC ⊗
(V RC)−,

〈v′,Φn(ψS
n (Q))(u1 ⊗ · · · ⊗ un ⊗ vL1 ⊗ v̄R1 ⊗ · · · ⊗ vLl ⊗ v̄Rl )〉

as a function of

Q = (r1, . . . , rn−1;A(0), (a
(1)
0 , A(1)), · · · , (a(n)

0 , A(n));

z1, . . . , zl; (b
(1)
0 , B(1)), · · · , (b(l)

0 , B
(l));

z̄1, . . . , z̄l; (b̄
(1)
0 , B̄(1)), · · · , (b̄(l)

0 , B̄
(l)))

∈ Υ̃c(n; l) ⊂ K(n+ 2l)

is of the form

k∑
i=1

fi(r1, . . . , rn−1; z1, . . . , zl; z̄1, . . . , z̄l)·

·gi(A(0), (a
(1)
0 , A(1)), · · · , (a(n)

0 , A(n)); (b
(1)
0 , B(1)), · · · , (b(l)

0 , B
(l));

(b̄
(1)
0 , B̄(1)), · · · , (b̄(l)

0 , B̄
(l)))

where the functions

fi(r1, . . . , rn−1; z1, . . . , zl; ξ1, . . . , ξl)

for i = 1, . . . , k are continuous differentiable in r1, . . . , rn−1 and are
meromorphic in z1, . . . , zl, ξ1, . . . , ξl with zi = 0,∞ and zi = zk, i < k,
zi = rj, ξi = 0,∞, ξi = ξk, i < k, ξi = rj and zi = ξk for i, k = 1, . . . , l
and j = 1, . . . , n− 1 as the only possible poles, and

gi(A
(0), (a

(1)
0 , A(1)), · · · , (a(n)

0 , A(n)); (b
(1)
0 , B(1)), · · · , (b(l)

0 , B
(l));

(d
(1)
0 , D(1)), · · · , (d(l)

0 , D
(l)))

for i = 1, . . . , k are polynomials in A(0), (a
(1)
0 )±1, A(1), · · · , (a(n)

0 )±1, A(n),

(b
(1)
0 )±1, B(1), · · · , (b(l)

0 )±1, B(l) and (d
(1)
0 )±1, D(1), · · · , (d(l)

0 )±1, D(l).

Morphisms (respectively, isomorphisms) of such pseudo-algebras over S̃c

are morphisms (respectively, isomorphisms) of the underlying pseudo-algebras
over S̃c preserving all the structures.
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We denote the differentiable-meromorphic pseudo-algebra over S̃c just
defined by

(V O,WO, V LC ,WLC , V RC ,WRC ,Φ,Ψ)

or simply by (V O, V LC , V RC). For these pseudo-algebras, we also have the
following result whose proof is the same as those of the corresponding result
in [H6] and for Proposition 5.3:

Proposition 5.7 Any differentiable-meromorphic pseudo-algebra over S̃c

(V O,WO, V LC ,WLC , V RC ,WRC ,Φ,Ψ)

is an algebra over S̃c, that is, the image of S̃c under Φ is a partial operad
(the image of S̃c under Φ satisfies the composition-associativity).

Because of this result, we shall omit the word “pseudo” from now on.
Note that given a vertex operator algebra V , its complex conjugate space

V − has a natural vertex operator algebra structure (V −, Y −,1, ω) of central
charge c̄. We have the following generalization of Theorem 5.4:

Theorem 5.8 The category of objects consisting of a grading-restricted con-
formal open-string vertex algebra of central charge c ∈ C, two vertex operator
algebras, one of central charge c and the other of central charge c̄, and homo-
morphisms from the first vertex operator algebra and the complex conjugate of
the second vertex operator algebra to the meromorphic center of the grading-
restricted conformal open-string vertex algebra is isomorphic to the category
of differentiable-meromorphic algebras over S̃c.

Proof. The proof of this theorem is basically the same as the proof of isomor-
phism theorem for the geometric and operadic formulation of vertex operator
algebras in [H6] and the proof of Theorem 5.4. The main new ingredient is
that we use those spheres with tubes which are obtained by doubling disks
with strips and tubes. Here we give only a sketch. More details will be given
in [K].

Given a grading-restricted conformal open-string vertex algebra V O of
central charge c, vertex operator algebras V LC and V RC of central charge
c and c̄, respectively, and homomorphisms hL : V LC → C0(V O) and hR :
(V RC)− → C0(V O). Let WO, WLC and WRC be the modules for the Vira-
soro algebra generated by 1O, 1LC and 1RC (the vacuums for these algebras),
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respectively. By the isomorphism theorem in [H6], there are meromorphic
K̃c-associative algebra (V LC ,WLC ,ΨL) and meromorphic K̃ c̄-associative al-
gebra (V RC ,WRC ,ΨR) constructed from the vertex operator algebras V LC

and V RC , respectively. Let Ψ = ΨL ⊗ΨR.
By Theorem 5.4, there is a differentiable Υ̃c-associative algebra (V O,WO,ΦΥ)

constructed from V O. Note that Υ̃c is actually a partial suboperad of S̃c. So
this differentiable Υ̃c-associative algebra gives us part of a differentiable-
meromorphic algebra structure over S̃c. In general, the construction of
the differentiable-meromorphic algebra over S̃c can be obtained using the
meromorphic K̃c-associative algebra (V LC ,WLC ,ΨL) and meromorphic K̃c-
associative algebra (V RC ,WRC ,ΨR), the differentiable Υ̃c-associative algebra
(V O,WO,ΦΥ) and the homomorphisms hL and hR. The action of the K̃c-
associative algebra (V LC⊗(V RC)−,WLC⊗(WRC)−,Ψ) is also obtained using
the homomorphisms hL and hR. Thus we have a functor from the category of
objects of the form (V O, V LC , V RC , hL, hR) to the category of differentiable-
meromorphic pseudo-algebra over S̃c.

Now given a differentiable-meromorphic pseudo-algebra over S̃c, by the
definition and the isomorphism theorem in [H6], we know that there are
vertex operator algebra structures of central charge c and c̄ on V LC and V RC ,
respectively. In particular, we have vacuums 1LC ∈ V LC and 1RC ∈ V RC .
Since Υ̃c is actually a partial suboperad of S̃c, by Theorem 5.4, we also obtain
a grading-restricted conformal open-string vertex algebra structure of central
charge c on V O. For z ∈ H, we consider an element Ω(z) of Υ(0; 1) which
is the conformal equivalence class containing the following disk with strips
and tubes of type (1, 0; 0, 1): The disk Ĥ with the boundary puncture∞ and
the interior puncture z and with the standard local coordinates vanishing at
these punctures. Then

Φ0(ψS
0 (Ω(z))) ∈ HR+

V O,WO;V LC⊗(V RC)−,WLC⊗(WRC)−(0; 1)

= Hom(V LC ⊗ (V RC)−, V O).

By Condition 6 in Definition 5.6, we know that Φ0(ψS
0 (Ω(z))(vL ⊗ 1RC) is

meromorphic in z with the only pole z =∞. In particular,

lim
z→0

Φ0(ψS
0 (Ω(z)))(vL ⊗ 1RC)

exists. We define

hL(vL) = lim
z→0

Φ0(ψS
0 (Ω(z))(vL ⊗ 1RC).
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Thus we obtain a linear map hL from V LC to V O. It is easy to see that
the image of hL is in fact in C0(V O) and hL is a homomorphism from V LC

to C0(V O). Similarly we can construct hR. Now we have a functor from
the category of differentiable-meromorphic pseudo-algebra over S̃c to the
category of objects of the form (V O, V LC , V RC , hL, hR).

From the isomorphism theorem in [H6], Theorem 5.4 and the construction
of the two functors above, we see that these two functors are inverse to each
other.

In particular, we have:

Corollary 5.9 Let V be a grading-restricted conformal open-string vertex
algebra of central charge c. Then V gives a natural structure of an alge-
bra over S̃c in the sense that (V,C0(V ), C0(V )−) has a natural structure of
differentiable-meromorphic algebra over S̃c.

Proof. We have a grading-restricted conformal algebra V and a vertex op-
erator algebra C0(V ). Let hL, hR : C0(V ) → C0(V ) be the identity map.
Then hL and hR are homomorphisms from C0(V ) to the meromorphic center
of V . Then Theorem 5.8 gives (V,C0(V ), (C0(V ))−) a natural structure of
differentiable-meromorphic algebra over S̃c.
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