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In the present paper, we solve the problem of constructing a genus-zero full con-
formal field theory (a conformal field theory on genus-zero Riemann surfaces
containing both chiral and antichiral parts) from representations of a simple
vertex operator algebra V satisfying the following conditions: (i) V{,) = 0 for
n < 0, Vioy = C1, and Wy = 0 for any irreducible V-module W which is
not equivalent to V. (ii) Every N-gradable weak V-module is completely re-
ducible. (iii) V' is Cy-cofinite. Note that the last two conditions are equivalent
to a single condition that every weak V-module is completely reducible (see
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Conformal field theories in its original form, as formulated by Belavin,
Polyakov and Zamolodchikov [BPZ] and by Kontsevich and Segal [S1] [S2] [S3],
have both chiral and antichiral parts. The fundamental work [MS1] [MS2] of
Moore and Seiberg is also based on the existence of such full conformal field
theories with both chiral and antichiral parts. In mathematics, however, it is
mostly chiral conformal field theories that are constructed and studied. To
use conformal field theory to solve mathematical problems and to understand
mathematical results such as mirror symmetry, we need full conformal field
theories, not just chiral or antichiral ones.

In the case of conformal field theories associated to tori, Tsukada first con-
structed and studied these theories mathematically in his Ph. D. thesis under
the direction of I. Frenkel (see [Ts]). Assuming the existence of the structure
of a modular tensor category on the category of modules for a vertex opera-
tor algebra, the existence of conformal blocks with monodromies compatible
with the modular tensor category and all the necessary convergence properties,
Felder, Frohlich, Fuchs and Schweigert [FFFS] and Fuchs, Runkel, Schweigert
and Fjelstad [FRS1] [FRS2] [FRS3] [FFRS] studied open-closed conformal field
theories (in particular full (closed) conformal field theories) using the theory of
tensor categories and three-dimensional topological field theories. They con-
structed correlation functions as states in some three-dimensional topological
field theories and they showed the existence of consistent operator product ex-
pansion coefficients for bulk operators. However, since these works were based
on the fundamental assumptions mentioned above, an explicit construction of
the corresponding full conformal field theories, even in the genus-zero case, is
still needed.

In [KO], Kapustin and Orlov studied full conformal field theories associated
to tori. They introduced a notion of vertex algebra which is more general than
the original notion of vertex algebra [Bo| or vertex operator algebra [FLM] by
allowing both chiral and antichiral parts. In [R1] and [R2], Rosellen studied
these algebras in details. However, the construction of the full conformal
field theories associated to affine Lie algebras (the WZNZ models) and to
the Virasoro algebra (the minimal models) was still an open problem. More
generally, we would like to construct full conformal field theories from the
representations of a vertex operator algebra satisfying reasonable conditions.
Also, since the braid group representations obtained from the representations
of these vertex operator algebras are not one dimensional in general, it seems
that the corresponding full conformal field theories in general do not satisfy
the axioms for the algebras introduced and studied in [KO], [R1] and [R2].



In [H7], [H8] and [H10], the first author constructed genus-zero chiral the-
ories, genus-one chiral theories and modular tensor categories from the rep-
resentations of simple vertex operator algebras satisfying the three conditions
above. Since modular tensor categories give modular functors (see [Tu] and
[BK]), these results also give modular functors. One of the remaining prob-
lems is to construct a full conformal field theory from a chiral theory and
an antichiral theory obtained from the chiral theory. In the present paper,
we solve this problem in the genus-zero case by constructing a full conformal
field theory corresponding to what physicists call a diagonal theory (see, for
example, [MS3]) from the representations of a simple vertex operator alge-
bra satisfying the conditions above. The same full conformal field theory is
also constructed by the second author using the theory of tensor categories
in [K]. The genus-one case and the higher-genus case can be obtained from
the construction of the genus-zero theories in this paper and the properties of
genus-one and higher-genus chiral theories. These will be discussed in future
publications.

Technically, we construct a genus-zero full conformal field theory as follows:
We first introduce a notion of full field algebra and several variants, which are
essentially algebraic formulations of the notion of genus-zero full conformal
field theory (for a precise discussion of the equivalence of this notion of full
field algebra and its variants with geometric formulations of genus-zero confor-
mal field theories in terms of operads, see [K]). For a simple vertex operator
algebra satisfying the three conditions above, by the results in [H7], we have an
intertwining operator algebra, which is equivalent to a genus-zero chiral con-
formal field theory (see [H3] and [H4]). The genus-zero chiral conformal field
theory also gives a genus-zero antichiral conformal field theory. We construct
a nondegenerate bilinear form on the space of intertwining operators and use
this bilinear form to put the genus-zero chiral and antichiral conformal field
theories together. We show that the resulting mathematical object is a full
field algebra satisfying additional properties and thus gives a genus-zero full
conformal field theory. One interesting aspect of our construction is that our
construction (actually the proof of the nondegeneracy of the bilinear form on
the space of the intertwining operators) needs the theorem proved in [H9] (see
also [H6]) stating that the Verlinde conjecture holds for such a vertex operator
algebra. This theorem in [H9], and thus also our construction of genus-zero
full conformal field theories, depend not only on genus-zero chiral theories
constructed in [H7], but also on genus-one chiral theories constructed in [H8].

This paper is organized as follows: In Section 1, we introduce the notion



of full field algebra and several variants and discuss their basic properties. In
Section 2, we discuss basic relations between intertwining operator algebras
and full field algebras. This is a section preparing for our construction in
Section 3. Our construction of full field algebras is given in Section 3. We
also construct invariant bilinear forms on these full field algebras in the same
section.

Acknowledgment The first author is partially supported by NSF grant
DMS-0401302.

1 Definitions and basic properties

Let F,(C) = {(#1,...,2,) € C" | z; # z; if i # j}. For an R-graded vector
space F' =[], g Fir), we let F' =[], g Fir) be the algebraic completion of F.
For r € R, let P, be the projection from F or F to Fiy. A series > fnin Fis
said to be absolutely convergent if for any f' € F', > |{(f', fa)| is convergent.
The sums Y |(f’, fn)| for f' € F' define a linear functional on F’. We call this
linear functional the sum of the series and denote it by the same notation » f,.
If the homogeneous subspaces of F' are all finite-dimensional, then F' = (F')*
and, in this case, the sum of an absolutely convergent series is always in F.
When the sum is in F, we say that the series is absolutely convergent in F.

Definition 1.1 A full field algebra is an R-graded vector space F' = [, g Fr)
(graded by total conformal weight or simply total weight), equipped with cor-
relation function maps

My, : Fe" xF,(C) — F
(U1 @« @ Un, (21, .-y 2n)) = Mp(Uty. ., Un} 21521, -« s Zns Zn),

for n € Z, and a distinguished element 1 called vacuum satisfying the following
axioms:

1. Forn € Zy, mn(U1, ... Un; 21, 21, - - - 5 Zn,y 2n) 1S linear in wy, ..., u, and
smooth in the real and imaginary parts of 2y, ..., z,.

2. Foru € F, my(u;0,0) = u.
3. ForneZy,uy,...,u, € F,

M1 (U1y e ooy Uny 1521, 20, ooy Zny Zny Znt 1y Zntl)

= Mp(Ul, ooy Ui 215 21y« Zny Zn)-



(1) (k)

4. The convergence property: For k,ly,... Iy € Z, and ugl), N RETERN /s
(k) € F', the series
1 (1 (1
Z mk(Prlmh(ug): ul(l),2§),25§ )a" Zl(l),zl(l))a'--a
T1,5---sTk
k k k 0 0
P, my, (u; ( ),...,ul( ) z§ ),z§ ),.. zl(k),zl(k)) z§ ),z§ ),.. z,(c), ,(c))
(1.1)
converges absolutely to
My 4ot b (ugl), ey u(]]:) (4 z%o), Z§ )+ z§°), . zl(ll) + z(o)
20+ 29, ¢ ) + 2020 420k 10, 420,
(1.2)

When 129 + 129 < |z z](-0)| fori,j =1,...,k, i # j and for p =

Sliand g=1,... ;.

The permutation property: For any n € Z, and any o € S,,, we have

M (Ut -+« 3 U 215 215 - - 5 Zny Zn)
= M (Us(1), - - - » Yo (n); Zo(1)> Zo(1)s - - - » Za(n)s Zo(n)) (1.3)

for uy,...,u, € F and (2,...,2,) € F,(C).
Let d be the grading operator, that is, the operator defined by df = rf

6.
for f € Fi;). Thenforn € Z,a € R, uy,...,u, € F,
ad . — _
(& mn(U1,...,Un,Zl,Zl,...,Zn,zn)
ad ad . a a= a a=
= my (€U, ..., "%y e%21,€%21, ..., €% 2, e"Z,).

We denote the full field algebra defined above by (F,m, 1) or simply by F.
In the definition above, we use the notations

M (U1, - -y Unj 21,21 -« - Zny Zn)

instead of
Mo (Uty ooy Ui 21y« -y 2n)



to emphasis that these are in general not holomorphic in zi, ..., z,. For v’ €
F' uy,...,u, € F,

(W', mp (U, o Uns 21521 - oy 2y Zn))

as a function of zq,...,z, is called a correlation function. Homomorphisms
and isomorphisms for full field algebras are defined in the obvious way.

Remark 1.2 Note that in the convergence property, we require that the mul-
tisum is absolutely convergent. This is stronger than the following convergence
property: For k,l € Z, and uq,...,ugx_1,v1,...,v € F, the series

ka(ul,...,uk_l,Prml(vl,...,vl;zg) zgk),...,z(k) _l( ));

0) (0 0) (0
Z:E )7Z§_ )""’ZIE:)VZIE:))

converges absolutely to

(0) (0) (0)
mk—|—l(u1a"'auk LU, -5 U281 521 "5 e ey B 1

202 129 20 L 2O k420 g 4+ 2.

when z 752 fori,j=1,...,k and \z,(,k)| < \z,(co) —zfo)\ fori=1,...,k—1,
and for p=1,...,1. However, for the purpose of constructing genus-zero con-
formal field theory satisfying geometric axioms, this version of the convergence
property is actually enough.

Let (F,m, 1) be a full field algebra and let

Y: F®2xC* — F
(u®wv,2,2) — Y(u;z,2)v
be given by
Y(u; 2, 2)v = ma(u @ v; 2, 2,0,0)

for u,v € F. The map Y is called the full vertex operator map and for u €
F, Y(u; z,2) is called the full vertex operator associated to u. We have the
following immediate consequences of the definition:

Proposition 1.3 1. The identity property: Y(1;z,2) = Ip.
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2. The creation property: lin(l) Y(u; 2,2)1 = u.
zZ—r

3. For f e F,

d,Y(u; 2z, 2)] = <Z62z + z%) Y(u; 2, 2) + Y(du; 2, 2) (1.4)

4. The total weight of the vacuum 1 is 0, that is, d1 = 0.
Proof. For u € F,

Y(1;2,2)u = ms(1,u;z,2,0,0)

ms(u,1;0,0, 2, 2)

= m (’LL, O; 0)
= u.
Foru e F,
ll_r)% Y(u;2,2)1 = ll_I)% mo(u,1;2,2,0,0)

= limm(u; 2, 2)
z—0

my (’LL, 07 0)
u.
For u,v € F and a € R,
eY(u;2,2)v = Y(e®u;ez, e*2)e . (1.5)

Taking derivatives of both sides of (1.5) with respect to a, letting a = 0 and
noticing that v is arbitrary, we obtain (1.4).
From the identity property,

Then by (1.4), we obtain
[d,Y(1; 2, 2)] = Y(d1; 2, 2). (1.6)
Since Y(1;2,%2) = Ip, (1.6) gives

Y(d1; 2, z) = 0. (1.7)
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Applying (1.7) to 1, taking the limit z — 0 on both sides of the resulting
formula and using the creation property, we obtain d1 = 0. So the total
weight of 1 is 0. |

Now we discuss two important properties of full field algebras which follow
also immediately from the definition.

Proposition 1.4 (Associativity) For ui,us,us € F,

Y(ur; 21, 21)Y(ug; 22, Zo)us = Y(Y(u1; 21 — 29, 21 — Zo)Us; 29, Z2) U3 (1.8)
when |z1| > |z9| > |21 — 22| > 0.
Proof. 'The convergence property says, in particular, that the series

Y(us; 21, 21) Y (ua; 22, Z2)us = Y Y(ua; 21, 21) P Y(ug; 22, Zo)us, (1.9)
neR

(a product of full vertex operators) converges absolutely in F' for uy,us, us € F
when |z;| > |z3| > 0. The convergence property also says, in particular, that
the series

Y(Y(u1; 21 — 22,21 — Z2)usg, 29, Z2)Us3

= ZY(PnY(’U,l, 21 — 29, 21 —_ 22)11,2, 29, 52)11,3 (110)
neER

(an iterate of full vertex operators) converges absolutely for u,us,us € F
when |z5| > |21 — 22| > 0. Moreover, the convergence property also says that
both (1.9) and (1.10) converge absolutely to

m3(u1; U2, U3; 21, 21: 22, 227 O: 0)

This proves the associativity. |

Proposition 1.5 (Commutativity) For uy,us, us € F,

Y(u; 21, 21) Y(us; 29, Z2)us, (1.11)
Y(ug; 22, 22)Y(uq; 21, 21 )us, (1.12)

are the expansions of
m3(u1; U2, U3; 21, 21: 22, 227 O: 0)

in the sets given by |z1| > |22] > 0 and |z9| > |21| > 0, respectively.
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Proof. By the convergence property, we know that (1.11) and (1.12) converge
absolutely to

ma(u1, Uz, u3; 21, 21, 22, 22, 0, 0)
and

mg (g, U1, us; 22, Z2, 21, 21, 0, 0),
respectively, when |z;| > |23] > 0 and |z2| > |z1| > 0, respectively. By the
permutation property,

ma(u1, Uz, us; 21, 21, 22, 22, 0, 0) = ma(uy, uy, us; 22, 22, 21, 21,0, 0).
Thus (1.11) and (1.12) converge absolutely to
mg(uy, ug, Us; 21, 21, 22, Z2, 0, 0)

when |z1] > |22] > 0 and |z2] > |21| > 0, respectively. So they are the
expansions of
m3 (U1, Uz, uz; 21, 21, 22, 22, 0, 0).

in the sets given by |2z1| > |22| > 0 and |z3| > |21| > 0, respectively. |

Before proving more properties, we would like to discuss first the problem
of constructing full field algebras. It is clear that vertex operator algebras have
structures of full field algebras. Let (VL YL 1F wl) and (VE, YE 18 wE) be
two vertex operator algebras. Consider the graded vector space VI @ V&
equipped with the correlation function maps, the vacuum and the operator

d given as follows: For n € Z,, uf,...,ut € V¥ and uf, ... uf € VE
my(uf @ult ... ul@ul; 2,21, . .., 2, Z,) are given by the analytic extensions
of

(Yo (uy, 21) ® Vi, 21)) -+ (V5 (uys 20) ® Y (uy, 2)) 1

Then we take the vacuum 1 = 17 ® 1% and the operators d = L¥(0) ® Iyr +
I,z ® LE(0). In particular, the full vertex operators are given by

Y(u" @ uff, 2)v" @ v = YE (", 2)v" @ YEuR, 2)v".

for uf vt € VL uR B € VE and 2 € C*.
We have:

Proposition 1.6 The vector space VI @ VE equipped with the correlation
function maps and the vacuum 1 given above is a full field algebra.



Proof. The proof is a straightforward and easy verification. |

Note that there is also a vertex operator algebra structure on V% @ V£,
For simplicity, we shall use the notation V' @ V' to denote both the vertex
operator algebra and the full field algebra structure. It should be easy to see
which structure we will be using in the remaining part of this paper.

The full field algebra VF @ V® in general does not give a genus-one theory,
that is, suitable g-traces, even in the case that they are convergent, of the
full vertex operators in general are not modular invariant. For chiral theories,
we know from [H8| that if we consider the intertwining operator algebras con-
structed from irreducible modules for suitable vertex operator algebras, we do
have modular invariance. So it is then natural to look for full field algebras
from suitable extensions of VI ® VE by V' @ VE-modules.

Note that V¥ ® VE has an Z x Z-grading with grading operators being
LE(0)® Iyr and Iyr @ LR(0). If a full field algebra is an extension of VI ®@ V£
by VE ® VE-modules, it has an R x R-grading.

For any R x R-graded vector space F' = [, ,ycrxir Fimn), We have a
left grading operator d* and a right grading operator d® defined by d*u =
mu, d®u = nu for u € E,, ), where m (n) is called the left (right) weight of u
and is denoted by wtfu (wtfu). For m,n € R, let P, be the projection from
F — Fiymn). We still use F' and F to denote the graded dual and the algebraic
completion of F', but note that they are with respect to the R x R-grading,
not any R-grading induced from the R x R-grading.

Definition 1.7 An RxR-graded full field algebra is a full field algebra (F,m, 1)
equipped with an R x R-grading on F' (graded by left conformal weight or left
weight and right conformal weight or right weight and thus equipped with left
and right grading operators d* and d®) and operators D and DF satisfying
the following conditions:

1. The grading compatibility: d = d + d%.

2mi(d"—d®) _ 1

2. The single-valuedness property: e P

(1) (1) (k)

3. The convergence property: Fork,ly,...,ly € Zyanduy’, ... u; 7, ..., u)
.,ul(:) € F, the series
1 1), (1) (1 1) (1
Z mk(Ppl,qlmll(ug ), e, ul(l); zg ), zg ), e, zl(l), zl(l)), el
P1,91;,---,Pk>qk
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k k k k k 0 0) (0
Ppk,kalk(ug)"' ul(k) Z§ )7Z§ )’ Zl(k)’zl(k)) Z§)’Z§ )""’Zl(c)’zl(c))

(1.13)
converges absolutely to (1. 2) when |2$] + |2 \ < \z (-0)\ fori,j =
Lk,i#Fjandforp=1,...,andg=1,...,1;.
4. The d*- and d®-bracket properties: For u € F,
[d", Y(u;2,2)] = Z%Y(u; 2,2) + Y(d"u; 2, 2) (1.14)
[d®, Y(u;2,2)] = E%Y(u; z,2) + Y(d®u; 2, 2). (1.15)

5. The DY- and D®-derivative property: For u € F,

0 _
&Y(u, 2,Z), (1.16)

0 _
£Y(u,z, zZ). (1.17)

We denote the RxR-graded full field algebra defined above by (F, m, 1, D, D®)
or simply by F'. But note that there is a refined grading on F' now.

(D", Y(u; 2, 2)] = Y(D"u; 2, 2) =

(D, Y(u; 2, 2)] = Y(D"u; 2, 2) =

Remark 1.8 Note that for R x R-graded full field algebra, there is also a
weaker convergence property similar to the one in Remark 1.2.

Remark 1.9 The single-valuedness property actually says that F' is graded
by a subgroup {(m,n) € RxR|m—n € Z} of R x R. This single-valuedness
indeed corresponds to a certain single-valuedness condition in the geometric
axioms for full conformal field theories.

We have the following immediate consequences of the definition above.

Proposition 1.10 1. The pair (left weight, right weight) for 1 is (0,0),
that is, d'1 = df1 = 0.

2. The pairs (left weight, right weight) for D* and D® are (1,0) and (0,1),
respectively, that 1s,

[d",D"] = D,
[d%, D' = o,
[d", D] = o0,
[df® Df] = D~
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3. D1 = DE1 =0.

Proof. From the identity property,

0
zaY(l; z,z) = 0.
Then by (1.14), we obtain

[d",Y(1;7,2)] = Y(d"1; 2, 2). (1.18)
Since Y(1; z, Z) = Ir, we obtain
Y(d*1;2,2) =0 (1.19)

from (1.18). Applying (1.19) to 1, taking the limit 2 — 0 on both sides of
(1.19) and using the creation property, we obtain d*1 = 0. So the left weight
of 1 is 0. Similarly, we can prove that the right weight of 1 is 0.

Applying both sides of (1.14) to 1, taking the limit z — 0 and then using
the creation property and the fact d“1 = 0 we have just proved, we obtain

.0 N1
lim zaY(u, 2,Z)1=0 (1.20)

for u € F. Applying % to both sides of (1.14) and using the D-derivative
property, we obtain
[d",Y(D"u; 2, z)]
0 9
= —2z—Y(u;2,2) + Y(D"d"u; 2, 2)
z
0 0 0
=z———Y(u;2,2) + a—Y(u; z,Z) + Y(D*d"u; 2, 2)
z z

= za—Y(DLu; 2,2) + Y(D*u; 2, 2) + Y(D*d u; 2, 2). (1.21)
z

Applying (1.21) to 1, taking the limit z — 0 on both sides of (1.21) and using
the creation property, (1.20) and d“1 = 0, we obtain

d!DPu = D*u + D dlw,

proving that the left weight of D* is 1. Similarly, we can prove that the right
weight of DL is 0, the left weight of D® is 0 and the right weight of D is 1.
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Using the DX~ and D®-derivative properties and the creation property, we
see immediately that DY'1 = D®1 = 0. |

For an RxR-graded full field algebra (F, m, 1, DY, D®), we now introduce a
formal vertex operator map. We shall use the convention that for any z € C*,
logz = log|z| + v/—1argz where 0 < argz < 27. For u € F, we use wt” u
and wt® u to denote the left and right weights, respectively, of u. Let u,v € F
and w' € F' be homogeneous elements. We have

([ Y2, D)) = (@), Y(us 2, 2)o) — ', ¥(u; 2, 2)d")
= (wt" w' — wib o) (w', Y(u; z, 2)o) (1.22)

where (d”)’ is the adjoint of d“. On the other hand,

(w', Y(d"u; 2, 2)v + Z%Y(u; 2, Z)v)

= (WtL u+ z%) (w', Y(u; 2, 2)v). (1.23)
Let f(z,2) = (w',Y(u; 2, Z)v). Then by (1.14), (1.22) and (1.23), we have
z%f(z, z) = (wt w' — wt” v — wt” v) f(z, 2). (1.24)

Similarly, using (1.15), we have

Zagf(z, z) = (wtf w' — wt® u — wtf v) f(z, 2). (1.25)
z

The general solution of the system (1.24) and (1.25) is

Lo vl tL, iR, _tR, 1R
Czwtw wt™ u—wt vzwt w —wttu—wtto (126)

where C' € C. Note that f(z,Z) is a single-valued function and that by the
single-valuedness of the full field algebra F,

(wtl w' — wt? u — wt v) — (wt? w' — wt® u — wtf v) € Z.

. . . R, _ R
This means that if we choose any branches of z and zZWt" W oWt umwtty,

then there must be a unique constant C such that f(z, z) is equal to (1.26). We
choose the branches of Zth w'—wtl u—wtl v and Zth w —wtBy—wtB o to be e(th w' —wtL u—wtL v) log 2
and e(Wt" ' —wtfu—wtfo)logz Leghactively. So there is a unique C' € C such that

wtl w' —wtl u—wtl v

7\ — wtl w' —wtl u—wtr v) log 2 (wt® w' —wt® u—wtF v) log 2
f(z,2) =Ce e . (1.27)
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Hence P, ,Y(u; 2, Z2) Py, m,n,p,q € R can be written as

p,q (p—wtlu—m)logz (q—wtB u—n)logz
upd.e e )

where ul:? are linear maps from Fy,ny — Fipq) for m,n,p,q € R. Thus we
have the following expansion:

Y(u; 2, 2) Z Y, (u)el=1=Y Jlog zg(—r—1) log 2 (1.28)

r,s€R

where Y;,(u) € End F with wt'Y;,(u) = wtfu — [ — 1 and wt®Y,, (u) =
wtfy — r — 1. Moreover, the expansion above is unique. Let z and Z be
independent and commuting formal variables. We define the formal full vertex
operator Yy associated to u € F' by

(u;z,7T) Z Y, (u)z™ e (1.29)

l,reR

These formal full vertex operators give a formal full vertex operator map
Y;: F®F — F{z,z}.

For nonzero complex numbers z and (, we can substitute e"1°% and e®!°8¢ for
2" and Z°, respectively, in Y;(u;,Z) to obtain a map Ya,(u;2,() : F — F
called the analytic full vertex operator map.

The following propositions are clear:

Proposition 1.11 Foru € F and z,{ € C*, we have
Yon (u;2,¢) = zdLCdRY(z’dLC’dRu; 1, l)z’dLC’dR. (1.30)
For formal full vertex operators, we have
Yi(u;2,7) = 2V 7Y (2 7 1,1) 2 5" (1.31)
Proposition 1.12 Foru € F,
Y/ (1;2,2)u = u, (1.32)
lim Y¢(u;z,2)1 = u, (1.33)

z—0,2—0

where lim,_,¢ 7,0 means taking the constant term of a power series in x and
z. In particular, Y, ,(u)1 =0 for alll,7 € R and Y_; _1(u)1 = u.
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Proposition 1.13 For u € F', we have

D" Yyl ®)] = Y, (D'wind) = S Vjwiww),  (134)
[DR,Yf(w;x,a_c)] = Y;(D"w;z,7) = %Yf(w,x,ac). (1.35)

In particular, we have D*1 = D®1 =0 and for I,r € R,

[D")Y,, (v)] = Y., (D"u) =—1Y_1,(u), (1.36)

DR, Y, (u)] Y, (DPu) = —rY;,_i(u), (1.37)

3 3

We need the following strong version of the creation property:
Lemma 1.14 Foru € F,
Yy (u; 2, 7)1 = 2P 0%y, (1.38)
Proof. Using (1.34) and (1.35), we have
Yy (e®oP 200y 0 7)) = Yy(uyz + 20, T + To). (1.39)

Now let both sides of (1.39) act on the vacuum 1. Since Y (u;z + o, Z + o)1
involves only nonnegative integer powers of  + xy and = + zy, we can take the
limit £ — 0,Z — 0. Then replacing o and Ty by = and Z, we obtain (1.38). B

Proposition 1.15 (Skew symmetry) For any u,v € F and z € C*, we
have

Y(u; 2, 2)v = 2P 2P Y(v; —2, Z2)u (1.40)

and
L, =R ; _
eD*+zD Yi(v;e™z, e

Yi(usz,Z)v=e ™Z)u. (1.41)

Proof. From the convergence property, it is clear that, for any u,v € F,
Y(Y(u; 21 — 22,21 — 22)0; 29, 22) 1 (1.42)
converges absolutely to mz(u,v, 1; 21, 21, 22, 22,0,0) when |23 > |21 — 25| > 0,

and
Y(Y(v; 20 — 21, 22 — Z1)u; 21, 21)1 (1.43)
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converges absolutely when |z1| > |21 — 23| > 0 to m3(v,u, 1; 29, 29, 21, 21, 0, 0)
which is equal to mg(u,v,1; 21, 21, 29, Z2,0,0) by the permutation property.
Hence, using (1.38), we obtain

L, 5 R L5 R
ezzD +2Z2D Y( 21D"+zZ1D Y(

Uy 21 — 29,21 — Z2)U = € V20 — 21,20 — Z1)u (1.44)
when |22| > |21 — 22| > 0 and 21| > |21 — 22| > 0. We change the variables
from 21,29 to 2 = z; — 25 and zy. Then (1.44) gives

2D 2Dy (y: 5 7Yy = 2D H@ D Yy (), o)y (1.45)
when |23 > [z| > 0 and |23 + 2| > |2| > 0.

Notice that for fixed z # 0 and w' € F”,
(W', e2P 2Py (u; 2, 7)v) (1.46)

involves only positive integral powers of z5, 2z and thus is a power series in z,
and zy absolutely convergent when |z3| > |z| > 0. From complex analysis, we
know that a power series in two variables z; and (, convergent at z; = 29 and
¢ = ¢J must be convergent absolutely when |z < [29] and [(3| < |Q]. In
particular, when ¢J = 29, such a power series must be absolutely convergent
when |z5] < [29] and (, = Z. In our case, since for any fixed z, (1.46) is
absolutely convergent when |z5| > [2| > 0, we conclude that (1.46) converges
absolutely for all z;. Since w' is arbitrary, we see that the left-hand side of
(1.45) is absolutely convergent in F for all z,. Since z is also arbitrary, by
the convergence property again, we see that the left-hand side of (1.45) is
absolutely convergent in F for all z and z such that z # 0. Similarly, the
right hand side of (1.45) also converges absolutely in F for all z and 2, such
that z # 0.

If g=22P"—22D" gives a linear operator on F', then we can just multiply both
sides of (1.45) by e~»P"~2DP" to obtain (1.40). In the case that the total
weights of F' is lower-truncated, e D" ~2D" ig indeed a linear operator on F.
In the most general case, this might not be true. But we can still obtain (1.40)
as follows: Consider the formal series

Lo~ PR .,.PnLi~ PR
emlD +z1D eng +ZoD Y(

U T, TV

_ e(w1+$2)DL+(E1+§I2)DRY(u; z, .f)?) (147)

where z, T, x1, T1, ¥9 and Ty are commuting formal variables. Since Y(u; z, Z)v
is absolutely convergent in ' when z # 0, we can substitute z, Z, —zo, —Z2o, 2o
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and 2, for z, T, x1, Z1, 2 and Ty on the right-hand side of (1.47), respectively,
and the resulting series is absolutely convergent in . So we can do the same
substitution on the left-hand side of (1.47) and the resulting series is absolutely
convergent in F. Similarly, consider the formal series

v;e™x, e ™ T)u

_ e(m+m+m)DL+(i'1+i‘2+f)DRY(U; 6“.’1), e_m;i‘)u, (148)

L, = R L = = R
each +z1D e($2+$)D +(Z2+z)D Y(

Since e*P“+2P"Y(v; —z, —Z)u is absolutely convergent in F when z # 0, we

can substitute z, z, —zo, —Z», 2o and 2z, for z, T, x1, T1, 2 and Z, on the
right-hand side and thus also on the left-hand side of (1.48) and the resulting
series is absolutely convergent in F. The convergence of these series and (1.45)
with suitably chosen 2z gives (1.40)

Now (1.41) follows immediately: On the one hand, by (1.31), we have

2V 7Y (2 7V 1, 1) Ve = Y (u;z, Z)v. (1.49)
On the other hand, we have
de:EdLeDL+DRY(3:_dL 7y —1, —1)x_dLi_dLu
= "D HEDTY  (y; e, e ™ T u. (1.50)
Using skew symmetry (1.40), (1.49) and (1.50), we obtain (1.41). n

Definition 1.16 An RxR-graded full field algebra (F, m, 1, D¥, D®) is called
grading restricted if it satisfies the following grading-restriction conditions:

1. There exists M € R such that F,,,) =0if n < M or m < M.
2. dim Fiy, ) < 00 for m,n € R.

We say that F' is lower truncated if F' satisfies the first grading restriction
condition.

In this case, for u € F' and k € R, we have ), _, Y;.(u) € End F with
total weight wt u — k — 2. We denote >, ., Y; . (u) by Yx_;(u). Then we
have the expansion

Yi(usz,2) = ZYk(u)x_k_l, (1.51)

kER

where wt Y, (u) = wt u — k — 1. For given u,v € F, we have Y, (u)w = 0 for
sufficiently large k.
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Let (VI YE 11 wE) and (VE, YE 18 wR) be vertex operator algebras. Let
p be an injective homomorphism from the full field algebra V@V £ to F. Then
we have 1 = p(17®1%), dXop = po (LY (0)®Iyr), dfop = po (I,L ® LE(0))),
DYop=po(LE(—1)® I r) and DRop = po (I, ® L®(—1)). Moreover,
F has a left conformal element p(w” ® 1%) and an right conformal element
p(1 ® wf). We have the following operators on F':

) = Res,Res;77'Y;(p(w” ® 1%); 1, 7),
0) = ResyRes;z7'Y;(p(1* @ w"); 7, 7),

) = ResyReszzz27'Yf(p(w” ® 17); 2, 7),

) Res,Res;z7'2Y; (p(1* ® wh); z, 7).

Since these operators are operators on F', it should be easy to distinguish them
from those operators with the same noptation but acting on V% or V£,

Definition 1.17 Let (VL YL 1L w%) and (VE YE 12 w!) be vertex opera-
tor algebras. A full field algebra over V' @ V' is a grading-restricted R x R-
graded full field algebra (F,m, 1, DY, D®) equipped with an injective homo-
morphism p from the full field algebra V¥ @ V% to F such that d* = L%(0),
d® = L%(0), D* = LY(-1) and D® = LE(-1).

We shall denote the full field algebra over VI ® VE defined above by
(F,m, p) or simply by F.

The following result allows us to construct full field algebras using the
representation theory of vertex operator algebras:

Theorem 1.18 Let (VL Y 15 wh) and (VE YR 18 WE) be vertex operator
algebras. Let (F,m, p) be a full field algebra over VL@V E. Then F is a module
for VE@VE viewed as a vertex operator algebra. Moreover, Y¢(-,z,z), is an

intertwining operator of type ( FFF)

Proof. Let Y*® be the vertex operator map for the full field algebra p(V* ®
VE). Then we have

Yo (p(ut @ u®); 2, 2) p(v* @ vF) = p(YE(ul, 2)v" @ YE(uf, 2)v®)  (1.52)

for ul, vl € VL, uft v® € VE and 2 € C*.
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Now we show that a splitting formula similar to (1.52) holds for vertex
operators of the form Y(p(u* ® u®);2,2z) : F — F. By the associativity of Y,
we have

(w', Y(p(u" ® u™); 21, 21) Y(p(v" ® v); 22, 22)w)
= (w', Y(Y2E (p(u* @ u®); 21 — 22, 21 — Z2) p(v" @ v%); 20, Zo)w)
(1.53)

when |21 > [z0] > |21 — 22| > 0 for ul, vl € VE uf v® € VR w € F and
w' € F'. Take v* = 17 and u®, v = 1%. Then we have

(w', Y(p(u" ® 1%); 21, 21)w)

= (W', Y(p(u" @ 1%); 21, 21) Y(1; 22, Z2)w)

= (W', Y(YEE (pu* @ 17); 21 — 29,21 — 2) p(1F @ 17); 29, Z0)w)

= (W, Y(p((YE(u", 21 — 2)1") @ 1%); 25, Zp)w) (1.54)
Since the right-hand side of (1.54) is independent of z;, so is the left-hand side.
Thus we see that Y(p(ul ® 1%), 2, 2) depends only on z for all uX € VL and
we shall also denote it by YZ(u”, z). (Since it acts on F, there should be no
confusion with the vertex operator Y”(u”, 2) acting on V*.) So Y*(u”,z2) is a

series in powers of z. But YZ(u”, 2) is also single valued. So by (1.28), there
exists u” € End F for n € Z such that wt* vt = wt u* —n — 1, wt® ul =0

and
L, L\ _ L,-n-1
Yo(u®, 2) = E Uy 2 .
nEZL

Similarly, Y(p(1¥ ® uf);2,2) depends only on z and will also be denoted
by Y#(u®,z). (There should also be no confusion with the vertex operator
YE(u®, 2) acting on VE.) For u® € V% there exists uff € End F forn € Z
such that wt® uf = wt u® —n — 1, wt& u® = 0 and

YR, 2) = Z ulty L
nez

We also have the formal vertex operator maps, denoted using the same nota-
tions YX and Y£, associated to Y% and Y ® given by

YE@h, z) = Z ubg™ !,

neL

YRR 3) = Z ultz !

nez
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for u? € VI and u® € V£
Foruf e Vi uf e VRBand w € F,w' € F',

(W', Y (", 2)Y*(u®, Z)w) = (W', Y(p(u" ®1%); 21, 21)Y(p(1" @u"); 22, Z2)w)
(1.55)
is absolutely convergent when |z;| > |25| > 0, and

(W', YE®, )Y (ul, 20)w) = (W', Y(p(1* @u®); 20, 2) Y(p(u* @1%); 21, 21 )w)
(1.56)
is absolutely convergent when |z5| > |21| > 0. They are both analytic in z; and
Zy. By the convergence property for full field algebras, both side of (1.55) and
(1.56) can be extended to a same smooth function on {(z1,2;) € (C*)?|z; #
2 }. Since the complement of the union of the sets of convergence of (1.55) and
(1.56) in {(21,22) € (C*)?|21 # 29} is of lower dimension, by the properties
of analytic functions, it is clear that the extended smooth function is actually
analytic on {(z1, z2) € (C*)?|2; # 22}.
By associativity, we have

(w', YE(®, 2))YRW®, Z)w) = (W', Y(p(YF(ul, 21 — 22)1%) @ u®); 29, Z2)w)

(1.57)
when |z1] > |z2] > |21 — 22| > 0. The right-hand side of (1.57) has a well-
defined limit as z; goes to zp. Therefore (1.55) and (1.56) can be further
extended to a single analytic function on {(z1,2;) € (C*)?}. This absence
of singularity further implies that the left-hand sides of (1.55) and (1.56) are
absolutely convergent and are equal for all z1,2o € C*. Let 2y = 2o = z in
(1.55), (1.56) and (1.57). Use the discussion above and the creation property
for the vertex operator map Y'', we obtain

Y(p(u" @ uf);2,2) = YE(ul, 2) YR, 2) = YEW®, 2) Y (uh, 2), (1.58)
or equivalently, in terms of formal vertex operator,

Yi(p(u* @ u®);z,7) = YE(ul, 2)YE(W®, 7) = YR, 2)YE(u,z)  (1.59)
for all uX € VI and u® € VE. In particular, we have [uL, uf] = 0 for all

m) n
uf € VI and u® € VR
Since F'is lower truncated, we have

Y/ (p(v” @ u');z,z)v € (End F)(()). (1.60)

forul e VI uft € VR and v € F.
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The associativity (1.53) together with (1.59) and (1.60) implies the associa-
tivity for the vertex operator map Y;(p(:); x,z)-. Together with the identity
property this associativity implies that F'is a module for the vertex operator
algebra VI @ VE,

Next we show that Yy (-;z, ) is an intertwining operator of type (FFF)

Since For given u,v € F, we have Y, (u)w = 0 for sufficient large k, the

lower-truncation property of Y;(-,z,z) holds. For u € F, We also have

Y/ (D" + DMyusz,z) = Yr((D* + D)u; 2, 2) a0

- (24 2)vtwnn)

= %Yf(u;x,x),

I=X

proving the D-derivative property of Y;(-;z, z).
Now, we prove the Jacobi identity for Y;(-;z,z). For any fixed r € R,
using the associativity for the full vertex operator map Y twice, we obtain

(w', Y (u", 2)) YR (u®, 2)Y(u; r, r)w)
= (', Y(p(u" @ 1%); 21, 2)Y(p(1* @ u®); 29, Z) Y(w; 7, 7)w)
= (w, Y(Y(p(u’ @ 1%); 2 — 1, 21 — 7)Y(p(1* @ u®); 20 — 1, 2 — 7)us 7, 7)w)
= (w', Y(Y* (", 2y — r)YE@WE, 2 — r)u;r, r)w)
(1.61)

when |z1], 22| > 7 > |21 — 7|, |22 — 7| >0 for all u” € VF uf e VE w,w e F
and w' € F'. By the commutativity for the full vertex operator map Y,

(w', Y (", 20)YE(u®, 2)Y(u; r, r)w) (1.62)

and
(w', Y(u;r, )Y (ul, 20 YE(u®, 2)w) (1.63)

are absolutely convergent in the regions |z1|, |z2| > 7 > 0 and r > |z1], |22 > 0,
respectively, to the correlation function

w,mg(u” & Ru”,u,w; 21, 21,22, 29,7, T . .
< ,a 4( r ]-La]-R Ra s Wy L1, #1525 2251 ’070) (]' 64)

By our discussion above, we know that the right-hand side of (1.61), (1.62)
and (1.63) are all analytic in 2; and Z, and that we can take z; = Zy in the
right-hand side of (1.61), (1.62) and (1.63). Thus after taking z; = Z,, the
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right-hand side of (1.61), (1.62) and (1.63) are analytic in z = z; = Z,. Since
the right-hand side of (1.61), (1.62) and (1.63) are the expansions of (1.64) in
the regions 7 > |21 — r|,|z2 — 7| > 0, |z1|, |22| > 7 > 0 and 7 > |z], |z2] > 0,
respectively, we see that we can also let z; = Z; in (1.64) and the result is also
analytic in z = z; = Z3. Thus we have proved that

(W, Y(Ys(p(u* @ u®); 2 — ry 2 — r)us ryr)w),
(W', Yy (p(u* @ u); 2, 2)Y(u; r, r)w),
(W, Y(u; r, 7)Yy (p(u” @ uft); z, z)w)

are absolutely convergent to
(w',my(p(u? ® 1%), p(1% @ uf), u, w; 2, 2,2, 2,7, 7,0, 0)

which is in fact analytic in z. Using the Cauchy formula for contour integrals,
we obtain the Cauchy-Jacobi identity

Res, oo ()0, ¥, (p(u ® u™); 2, 2)¥(us; 7, )
—Res,—of (2) (W', Y(u;r, 7)Y} (p(u” @ u); 2, 2)w)
= Res,— f(2)(w', Y(Y; (p(v" @ u®); 2 — r, 2 — r)u;r,m)w), (1.65)

where f(z) is a rational function of z with the only possible poles at z = 0, r, cc.
Since w and w' are arbitrary, this Cauchy-Jacobi identity gives us identities
for the components of the vertex operator Yy (u; z, z). These identities are the
component form of the Jacobi identity for Yy (u; z, z). |

Definition 1.19 Let c¢*,c® € C. A conformal full field algebra of central
charges (c*, cf) is a grading-restricted RxR-graded full field algebra (F, m, 1, D, D®)
equipped with elements w” and w¥ called left conformal element and right con-
formal element, respectively, satisfying the following conditions:

1. The formal full vertex operators Y;(w%; z,z) and Y;(w®; z, %) are Lau-
rent series in x and z, respectively, that is,

Yy (whz,2) = ) Li(n)a "

neZ

Y (whe,z) = Y L)z "2

neZ
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2. The Virasoro relations: For m,n € Z,

L

[LE(m), LF(n)] = (m—n)LE(m+n) + i—2(m3 — )G,

[LR(m), L*(n)] = (m—n)LR(m +n) + %(m? — )G 0,
[L*(m),L%(n)] = o.

3. d¥ = LX(0), d® = LE(0), D* = L*(—1) and D® = LE(-1).

We shall denote the conformal full field algebra by (F,m,1,w" w®) or
simply by F'.
We have:

Proposition 1.20 Let (F,m, 1, w" w?) be a conformal full field algebra. Then
the following commutator formula for Virasoro operators and formal full vertex
operators hold: For u € F,

[Yy (WL; T1,71), Yy (u; 29, T2)]

= Resg 5 0 ( ) Yi (Yy (w5 2o, To)u; Ta, T2), (1.66)

1 — X

T2
[Yy (WR; x1,%1), Yy (u; 29, T2)]
) Yy (Yy (w20, Zo)u; 22, 72).  (1.67)

T1 — To

= Resg, Ty 0 (

To
Proof. For any v' € F', u,v € F, we consider
(W', ma(w”, u,v; 21, 21, 20, 22, 0, 0)). (1.68)

Using the convergence property and the permutation property for conformal
full field algebras, we know that it is equal to

(W', Y(wr; 21, 21)Y(u, 29, Z2)v), (1.69)
(', Y(u; 29, 22)Y(wh, 21, 21)v), (1.70)
in the regions |z;| > |22| > 0, |22| > |z1] > 0, respectively. By the definition
of conformal full field algebra, we know that for any fixed z, # 0, (1.69)

and (1.70) are analytic as functions of z; in the regions |21 > |z2| > 0 and
|za] > |21 > 0, respectively. So (1.68) is analytic as a function of z; in the
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regions |z1| > |z3| > 0 and |z9| > |21] > 0. But we know that (1.68) is smooth
as a function of z; in C\ {22,0}. Thus (1.68) must be analytic in C \ {29, 0}.
We know that (1.68) is equal to (1.69), (1.70) and

W, Y(Y(wh; 21 — 29, 21 — Z2)u; 29, Z2)0)

in the regions |z1| > [z2] > 0, |z2| > |z1] > 0 and 25| > |21 — 22| > 0,
respectively. Since F' is lower truncated, using the Virasoro relation, we see
that Yy (w”; z, z)u and Y (w”; z, Z)v have only finitely many terms in negative
powers of x. Also using the lower-truncation property of F' and the Virasoro
relation, we see that for any w € F, (v', Y (w”; 2, Z)w) has only finitely many
terms in positive powers of x. Using these facts, we see that the singularities
21 = 29,0,00 of (1.68) are all poles. Using the Cauchy formula, we obtain the
component form (1.66).

Similarly, we can prove (1.67). n

The following is clear from the definition and Theorem 1.18:

Proposition 1.21 Let (VE YL 15 wh) and (VL YL 1L wl) be vertex oper-
ator algebras of central charges ¢ and cf, respectively. A full field algebra
(F,m, p) over V¥ @ VE equipped with the left and right conformal elements
p(w? @ 1) and p(1* @ wh) is a conformal full field algebra.

In view of this proposition, we shall call the conformal full field algebra
in the proposition above, that is, a full field algebra (F,m, p) over VI @ V£
equipped with the left and right conformal elements p(w”®1%) and p(1*@w?),
a conformal full field algebra over VL @ VE and denote it by (F, m, p) or simply
by F'.

2 Intertwining operator algebras and full field
algebras

Let VI and V® be vertex operator algebras. In the preceding section, we have
shown that a conformal full field algebra (F,m, p) over V' ® V2 is a module
for the vertex operator algebra V> @ V# and the Y;(-; z,z) is an intertwining
operator of type ( FFF) This result suggests a method to construct conformal
full field algebras from intertwining operator algebras, which are algebras of
intertwining operators for vertex operator algebras and were introduced and

studied in [H1], [H2], [H3], [H4], [H5] and [H7] by the first author.
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Let V be a vertex operator algebra and for a V-module W let C; (W) be
the subspace of V' spanned by uv_;w for u € V, = HnEZ+ Viny and w € W.
We consider the following conditions for a vertex operator algebra V':

1. Every C-graded generalized V-module is a direct sum of C-graded irre-
ducible V-modules.

2. There are only finitely many inequivalent C-graded irreducible V-modules
and they are all R-graded.

3. Every R-graded irreducible V-module W satisfies the C}-cofiniteness
condition, that is, dim W/C1 (W) < co.

In this section, we fix vertex operator algebras (V*, Y 1% w”) and (VE Y E 18 wF)
satisfying these conditions. Let AL and A% be the sets of equivalent classes of
irreducible modules for V* and for V%, respectively. Let {W5¢ | a € A"}
be a complete set of representatives of the equivalence classes in ALY and
{WH | b € AR} a complete set of representatives of the equivalence classes

in AR,

Proposition 2.1 The vertex operator algebra VY @ V® also satisfy the con-
ditions above.

Proof. Let W be a generalized VL ® VE-module. Then W is a generalized
VE_-module. So there exist vector spaces M? for a € A" such that W is
equivalent to the generalized V*-module [], 4. (W"*® M*). Since W is also
a generalized VE-module, M® must be V¥-modules. So they can be written
as direct sums of irreducible VE-modules W% b € AR So W is equivalent
t0 [Tocar pear Ngp(WEit @ WHa) where N,y € N for a € A*, b € AR, By
Proposition 4.7.2 of [FHL], WEe @ WE? are irreducible V' ® VE-modules. So
VI @ VE satisfies Condition 1. The second condition follows from Theorem
4.7.4 of [FHL]. The C;-cofiniteness follows immediately from the fact that

C(WH) @ W @ Wh @ CL (W) c Cy(Whe @ W),

This result immediately gives:
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Corollary 2.2 Let F be a module for the vertex operator algebra V' ® VE.
Then as a module for the vertex operator algebra V@ VE F is isomorphic to

H H ﬁ (WL;a)(mab)® (WR;b)(mab) (2.1)

ac AL be AR mgp=1

Let F be a module for the vertex operator algebra VX ® VZ and let v be
an isomorphism from (2.1) to F. Then there exist operators L (0) and L¥(0)
on F' given by

L*(0)p(w” @ w") = p((L"(0)w") ® w"),

L¥0)p(w” @ w®) = p(w"” @ (L¥(0)w"))
for wl € (Whe)(ma) and wk € (WHb)(ma) Clearly L*(0) and L#(0) commute
with each other.

Let ) be an intertwining operator of type ( FF F) and v an isomorphism from
(2.1) to F. Let

Y:(FRF)xC* — F
(u®v,2) = Y'(u;22)
and
Yy :F®F — F{z,1}
UV — Y%](u;:r,a_c)v
be linear maps given by

YY (u;2,2)v = zLL(O)ZLR(O))y(u’ l)z*LL(O)Z*LR(O)

and
Y}; (u;z,Z)v = xLL(O)JELR(O)y(u, 1)96*“(0)5%’*(0),

respectively, for v € F. We call Y and Y}’ the splitting and formal splitting
of Y, respectively.

Proposition 2.3 Let YV be an intertwining operator of type (FFF), YY and
Y;}’ , the splitting and formal splitting of Y, respectively, and v an isomor-
phism from (2.1) to F. Then for any a1,as € AL, by, by € AR, 1 < mygpp, <

. . . Limgqpg3a3
hap, and 1 < Mgy, < Ry, there exist intertwining operators Yaja, = °
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R;m ;b3
and yb1b2“3b3 for a3 € AL, by € AR and mazp, = 1,...,hage, of types
. (m b) R:bay(m b)
(WL7a3) agbg (W 5 3) a3o3 .
((WL;al)(malbl) (WL;GQ)(mLIQb?)) and ((WR;bl)(malbl) (WR;b2)(ma2b2))7 Tespectwely, SUCh

that forr- uL®uR c (WL;GI)(ma1b1)®(WR;bl)(malbl) and UL®’UR c (WL;GQ)(ma2b2)®
(W Bsb2)(magny) - qpe have

Y (v(u" @ u®); 2, 2)y(v" @ v")
ha3b3

=30 X D A wh 2t @ e (w2,

a3€AL b3 AR Magbg =1

(2.2)
Stmilarly, for the formal full vertex operator, we have

Y (v(ut ® uP); 2, 2)y(v" @ vF)
hasbS

_ Z Z Z 2 i;;’;agb;;;a:&(uL’x)vL®y£§b7:a3b3;b3(uR’j)vR)'

a3€AL b3e AR Mg qpy=1

(2.3)
Proof. Since YY restricted to
,y((WL;al)(malbl) ® (WR;bl)(malbl)) ® ,y((WL;az)(ma2b2) ® (WR;b2)(ma2b2))

is an intertwining operator of type

F
(om0 )
it was proved in [DMZ] that (2.2) is true when z = Z = r > 0. Then we have
Y (v(u" @ u®); 2, 2)7(v" @ v%)
_ ZLL(O)ZLR(O)y(,Y(uL ® uR), I)Z—LL(O)Z—LR(O),Y(UL ® UR)

hagbg

LY S Y o s o

CI.SEAL b3€AR ma3b3:1
LR(0)4yRiMagbsib3 R 1\ =—LE(0), R
®(z ()yb1b2 237 (R, 1) 771 Oy )

hagbg

_ Z Z Z +( aﬁ;ga3b3;a3(uL’Z)vL®y£;bzla3b3;b3(uR’Z)vR).

as EAL b3 EAR ma3b3 =1
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The proof of (2.3) is completely the same. |

Corollary 2.4 Let (F,m,p) be a conformal full field algebra over VI @ VE.
Then as a module for the vertex operator algebra V¥ @ VE, F is isomorphic to
(2.1). Moreover, if vy is an isomorphism from (2.1) to F, then for any a,,ay €
AL by by € AR 1 < mgy, < hagp, and 1 < mgyp, < hay,, there exist inter-

. Limgqp,303 R;mg 54303
twining operators Vaja, ° °  and Y, 2" for az € AL b3 € AR and mggp, =
. (m b ) R:bay(m b )
(WL,G,3) agbg (W 5 3) a3%3
17 MR ha3b3 Of types ((WL;al)(malbl) (WL;a,2)(ma,2b2)) a'nd ((WR;bl)(malbl) (WR;bz)(magbz))7

respectively, such that for ut @ uf € (Whia)(Mare)) @ (W) (Mare)) gnd vl @
vl € (Whio2)(Mayey) @ (WH2)(Mazes) | the formulas (2.2) and (2.3) hold when
YY and Y}] are replaced by Y and Yy, respectively.

Proof. The first conclusion follows immediately from Corollary 2.2. Now if
we consider the intertwining operator Y;(-;z, ), then the second conclusion
follows immediately from Proposition 2.3. |

For either the map Y}] in Proposition 2.3 or the formal full vertex operator
map Y; for a conformal full field algebra over V¥ @ V£, we can substitute
z and ¢ for the formal variables z and Z in YJ (-;,Z) or Y;(;;2,) (that is,
substitute e"'°6% and e %8¢ for 2" and z*, respectively, for r, s € R) to obtain
Y2 (+; 2,¢) (called analytic splitting of ¥) or Yau(-;2,¢). Then by (2.3), we
have:

Corollary 2.5 For the analytic splitting Y2, of Y in Proposition 2.3, we have
Y2 (y(u” @ u®); 2, )v(v" @ v

hasbs

LiMa.5,303 /I, L Rimagbqib3, R R

=D D D ADaa Wb, 20" @ Yy (W, )0
a3€AL b3e AR Mg q5p5=1

(2.4)

forr uL R uR € (WL;al)(malbl) R (WR;bl)(malbl) and ,UL R ,UR € (WL;a2)(ma2b2) X
(WR;b2)(ma2b2). The same is also true for the analytic full vertex operator map
You for a conformal full field algebra over VI @ VE.

This corollary allows us to treat the left and right variables z and Z in
YY(-;2,2) or Y(-;2,%) independently. In particular, we have the following
strong versions of associativity and commutativity for conformal full field al-
gebra over VI @ VE:
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Proposition 2.6 (Associativity) Let (F,m,p) be a conformal full field al-
gebra over VI @ VE. Then for u,v,w € F and w' € F',

<wla Yan (’U,; 21, cl)Yan (’U; 22, CQ)w>
= <w17Yan (Yan (u; 21 — 22, (1 — G2); 22, C2)w) (2.5)

when |z1| > |zo] > |21 — 22| > 0 and || > |G| > |G — G| > 0.

Proof. Using (2.4) and the convergence result proved by the first author in
[H7] for vertex operator algebras satisfying the conditions assumed for V%
and V! in the beginning of this section, the left-hand side of (2.5) converges
absolutely when |21| > |22 > 0 and |(1| > |(1| > 0, and the right-hand side of
(2.5) converges absolutely when |2z3| > |21 — 22| > 0 and |(o| > [ — (| > 0.
By the associativity (1.8), (2.5) is true when (; = z; and (; = Z for all
u,v,w € F and w' € F'. In particular, replacing u by (LL(—1))*(LE(-1))'u,
v by (LE(=1))"LE(-1))"v, for k,I,m,n € N and using the Lf(—1)- and
LE(—1)-derivative properties, we obtain

ok ot g™ o
a7 IYan ; ) Yam ; I
o o oz agg W Yl e Wiz QU)o
o 9 om o
= ey Yan (Yan (u; — 22,01 — 3 %29
aZ{C ad 82? 3@? <w’ ( (U' am e CZ)U 2 CQ)w> C1=%1,(2=22

(2.6)

for all k,1,m,n € N, when |z1| > [22| > 0 and |z2| > |21 — 22| > 0. We know
that both sides of (2.5) give branches of some multivalued analytic functions
in the region given by |z1| > |za] > 0, |(1]| > [G1] > 0, |2z2| > |21 — 22| > 0 and
|Go| > |¢1 — G| > 0. From (2.6), we know that the power series expansions
of these branches are equal in the neighborhood of those points satisfying
(1 = Z1, (o = Zp. Thus (2.6) holds in the region |2;| > |25 > 0, |(1| > (1] > 0,
|22] > |21 — 22| > 0 and |G| > |G — G| > 0. |

Proposition 2.7 (Commutativity) Let (F,m,p) be a conformal full field
algebra over VI @ VE. Then for u,v,w € F and w' € F',

<wl’ Yaun (U; 21, Cl)Yan (U; 22, CQ)w> (27)

and
<wl’ Yaun (U; 22, <2)Yan (U'; 21, Cl)w> (28)
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are absolutely convergent when |z1| > |z2| > 0, |C1] > |G| > 0 and when |z3| >
|z1| > 0, |G| > [C1] > 0, respectively, and can both be analytically extended
to a same multivalued analytic function of (z1,29; (1, () for (z1,22;(1,(2) €

M? x M?, where M? = {(z1,22) € (C*)? | 21 # 22}.

Proof. 'The convergence and the existence of analytic extensions follow imme-
diately from Corollary 2.5 and the convergence and the existence of analytic
extensions of products of intertwining operators for the vertex operator alge-
bras V¥ and V.

By Proposition 1.5, we know that these two multivalued analytic functions
obtained by analytically extending (2.7) and (2.8) have equal values at points
of the form (21, Z1, . . ., zn, Zu) for (21, ..., 2,) € F,(C). Using the L*(—1)- and
L%(—1)-conjugation properties for full vertex operators, we see that these two
analytic functions are actually the same, that is, they are analytic extensions
of each other. |

For (z1,...,2n), (C1,--.,Cn) € F,(C), we denote the corresponding elements
of F,(C) x F,(C) by (21,1, -, 2n, Cu) instead of (z1,..., 20, Cty---,Cn). We
have the following analyticity of the correlation functions:

Proposition 2.8 Let (F,m, p) be a conformal full field algebra over VL@V E.
For any n € Zy and uy,...,u,, there exrists a multivalued analytic function
of (21,C1y -y 2n,Cn) € F(C) X F, (C) such that for (z1,...,2,) € F,(C), the
values

M (Ut - -+ 3 U 215 215 - - - 5 Zny Zn)

of the correlation function is a value of this multivalued analytic function above
at the point (21, 21, .., Zn, Zn). Moreover, these multivalued analytic functions
are determined uniquely by the products of analytic full vertex operators in
their regions of convergence.

Proof. The proof of this result is basically the same as the proof of the gen-
eralized rationality for intertwining operator algebras in [H5]. We have proved
the above strong versions of associativity and commutativity for analytic full
vertex operators. Using these strong versions of associativity and commutativ-
ity, we see that the multivalued analytic functions in various regions obtained
from all kinds of products and iterates of analytic full vertex operators are
analytic extensions of each other. Thus we have such a global multivalued an-
alytic function. Clearly these multivalued analytic functions are determined
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uniquely by the products of analytic full vertex operators in their regions of
convergence. |

By the results above, we see that for a conformal full field algebra over VF®
VE the correlation function maps are determined uniquely by the products
of analytic full vertex operators in their regions of convergence, and thus are
determined uniquely by the full vertex operator map. In view of this fact, we
shall use also (F,Y, p) to denote a conformal full field algebra over VI @ V£

We shall use

Em)n(ut, - un; 21,0y -y 20, Ca) (2.9)

to denote the analytic extension obtained in the proposition above together
with the prefered values

m’n(ula - -y Up; 21, Zl; <oy Zpy Zn)
at the special points of the form (zy, z1, ..., 2y, Z,). For us,...,u, € F and a
path
v:[0,1] — TF,(C) xF,(C)
t o= (21(8), G(),- .-, 2a(1), Ga(?))
starting from a point of the form (21, z1, . . ., 2zn, 2 ), wWe shall use

Em)n(us,- -+, un; 21(8), (2, - - - 20 (1), Ca(2))

to denote the value of (2.9) at the point 7(¢) obtained by analytically extend
the preferred value of (2.9) at the starting point v(0) of -y along the path ~y to
the point ().

Corollary 2.9 Let (F,Y,p) be a conformal full field algebra over V* @ VE.
Let

| = Fu.(C) xF, (C)
t = (zl(t)’CI(t)"":Zn(t)’gn(t))

be a path starting from a point of the form (z1,z1,-- -, Zn,2n). Then we have
the following permutation property: For uy,...,u, € F and o € S,

E(m)n (s, -t 21 (8, G () -~ 2 (8, Ca(1))
= E(m)n(ua(l), c ooy Ug(n); Zo(1) (t), C(r(l) (t), - vy Zo(n) (t), C(,(n) (t)).(?.lO)
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Proof. 'This follows immediately from the permutation property for full field
algebras and the uniqueness of analytic extensions. |

Corollary 2.10 Let (F,Y,p) be a conformal full field algebra over V* @ VE.
Let 1,19 € R satisfying ro > ry > 0. Then for u,v,w € F and w' € F’,
(W', Yan (v; 72, 72) Yan (u; 71, 71)0), (2.11)

can be obtained by analytically extending the analytic function (which is a
branch of a multivalued function)

(w', Yan (u; 21, 1) Yan (v; 22, G2)w), (2.12)

defined near the point z; = (3 = 19, 20 = (o = 11, in the region |z1| > |z2| > 0
and |(1| > |G| > 0, along the path given by

[0,1] — M?x M?
t = ((21(t), 22(1)), (Gu(1), C2(2)),

where
z(t) = rl;m-i-emL;Tl,
T+ T2 — T
ZZ(t) = 12 2_€Z7rt22 17
Gy = P eI,
ry+r _imtT2 — T
<2(t) — 1 2 2 _e % t%’

to the region |z3| > |21| > 0 and |G| > |G1] > 0 and then evaluated at z =
G =711 and 29 = G =73

Proof. By Proposition 2.7, we know that (2.11) can indeed be obtained from
(2.12) by analytic extension. What we need to show now is that the analytic
extension along the path given above gives precisely (2.11).

Since Y(+;2,2) = Yan (5 2, ()|¢c=z and (1 (t) = z1(t) and ((t) = 22(t), we see
that (2.11) is equal to (w', ms(v, u, w;ry,72,71,71,0,0)) and that

(W', Yan (u; 21(£), G2 (t)) Yan (v; 22(t), C2(1) )w)

(2.13)
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when |25(t)| > [21(¢)| > 0 and

(w', Yan (v; 22(t), C2(t)) Yan (u; 21 (), C1(2))w) (2.14)

when |21 (t)| > |22(t)| > 0 are equal to

(W', E(m)s(u, v, w; 21(t), G1(2), 22(¢), C2(¢), 0, 0))
and

<wla E(m)3(7), U, W, ZQ(t)7 €2(t)’ 21 (t)7 <1 (t)ﬁ 07 0))7
respectively. By the permutation property of full field algebras and Corollary
2.9), we see that (2.11), (2.13) and (2.14) are equal to

<wla m3(u7 v, W;T1,7T1,72,7T2, Oa 0)>a

<w,> E(m)3(ua v, W Zl(t)ﬁ Cl(t)a Z2(t)7 CQ(t)a 0’ O))
and
(W', E(m)3(u, v, w; 21(t), (1 (), 22(¢), (2(2), 0, 0)),

respectively. From this fact, we see that indeed the analytic extension of (2.12)
near the point z; = (3 = r9, 29 = (2 = r1, along the path given above gives
(2.11).

This result can also be proved directly using the associativity (Proposition
2.6) and the skew-symmetry (1.41) (see [K]| for details). |

Theorem 2.11 A conformal full field algebra over V¥ @ VR is equivalent to a
module F for the vertez operator algebra VEQVE equipped with an intertwining
operator Y of type (FFF) and an injective linear map p : VI @ VE — F,
satisfying the following conditions:

1. The identity property: YV (p(1* @ 1%), z) = Ip.
2. The creation property: For u € F, limy_0 Y(u, z)p(1F @ 1%) = u.

3. The associativity: The equality (2.5) holds when |z1| > |z2| > 0 and
G| > |G > 0.

4. The single-valuedness property:

2L O)-LR0) — 1, (2.15)
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5. The skew symmetry:
Y (u;1,1)v = " COFLEEEDYY (y: ¢ ey, (2.16)

Proof. If (F,Y,p) is a conformal full field algebra over V' @ VE, then the
results in Section 1 shows that F is a V* ® VF-module, Y;(-;x,z) is an in-
tertwining operator of type ( FFF) and the five conditions are all satisfied. We
now prove the converse.

Let F be a module for V' ® VE, Y an intertwining operator of type (27,
and p: VI ® VE — F an injective linear map, satisfying the five conditions
above. We take the splitting Y¥ of ) to be the full vertex operator map. For
simplicity, we shall denote Y simply by Y. We now want to construct the
maps m,, for n € N and to verify the convergence property.

Using (2.4) and the convergence property of the intertwining operators for
the vertex operator algebras V' and V£, we know that for u,,...,u, € F and
w' € F',

<w,,Y(u1;z1,Cl) o 'Y(un;Zan):w (2'17)
is absolutely convergent when |z, > --- > |2, > 0, |(1] > --- > |(,| > 0, and
can be analytically extended to a (possibly multivalued) analytic function of
2153 2n,C1,- -, Gy in the region given by z; # 25, 2 #0, (; # (, G #0. We
use

E(m)n(wlﬂula'"7un;Z1aC1a"-aznaCn) (218)
to denote this function. This is a function of 21, (1, . . ., 2n, {, Where (21,. .., 2,),
(C1y.. ., Gr) € F,(C). So we can view this function as a function on F, (C) x

F,(C). In general, this function is multivalued. Using analytic extension,
a value of this function at a point P; € F,(C) x F,(C) and a path v in
F,(C) x F,(C) from P; to Py € F,(C) x F,(C), determines uniquely a value
of the function at the point P,. Moreover, this value depends only on the
homotopy class of the path 7. We shall call the value of the function (2.18)
at Py obtained this way the value of (2.18) at Py obtained by analytically
extending the value of (2.18) at Py along .
We choose the correlation function

(WM (U, -y Un 205 21y - - - 20y Z0)) (2.19)

as follows: For 2y =n,..., 2, = 1, we define (2.19) to be (2.17) with 2, = (; =
N,...,2%, = ¢, = 1. For general (z1,...,2,) € F,(C), we choose a path 7 from
(n,...,1) to (z1,...,2,). Then we have a path v x 7 from

((ny...,1),(n,...,1)) € F,(C) x F, (C)
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to
(21, 20), (1, - .-, Z)) € Fo(C) x F, (C).

We define (2.19) at to be the value of (2.18) obtained by analytically extending
the value of (2.18) at ((n,...,1),(n,...,1)) along v x 7.

The first thing we have to prove is that the correlation function we just
defined is indeed independent of the path . To prove this fact, we need only
prove that if v is a loop in F, (C) based at (n,...,1), then the value of (2.18)
at ((n,...,1),(n,...,1)) obtained by analytically extending the value (2.19)
of (2.18) at ((n,...,1),(n,...,1)) along the loop v x 7 is equal to the original
value (2.19) of (2.18) at ((n,...,1),(n,...,1)). In other words, we need only
prove that the monodromy along the path v x 7 s trivial. Note that the group
of the homotopy classes of based loops in F,(C) , that is, the fundamental
group of F, (C), is the pure braid group of n strands (see [Bi]). This group
is generated by the homotopy classes of the loops given by fixing z;,..., 2,1,
Zjt1,---yZp toben,...,n—(j—2), n—j,...,1, respectively, and moving z;
starting from z; = n — (j — 1) around z; = n — (i — 1) once (but not around
other points above) in the counter clockwise direction, for i # j,4,j =1,...,n.
Hence we need only prove that the monodromy along the path v x 7 is trivial
for (the homotopy class of) such a loop 7.

We now prove that the monodromy along the path 7 x 7 is trivial for (the
homotopy classes of) such a loop 7. Let r be a positive real number satisfying
n—(i—1) >r > n—i. Note that r satisfies 7 > n— (i —1) —r > 0. We know
that

(W', Y(ur;n,n) - Y(ui;n — (i — 1),n — (i — 1)) Y(uy;7,7)-
Y(uipr;n—i,n—i)---Y(uzn—(—2),n—(j —2)) -
Y(uiri;n —j,n—j)) - - Y(un; 1,1)1) (2.20)

can be obtained by analytically extending the value
(w',Y(ui;n,mn) - Y(uy;1,1)1).
along a path from ((n,...,1),(n,...,1)) to
((ny....,n—(—2),r,n—7g,...,1),(n,...,n—(j—2),",n—7,...,1)). (2.21)
Such a path can always be taken to be of the form v, x 4, where 7, is a path in

F,(C) from (n,...,1) to (n,...,n—(j—2),r,n—7,...,1). This path 7, induces
an isomorphism from the fundamental group of F, (C) based at (n,...,1) to
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that based at (n,...,n—(j—2),7,n—7,...,1). It is clear that the monodromy
along a loop based at (n,...,1) is trivial if and only if the monodromy along
the corresponding loop based at (n,...,n—(j —2),r,n—j,...,1) is trivial. So
we need only prove that the monodromy along a loop of the form ~ x# is trivial
where v is a loop based at (n,...,n—(j —2),7,n — j,...,1) given by fixing
Py Zj1y Zjgls- - 2n tO DN, . n—(j—2), n—j,..., 1, respectively, and
moving z; starting from z; = r around z; =n — (i — 1) once (but not around
other points above) in the counter clockwise direction. By the definition of
Yo, the value of (2.18) at the point (2.21) obtained by analytically extending
the value (2.19) of (2.18) at the point ((n,...,1),(n,...,1)) along 7 is (2.20).
Since we also have r > n — (i — 1) —r > 0, by associativity, (2.20) is equal to

(0, Yoy m,m) -~ Y(ugr;n— (i — 2),m— (i — 2))
Y(Y(uis;n—(i—1) —r,n— (i —1) —r)uj;r,r) -
Y(uipisn—i,n—1))---Y(uin— (- 2),n—(j - 2)-
'Y(Ui—}—l;n_jan_j))"'Y(un;rnarn)1>-
Now let v : [0,1] — T, (C) be the loop given by
t (n,...,n—(i—2),r+e*™(n—(i—1)—7r),n—i,...,n—(j—2),7,n—7,..., 1).

Then the value of (2.18) at (2.21) obtained by analytically extending the orig-
inal value (2.20) of (2.18) at the point (2.21) along 7 is

(W', Y(ur;n,n)---Y(ui—;n— (1 —2),n — (i — 2))-
V(¥ (o327 (1 1) = 1), — (5= 1) = )i )
Y(uiyr;n—i,n—14) - Y(uzn— (G —2),n—(j —2)) -
Y(uiri;n—jd,n—73)) - Y(up; 70, 7)) (2.22)

But by the L*(0)- and L#(0)-conjugation properties and the siungle-valuedness
property, we have

Y(us; e (n = (i = 1) = r),e7*"(n — (i = 1) = 1))
— 2TLHO) L) y (2L O L)y (1) — o — (i — 1) — 1) -
o~ 2mi(LE(0)~LR(0))
=Y(ui;n—(G—1)—rn—(i—1)—r). (2.23)
Using (2.23) and the associativity again, we see that (2.22) is equal to (2.20).
Thus the analytic extension along this loop indeed gives trivial monodromy.
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Now the correlation functions and thus the maps m, for n € N are de-
fined. The only remaining thing to be shown is the convergence property.
We need to show that for any k& € Z, ly,...,ly € Zy, (z1,-..,2) € F,(C),
(zy), ce zl(;)) € F,(C), i =1,...,k, the series (1.13) converges absolutely to
(1.2) when || + 2] < |2{” — 27| for i # j, 4,5 = 1,... .k, p = 1,...,1;
and q = ]_,,l]

We use induction on k. We first prove the special case in which £ = 2 and
zéo) = Zéo) = 0. The case £k = 1 is in fact a special case. By the definition of
Y, (1.13) becomes

1 1 1) (1 1) (1 0) (0
Z Y(Ppl,(hmll(ug)""’ul(l);z§)’Zg)7""Zl(1)’zl(1));z§)’Z§))'
P1,491,p2,92

2 2 2) _(2 2) _(2
Py (P, 0?2 22 P 0y) (2.24)

We use induction on /;. When [; =1, (2.24) becomes

1 1) (1 0) _(0
Yo Y Y52, 2 )1 47, 7).
P1,91,p2,92

2 2 (2) _(2 2) _(2
-P,,Z,quIZ(u§ ), .. .,u§2);2§ ),z§ ), .. .,zl(z),zl(z))). (2.25)

Using the construction of Y in terms of intertwining operators, the properties
of intertwining operators and noticing that our condition |z§1)\ + |z](-2)\ < |z§0)|

implies |24"] < |29 and |2V + 29| > |z§2)|, we know that

. (1) (1 0) (0
> V(P (s 4, 27)1;27, 27)-
P11

2 2 2) (2 2
.Pp27q2ml2(ug )’ T ’U’l(2)’z§ ),Z§ )a s '7Zl(2)a

2(2)))

l2

is absolutely convergent to

Y27 + 2%, 27 + 27)¥(1; 27, 27)-

2 2) (2) (2 2) _(2
-Pm’qzmb(ug),...,u§2);z§),zp,...,zl(z),zlg)))
= Y(ui”; 2" + 2%, 20 + 2%) -
2 2 (2) (2 2) _(2
-Pm’qzmb(ug),...,ul(2);z§),zp,...,zl(z),zl(z)))).

Then by the construction of the correlation function maps and, in particular,
by the fact that the correlation functions are values of multivalued analytic
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functions at certain particular points, we know that the right-hand side of
(2.25) is absolutely convergent to

M+, (Ug )a qu), N ul(j)’ M + Z§O)a Zgl) + Zg())a ZF)’ Zgz)a tey Zl(j)’ Zl(j))

Here we have used the fact that if a certain iterated sum of a series in powers
of these complex variables is convergent to an analytic functions in the region
above, then the multisum must also be absolutely convergent.

Now we assume that for {; < [, the conclusion holds. We want to prove

the conclusion for the case I = [. We first assume that |z§1) ly oot |zl(1)| are all
different from each other. Then in particular there exists ¢ such that |z\"| >
1200120 |zl(1)|, where and also below we use "~ to denote that the
item under ~ is missing. Then (2.24) in this case is equal to

Z ZY p1¢11 U’t)a (l)azt(l))'

P1,491,p2,92 T8

— ———

-Pr,sml_l(ugl), ugl), .. (1) z§ ), z%l), e zt(l), Zt(l), e, zl(l), 21(1));
(0
A%, 29).
2 2 2) _(2
Py, q2m12(u§ ), .. ul(z), zg ), z§ ), cel, zl(2), Zl(2)))' (2.26)

Using the construction of Y in terms of intertwining operators and the pro er-
ties of 1ntertw1n1ng operators and noticing that our condition |zt )| + |z | <

|z §)| implies \zt | < \zl | and \zt —i—zlo)\ > |zj( )|, we know that

Z Y p1,q1 U’t )’ ngl)azgl))

P1,q1
'P"':sml—l(ugl)’ R ugl): ety ul(l)a Zg)agg)a ety Zigl)a 2151)5 DRI Zl(l)’ Zl(l))a
—(0
A0 F0y .
2 2 2 2) (2
Py, g, (ug ), ul(z), zg ), z§ ), e zl(2), zl(z))) (2.27)

is convergent absolutely and, when |zt Dy R0 2 | > \z§0)|, it is absolutely conver-
gent to

Y(ug; 20 + 29 20 + z§°>>

-Y(Pmml_l(ugl), ug), .. (1) z§ ),29), ce zgl), z§”, ce zl(l), Zl(l));
0
A7, 27) -
2 2 2) (2
-P,,Z,qzmb(ug),.. ul(z),z§ ),z§ ),...,zlg),zl(?))). (2.28)
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By the induction assumption,

Z Yut 7Zt +Z§)a_(1)+_(0))

7,5,02,02
NPy 2 (@, ul®, a0 0,0 FD W 0),
A7,27) -
Py, ¢, (u?), ul(:) z% ), z§2), . zl(f), Zl(f))) (2.29)
is absolutely convergent to
Y(u?(t ), zt(l) + zg)), zt(l) + Z(O))-
-ml+l2,1(u§ ), . ugl), .. ul(l), ug ), ey “1(22)3 z(l) + z(o), z§” + 2§0), ey
D450 0000 0 00 e e e
I LY I IS

Zl(l) 4 Zgo)’ Zl(l) (O)Z(Q) Z§2), ce Zl(j)’ Zl(;)) (230)

We know that the right-hand side of (2.29) is a value of the multivalued analytic
function

E(m)l+l2(ugl)"' ul(l)a g)a ul(z) (1)+Zl a<1 +C(O)
0 1 0
B O ORI O e ,2,@2)

at the points satisfying Cl(o) = Z§0), g,@ = z§f> forp =1,...,l;, 1 = 1,2
Since both the sum of (2.29) and the right-hand side of (2.30) are values of
multivalued analytic functions 1n the same reglon and we have proved that
their values are equal when \zt | > |z |, (2.29) must be convergent
absolutely to the right-hand side of (2.30) even when |z§1) + z§0)| > |z§0)| is
not satisfied. By the properties of analytic functions, we know that (2.26) as
a sum in a different order is also convergent absolutely to the right-hand side
of (2.30).
(1)

Now we discuss the case that some of \zg)\, cee |zl(1)\ are equal. Let N(z;/,. ..

be the subset of {z@, RPN zl(l)} consisting of those elements whose absolute val-
ues are equal to the absolute values of some other elements of {zg), s zl(l)}.

We use induction on the number of elements of N (zf), . ,zl(l)). When the
number is 0, this is the case discussed above. Now assume that when the
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number is equal to n, the conclusion holds. When this number is equal
to n 4+ 1, let € be a complex number such that the number of elements of
Nz +e, .. .,zl(l) +e)isnand |25 + €|+ |27 +¢| < |2V forp=1,...,l and
qg=1,...,ls. Note that we can always find such an ¢ and we can take such an
e with |e| to be arbitrarily small.

By induction assumption,

Y Y(B A e AV e Y e, 2 ),

P1,91,p2,92

A7,2%)
-Pp2,q2ml2(ug2), .. .,ul( ). (2) + €, z§ ) + €. (2) + €, Zz( ) +€)
(2.31)
is absolutely convergent to
mus (Wl @20 420 e 2D 20 1
zl(l) (0)+e Zz( )+z(0)+ez(2)+e,2§)—|—5,. ()+e 2(2) + ).
(2.32)
We have
Z Z —eLL eLR(l)ul’ Y(Pr1,51€€LL(_1)+€LR(_1)'
T1,81,72,52 P1,41,P2,92
1) _ 0) -
Pplqlml(u§ ),.. “z( ),z§ ),z§ ),...,zl( ) Zz( )) z§ ),z§ )) .
‘Prl,sleeLL( 1)+eLR(— 1)p R (qu), - U’l(j) z§ )’ z§ ), - Zl(z)’ Zl(g))>
— Z <e—eLL(1)—€LR(1)uI’
Y(P,, ,slml(ugl), ul(l), 1) 4 e z@ +6E..., zl(l) + €, Zl(l) + €);
0) _(0
Py sy, (u§2), ul(z) @) 4 €, z% ) 4+ € ..., 21(22) + € Zl(f) + €)).
(2.33)

So the right-hand side and thus also the left-hand side of (2.33) is absolutely
convergent to

L L R S L B
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7Y +2% +¢,..

(1)+z(0)+€ zl()—i-z(o)—}-@

()+€Z® 22 46,50 1+ )
= {, e_CLL(_I)_gLR(_l)me (ug ), ... ,ul( ), u?), cee “1(22); z§ )+ z§ )+ €,
20+ 29 ve, . (”+5”+gé”+ém+€
( ) + €, 2(2) 21(2) + €, 2(2) + €))
= (u, myq,(uy /... ,ul(l),u?), . ,ul(f); z§ )+ z§0), 5§” + 2%0), ce
D40 0 00 o e e

(2.34)

Since the left-hand side of (2.34) is a value of a multivalued analytic function,
any of its expansion must be absolutely convergent. In particular, the left-
hand side of (2.33) as an expansion of the left-hand side of (2.34) is absolutely
convergent. Thus we can exchange the order of the two summation signs such
that the resulting series is still absolutely convergent to the left-hand side of

(2.34) and thus to the right-hand side of (2.34).
But for v’ € F”,
Z <U’I, Y(Ppl,qhml(ugl)’ T ul(l); Zgl)a 2§1)’ T (1)’ _l( ))a
P1,41,P2,92
0) _(0
4", a”)-
2 2 2) _(2
'PPZ,QZmlz(ug )a <. U’l(z) Z§ )a Z§ ): SRR Zl(2)’ Zl(z)»
— Z <€—5LL(1)—€LR(1)UI, eeLL( 1)+eLB(-1)
P1,91,p2,92
.Y(Pplaqlml (ugl)i .t ul(1)7 Z§1)’ Zgl)’ c Zl(l) _(1)) Z§0)5 _§0)) )
2) _(2 2) _(2
Py, g1, (qu), .. “1(2) z§ ), z§ ), .. zl(z), 21(2)))
— Z <675LL(1)7€LR(1)UI, Y(eeLL(fl)—keLR( 1) .
P1,491,P2,92
1 1) 1) (1 (1 0
Prgmu(ut?, . uls A0 20, 20) 40 20
el (- 1)+eLR(71)p2q2m12(u§2),__ “1(22) z§2),2§ ),___’ZZ(E),zlg)))
Z Z < —eLT(1)—eL®( Dy Y(P o€ eLL(-1)+eLB(-1) |
T1,51
P1,491,P2,92 T1,51,72,52
Py, qlml(ugl), .. ul( ),z§ ),ZP, . ,zl( ) _(1)) z§ ),zg))) .
-Prl,sleELL( 1)+eL™ (= 1)Pp2 qzmb(ug ), .. .,u§2);z§ ),z§ ), .. zl(f),z§2))>.

41



(2.35)

We have shown that the right-hand side of (2.35) is absolute convergent to
the right-hand side of (2.34). Thus the left-hand side of (2.35) is also absolute
convergent to the right-hand side of (2.34). So we have proved the convergence
property when the number of elements of N(z%l), ey zl(l)) is n + 1. Thus the
convergence property is proved when some of \z%l)\, Ce \zl(l)| are equal.

By induction principle, we have proved the convergence property in this
special case.

We now assume that when £ < K, (1.13) converges absolutely to (1.2) when
zz(,o) #* zéo) for p,g=1,...,K, z,(,i) #* zqi) forpg=1,....,;andi=1,... K
1 <p,q<land |zz(,i)| + |zéj)\ < ‘ZEO) — zj(-o)\ forp=1,...,0L,¢=1,...,1
1,7 =1,..., K, 1% j. Now we consider the case k = K. We first consider the
case that zl(,i) e R,U{0}forp=1,...,l;andi = 0,...,Kandz§0) > > zﬁ?.
By the definition of the correlation function maps, we know that (1.13) in this
case is equal to

1 1 1) (1 1) _(1 0) (0
Z ZY(PplaQImll(ug_ )a""ul(l);'z£ )’Z§ )a"'ﬂzl(l)’zl(l));z§ ),Z§ ))'

P1,415--PK4K TS

2 2) (2 (2 2) _(2
-Pr,smK_l(PpMzmb(ug),...,ul(z);z£),z§),...,zl(z),zlg)),...,
K K) (K) (K K) (K
PpK,qulK(ug ),...,ul(K);zg ),z§ ),...,zl(K),zl(K));
0) (0 0) (0
Zé)ﬁzé)7""zg()72§())'

(2.36)

Using the induction assumption, we have

DR DI (¢ P N O T i T S R O]

78,015,491 P2,92;--sPK 4K

Py smg_1(Py, g,mu, (u§2), ey ul(f); z§2), Z?), ey zl(f), Zl(f)), ey
P axcMiy (ugK), e, ul(f:); Z§K) 2§K), e, zl(f:), Zl(f:));
P RN v
= > V(B A0 2D AD) A0, 20
7,8,P1,01
P s Myt (ug2), . ,ul(f), cel, ugK), e, ul(f); z%z) + zéo),
2D+ 20,0+ 05D + 2D,
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LR O LR P L R L B L))

(2.37)

Since zz(,l)—f—zéi) < z@—zz@ forp=1,...,l1,g=1,...,;and i1 =2,..., K, we
have z;(Jl) + (zé’) + ZZ(O)) < z§°) — 0. Thus by the special case we proved above,

the right-hand side of (2.37) is absolutely convergent to

1 1 K K 1 0
mll+...+lK(ug ), .. ul(l), .. .,ug ), .. .,ul(K);z§ ) +z§ ),
A0 000
20420, A0 140,20 4 z(o)) (2.38)

Note that (2.38) is a value of the F-valued multivalued analytic function

E(m)iy e (a2 420
C +C(0),Z()+Zl 7<ll +<‘(0) . ()+Z(0)
¢ +C§?),.. ) 42D, (K +<K). (2.39)
at the point z( = C(J = . Thus its expansions, no matter in which

ways, must be convergent absolutely In particular, (2.36) as one expansion
of (2.38) must be convergent absolutely to (2.38), proving the convergence in
this special case of the case k = K.

We know that for a series in powers of several variables, if it is absolutely
convergent when these variables are equal to some real numbers, then it is also
convergent when the variables are equal to complex numbers whose absolute
values are equal to these real numbers. Using this property, we see that

Y. D Y(BuuE h(u?),---,ul‘f’;zﬁ, A, ¢ A0, (%),

P1,491;--PK4K T3S

2
'Praé’E( ) (PP2,(]2E( ) (Ug),, lza Cl 3%t 12 aC )a
PPK;(]KE(m)lK(ugK)" ul(f)’z§ : §K)a---a l(II:)aC )a
0 0 0 0
A0 00 0)

(2.40)

is convergent absolutely to a branch of (2.39) when eI e N e )
for p,g = 1,.. K ,21(,Z # zq , p 5£ ng) forpg=1,...,lL,i=1,...,K
2871+ 0] < 11901 = 1201, 1691+ 169 < 1160~ 1O, for p =1,
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o . 0 0 0 0
qzl""7lj7l7j:17""K’Z#j7a‘nd|zg)‘>-“>|z§()|’|C§)‘>.-.>‘<‘§()"
Using the permutation property for the correlation functions, we obtain that

(2.40) is convergent absolutely to a branch of (2.39) when |z§(2)1)| > > |z((f%()|

and |C((,(g)1)\ > > \C((T(Z)Kﬂ for some o € Sk.

Now for fixed z%o), .. .,z&?), 1(0), . .,c}?’ satisfying \zg(z)l)\ > e > \z((r(z)K)|
and |C((f(z)1)| > ee > |C((2{)| for some o0 € Sk, any branch of (2.39) can be
expanded as a series in powers of z,(f) and g,@, p=1..,i=1,...,Kin
the region

1 K) (1 K i SG i
{0,209 e, q0) | 29 20, ¢ £ (O
forp,q=1,....0;;i=1,..., K,
9]+ 2] < 12— 201 1601+ 6] < ¢ — ¢,
forp=1,...,0L,g=1,...,l,4,5=1,...,K,i # j}.

(2.41)

But in the region

1 K) (1 K i i) A i
forp,g=1,...,[;;i=1,...
i ; 0 0 i ; 0 0
Z9] 4+ 129] < 1201 = 12011, 1691 + 1691 < 11671 = 1611,
forp=1,....0L,g=1,...,l,4,7=1,...,K,i # j},
(2.42)

7K7

we have proved that one branch of (2.39) can be expanded as the series (2.40),
which can be further expanded as a series in powers of zz(,i) and C]Si), p=1,...,1,
i =1,...,K in this region. Since the region (2.42) is contained in the region
(2.41) and the coefficients of the expansion can be determined completely
using the values of the branch in the region (2.42), we see that the restriction
to the region (2.42) of the expansion in the region (2.41) is the same as the
expansion in the region (2.41). Thus, the series (2.40) is convergent absolutely
to a branch of (2.39) in the region (2.41).

In the region (2.41), when C,(,O) = zéo) eERforp=1,...,K, Cpi) = zz(,i) eR
forp =1,...,l;; i = 1,...,K, we have proved that (1.13) in this case is
convergent absolutely to the right-hand side of (2.37). Thus in the region
(2.41), (1.13) with k¥ = K is convergent absolutely to the right-hand side of
(2.37), the value of a branch of (2.39).
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Finally we consider the case that some of [2{”], ... |z§3)\ are equal. Re-
call the subset N (2, ..., zgg)) of {29, zg)} consisting of those elements
whose absolute values are equal to the absolute values of some other ele-
ments of {z§°),...,z§2)}. We use induction on the number of elements of
N (z%o), ce zg)) When the number is 0, this is the case discussed above. Now
assume that when the number is equal to n, the conclusion holds. When this
number is equal to n 4+ 1, let € be a complex number such that the number of
elements of N ( )+ €, ( ) + €) is n and that the other conditions are still
satisfied. Note that we can always find such an € and we can take such an €
with |€| to be arbitrary small. By induction assumption,

1 el 1) _a
Z mK(Ppl,qlmll(u§ ). ul(l),z§ ),z§ ). .,zl(l),zl(l)), e

P1,91,---PK,4K

K K) _ K) _(K
PpK,qulK(ug )a ul(K)azg )7Z§ )a' Zl(K)7Zl(K))’
(O)—i—ez(o)-l—é,.. (O)-i—ezl(;{)-i-e)

is absolutely convergent to

1 1 K K 1 0
My 4. +lK(ug),.. ul(l),.. ug ),. ul(K), ()+z§)+e,
T I N Oy S R ORI s
294290 1e,. .. zl(K)+z§()+e 290 + 29 +¢).

Thus for v’ € F,

1 ), (1) 1) (1
Z (! mic (Pyy gy (ul ),...,ul(l);z£ ), & ),...,zl(l),zl(l)), e

P1,91,--PK,4K

K K K) _(K K) _
PpquKle(u:(l )""’ul(K);Z§ )’Z§ )’ zl(K)’Zl(K))’
0) _(0 0) _(0
A% 47,2 20)

_ Z <eeLL(1)—|—€LR(1)ul, efeLL(fl)fELR(fl) .

P1,91,--PK 4K

1 1) (1 1
-mK(Pplqlmll(up,.. ul(l),zp,zp,.. zl(l),zl(l)), .
K K), (K) _(K K) _
PPK:QKle(ug )a""ul(K);Z§ ),Z§ )a Zl(K)azl(K));
0) (0 0) (0
A40,20,.., 20,20

— Z <eeLL(1)+€LR(1)u/,

P1,91,--PK 4K
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1 1 1 1
M (Pyy gy (ul”, a5 20 20 2D 2 ),

K K K K K) _
PpK,qulK(ug )7' 7ul( );Z§ )7’2{ )7 Zl(K)’Zl(K));

()—i-e _(0)+e,,...,z§()+e,,_(0)—|—e))

.y

is absolutely convergent to

<€€LL(1)+€LR(1)U,, Myt (ugl)’ e U’l(ll)ﬂ : ugK)a s aul(f)ﬂ ZF) + Z§0) + €

20420 16, 40 162D+ F0 e 0 4D+
29+ 20 ve..., 2K )+z(0)—l—e ,z,( '+ 20 + )

= (u', My iy (ugl), .. ,ul(ll), ey ugK), ul( ), (1) + z(o)

50 450, 49+4%4D+»®“ A9 40,
IR I O O IEON

K-

Since v’ is arbitrary, we have proved that (1.13) with k¥ = K is convergent
absolutely to the right-hand side of (2.37) in the case that the number of

elements of N (z§°>, . g{)) is n + 1. Thus we have proved this conclusion in
the case that some of |z1 L. |zK)| are equal.
By the principle of induction, the convergence property is proved. [ |

Remark 2.12 Although the definition of full field algebra in Definition 1.1
is very general, it is not easy to verify all the axioms directly. Theorem 2.11
gives an equivalent definition of conformal full field algebra over V' ® V£ and
the axioms in this definition are much easier to verify than those in Definitions
1.1, 1.7 and 1.16. In our construction of full field algebras in the next section,

we shall use this definition to verify the structure we construct is indeed a full
field algebra.

3 A construction of full field algebras with
nondegenerate invariant bilinear forms

Let V be a simple vertex operator algebra and Cy(V') the subspace of V
spanned by u_ov for u,v € V. In this section, we assume that V' satisfies
the following conditions:
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1. Vipy =0 for n <0, V(o) = C1 and W(p) = 0 for any irreducible V-module
W which is not equ1valent to V.

2. Every N-gradable weak V-module is completely reducible.
3. V is Cy-cofinite, that is, dim V/Cq(V) < occ.

(Note that by results of Li [L] and Abe, Buhl and Dong [ABD], Conditions
2 and 3 can be replaced by a single condition that every weak V-module is
completely reducible.)

Since V satisfies the conditions above, all the results in [H9] can be used.
We shall use all the notations, conventions and choices used in this paper.
In particular, we use the following notations and choices: A is the (finite)
set of equivalence classes of irreducible V-modules; e is the equivalence class
containing V; ' : A — A is the map induced from the functor given by taking
contragredient modules; for a € A, W is a representative of a; (-,-) is the
nondegenerate bilinear form on V' normalized by (1,1) = 1; for ay, as, a3 € A,
V4 are the spaces of intertwining operators of type ( wes ); 012 and o093

aia Wei1Wae2
are actions of (12) and (23) on V and they generate an action of S3 on

v= ][ Vv&.;

a1,a2,a3€A

for any bases Zf’a(zpz, i= JN&  p=1,2,3,4,5,6,... and a1,ay,a3 € A,
of Vg2,
; i(2) i(3) ;
F(y:zlf% i ® ya;ag,]’ ys;lag 5l & yglﬁaQ k) €eC
are matrix elements of the fusing isomorphism; for a € A, V¢ ,, Vi.., and

Vsara are bases of V¢, Vi, and V;, chosen in [H9]; for a € A, there exists

hq € Q such that W =[], o, .5 W)

i .. .
For ay,ay, a3 € A, we now want to introduce a pairing between Vg?, an

Ve
al?‘or a €A w, € W* and w), € (W), we shall use w, and @/, to denote
e~ “ My, and e~ *My! | respectively. Then we have
(Pt el M, ) = (w!, w,).
We have:
Lemma 3.1 Fora € A, w, € W* and wl, € (W*)',

Res,—oz ! j,a;l(zL(O)e”i(L(O)_ha)@;, 2) 2" O, = (W', we)1.
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!

Proof. Since V(g) = C1 and Y,.; = 023(Vee.1);

-1 L(0) ,wi(L(0)—hg) 3!

e
Res,—02™ V5o (2" Ve W, 2)2

= (1, Yy (1F OO, 1)1
1, 023 (Ve ) (€7 O~ )l 1)i3,)1
emhayse (L(l)efm'L(O)ewi(L(O)fha)w' 1)1,1w,)1

yg ( w , 1)1, 10,)1

(DLW ep! 1i,)1

=
=
=
< L(

<€L ~I L(l) >1

= (wg ,w>

|

For a single-valued branch f;(z1, 29) of a multivalued analytic function in
a region A, we use E(f1(z1,22)) to denote the multivalued analytic extension
together with the preferred branch fi(z1,22). Let wy = wi(21, 22) and wy =
wsy(z1, 22) be a change of variables and fo(21, 20) a branch of E(fi(z1,22)) in
a region B containing wi(z1, 22) = 0 and wsy(z1, 22) = 0 such that AN B # ()
and fi(z1, 20) = f(21, 22) for (21,29) € AN B. Then we use

Resy, =0 | wo B (f1(21, 22))

to denote the coefficient of w;"' in the expansion of f,(21,2;) as a series in

powers of w; whose coefficients are analytic functions of ws. By definition, we
have
Resy,—0 | crunt+0r B (f1(21, 22)) = ReSw, =0 | wp E(f1(21, 22)) (3.1)

for any C; € C*, (5 € C independent of z; and z,. We have:

Proposition 3.2 For aj,as,a3 € A, wa, € W, w,, € W%, wy € (WH),
e (Wn), eV, andY, € Va, o there exists a constant <y1, y2>vgf.a2

C such that

ReS1_zy—zp=0| 2, (1 — 21 — 22) " E({" M Va((1 — 21 — 20)" O], 1)1,
"DV (1 = 21 — 2) Oy, , 22)10a,))
<wa1’wal>< a2’wa2><y1ay2> @

3 .
v“l”'?

(3.2)

48



Ezplicitly, for cmy bases {y;‘faglz li=1,...,N%_1} and {y“S’ @) li=1,. Na,g

!
)

of Va2, and V Pat respectively, and for m,n,k,l € Z,, 1 =1,.. Nglsaz and
j = 1,...,Na,1‘°’a,2, we have
;(1 ah;(2) ah; :
(Vo) VN e = Flom(VE) @ Yl e @ V5 0)
; 3(2),
= F(0-23(y((llfa2 ]) ® )}:LLBu2 y:;’Q;l ® y:;a’l;l)' (33)

aiaz

Proof. We prove (3.2) in the case Y, = ygf(’m and Y, = y%" for i =

1

PICIEE

a,az

N and j=1,...,N®_ respectively, or equivalently, we prove (3.3).

7~ Yalal a1a2?

The general case follows 1mmed1ately from the bilinearity in ), and ), of the
right-hand side of (3.2).

a2 - az y —
For ai,as € A, a1,a9 # e, let {yamz li=1,...,Ng?, } and {ya,lal;z. |i=
@ . . o , .
.,Na,1 a1} be an arbitrary basis of V;?, and Va,l o, Tespectively.

For w,, € W, wg, € W, wy € (W), w,, € (W*)', we have

Res1_,, 20| (1 — 21 — 22) "E((e” ”3’53; Z((1 — 21 — 20) M OF, | z0)),

DY = 21 — 22)5O0b,,, 20)1i, )
=Res1_z1—z-0 (1 — 21 — 22)7"
BV (D (1 — )20
(1= 21 — 2)" O,
V(1 = 21 = 2)2 O, 20)ib,,))
=Res1_z—z=0 | (1 — 21 — 22) 7"
E((e YW el W), oy (V) (1 — 21 — 2) O™ O g 1 — ) -

) ?
aaZ'L al

VD (1= 21 = 2) Oy, 29)id,))

(1_2) ) L(-1) L(l)ﬂ)’

a2’

042 N 4
Najay ~alay

) ag; 1 a
- Z Z Z F(oas( Zsa z) ®yafa(2,1’yafaz,p yg4a1 q)'
ag€A p=1 ¢g=1
-1
'ReslleszZO | zz(l — 21— 22)
.E((eL(fl)eL(l) i, ygzaw(ysfal q((l — 2 — 22)L(o) )

O b))

al,l—Zl—Zg)

(1 —zZ1 — 22) Lo )wala Z2)u~}a2>)

49

}



= Fon(Vei) @ Vil Ve ® Via )

1
'Resl—zl—zzzo | Z2(1 — 21— 22) :

'E((GL(_I)G ( )waw :‘(32;1( g’al-l((l — ZQ)L(O) :
Oy

a1’1_’z1_z2)

(1 2 ZZ)L(O)waU z2)wa2>)

F(O-QS(y )®yaf&2]7yga2,gp®ygla1 1)

(Ve Wy, Yez o (W), way) 1, 22)a,)

= (0, wa ) F(0ms (Vi) ® Veri s Vedsip ® Vpar) (€0, Vi)
= (W), War ) (W, wer) F (023 (V) ® Ve Vedsp ® Viparn):

where we have used the fact that W) = 0for ay # e. This proves (3.2) and also
the first equality in (3.3). The second equality in (3.3) can be proved similarly
or can be simply obtained using the first equality in (3.3) and symmetry. =

Clearly, (yl,yg)vgfw is bilinear in Y; and ),. Thus we have a pairing
s vz, Vi, ® Vit = C
We need the following lemma:

Lemma 3.3 For aq,a0,a3,a4,a5 € A, Vi € Vz,f’a,z, Y, € Vs

aqas’?

€ (W®)  w,, € W, w,, € W%, if a1 # a4 or as # as, then

, € (W,

Resl_zl_zFO | 22(1 — 21— 22)_1E(<6L(1)yl((1 — 21 — ZQ)L(O)’lz);l, Zl)wl

a2’

eL(l)yQ((l — 21— ZQ)L(O)wau ZQ)QIJ%)) =0.

Proof. Using the L(1)- and L(—1)-conjugation formulas for intertwining op-
erators, the definition of o953 and the associativity of intertwining operators,
we know that there exist a V-module W and intertwining operators )5 and
Y, of types ( V;is) and (WQIYVWG 4), respectively, such that

Rest—z =0 n(l—21 — 22)71E(<€L(1)y1((1 — 1= Z2)L(O)wa1a

"Wy (1 — 21 — 20) Oy, 20)1045))
_1 .

21)Wh,

=Resi 2 z=0](1 — 21 — 22)
E(<€ L(- 1) La )w 0'23()/ )((1 — 21— ZQ)L(O)QI):ZI, 1— 211) .
Wa((1 = 21 — 22) 0Dy, 20)1b,))

20



= Res1_;—z=0]2 (1 — 21 — 22)_1
-E((e LDl waz,yg(y4((1 — 21— ZQ)L(O) 1 — 21— 29) -
(1= 2 — 29)HO >wa4, 29)Was))- (3.4)

If a; # a4, W is not equivalent to W%. Thus Vs’la4 = 0. So it is possible to
find such a V-module W which does not contain a summand equivalent to V.
By the assumption on V, we have W) = 0. So the right-hand side of (3.4) is
0, proving the lemma in this case. If a; = ay, V;,l o, 1s one-dimensional. We can
choose W to contain one and only one copy of V. If ay # a5, any intertwining
operator of type (;25) (that is, type (W;fs)) must be 0. So Ys(1,2,) = 0.
Since Wg) = C1, there exists A € C such that the right-hand side of (3.4) is
equal to
Ml el®) We,, V3(1, 22)Wa,) = 0,

proving the lemma in the case as # as. n

As in [H9], we now choose a canonical basis of Vg3, for a1, as, a3 € A when
one of ay, ay, az is e: For a € A, we choose V¢, to be the vertex operator Yyye
defining the module structure on W* and we choose Y e:1 6O be the intertwining
operator defined using the action of 15, or equivalently the skew-symmetry in

this case,

ge;l(wa’x)u = 0'12()73‘1;1)(’(1]&,1?)“
ewL(il) ga 1(U —.T)’(Uu

= ( )YWa( )wa

for v € V and w, € W Since V' as a V-module is isomorphic to V', we
have ¢/ = e. From [FHL]|, we know that there is a nondegenerate invariant
bilinear form (-,-) on V' such that (1,1) = 1. We choose V., = yg;,;l to be
the intertwining operator defined using the action of oo3 by

!

yga’;l =023 (yge;l)’
that is,

(t, Vot (Wa, ®)war) = €™ (Vi (21 (e ™0 2) g, &7 u, war)

forueV,w, € W* and w, € W% . Since the actions of o7 and 093 generate
the action of S35 on V, we have

yg’a;l =012 (yga’;l)
for any a € A.

ol



Theorem 3.4 The pairing (-, -)yes = Vg3 ®V Py C is nondegenerate. In

1a9 aija2

particular, N =N%

aijag”’
Proof. For ay,as,a3 € A such that one of ay, as, a3 is e, we have a canonical
basis V;?,,.; given above. For ai, a, a3 # e, let i=1,...,Ng, , be an
arbitrary basis of V3

aijaz’

For ay,as,a3 € A, let

a1a2 77

asz;(1 a)
yaf(;(z;} = 0123(3)1'-')’

a2ag;)

ya,3;$2'). = 023(37:

ajay;i a}as; z)

Then the first equality of (3.3) gives

]
(093 (y(j,fas;z.), 0123 (yszlag,]» 23

_ <ya'3;(2) yaa,(1)>
valaz a’la’2;i’ a1a2;] Va?ag

= (y:f% 4 ® 0123(ya2a ]) 37322,1 ® ya’al, )-

(3.5)
In [H9], the first author proved the following formula ((4.9) in [H9]):
ay
a’las
Z (ygjel ®y2 3033 l’ygza;;k ®ya2a ])
k=1
(yaaza:; ik & 0-123(ya2a z) yg;z i1 oY ya, fa1; 1)
= 5ijF(y222€;1 ® yglzﬂ,Q;l; yga22;1 ® y@aé;l)' (36)
In the same paper [H9], the first author also proved that
F(yg:e;l o yggaz;l; ygjg;l ® nga’Q;l) ?é 0.
Thus from (3.5) and (3.6), we see that the matrix
(aza) ((@3(3’3:12,13;1-),0123(y;12lag;j)>vgfa2) (3.7)
is left invertible. Note that when ay,as, a3 # e, y;“% ,; and yala y in (3.7) are

arbitrary bases of V;‘,fas and Va;a,s , respectively.
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We now show that (3.7) is also right invertible. By definition, the bilinear
form (-, -)ng% is symmetric in the sense that

(D1, V2) 3 (Va, Y1)

ik
for ay,as,a3 € A. So
(020 (Vi) 0128 Vikeg s,
= <O-123(y;13ag;]')’ ‘723(ys'12a3;i)>v“,8 ,
@192
= (023(013()722@3;3'))’ ‘7123(013(3)3’12%;1')»1/“,’3 ;o (3:8)
@192

Note that for a, ay, a3 € A, 013 (yj,;az_i) is a basis of V3, such that when one
of the elements a1, as, a3 € A is e, these basis elements are equal to the special

ones we chosen above. Thus by the result we obtained above, the matrix

(B5) = (o23(013(Vityy,0)): 0125 (018 (ViEy ) o )

!
@193

must be left invertible. So the transpose of (3;;), that is, the matrix

ye3 ),

71
@199

(11) = ((023(015 Vplas 1)) 123(015 (Ve )

is right invertible. By (3.8), we see that (3.7) is also right invertible.

Now we have shown that the matrix (3.7) is in fact invertible. This is
equivalent to the nondegeneracy of the bilinear form. It also implies Nc?’fa’z =
N2 [ |

ai1az”

For a € A, let
l:; = }?( geﬂ,cb )%:Qul; J%;aﬂ,cb J%:aﬁl) 7£ 0.
Then by (3.12) in [H9], Fy = F, for a € A.

Lemma 3.5 If for a € A, Vi1, Vaea, Vew,y are the canonical bases of Vg,

Ve, Ve, respectively, chosen in [H9] and above, then their dual bases in Ve

ae’ Yaa's ea'’
! . PR .
4 es Vo, with respect to the pairing (-, )va , (-, )va_, (- '>V§a1’ respectively, are
€
a’ a ya’a;l
equal to Vepr.1, Varesr, -
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Proof. 'This result follows immediately from the definition of the canonical

bases in [H9]. n
We have:

Proposition 3.6 For aj,az,a3 € A, let {V;?2,,. |1 =1,...,N&3, } be bases

of ngaz and let {y;as i=1,. ag” } be the dual bases of {V;?,,.; | i =

1,...,N2 L with respect to the pazmng ( I o3 - Assume that for a € A,

a1a2

a a a € y
bailr Vaeslr Ve are the canonical bases of Ve,, Va., Ve, respectively, we
have chosen. Then for ay,as,a3,a4 € A,
Najas Nagag
aq as a6 .
Z Z Z yala5 P ® aza3,Q’ yaeas ym ® ya1a2, )
as€A p=1 =
fiay rias . )i ray
F( a’la’5p®ya ajy;q’ a’7agn®ya a2,)
= 5a6a75mn6kl-

Proof. Foray,ay, a3, a4 € A, we, € W% and wy, € (W*)' satisfying (wy,, w,;) =
1 for i = 1,2, 3, using (3.2) and Lemma 3.3, we have

-1 -1
Resl—zl—Z3:0 | Z3R651—22—24:0 | Z4(1 — 21— 23) (1 — 22 — 24)

E((e"® s, (1 — 2 — 23)L(0)7I)fh,z1) .

ajaxk
Vit (1= 25 — 22) MO, 20)i8,,
L(l)ygfae m((]' —Rk1—Z )L( )wﬂl’ Z3)

'yggag;n((l — R — Z4)L(O)wa2;w 24)w¢13>)

—1
= 5a5a65kaeslfzzfz4:0 | z4(1 — 22 — Z4)

E((Vya i (1= 22 = 2) O}, 2o}t
yg;ag;n((l — 22— Z4)L(O)u~)a2a 24)71)0.3))
= 6a5a65km6ln- (39)

On the other hand, by the associativity of intertwining operators and
Lemma 3.3, we have

1 -1
Resi—z—23=0 2 R€81—zp—z4=0 | 24 (1 — 21 — 23) 7 (1 — 22 — 24)

E(<6L(1)y;;’:l;§;k((1 — AT z3) (O)wal’ 21) )
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Va1 = 22 = 20) O, 20)

e :%ae;m((]' — 21— 23)" O, 23) -

326(13;71((1 2 24)L(0)u~)a27 Z4)’U~)a3>)
nal 1al | ~yl0) ;al
Z ZF( a’l(;lg;k®y v a;z®yacz2j)
a7aa86Aiaj555t
F( alae m ® a2a3 n a8a3 s ® a1a2, ) :
'Resl—zl—z;;—o | zgResl—zz—24:0 | z4(1 2 23) (1 — %2 — Z4)7
(< L(l)yl HA ( /a7 ((1 — 2 - zg)L(O)w/

ahal;i\Y alah;j alazl_ZQ)'
(1 — k2 — Z4)L(0)w;27 22)1'5:1,3’

a8a3, ( gfaz;t((l — 21— Z3)L(O)wa1a 23 — 24) :
(1 — k2 — Z4) (O)wam Z4)’U~)a3>)
ral, ! ! !
> Y F( afig;k@?ya“f’ . aa;1 Z®yaag )

ar,ag €A i,j,S,t

L)

. aq ag . )
F( a1aﬁ;m® a2a3;n’? 118113, ®ya1a2,

'Resl—22—24:0 | Z4Resl—z1—2320 | 23(1 — 21— 23) (1 — 22— 24)_
L(0)
L(1)~fi0} o (0) 307 l—21—2 )
E<<e i | (1= 72 = 20 O 1— 2 — 2
I —— S PSP 7
) T - 2
a1’1_22_z4 a? az’

1- 21 — 23 L
eL(l) ggas;s ((1 Iz Z4)L(0) t(zlf(n;t ( <7> :

1—22—24

~ %3 T R4 ~ ~
“Wa,y m> Waz Z4) was>) . (3.10)

We now change the variables z; and z3 to

21 — 22
2y = ——————————
1—Z2—Z4
and
23 — 24
g = —————.
1—2’2—2’4
Then
1—21—23
1—25—26 = —),
1—22—24

95



z3 = (1— 22— 24)26 + 24

For any branch f(z1, 29, 23, 24) of a multivalued analytic function of z;, 29, z3
and z, on a suitable region A such that it is equal to the restriction to AN B
of a branch of the same analytic function on a region B containing the point
1 — 21 — z3 = 0, by definition, we have

Resl—zl—z;;:o | ng(f(Zla 29, %3 24))

l—2—=z
= Res1*25*26:0 | (1*22*Z4)Z6+Z4E(f(21a 22, %33 24))1713 (3'11)
— %5 — %6
By (3.1), we have
1— 21 — R3
Reslfzsfzgzo | (17227z4)26+Z4E(f(Z15 22, %3, Z4))17
— 25 — Zg
1—21— 2z
= Reslfzg’,%:o | zeE(f(Zla 29,23, 24))1713 (312)
— 25 — 2%
From (3.11) and (3.12), we obtain
Res1_z;—z=0 | zg,E(f(Zl, 225 %235 24))
1—2z1— 2z
= Resi_,y— 20| 26 £ ([ (21, 22, 23, 24))1713- (3.13)
— 25 — %%

Using (3.13), the definition of the pairings (-, '>V313a2’ Lemma 3.3, and the

fact that for a1, a9, a3 € A, {y’ a‘°’ =1, Na,f'i ,} are the dual bases of
Vet 1 =1,...,N&, } with respect to the palrlng (-, v ves, s We see that

a1a2

the right-hand 51de of (3.10) is equal to

/ ’
F Ia.4 Ia5 . Ia4 ®3)1117 )
alaj Ic u sansl? Y alabsi alal;j

a7,a8€A 1,7,8,t
F(Vaiasim ® Vasasins Vagazis © Varasit) -
‘ReS1_2p—24-0 | 24 RES1— sy 260 | 26(1 — 25 — 26) " (1 — 22 — 24)
B((e" DY (1= 2 — )40 -
;la(; (1 =2 — 26) MO, 25)id,, 20) 00,
Ot (1~ 2~ )0

'ygfaz;t((l — k5 — ZG)L(O),ID(IU 26)12}0,27 24)1Da3>)

-1

26



oS P @ Vi Vi @ Vi -

a7,a8€A 1,j5,5,t

. a4 ae . )4 ar )
F( ala.e,;m® azasz;n’ a7a3;5® aiaz;t

'Resl—Z5—z6:0 | zeResl—Zg—Z4:0 | 24(1 — 25 — 26)71(1 — 22 — 24)71
B((e" Y (1= 2 = 24)HO -
(,zyllal;llzd((l %5 ZG)L(O)wfn’ Z5)wa2’ ’22)11)21.3’

1)ygga3;s((1 — k2 — 24)L(0) ’
((1117(12 t((l —R5 — ZG)L(O)walazﬁ)waza 24)’[[]&3))

=Y N P @ Vi Vi @ Vi ) -

ar€Aijsit
F(Viiasim © Vasasins Varazis © Varasit) -
‘ReS1_z5—26=0 26 (1 — 25 — 26) " Ois
E((e!M ;:‘;2 (1= 25 — 26) O], 25)00,,
"Dy (1 — 25 — 26) Oy, 26)0a,))

I;a’ /a . [a Ia
=20 D PO © Vit Ve © Vi)

a7€A1,],8,t

. aq ® ag . Y))a4 ® 6 5
b
F( aiae;m azaz;n’ v agas;s a1a2 t) 1sVjt

_ THA Ia5 . Ia4 ral
- ZZF( a’la’s;k®y anal z®yaa ])
ar€A 1,j
a a . Va a
F(yafae;m & ya26a3;n? ya;la,g;i & yafaz;j)' (314)

From (3.9)—(3.14), we see that the right inverse of the matrix with entries
PO ® Vi Vit ® Vi)

ahalsi alaly;j
is the transpose of the matrix with entries
a4 a6 . ))a4 ar
F( aiae;m & aza3;n’ v araz;t & alaz;j)'
Since for square matrices, right inverses are also left inverses, the proposition

is proved. [ |

For a € A, we use y/F, to denote the square root \/|Fa|eiar2Fa of F,. For
ap,as, a3 € A, consider the modified pairings

V F,
7@,(-’ ')v;‘% .
Fa1 /Fa2 1a2
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These pairings give a nondegenerate bilinear form (-, ) on V. For any o € Sj,
{o(Veayd) 1= ..., N3, } is a basis of o(V2,,).
We have:

Proposition 3.7 The nondegenerate bilinear form (-, -)y is invariant with re-
spect to the action of Sz on V, that is, for ay,as,a3 € A, 0 € S5, Y € V%

a1a
and Yy € V, ol

(U(y1), U(yQ))v = (yla yQ)V-
Equivalently, for a,,ay, a3 € A,

\/ al\/ az a —1
V (3) IG‘S ) Z _ Na’3
aaz,z 7 Taran
\/F“ —1(1>\/ G=1(2) V Fag

is the dual basis of {o(V52,,.) |1 =..., N33, }.

a1a2

Proof. The equivalence of the first conclusion and the second conclusion is
clear.
We first prove the result for 0 = 015. In this case, we need to show that

{00V ) | i=...,N, } is the dual basis of {o15(Y%,,) [i = ..., N%, }.
Fori,j =1,. N(‘jl@, by (3.3), we have

<012 (y;a§2 z) (yafa2,])> F(023 (012 (y;;aa z)) & 012 (ygfa2;j); yeal,l ® ya2a2, )
(3.15)
By Proposition 3.4 in [H9], the right-hand side of (3.7) is equal to

F(0132(012(y513a2;j)) & 0123(023 (012( ;’ajz Z)))Q 0123(3751 az.l) & 0132 ()73,;1;1))
= F(025(Vians) © Vs Veayn © Vesay)
= Flon(Vifuy,) © Vit Vit © Vi) (3.16)
By (3.3) again, the right-hand side of (3.16) is equal to

al ral,
<y/§ ”. ’/3/.>:5ija

, ]
afal;j’ v ajay;i

proving the case of 0 = 0y5.
Next we prove the result for 0 = g93. We need to find the relation between
the matrices

7
(023 (Vi i) 023 (Voo J)>va2
a1a3
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and ,
ag
<ya’1a’2;i’ ya1a2,]>Va1a2
By definition, we need to find the relation between the matrices

(ya,’ a’ z ® 0-23(:)}0.10.2 ]) yea 1 ® yglal 1) (3'17)
and
F(0-23( aaB;, z) ® ygfl;g,]’ yga22,1 ® ya’ a1, ) (3'18)
From (4.9) in [H9| (or (3.6)), we see that the inverse of the matrix (3.17) is
F(ya e;l ® ygza ;1 ya’ alyik ® 0-132(0-23(ya13a2 ])))
3
By Proposition 3.4 in [H9] and the fact F, = F, for a € A, (3.19) is equal to
F(ya e;l ® yasa ;10 0-23(3}411&2 ]) & 0132(3}41’ al; k))
Fo,
F,, F(ya o1 ® Voga13923(Varass) © 0132(3’@/ k)
Fa3 F’a’2 ’

(3.19)

which by (4.9) in [H9] (or (3.6)) again is equal to % times the inverse of

(3.18). So the inverse of the matrix (3.17) is equal to =22 times the inverse

Foq
of (3.18). Thus the matrix (3.17) is equal to % times the matrix (3.18), or
ay

equivalently,
al al
(023()):11?&2;1')’ 023(ya’fa’2;k))v = ( :faz;j’ ya’lsag;lc)v'

Since S3 is generated by o015 and 093, the conclusion of the proposition
follows. n

We are ready to construct a full field algebra using the bases of intertwining
operators we have chosen. Let

F=@ueaW@W?,
For we, € W, we, € W, wy € W and Wy, € W we define
¥((a, @ ), 2 ) & )

”'1"'2

a
=D D Vit (Wa, Dwe, ® Vi (e, Qway-

az€A p=1
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Theorem 3.8 The quadruple (F,Y,1 ® 1,w ® 1,1 ® w) is a conformal full
field algebra over V@ V.

Proof. 'The identity property, the creation property and the single-valuedness
property are clear. We prove the associativity and the skew-symmetry here.
We prove associativity first. For ai,as € A, wy, € W, w,, € W,
e (W*)', w,, € (W), using the associativity of intertwining operators
and Proposition 3.6, we have

Y((way ® wy, ), 21, () Y((way, ® w,), 22, C2)

N4 a
a1a5 Na25a3

= > 2. Z (Vetasip(Warr 22) Vitagsg(Was, 22))

a3,a4,a5€A p=1 ¢=1
ra 1al

li
a
7
IINII
793 *19%2

= 2 2

a3,a4,a5,06,07€A p=1 g¢=1 m=1 n=1 k=1 I=1
FGztasp © Vit Vesussm © Vasassn) -
F (Vi @ Vit Vet @ Vil ) -
'((ygéag;m(y:faz;n(wal’ 21— 22)Way, 22))

1,0y 107 / !
®( a'7a'3;k( a’la'z;l(wal’CI — (2)We,, €2)))

7
a a
5 7
a5 ag N73, N
Na6a3 N”'la2 a’ a’ ala’2

= Z Z (5a6a7 mk(snl

a3,aq4,a6,a7€A m=1 n= k=1 I=1

1
(y ag,m(ygfag;n(wal » 21— 22)wa25 22))
! I
®( Z’jﬁg,k( o l(wm’ C1 = G2) ey, G2))
Nagaz Nata,

- Z Z ygéas, ygfag;n(wam 2 = Z2)wa2, 22))

as,a4,06€A m=1 n=1
®(y(;;:;g m (y(lz:ls n(wal ’ <1 CQ)w:zza <2))
= Y(Y((wal & wle)v Rl — %2, Cl - CQ)(waz ® waz): 22, CZ)

We now prove the skew-symmetry. By Proposition 3.7, {012()7;;; 3,2 Z) | i =
1,...,N% 1 is the dual basis of {o12(Ys | i =1,...,N% 1} Thus for

a1a2 a1a2 z) aia2
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ay,ay € A, we, € W4, w,, € W2, w,, € (W), wy, € (W), we have

Y((way ® wy,), 2 C) (Way ® wy,)
Ng3a,
1;a,
= Z Z 012(ygfa2;p)(wa2,2)wa1 ® 1o a’lljlz;p)(wa;,é)wag
a3€A p=1
Nata,
. a .
- Z Z eimA(ya?a%p)ezL(il)ygfaQ;P(wmaemz)w(w
azeA p=1
’
ﬂiA(ya3 ) (=1 I;al, — i
®€ a’lalz,p 6< ( )ya’llalz;p)(wa’l’e ch)wué

_ (D g eSHD)Y

NG3

ajaz
a i f;a —mi
:4 Z Varazp(Way, € 2)Wa, @ ya7’1;§;p(w“'1’ e () wa,
a3 € p=1

zL(— L(— i —me
- (e ( 1) ®€C ( 1))Y((wa1 ® w:‘bl)’e Zie C)(wa2 ® wtllz)

Definition 3.9 A nondegenerate bilinear form (-,-) on a conformal full field

algebra
(F,m, 1,w", wf)

is said to be invariant if for u,v,w € F,

(Y(u; 2, 2)v, w)
(,U’Y(ezLL(1)+2LR(1)em‘LL(O)—m'LR(O)z—ZLL(O)Z—QLR(O) | Z—l)w).

The conformal full field algebra F' we constructed above has a natural
nondegenerate bilinear form (-,-)p : F ® F — C given by

0 a; # al

Fal <wa1 ) wa2> <w:11’ w;g) ay = aIZ

(s ® 04,), (0 ® ) = §
for a1, a9 € A, we, € W, w,, € W2, w, € (W*)', w,, € (W2)". We have:

Theorem 3.10 The nondegenerate bilinear form (-,-)F is invariant.
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Proof. For ay,a;,a3 € A, w,, € W4, w,, € W, w,, € WS, w, € (W),
€ (W), w,, € (W), using Proposition 3.7 for the case o = 093, we
have

(V((way ® wg,), 2, €) (Way @ wy,), (Way & we,))r

NZ4

ailag
- Z Z ygfazp Weq, 5 2 )wa2 ®ya’a; p( ;1’C)w:12)’(wa3 ®w;3))F
ag€A p=1

a
Nata,

1 !
= Z Fa3<ygfa2;p(wa17Z)wawwas)( a”la;'z;p( alac) az W )
p=1

a3
AQIGZ

L
=> Fa3<023(023(373f’a2;p)(wa1aZ)wazawag)(023(023(37;’;512;,7)(%1a )Wy Wey)
p=1

a1a2

— Z Foy(we,, €™ thay o5, (ygf,a2;p)(ezL(l)e—m'L(O)Z—2L(O)wa1’Z—l)wa3>.

—mihg 1;a - — —
(W), €70 0 (V%) (eSHDEmEOC2E Oy =y
Nafa,
= D Fur(War, 028(Vip) (Ve OO0 2 Ny,
p=1
! Foq lay CL(1) miL(0) ~—2L(0), 1 =1y, 1
. 'LUGQ’ EO'Q:;( allalg;p) (e e C wal,C )was
2
Nﬁ?GQ
— Z ((wa2 ® wflz), (023(3];13(12;1)) (ezL(l)e—mL(O)Z—ZL(O)wal, Z—l)wa3
p=1
Foy 1;a% CL(1)  miL(0) ~—2L(0), 1 =1\, 1
® F 023( a’la’Q;p) (6 € € ’LUal,C )wag))F
a2
Naia,
— Z Z Wa, ® w (Ozg(ygfa4;p)(EZL(l)G_ML(O)Z_ZL(O)wal, Z_l)wag
as€A p=1

1:; 'al T — —
e ) L e L R

= ((wa, @ W), V(2L =mLO) ;2L

®(eCL(l)e”L(O)Q_ZL(O)wa), Z_l, C—l)(was ® w;S))F;
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proving the invariance. i
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