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1 Representations of associative algebras

Main references: [EGHLSVY], [FD] and [J].

Definition 1.1. An associative algebra is a ring together with a vector space structure over
a field I such that the ring structure and the vector space structure are compatible. Homo-
morphisms of associative algebras are homomorphisms of the ring structures and the vector
space structures. Isomorphisms of associative algebras are homomorphisms with inverses. If
a subspace of an associave algebra is closed under the operations for the associative algebra,

then it is called a subalgebra of the associaive algebra.

Examples:

1. Let M be a vector space over F. The the set End M of all linear operators on M is an

associative algebra.

2. Let M be a finite-dimensional vector space over F and 7" a linear operator on M.
Consider the subspace F[T] of End M consisting of all polynomials in 7. Then F[T] is

an subalgebra of the associative algebra End M.

3. Let A be an associative algebra and M, (A) the set of matrices whose entries are
elements of A. Then M, (A) has a natural structure of associative algebra. We call

M, (A) the n x n matrix algebra over A.

4. Let G be a group. For a field F, let F[G] be the vector space over F with elements of

G as a basis. Then F[G] has a structure of associative algebra.

5. Let g be a Lie algebra. Then the universal enveloping algebra U(g) of g is an associative
algebra. (See Section 3 below for the definition of Lie algebra and the definition of the

universal enveloping algebra U(g) of a Lie algebra g.)



Definition 1.2. Let A be an associative algebra. A (left) representation of A is a vector
space M and a homomorphism p: A — End M of associative algebras. The vector space M
equipped with p is called a (left) module for A or an (left) A-module and is denoted (M, p)
or simply M. A homomorphism from an A-module (M7, p1) to another A-module (Ms, po)
is a linear map f : M7 — My such that f o pi(a) = pa(a) o f for a € A. An isomorphism or
equivalence from an A-module to another A-module is a homomorphism with an inverse. If
a subspace of an A-module (M, p) is invariant under the map p(a) for all a € A, then it is
called an A-submodule of (M, p).

Example 1.3. Let A be an associative algebra. Then A is itself an A-module. Let I be a
left ideal of A. Then A/I is also an A-module.

Let (M, p) be an A-module. We shall denote the space of all homomorphisms from M
to itself by End4 M. Note that End4 M is in general different from End M = Endy M. For
a € Aand z € M, for simplicity, we shall denote (p(a))(z) by az. Since pis a homomorphism
of associative algebras, we have

a(bx) = (ab)x

fora,b€ A and x € M.
Example 1.4. For any element z € M, the subspace
Ar={ax € M |a € A, x € M}
is clearly a submodule of M.
For any element z € M, let
I,={a€ A|ax=0}.
Then I, is a left ideal of A.
Proposition 1.5. The A-module Az is isomorphic to the A-module A/I,.
The proof of this proposition is straightforward.

Definition 1.6. An irreducible A-module is an A-module such that its only A-submodule is
0 and itself.

Exercise 1.7. Show that M is an irreducible A-module if and only if M is isomorphic to
A/I where I is a maximal left ideal of A.

Lemma 1.8 (Schur’s Lemma). Let M be an irreducible A-module. Then a homomorphism
of A modules from M to M is either an isomorphism or 0.

Proof. Let f: M — M be a homomorphism of A-modules. Then
ker f ={x € M| f(z) =0}

is an A-submodule of M. Since M is irreducible, ker f is either 0 or M. If ker f = M, then
f=0. If ker f =0, then f is injective. In particular, f(M) # 0. If f(M) is not M, then it
is an A-submodule of M which is neither 0 nor M. Contradiction. So f(M) = M, that is,
f is also surjective. Thus f is an invertible linear map. It is easy to see that f~! is also a
homomorphism of A-modules. Hence f is an isomorphism of A-modules. [
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Corollary 1.9. Assume that the coefficient field F is algebraic closed. Let M be a finite-
dimensional irreducible A-module. Then a homomorphism of A modules from M to M is
proportional to the identity operator.

Proof. Let f be such a homomorphism. Since M is finite dimensional and F is algebraic
closed, f as a linear operator on M must have an eigenvalue A € F and an eigenspace M.
Then f— Alps (15 being the identity operator on M) is also a homomorphism of A-modules
from M to M. The kernel ker(f — Aly,) of f — A1y, is exactly the eigenspace M. So we see
that M), is an A-submodule of M. Since M is irreducible, M) is either 0 or M. But as an
eigenspace, M) is not 0. So ker(f — Aly) = My = M. Thus f = Aly. |

Corollary 1.10. Let M be an irreducible A-module. Then Ends M is a division algebra,
that is, an associative algebra whose nonzero elements are all invertible. In the case that the
coefficient field F is algebraic closed, End4 M = T.

Definition 1.11. Let M be an A-module and M, an A-submodule of M. Then there is a
natural A-module structure on the quotient space M/M,. The A-module M/M, is called
the quotient A-module of M by My. An A-module of finite length is an A-module M and a

finite sequence
My=M>DM, D---DM,D>DM; =0 (11)

of A-submodules of M such that M;/M;, for i = 0,...,n are irreducible A-modules. The
(finite) sequence (1.1) is called a finite composition series of M and n is called the length of
the composition series.

Exercise 1.12 (Half of Jordan-Hoélder theorem). Prove that any two finite composition
series of M must have the same length.

Definition 1.13. In view of the exercise above, we can define the length of an A-module of
finite length to be the length of any finite composition series of M.

Definition 1.14. Let M7 for v € I' be A-modules. Then there is a natural structure
of A-module on the direct sum [[ .. M7. A complete reducible A-module is an A-module
isomorphic to a direct sum of irredubcible A-modules.

Exercise 1.15. If an A-moudle is completely reducible, then any A-submodule or any quo-
tient of this A-module is also comnpletely reducible.

Theorem 1.16. Let M be a complete reducible A-module of finite length. Then Endy M s
tsomorphic to a direct product of matriz algebras over division algebras. In the case that the
coefficient field F is algebraic closed, End s M 1is isomorphic to a direct product of matrix
algebras over F.

Proof. Since M is a complete reducible A-module, there exist irreducible A-submodules
M? for v € I' of M such that M =[] .. M". Since M is of finite length, I' must be a finite

set. Among these finitely many irreducible A-modules, let M*,---, M™ be inequivalent ones
and for each i = 1,...,n, let m; be the number of irreducible A-modules in {M" | v € T'}
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isomorphic to M*. Then M is isomorphic to [}, m;M* where m; M* means the direct sum
of m; copies of M*. We shall discuss [[}_, m;M* instead of M.

Let f € Endy M. For each i = 1,...,n, we consider the map f* =m0 foe; : mM’ —
m;M* where e; is the embedding from m;M* to [[, m;M* and m; is the projection from
[T, m;M* to m;M". Since e; and m; are both homomorphisms of A-modules, f* is also a
homomorphism of A-modules. Consider fi; = pro fio¢ for k,l = 1,...,m; where p; is
the projection from m; M to the k-th copy of M and ¢ is the embedding of M’ to the [-th
copy of m;M*. Again, f;, is a homomorphism of A-modules from M to M'. Thus f, is
an element of the division algebra Ends M*. From f{, for k,l =1,...,m; i =1,...,n, we
obtain n matrices (f};), i = 1,...,n. These matrices give an element of the direct product
of n matrix algebras over division algebras. In this way, we obtain a map from End4 M to
the direct product of the n matrix algebras over the corresponding division algebras. It can
be verified that this map is an isomorphism of associative algebras, proving the first part of
the theorem.

In the case that IF is algebraic closed, End4 M* is equal to F. Thus End4 M is isomorphic
to a direct product of matrix algebras over . |

Exercise 1.17. Verify that the map given in the proof of the theorem above is indeed an
isomorphism of associative algebras.

Definition 1.18. Let A be an associave algebra. Then the vector space A equipped with
the opposite multiplication defined by a -° b = ba for a,b € A is also an associative algebra.
This associative algebra is called the opposite algebra of A and is denoted A°.

Exercise 1.19. Let A be an associative algebra. Prove the following:
1. (A°)° is isomorphic to A.
2. End4 A is isomorphic to the opposite algebra A° of A.
3. (M, (A))° is isomorphic to M,,(A°).

Definition 1.20. An associative algebra A is said to be semisimple if A as an A-module is
completely reducible. An associative algebra A is said to be simple if A as an A-module is
irreducible.

Theorem 1.21. Let A be a semisimple associative algebra. Then we have:

1. There are only finitely many irreducible A-modules, all of which appear in the decom-
position of the A module A as a direct sum of irreducible A-modules.

2. Fvery A-module is completely reducible.

3. A is isomorphic to a direct product of finitely many matriz algebras over division alge-
bras.

4. In the case that the coefficient field F is algebraic closed and every irreducible A-module
is finite-diemnsional, A is a direct product of fintely many matriz algebras over T.



Proof. Since as an A-module A is completely reducible, we have A = H'yEF M? where
M? for v € T are irreducible A-modules. On the other hand, since A contains the identity
element e, there exists vi,...,7, € ' and e; € M™,... e, € M7 such that e = Y | e;.

Thus we have n "
A= Ae= ]_[Ae,- = ]_[M%’.
i=1 i=1

Let M be an irreducible A-module. Then for any nonzero x € M, M = Az. In particular,

we have a homomorphism p : A — M of A-modules given by p(a) = az. Fori=1,...,n,
the embedding e; : M — A is also a homomorphism of A-modules. Then for i =1,...,n,
we have homomorphisms poe; : MY — M of A-modules. Since M" forv=1,...,n and M

are all irreducible A-modules, p o e; must be either 0 or isomorphisms. If these maps are all
0, then p=>"" poe; is 0. But that is not true because p(e) = z # 0. So at least one poe;
is not 0. Thus p o e; gives an isomorphism from M7 to M, proving the first conclusion.

Let M be an A-module. Then M is the sum of Ax for x € M. We know that Az is
isomorphic to A/I, for some maximal ideal I, which therefore is also an A-submodule of A
and A is completely reducible. Thus as a quotient of a completely reducible A-module, Ax
is also completely reducible. Hence M is a sum of irreducible A-modules. It is clear that a
sum of irreducible A modules must be a direct sum of irreducible A-modules, proving the
second conclusion.

We know that End4 A is isomorphic to a direct product of finitely many matrix algebras
over division algebras. On the other hand, we also know that End,y A is isomorphic to
A°. So A° is isomorphic to a direct product of finitely many matrix algebras over division
algebras. Thus (A°)° is isomorphic to a direct product of finitely many matrix algebras over
the opposite algebras of the division algebras appearing in the decomposition of A°. Since
A is isomorphic to (A°)°, we obtain the third conclusion.

Note that the division algebras in the third conclusion are the algebra of all homomor-
phisms from an irreducible A module to itself. In the case that the coefficient field F is
algebraic closed, these division algebras are just the field F. So the last conclusion holds. R

Remark 1.22. Let A be a semisimple associative algebra. Then by the theorem above, A
is isomorphic to A; @ --- @ --- A; where Ay, ..., A, are simple associative algebras.

Definition 1.23. Let A be an associative algebra. A right module for A or an right A-
module is a vector space M equipped with a homomorphism of associative algebras from A°
to End M. For any a € A, we right the action of the image of a under the homomorphism
from A° to End M on x € M by xa. A bimodule for A or a A-bimodule is a vector space M
with a left A-module structure and a right A-module structure such that the left and right A-
module structure commute with each other. That is, for a,b € A and z € M, (ax)b = a(xb).
Right A-submodules of a right A-module and A-bisubmodules of a A-bimodule are defined
obviously. Homomorphisms and isomorphisms of right A-modules and A-bimodules are also
defined obviously.

Example 1.24. Let A be an associative algebra. If M is a left A-module, then M is also a
right A°-module. The associative algebra A is an A-bimodule.



Definition 1.25. Let M; and M, be vector spaces. Then the tensor product My @y M, is
the quotient space of the vector space spanned by elements of M; x M, by the subspace
spanned by elements of the forms \(z1, o) — (Az1, 22), (Az1,22) — (1, Axe), (T1 + 2}, x2) —
(x1,29) — (2}, 22) and (z1, 22+ ') — (21, T2) — (21, 24) for A € F, x1, 2} € M; and zq, 2}, € M.
The coset containing (x1, ) is denoted by x1 ® z5. Let A be an associative algebra. If M;
is a left A-module and M, is a right A-module, then M; ®p M, is a A-bimodule given by
a(x1 ® T2) = ax1 @ x2 and (21 @ T2)a = 21 @ x2a for a € A, x1 € My and o € M.
Definition 1.26. Let A be an associative algebra and M; and M, A-bimodules. A product
of My and My is a A-bimodule M and a homomorphism f : M; @z My — M of A-bimodules
such that f(z1a ® z3) = f(x1 ® axs) for a € A, 1 € My and x5 € M,. This product of
M; and M, is denoted (M, f). A tensor product of My and M, is a product (M, f) of M,
and M, satisfying the following universal property: For any product (M', f') of M; and M,
there exists a homomorphism g : M — M’ of A-bimodules such that f' = g o f. From this
universal property, any two tensor products of M; and Ms are uniquely isomorphic. We shall
denote the tensor product of M; and Ms by M, ®4 M.

Let A be an associative algebra and M; and M, A-bimodules. Let M; ® 4 M, be the
quotient of M; ®r Mj by the A-bisubmodule generated by elements of the form z,a4 ® x5 —
T1®axg fora € A, x1 € My and x9 € M. Let @4 : M1 Qp My — M;® 4 Ms be the projection
map. Then we have:

Proposition 1.27. The pair (M; ® 4 M, ®4) 1is a tensor product of My and Ms.

Proof. Let (M, f) be a product of M; and M. Since f(z1a ®@ x2) = f(z1 ® axy) for
a € A, x1 € My and x5 € M>, the kernel of f contains the A-bisubmodule J generated by
elements of the form z1a ® o — 21 ® axy for a € A, x1 € M; and x9 € M,. Let

p: M1 XA M2 = (M1 QrF MQ)/J — (M1 R MQ)/kerf
be the projection and f : (M; ®r Ms)/ker f — M be the injective map induced from

f- Then both p and f are homomorphisms of A-bimodules and f = fopo®4. Let
g=fop: M ®s My = (M, ® Ms)/J — M. Then g is also a homomorphism of A-
bimodules and we have go®4 = fopo®,4 = f. n

For 1 € M, and x4 € M, we denote the image of x1 ® x5 under ® 4 by 1 ®4 .

2 Representations of finite groups

Main references: [EGHLSVY], [J].

Definition 2.1. Let G be a group. A representation of G is a homomorphism p of groups
from G to the general linear group GL(M) of invertile linear operators on a vector space M.

Let p : G — GL(M) be a map. Consider the group algebra F[G]. For any element
a=>1, Na; € F[G] where \; e Fand a; € G fori=1,...,m and z € M, we define

oz = 3" M(p(a))(z)
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and obtain a map from F[G] to End M. Conversely, if we have a map p : F[G] — End M
such that the image of G is in GL(M), then the restriction of p to G is a map from G to
GL(M).

Proposition 2.2. A map p : G — GL(M) is a representation of G if and only if the
corresponding map from F|G]| to End M is a representation of F|G].

The proof is a straightforward verification.
From this proposition, we see that studying representations of a group is the same thing
as studying the representations the corresponding group algebra.

Definition 2.3. A subrepresentation of a representation p of a group G is the representation
of G corresponding to a submodule of the F[G]-module corresponding to p. A representation
of a group is called irreducible, completely reducible or of finite length if the corresponding
representation of the group algebra is irreducible, completely reducible or of finite length. A
representation of a group is equivalent to another representation of the group is the corre-
sponding modules for the group algebra are isomorphic.

Definition 2.4. Let A be an associative algebra. Let M, M; and M, be A-modules. A
sequence 0 - M; — M — M, — 0 with homomorphisms of A-modules as arrows is called
exact if for every A-module in the sequence, the image of the arrow before this A-module is
equal to the kernel of the arrow after the A-module. An exact sequence 0 — M; — M —
My — 0 is said to split, if M is isomorphic to M; & M, as A-modules and the arrow from
M; to M is the composition of the embedding of M; in M; & M, and the isomorphism from
M; & M, to M and the arrow from M to M, is the composition of the isomorphism from M
to My & M, and the projection from M; & My to Ms.

Exercise 2.5. Let A be an associative algebra. Prove that an A-module M is completely
reducible if and only if an exact sequence 0 — M; - M — My — 0 of A-modules for any
A-modules M; and M, splits. In particular, to prove that A is semisimple, it is enough to
prove that an exact sequence 0 - M; - M — My — 0 of A-modules for any A-modules
M, M; and M, splits.

Theorem 2.6 (Maschke’s Theorem). Let G be a finite group such that the characteristic
of F does not divide the order |G| of G. Then every representation of G is completely
reducible. In particular, when the characteristic of F is 0, every representation of G is
completely reducible.

Proof. By the exercise above, we need only show that for any F[G]-modules M, M; and
Ms, an exact sequence 0 — M; — M — My — 0 splits.

Given F[G]-modules M, M; and M, and an exact sequence 0 — M; — M — My — 0
of F[G]-modules, the exactness of the sequence at M; allows us to embed M; as an A-
submodule of M. We know that M as a vector space is linearly isomorphic to M; & M.
Let Iy : M — M; & M, be a linear isomorphism. Let py : M — M; be the composition of
this linear isomorphism [y, and the projection from M; & M, to M;. By definition, we have



po(z) = x for x € M;. Since the characteristic of F does not divide |G| is a well-defined

1
el
element of F. Let

1 _
P=1 > p(g) ™" o po o ply).
9€G
Then p is also a linear map from M to M,. For ¢’ € G,
_ 1 _ _
p(g) Fopop(g) = @ > " plg) ™ o plg)™ o po o plg) o plg)

geG

1 n— /
= @Zp(gg) "o py o p(gg)
geCG
1 _
= @Zp(g) "o pyoplg)
geG
= p.

Thus we have p o p(g') = p(¢’) op for ¢ € G. In particular, p is a homomorphism of
F[G]-modules. Since M; is an F|G]-module, (p(g))(z) € M; for g € G and = € M;. Thus

(Poop(9)) () = po((p(9))(x)) = (p(9))(z) or equivalently (p(g)~*opoop(g))(z) =z for g € G
and z € M;. Then we have

p(z) = faDp(g)—lopoop(g))(x)

geaG

1
= — >z
P>
= .

Let ¢ : M — M, be the arrow from M to M, in the exact sequence 0 — M; - M —
My — 0. We define I : M — M; & M, by l(z) = (p(z), ¢(x)) for € M. Since both p and ¢
are homomorphisms of F[G]-modules, [ is also a homomorphisms of F|G]-moduleslf /(z) = 0,
then ¢(x) = 0. Since the sequence is exact, 2 must be in M (recall that we have embedded
M, as an F[G]-submodule of M. So p(z) = z. Then we have (0,0) = l(z) = (p(z),0) = (z,0)
and we obtain x = 0. Thus [ is injective. Let (z1,x2) € M;® M, where 1 € M; and x5 € M.
The exactness of the sequence 0 — M; — M — My — 0 at M, says that ¢ is surjective. So
there exists y € M such that ¢(y) = zo. We also have z; = p(x;). Let z = z; — p(y) + y.
Then

I(z) (p(z),q(x))
= (p(z1) = p(p(y)) + p(y), q(x1) — q(p(y)) + q(y))
= (z1—-pW) +p®),qv)
(

Thus [ is also surjective. Since [ is both injective and surjective, it is an isomorphism of F[G]-
modules. Finally the embedding from M; to M is clearly the composition of the embedding
of My in My & M, and [. Also g is the composition of [ and the projection from M; & M, to
M,. Thus the exact sequence 0 — M; — M — M, — 0 splits.
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The second conclusion follows immediately. |

Using the theory of semisimple associative algebras, we have the following:

Theorem 2.7. Let G be a finite group such that the characteristc of F does not divide |G].
Then there are only finitely many irreducible representations of G and every representation
of G is completely reducible.

Remark 2.8. For finite groups, we do not need the notions of right representations and
bi-representations. The reason is that the opposite algebra F[G]° is isomorphic to F[G]. In
fact, let 4 : G — G be defined by i(g) = g for g € G. Then

i(9192) = (9192) ' = g5 g1 " = i(grcirc®i(gs)

for 1,90 € G. So i gives a homomorphism from F[G] to F[G]°. Since i is injective and
surjective, it is in fact an isomorphism. Thus the notion of right F[G]-module is the same as
the notion of left F[G]-module. Because of the same reason, we also do not need the notion
of bi-F[|G]-module.

Let G be a group and p: G — GL(M) a representation of G. Let M* be the dual space
of M and p* : GtoEnd M* the linear map defined by

((p"(9))(z"), 2) = (2", (p(9) ") ())
for g € G © € M and z* € M*, where (-, -) denotes the pairing between M* and M.
Proposition 2.9. The image of the map p* is in GL(M*) and p* is a representation of G.
Proof. Let e be the identity of G. Then

((p*(e) (), z) = (=%, (p(e) ) (x))
= (z%,x)

= <1M*IE*, $>

for x € M and z* € M*, where 1, is the identity operator on M*. Thus we have (p*(e)) =
INVER

For g1,9o € G, x € M and z* € M*, we have
(0" (9192)) ("), 2) = (2", (p(g7" 97 "))(x)

= (2%, (p(g2) " 0 plon

(

Thus we obtain
p*(g192) = p*(g1) © p*(92)-
In particular, for g € G,
p(g)op(g7") =p"(e) = 1ur-
So for g € G, p*(¢g) is invertible. Thus the image of p* is in GL(M*). The formula we proved
above now says that p* is a representation of G. |
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Definition 2.10. The representation p* is called the contragredient representation of p.

Let p1 : G — GL(M;) and ps : G — GL(M>) be representations of G. We now construct
a tensor product representation p; ® pe of p; and py. Recall the tensor product vector space
M; ® M,. The vector space is spanned by elements of the form z; ® x5 for x; € M; and
xo € My. For g € G, we define (p; ® p2)(g) € End (M; ® M;) by

(o1 ® p2)(9)) (21 @ 2) = (p1(9))(z1) ® (p2(9))(22)

for 1 € M; and zo € M,. Since M; ® M, is spanned by elements of the form z; ® x5 for
x1 € My and 23 € M5 and (p; ® p2)(g) must be linear, the definition above gives us a unique
element of End (M; ® My).

Exercise 2.11. Prove that for ¢ € G, (p1 ® p2)(g) is in fact invertible and thus is in
GL(M; ® M,). Prove that the linear map p1 ® py : G — GL(M; ® My) is a representation
of G.

Remark 2.12. Note that the underlying space of the tensor product representation is the
tensor product of the vector spaces. If we consider the F[G]-modules corresponding to these
representations, then the corresponding tensor product modules are defined for two left F[G]-
modules, not two bi-F[G]-modules. So the tensor product module constructed here is very
different from the tensor product bimodule of two bimodules.

Definition 2.13. Let A be an associative algebra and let
cent A={a € A|ab=ba, for allb € A}.
Then cent A is a commutative associative algebra and is called the center of A.

Proposition 2.14. Let C1,...,C, be all the conjugation classes of G. Then ¢; = deci g
fori=1,...,r form a basis of cent F[G].

Proof. Fori=1,...,r and ¢’ € G,
gy’ =) d79d =) g=uq
9€C; 9€C;

So ¢; € cent F[G] for i =1,...,r. Clearly, ¢; for i = 1,...,r are linearly independent.
Let D o749 be an element of F[G]. Then for ¢' € G,

g~ (Z vgg) 9= 19799 =D Vrer—9-

geG geG geG

So we see that }° ;7,9 is in cent F[G] if and only if yg4p-1 = 7, for all g,¢' € G. But
this menas that v, ,,-1 = 7, is in cent F[G] if and only if it is a linear combination of ¢; for
i=1,...,r, proving that ¢; for i = 1,...,r indeed form a basis of cent F[G]. |

Let A be a semisimple associative algebra. Then A = A; &---® A, where A, ..., A, are
simple associative algebras which are isormorphic to matrix algebras over division algebras.
Then it is clear that cent A = cent A; @ --- @ cent A,. Since Ay, ..., A are isormorphic to
matrix algebras over division algebras, cent Ay, ..., cent A, are isormorphic to the center of
the corresponding division algebras.
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Proposition 2.15. Let G be a finite group such that the characteristic of F does not divide
|G|. Let FIG] = A1 & --- & A, where Ay,...,As are simple associative algebras which are
tsormorphic to matriz algebras over division algebras. Let r be the number on conjugation
classes in G. Then r > s. In the case that F is algebraically closed, r = s.

Proof. Since ¢; for i = 1,...,r form a basis of cent F[G], the dimension of cent F[G] is
r. On the other hand, since cent F[G] = cent A; @ - - - & cent Aj,

r = dim cent F|G| = i dimcent A; > s.
i=1
In the case that F is algebraically closed, cent A; for + = 1,...,s are equal to F and hence
dimcent A; =1fori=1,...,s. Thus
r = dim cent F[G] = XS: dimcent A; = s.
i=1
|

Definition 2.16. Let G be a finite graoup and p : G — GL(M) be a finite-dimensional
representation of G. The character x, : G — F of p is the function defined by

Xp(9) = Trp(g)
forge G. If F =C, x, is called a complex character.

Proposition 2.17. Characters have the following properties:

1. Equivalent representations have the same character.
2. Any character is a class function, that is, a function on the set of conjugation classes.

3. If F = C, then the degree of p, that is, the dimension of M, is x,(e) where e is the
identity of G.

4. Let p: G — GL(M) be a finite-dimensional representation of G and p|y : G — GL(N)
and plyyn : G = GL(M/N) be a subrepresentation and the corresponding quotient
representation. Then

Xo(9) = Xolw (9) + Xplu/n (9)
forg e G.

5. For finite-diemsnioanl representations p; and ps of G,
Xp1®p2 = Xp1 Xpa-

6. The value of any complex character at g € G is a sum of m-th roots of unity where m
s the exponent of G, that is, the least common multiple of the orders of the elements

of G.
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7. Let p be a finite-dimensional complex representation of G. Then X, = X,-

Proof. Parts 1 and 2 follows from the fact TrAB = TrBA, the definition of equivalence
of representations and the definition of conjugate classes.

Since p is a homomorphism of groups, p(e) = Iy, the identity linear operator on M.
Since F = C, dim M = Y™ 1. Thus x,(e) = Trp(e) = dim M = deg p, proving Part 3.

Chhose a basis {x1,...,z,} of N and then extend it to a basis {z1,...,x,} of M. Then
Tpt1+ N, ...,z + N} is a basis of M/N. For g € G, let the matrices of the linear operators
p|n(g) and plm/n(g) under these bases be A and B. Then the matrix of the linear operator

p(g) under the basis above is
A C
0 B

where C' is a matrix of size n X (m — n) and 0 is the zero matrix of size (m —n) x n. We
know that x|, (9) = TrA and x,,,,(9) = TrB. Thus Part 4 is true.

Let the underlying vector spaces for the representations p; and p; be M; and M,. Let
{z1,...,2m} and {y1,...,yn} be bases of M; and M, respectively. Then

{371®?Jl,---7$m®y17---,331®yn7---,$m®yn}

is a basis of M; ® M,. For g € G, let the matrices of the linear operators pi(g) and p2(g)
under the bases above be A = (a;;) and B = (b;). Then the matrix of the linear operator
p1(9) ® p2(g) under the basis above is C' = (cix j1) Where ¢ jy = ;b for i,5 =1,...,m and
k,l=1,...,n. Then

Xorop(9) = Tr(p1 ® p2)(g)

= TiC = Zm: i Cik,ik

i=1 k=1

= Z Z ;ibk

- (%) (5

XPI XP2 .

Since g™ = e, p(g)™ = Ip;. So the minimal polynomial of p(g) divides ™ — 1. This fact
implies that the eigenvalues of p(g) are roots of 2™ — 1. Thus x,(g) is a sum of m-th roots
of unity.

Let the eigenvalues of p(g) be m-th roots wy,...,w, of unity. Then the eigenvalues of
p(g~h) are wi' =@y, ...,w, ! = @,. From the definition of p*, we see that the eigenvalues of

n

p* are equal to the eigenvalues of p(g~'). Thus

X (9) = ZE = Zwi = x,(9).

12



Theorem 2.18. Let p be a complex representation of degree n of G. Then for any g € G,

Xp(9)| <n=degp
and
|Xp(g)| =n

if and only if p(g) = wly where w is an m-th root of unity and Iy is the identity operator
on M. In particular, if

Xp(g) =n,
then
p(9) = Iur-
Proof. From the proposition above, we know that there exist m-th roots wy,...,w, of
unity such that
n n n
Xo() = D wi| > lwi| =D 1=n.
i=1 i=1 i=1
Since wy, .. .,w, are roots of unity, |x,(g) = [> ., wi| is n if and only if there exists an
m-th root w of unity such that w; = w for s = 1,...,n. Then the sum >, w;| is n if and

only if the matrix of p(g) under a suitable basis of eigenvectors is wl, where I, is the identity
matrix of size n X n. Thus p(g) = wly.
The last conclusion follows easily. |

Theorem 2.19 (Schur relations). Let {p1,...,ps} be a set of representatives of the equiv-
alence classes of irreducible complex representations of G and for each i let p® be a matriz
representation given by p; (that is, a homomorphism from G to the algebra of matrices by

taking a basis of the representation space of pi). Then if we write p') = (pgl)), we have

9eG
Y o (@p (a7 = Okl Gl/ deg pi.
geG
Proof. Let M; fort=1,...,s be the underlying spaces of the irreducible representations

pi for i =1,...,s, respectively. Let f be a linear map from M; to M;. Let
F=> pilg) "o foply).
geG
Then for ¢’ € G,
pi(g) o fopmle) = Y pi(g) opi(g) o fopilg)opily)

geG

= Y pil9g) o f o pilgg)

geG

= Y pi(9) o fopilg)

geG
=
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that is, o

pilg) o f=Ffopily)
for ¢ € G. Thus f is a homomorphism of representations of G from p; to pj. Since p; for
1 = 1,...,s are irreducible, when 7 # j, any homomorphism of representations of G from

pi to p; is 0 and when 7 = j, any homomorphism of representations of G from p; to p; is
proportional to the identity operator on M;. Thus f = 0 when ¢ # j and f = Al when
i=j o

Fort:=1,...,s, let {ugz), ... ,u(n?} be a basis of M;. Take f to be the linear maps fj
from M; to M; defined by

flr(ugi ) - Ttul(])7
forr,t=1,...,n;and [ =1,...,n;. In other words, f;, is the unique linear map from M; to
M; which maps u§ D %00 When r #t and to u(]) when 7 = t. When i # j, fi, = 0 which gives

> o (@)e g7 =0

geG

forr,t =1,...,n; and k,l = 1,. . When 7 = j, there exist A\, € C for r = 1,...,n;,
l=1,...,n; such that flr = /\lTIM Wthh gives

Zpkl (9)P\7 (97") = ey

geG

Let ¢ = k and then sum over k. Since p( )( ) and p¥ (g~1) are entries of matrices inverse to
each other, we obtain

‘G|6lr = Z% = Z Air = NNy = (deg pi)/\lr-

geG

Thus
)\l'r = |G‘6lr/ deg Pi

and consequently

>0 (9)65) (97") = 61401 |G/ deg pi.

geaG
|

Let C% be the space of complex-valued functions on G. We define a positive definite
hermitian form (-,-) on C% by

Z (g
gEG

for ¢, € C%. This hermitian form restricted to the subspace of complex class functions,
that is, the subspace of complex functions on the set of conjugation classes of G, gives a
positive definite hermitian form on this subspace. Then from Schur relation, we obtain:

14



Theorem 2.20. Let {pi,...,ps} be a set of representatives of the equivalence classes of
irreducible complex representations of G. Then {X,,,---,Xp,} 15 an orthonormal basis of the
space of complex class functions.

Proof. The set {X,,,---,Xp,} is orthonormal follows from Schur relation. In particular,
this set is linearly independent. On the other hand, since the number of conjugation classes
is s, the dimensional of complex class functions is s. Thus {x,,,-..,X,,} a basis. [

Theorem 2.21. Finite-dimensional representations of G are determined completely by their
characters in the sense that their equivalence classes are uniquely determined by their char-
acters.

Proof. Let p be a finite-dimensional representation of G. Then there exist mq,...,m; €
N (N is the set of nonegative intgers) such that p is equivalent to mip; + -+ + msps. To
determine the equivalence class of p, we need only determine my, ..., ms. Since pis equivalent

to mip1 + - -+ mps,
S
Xp = Zmixm'
i=1

Since {X,,,- -, Xp, } is an orthonormal basis of the space of complex class functions, we have
m; = (Xpia Xp)

for i =1,...,s. Thus my,...,m, are determined uniquely by the character x, of p and

hence the equivalence class of p is determined uniquely by the character x,,. [ |

3 Representations of Lie algebras

Main references: [H].

Definition 3.1. A Lie algebra is a vector space L over a field F equipped with a bracket
operation [-,-] : L ® L — L satisfying the following conditions:

1. The skew-symmetry. For x,y € L,
[z,y] = —y,x].
2. The Jacobi identity: For z,y,z € L,
[z, [y, 2]l + [y, [2, 2]] + [z, [, y]] = 0.
A homomorphism from a Lie algebra L; to another Lie algebra L, is a linear map f from L,
to Ly such that for z,y € Ly, f([z,y]1) = [f(x), f(y)]2, where [-,-]; and [-, -] are the bracket

operations for L; and Lg, respectively. An isomorphism from a Lie algebra to another Lie
algebra is an invertible homomorphism of Lie algebras.
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Example 3.2. Let A be an associative algebra. We define a bracket operation [-,-] by
la,b] = ab — ba| for a,b € A. Then A equipped with this bracket operation is a Lie algebra.
In particular, for a vector space M, the space End M of all linear operators on M is an
associative algebra. Then we have a Lie algebra structure on End M. We shall denote this
Lie algebra by gl(M).

Definition 3.3. Let L be a Lie algebra. A reppresentation of L is a vector space M and
a homomorphism p of Lie algebra from L to gl(M). The vector space M equipped with
the representation p is called a module for L or an L-module. For an L-module, we shall
denote p(z)y for z € L and y € M by zy. A homomorphism of L-modules from an L-module
M, to another L-module M, is a linear map from M; to M, such that f(zy) = xf(y) for
x € Land y € My. An isomorphism from an L-module to another L-module is an invertible
homomorphism of L-modules.

Definition 3.4. Let L be a Lie algebra. A subalgebra of a Lie algebra L is a subspace N of
L such that the bracket operation |-, -] for L maps N x N to N. An ideal of L is a subalgebra
I of L such that [z,y] € I for x € I and y € L. Let I be an ideal of L. Then L/I has a
natural structure of a Lie algebra and is called the quotient of L by I. L is said to be simple
if the only ideals of L are 0 and L and in addition, [L, L] # 0.

Definition 3.5. Let L be a Lie algebra. Let L) = [L, L], L® = [LM LMW], ... LO =
[LG-D LG-D] ... The Lie algebra L is said to be solvable if L) = 0 for some i.

Proposition 3.6. Let L be a Lie algebra.
1. If L is solvable, then all subalgebras and homomorphism images of L are sovable.
2. If I is a solvable ideal of L such that L/I is also solvable, then L is solvable.
3. If I and J are solvable ideals of L, then so is [ + J.

4. There is a unique maximal solvable ideal of L.

Proof. Part 1 follows immediately from the definitions.

Let I be a solvable ideal of L such that L/I is also solvable. Then there exists m € Z,
such that (L/I)™ =0, or equivalently, L™ C I and there exists n € Z, such that I™ = 0.
Since L™ ¢ I and I™ = 0, we have L(™*") = (L™)() < ™ = 0, proving that L is
solvable.

By the standard homomorphism theorem, we know that (I + J)/J is isomorphic to
I/(INJ). Since I/(INJ) is a homomorphism image of I, it is solvable. So (I +J)/J is also
solvable. But J is also aolvable. By Part 2, we see that I + J is solvable.

Let S be a maximal solvable ideal (a solvable ideal such that any solvable ideal containing
S must be equal to S). Let I be any solvable ideal. Then S+ I is also a solvable ideal. Since
S + I contains S, S+ I = S or equivalently, I C S. Thus such an S is unique. |

Definition 3.7. The unique maximal solvable ideal of L given in the proposition above is
called the radical of L and is denoted Rad L. A Lie algebra is said to be semisimple if its
radical is 0.
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Definition 3.8. Let L be a vector space. The tensor algebra generated by M is the space

T(L) =[] %",

neN

where N is the set of nonnegative integers and L®" is the tensor product of n copies of L
(when n = 0, L®° = F), with the tensor product of elements as the multiplication. Let L
be a Lie algebra. The the quotient of T'(L) by the two sided ideal I of T'(L) generated by
elenets of the form @y —y®x — [z, y| for 2,y € L is an associative algebra. This associative
algebra is called universal enveloping algebra of L and is denoted by U(L).

We shall use z; - - -z, for zq,...,z, € L to denote the element 2, ® - -- @ x, + I of U(L).
Then we see that U(L) is spanned by elements of this form. In particular, elements of the
form z for x € L form a subspace of U(L) linearly isomorphic to L.

Proposition 3.9. A vector space M is an L-module if and only if it is a U(L)-module.
Proof. Let M be an L-module. For z;---z, € U(L) and y € M, we define

(21 )y = 21 (- - (Ty) - - ).

Since M is an L-module, it is easy to see that this is well defined, that is, if z; - - - z,, is equal
to a linear combination of elements of the same form, then the action of this element on y
defined above and by using the linear combination give the same result. It is also easy to
see that this action gives a U(L)-module structure on M.

Conversely, given a U(L)-module M, since L can be viewed as a subspace of U(L), we
have an action of L on M. Using the definition of U(L) and the meaning of U(L)-module,
we see that A/ with this action of L is an L-module. |

Definition 3.10. Let L be a Lie algebra. Let L' = [L,L], L? = [L,L"], ..., L' = [L, L*" 1],
.... A Lie algebra is said to be nilpotent if L' = 0 for some i € Z..

It is clear that L' = LM and L < L for s > 1. So we have:
Proposition 3.11. Let L be a Lie algebra. Then L is solvable if L or [L, L] is nilpotent.

Theorem 3.12 (Cartan’s criterion). Let M be a finite-dimensional vector space and L
be a subalgebra of the Lie algebra gl(M). If Trzy =0 for allx € [L, L] and y € L, then L is
solvable.

The proof is omitted. See [H| for a proof.

Definition 3.13. Let L be a Lie algebra. A representation p : L — gl(M) is said to be
faithful if ker p = 0. In this case, the L-module M is also said to be faithful.

Definition 3.14. Let L be a finite-diemnsional Lie algebra and p : L — gl(M) a faithful
representation of L. Define a bilinear form 5, : L® L — F by B,(z,y) = Trp()p(y) for
xz,y € L. Let L be a finite-dimensional Lie algebra. The Killing form of L is the bilinear
form k = B,q for the adjoint representation ad on L itself defined by (ad z)y = [z,y] for
z,y € L.
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Exercise 3.15. Verify that the bilinear form £, is associative, that is, 5,([z, y], 2) = B,(z, [y, 2])
for z,y,z € L.

Proposition 3.16. Let L be a finite-diemnsional semisimple Lie algebra and p : L —
gl(M) a finite-diemnsional faithful representation of L. Then (3, is nondegenerate, that is,
Bp(x,y) =0 for all y € L implies z = 0.

Proof. Let S ={x € L | B,(x,y) =0 forall y € L} (S is called the radical of 5,). We
need to show that S = 0.

Since p(S) is a subalgebra of gl(M), we can apply Cartan’s criterion to p(S). Since
Trzy = B,(z,y) = 0 for x € p(S) and y € p(L), we certainly have Trzy = 0 for z €
[p(S), p(S)] and y € p(S). Thus p(S) is solvable. Since p is faithful, S is isomorphic to p(S)
and is therefore also solvable. Since L is semisimple, S = 0. [ |

Since 3, is nondegenerate, it gives an isomorphism from L to the dual space L* of L
by z € L — B(x,-). Let {z1,...,2,} be a basis of L and {z7,..., 2} the dual basis. By
definition, we have

i (2;) = b

*

fori,j =1,...,n. Using the inverse of the isomorphism from L to L*, The basis {z7,...,z}

corresponds to another basis {y,...,y,} of L and satisfies
Bo(zi,y5) = b5

fori,j =1,...,n. We shall also call this basis the dual basis of {z1,...,z,} with respect to
the bilinear form B, or simply the dual basis of {z1,...,z,}.

Definition 3.17. Let L be a finite-diemnsional semisimple Lie algebra and p : L — gl(M)
a finite-diemnsional faithful representation of L. The Casimir element of p is

Cp = Zp(x,)p(yz) € End M.
i=1

Exercise 3.18. Verify that the definition of the Casimir element above is independent of
the choice of the basis {zi,...,z,}.

Proposition 3.19. Suppose that p is a faithful representation of L. Then the Casimir
element commutes with p(z) for x € L.

Proof. Let
[z, 2i] = Zaijl“j
i=1

and

[, yi] = Z bijy;
j=1
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fori=1,...,n. Then we have

n
Qi = E @ijOjk
j=1

= ) aiBs(xi, vk
j=1

5p([$’xi]ayk)
_BP([xia l‘], yk)
—Bp(@s, [z, yx))

j=1

= =) by
j=1

= —by

fori,k=1,...,n. Thus
p(@),e0) = 3 _lol@), p(zi)p(y:)

= Zp(w)p(wz)p(yz) - Zﬂ(fﬂz)ﬂ(yz)fo(ﬂv)

= ) _(p(@)p(x:)p(y:) — plz:)p(x)p(y:) + D (p(x:)p(@)p(y:) — pla:)p(y:) p(x)

i=1 i=1

= Z[p(x), p(z:)]p(y:) + Z p(zi)[p(x), p(yi)]

_ Z o[z, zi]p(y:) + Z p(z:)p([x, yi]

= Z ai;p(z;)p(yi) + Z bijp(x:)p(y;)

= Z (aij + bjz')p(l'j)P(yi)
0

proving that ¢, commutes with p(z) for = € L. |

Let M; and M5 be modules for a Lie algebra L. We now give a tensor product module of
M; and M,: Consider the tensor product vector space M; ® M,. Define an action of L on
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M1 ® MQ by
T(y1 @ y2) = 2y1 @ Y2 + 1 Q TYo

for x € L, x1 € My and y, € M,.
Exercise 3.20. Verify that M; ® M, with this action of L is indeed an L-module.

Let M; and Ms be modules for a Lie algebra L. We next give an L-module structure on
the vector space Hom(M;, M) of all linear maps from M; to Mj: Define an action of L on
Hom(M,, M) by

(@f)(y1) = zf(y1) — f(zy1)

forz € L, f € Hom(M;, M) and y; € M;.
Exercise 3.21. Verify that Hom(M;, M) with this action of L is indeed an L-module.

Let M be an L-module. We now consider then special case that M; = M and My = F
with the trivial L-module structure (the action of elements of L on F is 0). Then M* =
Hom(M,F) and we obtain an L-module structure on M*. This is called the contragredient
module of M. We can also give the action of the action of L on M* directly by

(xf)(y) = —f(zy)

forxel, fe M*and y € M.
In the rest of this section, we assume that F' is algebraic closed of characteristic 0.

Theorem 3.22 (Weyl). A finite-dimensional module for a finite-dimensional semisimple
Lie algebra 1s completely reducible.

Proof. We need only prove that an exact sequence
0O0—->M, - M—> My, —0

of finite-dimensional L-modules are completely reducible. Equivalently, we need only prove
that for a finite-dimensional L-module M and a finite-dimensional L-submodule M, there
exists a finite-dimensional L-module M, such that M is isomorphic to M; & M.

If indeed we can find such Ms, then the projection p from M to M; is a homomorphism
of L-modules. The projection p can be characterized as the linear map from M to M; such
that p|y, = Iy, and kerp is isomorphic to M. So to prove the theorem, we need only to
find a homomorphism of L-modules from M to M; such that its restriction to M; is the
identity and its kernel is isomorphic to M,.

To find such a homomorphism of L-modules from M to M;, we consider Hom(M, M;).
We have given an L-module structure to this space. Such a homomorphism, if it exists, must
belong to the subspace M of Hom(M, M;) consisting of elements whose restriction to M is
proportional to the identity operator on M;. On the other hand, we certainly do not want
elements in this subspace whose restrictions to M; are 0. Let M be the space of all such
elements. We claim that M is an L-submodule of Hom(M, M;) and M, is an L-submodule
of M. In fact, for f € M, there exists A € F such that f|y, = Alp,. Then for x € L and
y € My, (zf)(y) = zf(y) — f(zy) = Azy — Azy = 0. Thus (zf)|y, = 0. The same proof
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also shows that M, is an L-submodule of M. Note that M /M, is one-dimensional because
modulo elements of M, elements of M are determined completely by its restrictions on M;.
If M can be decomposed as a direct sum of the L-submodule M; and a one-dimensional
L-submodule of M; C Hom(M, M), then we can choose the homomorphism we are looking
for to be a basis of this one-dimensional subspace of Hom(M, Mj).

We now prove that M can be decomposed as a direct sum of the L-submodule M; and
a one-dimensional L-submodule of M. We have proved that (xf)|y, = 0 for x € L. So
M C M for x € L. Thus L acts on the one-dimensional L-module M/M; trivially. In
particular, the L-module M /M, is isomorphic to the trivial L-module F.

We use induction on the dimension of M. When the diemnsion of M is 1, M can cer-
tainly be decomposed as a direct sum of the L-submodule M; = 0 and one-dimensional
L-submodule M of M. Now assume that when the dimension of M is less than £, the
decompostion holds. We now consider the case that the dimension of M is k. If M; is not
irreducible, then there exists a nonzero proper L-submodule M/ of M;. Then the dimension
of M /M is less than k and (M/M})/(M;/M}) is one-dimensional. By induction assump-
tion, There is a one-dimensional L-submodule of M /M such that M /M is the direct sum
of M;/M/ and this one-dimensional L-submodule. But any L-submodule of M /M is of
the form M /M, where M is an L-submodule of M. Now M}, is an L-submodule of M such
that M /M is one-dimensional. So we can use our induction assumption again to obtain
a one-dimensional L-submodule X such that M is the direct sum of M) and X. We know
that M/ M, N M;/M, =0, X € M and X N M} =0. So X N M; = 0. Thus

dim M =dim M; +1 = dim M; + dim X.

Since both M; and X are L-submodules of M and their intersection is 0, their direct sum
must be M.

We still need prove the case that M is irreducible. If p is not faithful, then we consider
the quotient L/ker p. The representation p induces a faithful representation of L/ ker p.
Since L is semisimple, Rad L = 0. The quotient as a homomorphism image of L is also
semisimple. The complete reducibility of M as an L-module is equivalent to the complete
reducibility of L/ ker p. Thus we can assume that p is faithful. Since the Casimir element c,
commutes with p(z) for z € L, ¢, is in fact a homomorphism of L-modules from M to itself.
In particualr, c¢,(M;) C M; and kerc, is an L-submodule of M. Since L acts on M/ M,
trivially, so does ¢,. So Trc, = 0 on M/M,. But since M, is irreducible, ¢, acts as a scalar
on M. This scalar cannot be 0 since Trc, = dim L. Hence ker ¢, must be a one-dimensional
L-submodule of M such that ker ¢, " M; = 0. Thus M is the direct sum of M; and ker c,.

|

Let Z(L) be the center of L, that is
Z(Ly={x € L|[z,y)=0fory € L}.

Then by definition,
Z(L) = kerady,

and Z(L) is a solvable ideal of L.
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Lemma 3.23. A Lie algebra L is semisimple if and only if all abelian ideals of L are 0.

Proof. Any abelian ideal of L is a solvable ideal of L and hence is in Rad L. Thus
Rad L = 0 implies that all abelian ideals of L are 0.

Conversely, assume that all abelian ideals of L are 0. Since Rad L is a solvable ideal of
L, there exists n € N such that (Rad L)™ = 0 and (Rad L)Y #£ 0 if n # 0. If n # 0, then
Rad L)Y is a nonzero abelian ideal of L. Contradiction. So n = 0, that is, Rad L = 0. W

Theorem 3.24. A Lie algebra L is semuisimple if and only if its Killing form is nondegen-
erate.

Proof. Assume that L is semisimple. Then Rad L = 0. Let S be the radical of the
Killing form k, that is,

S={reL|k(z,y) =0forally € L}.

Then for x € S and y € L (in particular for y € [S, S]), x(x,y) = 0. By Cartan’s criterion,
ady S is solvable. Since L is semisimple, kerad;, = Z(L) C Rad L = 0. So S is also solvable.
Thus S C Rad L = 0, proving that x is nondegenrate.

Conversely, assuming that the radical S of the Killing form « is 0, we want to prove that
L is semisimple. We prove that all abelian ideals of L are 0. Let I be an abelian ideal of L.
Forx € I and y € L, ((ady, x)(ady, ))? maps L to [I, I]. Since I is abelain, [I,I] = 0. Thus
((adg x)(ady y))? = 0. Since the eigenvalues of any nilpotent operator are 0, we have

k(z,y) = Tr(ady, z)(ady, y) = 0.
So x € S =0 and thus z = 0, proving that I = 0. [ |

Before we discuss construct representations of semisimple Lie algebras, we need the fol-
lowing result from linear algebra:

Theorem 3.25. Let T be a linear operator on a finite-dimensional vector space M. Then

there exist a unique diagonalizable (or semisimple) operator Ty and a unique nilpotent oper-
ator T,, on M such that T =T, + T,,.

Proof. Choose an ordered basis B = {u1, ..., u,} such that under this basis, the matrix
[T]s of T is a Jordan canonical form. Then [T]|z = S + N where S is a diagonal matrix
whose diagonal entris are eigenvalues of 7" and N is a nilpotent Jordan canonical form whose
eigenvalues are 0. Let T and 7, be the linear operators whose matrices under the basis B
are S and N, respectively. Then we have T' =T, + T,,. Clearly, T and 7}, are unique.

We can also obtain 7 and 7, and the decomposition 7" = T + T}, using generalized
eigenspaces of T" as follows: Let a1, ..., a; be distinct eigenvalues of T" and M,,, ..., M,, the
corrsponding eigenspaces. Then M = @F  M,.. Define T, : M — M by T,(u) = a;u for
u € M,,. Then Ty is certainly diagonalizable or semisimple. Let T, = T — T§. It is easy to
see that T, is nilpotent. By definition, we have T' =T, + T,,. [ |
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Now we discuss representations of
sl(2,F) = {A € Myy, | TrA =0}
with the bracket operation defined by
[A,B] = AB — BA

for A, B € sl(2,F). The Lie algebra sl(2,F) has a basis consisting the elements

=(55) =(18) (5 %)

Their brackets or commutators are given by
[h’a 37] = 2z, [ha y] = —2y, [37, y] = h.
Exercise 3.26. Prove that s[(2,F) is semisimple.

Since s[(2,F) is semisimple, we need only discuss finite-dimensional irreducible s[(2, F)-
modules and how arbitrary finite-dimensional s[(2, F)-modules decompose into these finite-
dimensional irreducible s((2, F)-modules. We shall discuss only finite-dimensional irreducible
s[(2, F)-modules below.

First we need:

Lemma 3.27. Let p : sl(2,F) — gl(M) be a representation of sl(2,F). Then p(h) is semisim-
ple.

Proof. Since any sl(2, F)-module is completely reducible, M is a direct sum of irreducible
s[(2, F)-submodules of M. To prove that p(h) is semisimple, it is enough to prove that the
restriction of p(h) to each of these irreducible sl(2, F)-submodules is semisimple. So we can
assume that M is irreducible.

From the formulas for [k, z] and [h, y], we see that adgox A is semisimple. Then since p
is a homomorphism of Lie algebras, ad,i(2,m) p(h) is semisimple.

Since sl(2,F) is semisimple (actually it is simple), we have [s[(2,F), s[(2,F)] = sl(2,F).
Then we have [p(sl(2,T)), p(sl(2,F))] = p(sl(2,F)). Thus we have

p(sl(2, ) = [p(sl(2,F)), p(s1(2, F))] C [gl(M), gl(M)] = sI(M).

In particular, p(h) € sl(M). If we let p(h) = p(h)s + p(h), be the Jordan decomposition of
the linear operator p(h) on M, by definition, Trp(h), = 0, that is, p(h), € sl(M). Thus we
also have p(h)s € sl(M).

Let B = {uy,...,u, be a basis of M such that under this basis, the matrix [p(h)|s of
p(h) is a Jordan canonical form. Then the matrix [p(h)s]s of p(h)s under B is a diagonal
matrix diag (a1, ...,a,) where a1, ..., a, are eigenvalues of p(h). Take a basis of gl(M) to
be the set of linear operators T;; € }J(M) whose matrices under the basis B of M are E;;
fori,j =1,...,n where E;; is the matrix whose only nonzero entry is 1 at the :-th row and
the j-th column. Then it is easy to verify by direct calculations that E;; are generalized
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eigenvectors of the action of [p(h)]z on the space M, ., of n x n matrices by the bracket
operation with eigenvalues a; — a;, that is,

k

N

Ve

(lo(M)]s = (@i = a;) L), -+ [([p(B)]s — (@i — a;)I), Byg] -] = 0

for sufficiently large k. Also, E;; are eigenvectors of the action of [p(h);s]s = diag (a1, ..., a,)
on the space M, of n x n matrices by the bracket operation with eigenvalues a; —a;. Thus
for the corresponding linear operators on M, we also have

k
A

(adguary (R))*Tig = [(p(h) = (s — a)Ine), -+ [(p(h) = (a5 — a5)In), Tyg] -] = 0

and Tj; are eigenvectors for adgya) p(h)s with eigenvalues a; — a;. Since adgy p(h)
maps p(sl(2,F)) to itself, p(sl(2,F)) is also a direct sum of generalized eigenspace of the
operator adgay p(h). In particular, adg p(h)s also maps p(sl(2,F)) to itself. More-
over, the discussion above shows that adg p(h)s restricted to p(sl(2,F)) is semisimple,
adgiary p(h) — adgiary p(h)s restricted to p(sl(2,F)) is nilpotent and adgay p(h)s com-
mutes with adgar) p(h) — adgqary p(h)s. Thus adgary p(h)s|psic2,m)) and (adgqary p(h) —
adgi ) P(P)s)|p(si2,m)) are the semisimple and nilpotent parts, respectively, of adsi2,m) p(h) =
adgi )y P(R)|p(sic2,m)) - But we already showed that ad,si2m) p(h) is semisimple. So

ady(si2,) p(h) = adgiary p(R)s|psic2) -
Since s[(2,F) is semisimple, ad,(2,m) is faithful. Hence we have p(h) = p(h)s, proving that
p(h) is semisimple. ]

Let M be a finite-dimensional s[(2, F)-module. Then M is the direct sum of the eigenspaces
M), of h with eigenvalues \; of h, respectively, for i =1,...,k. For XA # \;, we let M) = 0.

Then we have
M= ]_[ M,.
AeF

Definition 3.28. The eigenvalues \; for i = 1,..., k are called weights of h or weights of the
corresponding eigenvectors and the eigenspaces M), for i =1,..., k are called weight spaces
of h. An nonzero element v € M is called a mazimal vector if zv = 0.

Theorem 3.29. Let M be a finite-dimensional irreducible sl(2, F)-module. Let m = dim M —
1. Then we have:

1. M =1 Mm—2 and dim M,,,_o; =1 fori=0,...,m.
2. Up to nonzero scalar multiples, M has a unique maximal vector in M,y,.

3. Let vg € M, be a maximal vector of M, v_1 = 0 and v; = %yivo for i € N. Then
v; # 0 and the action of sl(2,F) on M is given by hv; = (m — 2i)v;, yv; = (i+ 1)v; and
zv; = (m — i+ 1)v; for i € N. In particular, up to isomorphisms, there exists at most
one irreducible s\(2,F)-module of dimension m + 1 for m € N.
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Proof. Since the action of h on M is semisimple, we have M = [],_p M. Since M is
finite dimensional, there must be A € F such that M, # 0 but M, = 0. Take any nonzero
element vy € M,. Then

hxvy = xhvg + 2209 = Azvg + 2209 = (A + 2)2V0

and thus zvy € M),5 = 0. So vy is a maximal vector. Let v; = %yivo for + € N. Using
the bracket formulas for x,y and h, we have hv; = (A — 29)v;, yv; = (i + 1)v;41 and zv; =
(A—i+1)v; ; fori e N.

Since M is finite dimensional, there must be m € N such that vg,...,v, # 0 but
Uma1 = 0. Since v, 11 =0, v; =0 for ¢ > m + 1. Since vy, ..., v, are eigenvectors for h with
distinct eigenvalues, they must be linearly independent. Also vy, ..., v, span a vector space
which is invariant under the action of x,y and h. So wvy,...,v, span a submodule of M.
Since M is irreducible, M must be equal to this submodule. So we see that M has a basis
{vo, .-, Um}. Since 0 = zvpy1 = (A —m — 1+ 1)v, and v, # 0, we obtain A = m. Part 1
follows immediately.

Assume that there is another maximal vector u. Then v = agvy + - - - + U, and

TU = 0TV + - -+ + WpTU, = aymuy + ao(m — 1)vy + -+ - + QU1
Since u is a maximal vector,
aymug + az(m — 1)vy + -+ - + apm—1 = zu = 0.

Thus we have a; = - - - = a,;, and v = vy, proving Part 2.
Part 3 follows immediately. |

The theorem above gives the classification of irreducible s[(2, F)-modules. We still need to
establish the existence. To establish the existence, we need the following Poincar’e-Birkhoft-
Witt theorem in the case of finite-dimensional Lie algebras:

Theorem 3.30 (Poincaré-Birkhoff-Witt). Let L be a finite-dimensional Lie algebra and
{u1,...,u, an ordered basis of L. Then elements of the form

u’il Y .uik

fork € N and 1 < iy << < n form a basis of U(L) (when k =0, the element is 1).

We omit the proof here. See [H].

We also need the following construction of “induced modules:”

Let L be a finite-dimensional Lie algebra and L; a subalgebra of L. Then U(L;) can
be embedded into U(L) as a subalgebra. Let M; be an L;-module. Then U(L) ® M; is a
U(L)-module. Let I be the U(L)-submodule of U(L) ® M; generated by elements of the
form ab® ¢ — a ® be for a € U(L), b € U(L,) and ¢ € M; where bc is the action of b on
c. Then (U(L) ® M;)/I is also a U(L)-module and thus an L-module. This L-module is

denoted by Indggg)Ml or U(L) ®u(r,) M1 and is called an induced module.
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Proposition 3.31. Let L be a finite-dimensional Lie algebra and Ly and Ly are subalgebras
o L such that L = L1@® Ly. Then the universal enveloping algebra U (L) is linearly isomorphic
to U(L) @ U(Ly).

Proof. We choose an ordered basis {u1,...,u;} of L1 and an ordered basis {vy,..., v}
of Ly. Then {uy,...,ug, v1,..., v} is a basis of L. By the Poincar’e-Birkhoff-Witt theorem,
elements of the form

Uiy Uiy Uy U,
forp,ge N, 1<4; <---<ij,<kand1<j <---<yj, <l form a basis of U(L). But also
by the Poincar’e-Birkhoff-Witt theorem, the set of elements of the form

uil...uip®/uj1.../ujq

forp,geN, 1<4 <. <4, <kand1<j <-..-<j, <lform a basis of U(L) @ U(L,).
It follows that U(L) is linearly isomorphic to U(L1) ® U(Lsz). |

Now come back to s[(2,F)-modules. Let Ly = Fx + Fh and Ly = Fy. Then sl(2,F) =
L, & Ly. Consider a one-dimensional vector space Fvy with a basis vy. For m € N, we define
an action of L; on on Fuyy by zvy = 0 and hvg = muy. It is easy to see that this action gives
an Li-module structure to Fvg. Now we have the induced module U(sl(2,F)) ®u(z,) Fvo for
s[(2,F). By the proposition above, this induced module is linearly isomorphic to the vector
space (U(L2) ® U(L1)) ®u(r,) Fvo which in turn is linearly isomorphic to the vector space
U(Ls2) ® Fvy. From the definition of Ly we see that U(L,) ® Fvy has a basis consiting of
+y' ® vg. From this basis, we see that the induced module U(sl(2,F)) Qu(z,) Fvo is infinite
dimensional and is not what we are interested. What we are interested are finite dimensional
and irreducible.

To obtain irreducible modules, we consider maximal submodules of U(sl(2, F)) @z, ) Fvp.-
In fact, let J be the sum of all submodules of U(sl(2,TF)) ®u(z,) Fvo which does not contain
1 ® vg. Then J is also a submodule. It is maximal because any submodule larger than this
one must contain the element 1 ® vy and thus is equal to U(sl(2,TF)) ®u(r,) Fvg. Thus we
obtain an irreducible s((2,F)-module (U(sl(2,F)) ®u(r,) Fvy)/J.

Moreover, we have:

Theorem 3.32. The dimension of the irreducible s{(2,TF)-module (U(sl(2,F)) ®ur,)Fvo)/J
s m—+ 1.

Proof. We first prove that in this irreducible sl(2, F)-module, w = y™" @ vy = 0. It is
easy to see that
" @ v +m(m+ 1)y @ vy — (m+ 1)y"h ® v
™ @ zvg +m(m + 1)y @ v — (m + 1)y™ ® hug
m+1)y™ @ vy — m(m+ 1)y™ ® vy

Tw=z2y""' Quy, =

AT

—~

e

Thus w is also a maximal vector. But an sl(2, F)-module cannot have more than one linearly
independent maximal vector (see exercise below). Since the weight of w is not m, we must
have w = 0, that is, y™ ™! ® vy = 0.
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We now have y'®uvy = 0fori > m~+1. Since U(sl(2,F))®u(r,)Fup is linearly isomorphic to
the space U(Ly) ® Fuy which has a basis consisting of Sy ®wv, we see that (U(sl(2,F)) ®u(1,)
Fvo)/J is linearly spanned by elements of the form Ly‘®uv, for i < m. Thus (U(sl(2,F))®u(1,)
Fuy)/J is finite dimensional. Since the weight of vg is m, by the theorem we proved before,
dim(U(sl(2,F)) ®u(r,) Fvo)/J = m + 1. |

Exercise 3.33. Prove that maximal vectors for the module (U(sl(2,F)) Qu(z,) Fvg)/J are
unique up to a nonzero scalar.

Corollary 3.34. There is a bijection between the set N of nonnegative integers and the set
of equivalence classes of finite-dimensional irreducible sI(2,F)-modules.

Now we quickly discuss the representation theory of general finite-dimensional semisimple
Lie algebras. We shall describe only the main constructions and state the main results
without giving any proofs.

Let L be a finite-dimensional semisimple Lie algebra. Then there must be a semisimple
element of L. A toral subalgebra of L is a subalgebra of L consisting of semisimple elements.

Proposition 3.35. A toral subalgebra of L is an abelian Lie algebra.

Now we take a maximal toral subalgebra H of L, that is, a toral sublagebra of L such that
any toral subalgebra containing H must be H. Since H is abelian and commuting operators
have same eigenvectors, L is a direct sum of common eigenspaces of elements of H. For any
eigenvector = of elements of H, there exists « € H* such that

[h,z] = a(h)z.
Let @ be the space of all nonzero such o € H* and let
Ly={x€L]|[h,z]=alh)zforhe H}.

Then we have
L=Ly® [] L

acd
0€ H*isin ® and H C L,. It can be proved that Ly = H. Thus we have

L=He ] L.

acd

It can be proved that one can find a basis A of the real vector space E spanned by
elements of ® such that A C ® and any element of ® can be written as a linear combination
of elements of A with either nonnegative coefficients or nonpositive coefficients. Elements of
® are called roots. Elements of A are called simple roots. We fix a choice of A = {oy,..., o4}

Let M be an L-module. As in the case for sl(2,F), the actions of elements of H on M
must be semisimple. Since H is abelian, the actions of elements of H on M commute with
each other. Thus



where
My ={x € M | hx = A(h)z, forh € H}

for A € H*. When M, # 0, we say that A is a weight of M and M, the weight space of
weight A. Let {\1,..., \;} be a basis of F determined by

2()\1, aj)

=6

(), o)) Y
fori,j =1,...,1, where (-,-) is the bilinear form on F induced from the Killing form on H.
A weight ) is said to be dominant if it is a linear combination of Ay, ..., \; with nonnegative
coefficients and is said to be integral if it is a linear combination of Aq,..., \; with integral

coefficients. Let AT be the set of dominant A weight is dominant integral if it is dominant
and integral. Then we have the following result:

Theorem 3.36. Let L be a finite-dimensional semisimple Lie algebra. Then there is a
bijection from the set AT of dominant integral weights to the set of equivalence classes of
finite-dimensional irreducible L-modules.

The proof of this theorem is in spirit the same as the corresponding theorem above when
L =sl(2,F).

4 Basic concepts in category theory
Main references: [EGHLSVY], [J] and [M].
Definition 4.1. A category consists of the following data:
1. A collection of objects.
2. For two objects A and B, a set Hom(A, B) of morphisms from A to B.

3. For an object A, an identity 14 € Hom(A, A).

=~

. For three objects A, B,C', a map
o:Hom(B,C) x Hom(A,B) — Hom(A4,C)
(fi9) = fog
called composition or multiplication.
These data must satisfy the following axioms:

1. The composition is associative, that is, for objects A, B,C, D and f € Hom(C, D),
g € Hom(B,C), h € Hom(A, B), we have fo(goh)=(fog)oh.

2. For an object A, the identity 14 is the identity for the composition of morphisms when
the morphisms involving A, that is, for an object B, f € Hom(A, B), g € Hom(B, A),
we have lyog=gand fol, = f.
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We shall use C, D and so on to denote categories. For a category C, we use Ob C to
denote the collection of objects of C.

Definition 4.2. Let C be a category. For any A, B € Ob C, an element f € Hom(A, B)
is called an isomorphism if there exists f~' € Hom(B, A) such that f o f~' = 1p and

ffl o f = 1A-
Definition 4.3. Let C and D be categories. A covariant functor (or a contravariant functor)

from C to D consists of the following data:

1. A map F from the collection Ob C of objects of C to the collection Ob D of objects of
D.

2. Given objects A and B of C, a map, still denoted by F, from Hom(A, B) to Hom(F(A), F(B))
(or from Hom(A, B) to Hom(F(B), F(A)) for a contravariant functor).

These data must satisfy the following axioms:

1. For objects A, B,C of C and morphisms f € Hom(B,c), g € Hom(A, B), we have
F(fog)=F(f)oFlg)

(or
F(fog)=F(g)oF(f)

for a contravariant functor).
2. For an object A of C, F(14) = 154).
We shall denote the functor defined above by F.

Definition 4.4. Let F and G be functors from C to D. A natural transformation n from F
to G consists of an element 74 € Hom(F(A),G(A)) for each object A € Ob C such that the
following diagram is commutative for A, B € Ob C and f, g € Hom(A4, B):

F(A) —= G(4)

f(f)l lf(g)

F(B) —— G(B).

nB

A natural isomorphism from C to D is a natural transformation 7 from C to D such that
na € Hom(F(A),G(A)) for each object A € Ob C is an isomorphism.

Definition 4.5. Let F be a functor from a category C to a category D and G a functor from
a category D to a category £. The composition G o F of G and F is a functor from C to £
given by (Go F)(A) = G(F(A)) for A€ Ob C and (Go F)(f) = G(F(f)) for f € Hom(A, B)
and A, B € Ob C. Let C and D be categories. We say that C s isomorphic to D if there is
a functor F from C to D and a functor F~! such that FoF ' =1pand F 'oF =1.. We
say that C is equivalent to D if there is a functor F from C to D and a functor G such that
F o G is naturally isomorphic to 1p and G o F is naturally isomorphic to 1.
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Definition 4.6. Let A; for j € I be objects of a category C. A product of A; for j € I
is an object Hje ; A; together with morphisms p; : Hje ;1 A; — A; satisfying the following
universal property: For any object A of C and any morphism f; : A — A;, there exists a
unique morphism f: A — HjeI A; such that such that f; = p;o f fori € I. A coproduct of
A;j for j € J is an object HjEI A; together with morphisms 7; : A; — H].EI A; satisfying the
following universal property: For any object A of C and any morphism f; : A; — A, there
exists a unique morphism f : [];c; A; — A such that f; = foi; fori € I.

Exercise 4.7. Prove that products and coproducts of objects A; for j € I in a category C
are unique up to isomorphisms.

Definition 4.8. An initial object in a category C is an object I in C such that for any object
X in C, Hom(/, X) has one and only one element. An terminal object in a category C is an
object T in C such that for any object X in C, Hom(X,T') has one and only one element. A
zero object in a category C is both an initial object and a terminal object.

Definition 4.9. Let C be a category containing a zero object 0. Let A and B be objects of
C and let f € Hom(A, B). A kernel of f is an object K and a morphism k& € Hom(K, A)
satisfying f o £ = 0 and the following universal property: For any object K’ and morphism
k' € Hom(K', A) satisfying f o k' = 0, there exists a unique g € Hom(K’, K) such that
k' =kog. A cokernelof f isan object Q and a morphism ¢ € Hom(B, Q) satisfying go f =0
and the following universal property: For any object ' and morphism ¢’ € Hom(B, Q')
satisfying ¢’ o f = 0, there exists a unique v € Hom(Q, Q') such that ¢' = u o g.

Exercise 4.10. Prove that kernels and cokernels of of a morphism are unique up to isomor-
phisms.

Definition 4.11. Let C be a category containing a zero object 0. Let Aq,..., A, be objects
of C. A biproduct of A,..., A, is an object A, ®---@ A, of Candp,: A1 ®--- DA, — A
and i 1 Ay =+ A1®--- @A, fork =1,...,nsuch that pyoip, =14, fork=1,...,n,poi, =0
forl #k, A; ®---® A, equipped with p, for £k = 1,...,n is a product of A,..., A, and
AL & --- B A, equipped with i, for K =1,...,n is a coproduct of Aq,..., A,.

Definition 4.12. Let C be a category. Let A and B be objects of C. A morphism f €
Hom(A, B) is said to be a monomorphism if for any object C' and any g1, go € Hom(C, A),
fog1 = fogyimplies g = go. A morphism f € Hom(A, B) is said to be aN epimorphism if
for any object C' and any g1, go € Hom(B,C), g1 o f = go o f implies g1 = go.

Definition 4.13. An abelian category is a category C satisfying the following conditions:

1. For any objects A and B, Hom(A, B) is an abelian group and for any objects A, B and
C, the map from Hom(B, A) x Hom(C, B) to Hom(C, A) given by the composition of
morphisms is bilinear.

2. Every finite set of objects has a biproduct.
3. Every morphism has a kernel and cokernel.
4. Every monomorphism is a kernel of some morphism and every epimorphism is a cok-

ernel of some morphism.
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5 Monoidal categories and tensor categories

Main references: [EGNO], [M].

Definition 5.1. An monoidal category consists of the following data:
1. A category C.
2. A bifunctor ® : C x C — C called the tensor product bifunctor.

3. A natural isomorphism A from ® o (1¢ X ®) to ® o (® X 1¢) called the associativity
1somorphism.

4. An object 1 called the unit object.

5. A natural isomorphism [ from 1®- to 1¢ called the left unit isomorphism and a natural
isomorphism 7 from - ® 1 to 1¢ called the right unit isomorphism.

These data satisfy the following axioms:

1. The following pentagon diagram is commutative for objects A, Ay, As, Ay:

Al ® (A ® (A3 ® Ay))

/ \

(A1 ® A2) ® (A3 @ As) A ® ((A2 @ A3) ® Ag)
(A1 ® As) ® A3) @ Ay = (A4, ® (A, ® A3)) ® Ay

2. The following triangle diagram is commutative for objects Ay, As:

l l

A]_ &® A2 —_— Al (29 AQ.

Definition 5.2. A tensor categoryis an abelian category equipped with a monoidal category
structure such that the abelain category structure and the monoidal category structure
are compatible in the sense that for objects A, B, C' and D, the map ® : Hom(A, B) X
Hom(C, D) — Hom(A x C, B® D) is bilinear.

Definition 5.3. Let C be a monoidal category. A graph diagram in C is a graph whose
vertices are functors obtained from the tensor product bifunctor and the unit objects and
the edges are natural isomorphisms obtained from the associativity isomorphisms, the left
and the right unit isomorphisms. A graph diagram is commutative if the compositions of the
isorphisms in any two paths with the same starting and ending vertices must be equal.
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Theorem 5.4 (Mac Lane). Let C be a monoidal category. Any graph diagram in C is
commutative

We omit the proof here; see [EGNO] and [M].

Definition 5.5. A monoidal functor from a monoidal categoory C to a monoidal category
D is a triple (F, J, ¢) where F is a functor from C to D, J a natural transformation from
the functor F(-) ®p F(-) to the functor F(- ®¢ -) and ¢ an isomorphism from 1p to F(1¢)
such that the diagram

(F(A1) ®p F(Az)) ®p F(A3) —— F(A1) ®p (F(A2) ®p F(43))

l l

(F(A1 ®c Az) ®p F(As3) F(A1) @p F(As ®c As)

l l

(F((A1®c A2) ®c A3) ——  F(A1 Q¢ (A2 ®c A3))
for objects Ay, As and A3 in C and the diagram
1p ®p F(A) —_— f(A)
F(le ®p F(A) —— F(le®c A)

for an object A in C are commutative. A monoidal eqivalence from a monoidal categoory
C to a monoidal category D is a monoidal functor (F, J, ¢) from C to D such that F is an
equivalence of categories and J is a natural isomorphism.

Definition 5.6. A monoidal category is strict if

®O(1cx®) = ®O(®X1c),
1® = ]-C
@1 = 1g

and the associativity, the left and the right unit isomorphisms are identities.

Theorem 5.7 (Mac Lane). Any monoidal category is monoidal equivalent to a strict
monoidal category.

Exercise 5.8. Consider the category of bimodules for an associative algebra and the tensor
product bifunctor we defined in the section on associative algebras. Show that there exists
an associaitivity isomorphism such that the pentagon diagram is commutative.
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6 Symmetries and braidings

Main references: [T].

Definition 6.1. Let C be a monoidal category. A symmetry of C is a natural isomorphism
C from ® to ® o 019 (012 being the functor from C x C to C x C induced from the nontrivial
element of Sy) such that for objects A;, A, the morphism

Capa,0Ca,,4, AT Q@A = A Q@A — A1 Q@ Ay

is equal to the identity 14,54, and for objects Ay, As and A,, the hexagon diagram

33



(A1 ® A>) ® A3

7N

(A2 ® A1) ® As A1 @ (A2 ® A3)
Ar ® (A1 ® As) (A2 ® A3) @ Ay
A3®A1

is commutative. A symmetric monoidal category is a monoidal category with a symmetry.
A symmetric tensor category is a tensor category with a symmetry.

Definition 6.2. Let C be a monoidal category. A braiding of C is a natural isomorphism R
from ® to ® o 015 such that for objects A;, Ay and A,, the hexagon diagrams
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(A1 X Ay) X A3

R*1 |glA3/ \

(Ao X Ay) X A X (A; K A3)
Rt!
Ay X (4 X Aj) (A2 R A3) X A4y
14, ;1\ /
X (A3 X A,)

is commutative. A braided monoidal category is a monoidal category with a braiding. A
braided tensor category is a tensor category with a braiding.

7 Rigidity
Main references: [EGNO], [T].

Definition 7.1. Let C be a monoidal category. For an object A, a right dual of A is an
object A* and morphismsevy : A*® A — 1 and coevy : 1 — A®A* such that the morphism
obtained by composing the morphisms in

A-510A—- (ARA) A2 AQRA'®A) - A®1— A
is equal to the identity 14 and the morphism obtained by composing the morphisms in
A" 52 A1 5 A"Q(ARA) 2 (A" QA)RA" -1 A" = A

is equal to the identity 14«. A left dual of A is an object *A and morphismsev/, : AQ*A — 1
and coev’y : 1 —* A ® A such that the morphism obtained by composing the morphisms in

A5 AR1 > AQ(ARA) - (A®"A)A—-1QA— A
is equal to the identity 14 and the morphism obtained by composing the morphisms in
A1 A (fARA) A" A®(A®"A) 2" A1 " A
is equal to the identity 1« 4.
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Definition 7.2. A monoidal category C is said to be rigid if there are contravariant functors
*.:C — C and -* : C — C such that for an object A, *A and A* are left and right duals of A.

Exercise 7.3. Show that the category of finite-dimensional representations for a finite group
and the category of finite-dimensional modules for a finite-dimensional Lie algebra are rigid
symmetric tensor categories.

8 Ribbon categories and modular tensor categories

Main references: [T].

Definition 8.1. Let C be a braided onoidal category. A twist of C is a natural isomorphism
f : 1 — 1¢ such that for objects A; and As,

0A1®A2 = RA2,A1 © RAl,Az © (0141 & 9142)'

Definition 8.2. A ribbon category is a rigid braided monoidal category equipped with a
twist.

Lemma 8.3. In a ribbon category, the left dual and right dual can be taken to be the same.

We omit the proof of this lemma.
Let C be a ribbon category and let K = Hom(1,1). Then K is a monoid (a set with an
associative product and an identity).

Lemma 8.4. K is in fact commutative.

In a ribbon category, we can define the “trace” of a morphism and the “dimension” of
an object as follows:

Definition 8.5. Let f € Hom(A, A) be a morphism in a ribbon category. The trace of f is
defined to be
Trf=evgoRaa0((faof)®14:)ocoevy € K.

The dimension dim A of an object A is defined to be Tr 14.
The trace of a morphism satisfies the properties that a trace should have.
Proposition 8.6. Let C be a ribbon category. Then we have:
1. For f € Hom(A, B) and g € Hom(B, A), Tr fg="Tr gf.
2. For f € Hom(A4, Ay) and g € Hom(As, Ag), Tr (f ® g) = (Tr f)(Tr g).
3. Forke K, Trk=k.

Example 8.7. The category of finite-dimensional representations of a finite group and the
category of finite-dimensional modules for a finite-dimensional Lie algebra are ribbon cate-
gories whose braidings and twists are trivial.
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Example 8.8. Let G be an mulplicative abelian group (an abelian group whose operation
is written as a multiplication instead of an addition), K a commutative ring with identity
and ¢: G x G — K* a bilinear form (K* being the set of invertible elements of K), that is,
for g,4',h,h' € G, we have

c(gg’,h) = clg,h)clg’, h),
c(g,hh') = c(g,h)c(g, h').

We construct a ribbon category as follows: The objects of the category are elements of G.
For any g, h € G, Hom(g, h) is K if g = h and 0 if g # h. The composition of two morphisms
g — h —— f is the product of the two elements of K is ¢ = h = f and 0 otherwise. The
tensor product of two objects g, h € G is their product gh. The tensor product gg' — hh'
of two morphisms ¢ — ¢’ and h — A’ is the product of the two elements in K if g = h
and ¢’ = h' and is 0 otherwise. The unit object is the identity of G. The associativity and
left and right unit isomorphisms are the identity natural isomorphisms. For g,h € G, the
briading gh — hg = gh is defined to be ¢(g, h). For g € G, the twist g — g is defined to be
c(g,9). For g € G, the (left and right) dual of ¢ is g~'. The morphisms ev,, coev,, evy and
coevy are the indentity of K. Then we have a ribbon category.

Exercise 8.9. Verify that the example above is indeed a ribbon category.

We now consider ribbon tensor categories, that is, rigid braided tensor categories with
twists.

Let C be a ribbon tensor category. Then K = Hom(1,1) acts on Hom(A, B) for any
objects A and B by kf =lgo(k® f)ol}' for k € K and f € Hom(A, B). This action gives
Hom(A, B) a K-module structure.

Definition 8.10. An object A of a ribbon tensor category is said to be urreducible if
Hom(A, A) is a free K-module of rank 1. A ribbon tensor category is said to be semisimple
if the following conditions are satisfied:

1. For any simple objects A and B, Hom(A, B) = 0 if A is not isomorphic to B.

2. Every object is a direct sum of finitely many irreducible objects.
Example 8.11. The unit object is an irreducible object.

Example 8.12. The ribbon tensor category of finite-dimensional representations over a
field of a finite group such that the characteristic of the field does not divide the order of the
group and the ribbon tensor category of finite-dimensional modules for a finite-dimensional
semisimple Lie algebra are semisimple.

Definition 8.13. A modular tensor category is a semisimple ribbon tensor category C, with
finitely many equivalence classes of irreducible objects satisfying the following nondegeneracy
property: Let {A;}" , be a set of representatives of the equivalence classes of irreducible
objects of C. Then the matrix (S;;) where

Sij=Tr RAjaAi © RAiaAj

for 4,5 =1,...,n is invertible.
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Let I be the set of equivalence classes of irreduible objects in a modular tensor category.
We shall use 0 to denote the equivalence class in I containing the unit object.

Proposition 8.14. The dual object of an irreducible object is also irreducible.

We omit gthe proof.
From this proposition, we see that there is a map * : I — I such that for any ¢ € I, 7* is
the equivalence class in I such that objects in ¢* are duals of objects in 3.
We now choose one object A; for each equivalence class 7 € I. Then by definition, we
have
SO,i = D40 = dim A;

for 7z € I.

Definition 8.15. Let C be a modular tensor category. Assuming that there exists D € K
such that
D? =) (dim A;)*.

el

We call D the rank of C.

If there is no such D in K, we can always enlarge K and the sets of morphisms such that
in the new category, there exists such a D.

For i € I, the twist 64, as an element of Hom(A;, A;) must be proportional to 14,, that
is, there exists A; € K such that 6; = A;14,. Since 64, is an isomorphism, A; is invertible.
Let A=Y, ,v; ' (dim4;)?, T = (8]v;) and J = (6%.). Then we have

(D19 = I,
(DTS = ADHD'9)%

= (0
()

Then s and t are the generators of the modular group

Let

SL(2,7) = {(i 2) la,b,c,d € Z, ad—bc:l}

satisfying the relations
st =1, (ts)® = s

Thus we see that s — D15 and ¢ — T ! give a projective matrix representation of SL(2,Z).
Since C is semisimple and [ is the set of equivalence classes of irreducible objects in C,

we see that A; ® A; for 4,7 € I must be isomorphic to @keINz-’;-Ak, where Nz-kj are nonnegative

integers giving the numbers of copies of A;. These numbers Nz-kj afre called fusion rules.
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Theorem 8.16 (Verlinde conjecture). Fori,l,m € I, we have

Z S lNkSkl dlmAm)ilsil(slm.

j,k€l

In fact, if we let

for 2 € I, then the theorem above says that the matrix S diagonalizes N; for ¢ € I simulta-
neously.

Corollary 8.17 (Verlinde formula for fusion rules). Fori,j, k € I, we have

=D? Z(dlm Al)_lSilSﬂSk*l.

lel

SWe omit the proofs of these results.

9 Construction of tensor categories

Main references: [EGNO], [T].
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