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Abstract

Let V' be a grading-restricted vertex algebra and W a V-module.
We show that for any m € Z, the first cohomology H. (V, W) of V
with coefficients in W introduced by the author is linearly isomorphic
to the space of derivations from V to W. In particular, H} (V, W)
for m € N are equal (and can be denoted using the same notation
HY(V,W)). We also show that the second cohomology H2 (V, W) of V
with coefficients in W introduced by the author corresponés bijectively
to the set of equivalence classes of square-zero extensions of V' by
W. In the case that W = V, we show that the second cohomology
H i (V, V) corresponds bijectively to the set of equivalence classes of

first order deformations of V.

1 Introduction

The present paper is a sequel to the paper [H]. We discuss the first and
second cohomologies of grading-restricted vertex algebras introduced by the
author in that paper.

Let V' be a grading-restricted vertex algebra and W a V-module. Recall
from [H] that for each m € Z, and n € N, we have an n-th cohomology
H!(V,W) of V with coefficients in W. For each n € N, We also have an
n-th cohomology HZ (V, W) of V with coefficients in W which is isomorphic
to the inverse limit of the inverse system {H,, (V, W)}ez, . We also have an
additional second cohomology H g (V,W) of V with coefficients in W. In the

present paper, we discuss only H! (V, W) for m € Z, and H3(V,W).
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Let V be a grading-restricted vertex algebra and W a V-module. A
grading-preserving linear map f : V — W is called a derivation if

¥ (u,2)v) = Yyl (f(w),2)v + Y (u, 2) f(v)
DYy (0, —2) f(u) + Yiv (u, 2) f (v)

for u,v € V.. We use Der (V, W) to denote the space of all such derivations.
We have the following result for the first cohomologies of V' with coefficients

in W:

Theorem 1.1. Let V' be a grading-restricted verter algebra and W a V-
module. Then H) (V,W) is linearly isomorphic to the space of derivations
from V to W for any m € Z,, that is, H (V,W) is linearly isomorphic to
Der (V,W) for any m € Z..

In particular, H! (V, W) for m € N are isomorphic (and can be denoted
using the same notation H'(V,W)).

Definition 1.2. Let V be a grading-restricted vertex algebra. A square-zero
ideal of V' is an ideal W of V such that for any u,v € W, Yy (u,z)v = 0.

Definition 1.3. Let V' be a grading-restricted vertex algebra and W a Z-
graded V-module. A square-zero extension (A, f,g) of V by W is a grading-
restricted vertex algebra A together with a surjective homomorphism f :
A — V of grading-restricted vertex algebras such that ker f is a square-
zero ideal of A (and therefore a V-module) and an injective homomorphism
g of V-modules from W to A such that g(W) = ker f. Two square-zero
extensions (A1, f1, g1) and (As, f2, go) of V by W are equivalent if there exists
an isomorphism of grading-restricted vertex algebras h : Ay — Ay such that
the diagram

0 — W s Ay s V > 0
91 f1
ol ol |
0 — W A2 \% 0,
g2 f2

1s commutative.

The notion of square-zero extension of V' by W is an analogue of the
notion of square-zero extension of an associative algebra by a bimodule. (see,
for example, Section 9.3 of [W]).



We have the following result for the second cohomology H3(V, W) of V
2

with coefficients in W:

Theorem 1.4. Let V be a grading-restricted vertex algebra and W a V-
module. Then the set of the equivalence classes of square-zero extensions of
V by W corresponds bijectively to H2(V,W).
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Definition 1.5. Let t be a complex variable. A family of grading-restricted
vertex algebras up to the first order in t is a Z-graded vector space V', a family
Y; : VeV — V((z)) for t € C of linear maps of the form Y; = Y5+t where Yj
and W are linear maps from V@V to V((z)) independent of ¢, and an element
1 € V satisfying all the axioms for grading-restricted vertex algebras up to
the first order in . More precisely, the triple (V,Y;, 1) satisfies the grading
restriction condition, lower-truncation condition for vertex operators, L(0)-
bracket formula and the following conditions:

1. Identity property up to the first order in t: Y;(1,2) = 1y + O(£?).

2. Creation property up to the first order in t: For u € V| Y, (u,z)1 €
V([z]] and lim,_,o Y;(u, 2)1 = v + O(?).

3. Duality up to the first order in t: For vi,vy,v3 € V and v' € V', the
coefficients of t° and ¢! terms of

<Ul7 }/t(vb ZI)YKU% 22)U3>
(v, Yi(v2, 22)Yi (1, 21)v3)
(", Vi (Yi(vr, 21 — 22)v9, 22)v3)
are absolutely convergent in the regions |z1| > |22 > 0, |22| > |21] > 0

and |z3| > |21 — 22| > 0, respectively, to common rational functions in
z1 and 29 with the only possible poles at 2z, zo = 0 and z; = 2s.

Definition 1.6. Let (V,Yy, 1) be a grading-restricted vertex algebra. A first
order deformation of V is a family V; : V@ V — V((z)) for t € C of linear
maps of the form Y, = Yy + t¥ where
UV: VeV — V()
v @vy — Y(vy,x)ve

is a linear map such that (V,Y;, 1) for t € C is a family of grading-restricted

vertex algebras up to the first order in ¢t. Two first order deformations Yt(l)
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and th), t € C, of (V,Yy, 1) are equivalent if there exists a family f; : V — V|
t € C of linear maps of the form f; = 1y + tg where g : V' — V' is a linear
map preserving the gradings of V' such that

£, 2)0s) — YO (filwr), @) fi(vs) € 12V ((x)) (1.1)
for vy, v9 € V.
We have:

Theorem 1.7. The set of equivalence classes of first order deformations of
a grading-restricted vertex algebra is in bijection with the set of equivalence
classes of square-zero extensions of V by V.

From Theorems 1.4 and 1.7, we obtain immediately the following result
for the second cohomology H?%(V,V) of V with coefficients in V:

Theorem 1.8. Let V be a grading-restricted vertex algebra. Then the set of
the equivalence classes of first order deformations of V' correspond bijectively

to H2(V, V).
2
We prove Theorems 1.1, 1.4 and 1.7 in Sections 2, 3 and 4, respectively.
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2 First cohomologies and spaces of deriva-
tions

We prove Theorem 1.1 in the present section. First, we need the following:
Lemma 2.1. Let f:V — W be a derivation. Then f(1) = 0.
Proof. By definition,
f) = f¥v(1,2)1)
— lim f(¥y(1.2)1)
= limeXCVY (1, —2)f(1) + lim Yiy (1, ) f (1)

z—0

= 2f(1).



So f(1) =0. |

Let ® : V — W,, be an element of C (V, W) satisfying 61 ® = 0. Since
$ satisfies the L(0)-conjugation property, for v € V) and z € C*,

O(@(v))(0) (="%0))(0)

=
= 2"(®(v))(0)
Thus (®(v))(0) € Winy. So (®(v))(0) is a grading-preserving linear map from

V to W.
Since 6}, ® = 0,

R((w', Yy (v1, 21)(®(v2))(22))) — R({w', (®(Yy (v1, 21 — 22)v2))(22)))
+R((w', Yiv (v2, 22) (P (v1))(21)))
=0

for vi,v9 € V and w' € W'. By L(—1)-derivative property for ® and the
vertex operator map Yy,

R((w', Y (v, 22)(®(v1))(21))) = R((w', e H Yoy (v, =21 + 22) (2(v1))(0)))-

Thus we have

R((w', Yw (v1, 21)(®(02))(22))) — R({w', (B(Yv (01, 21 — 22)12))(22))
+HR((w', e Yy (vg, —21 + 22) (2(01))(0)))
= 0.

Let 25 = 0. We obtain

R((w', Yi (v1, 21)(2(v2))(0))) = R({w", (2(Yy (v1, 21)v2))(0)))
+R((w', DYy (vg, —21) (D(01))(0)))
=0.

Since w’ is arbitrary, we obtain

(@ (Yv(v1,21)v2))(0)
= e DYy (vg, —210) (@ (01))(0) + Yiv (v1, 21) (D(v2))(0)
= Yy ((2(v1))(0), 21)(@(v2)) (0) + Yir (v, 21) (P(v2))(0)
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for vy, vy € V. This means that (®(-))(0) : V. — W is a derivation from V to
W. Note that 62 (C° (V,W)) = 0. So we obtain a linear map from H'(V, W)
to the space of derivations from V to W. -

Conversely, given any derivation f from V to W, let &y : V' — W, be
given by

(@5(0))(21) = f(Yv(v,21)1) = Yy (f(v), 21)1

for v € V, where we have used Lemma 2.1. By Theorem 5.6.2 in [FHL], the
map from V to W,, given by v — Yt ((@(v))(0), 21)1 is composable with m
vertex operators for any m € N. Thus ®; € C},(V,W) for any m € N. For
vy, € V and w’ € W/,

((05,@7) (01 ® v2)) (21, 22)

= R((w', Yw (v1, 21) gy (f (v2), 22)1))
—R((w', Yy (f (Y (v1, 21 — 22)03), 22)1)))
+R((w', Yi (vg, 22)Yipy (f (01), 21)1))

= R((w', Yiw (v1, 21) Yy (f (v2), 22)1))
—R((w', Yy (Yo (f(v1), 21 — 22)v2), 22)1)))
—R((w', Yty (Yiv (v1, 21 — 22) f(v2), 22)1)))
+R((W', Y (v2, 22) Yy (f (v1), 21)1))

= R((w', Yiw (v1, 21) Yy (f (v2), 22)1))
—R({(w', €Z2LW(_1)YvY/Vv(f( 1), 21 — 22)2))
—R((w', " VY (01, 21 — 25) f (v2)))
+R((w', Yy (vg, 22)Yipy (f (01), 21)1))

= R({(w', Yiw (v1, 21) Yy (f (v2), 22)1>)
—R((w', Yy (f(1), 21)e™ "V Hoy))
—R((w', Yiy (v1, 21)e" Y f(1y)))
FR((w', Yiv (v, 20) Yy (f (01), 21)1))

= R((w', Yiw (v1, 21) Yy (f (v2), 22)1))
—R({(w', Yy (f(v1), 21)Yiw (02, 22)1))
—R((w', Yw (v1, 21)Yipy (f (v2), 22)1))
+R((W', Y (v2, 22) Yipy (f (v1), 21)1))
—R((w', Yy (f(v1), 21) Yy (v2, 22)1))

R(( 1)1))

+

w', Yiw (v2, 22)Yipy (f (v1), 21)1))-



(2.1)

From Theorem 5.6.2 in [FHL|, we know that the right-hand side of (2.1)
is 0. So we obtain a linear map f — @, from the space Der (V,W) to
H,, (V, W) = C,, (V).

Clearly these two maps are inverse to each other and thus Der (V,W)
and H} (V,W) are isomorphic.

3 Second cohomologies and square-zero ex-
tensions

In this section, we prove Theorem 1.4.

Let (A, f,g) be a square-zero extension of V' by W. Then there is an
injective linear map I' : V' — A such that the linear map h : Vo W — A
given by h(v,w) = I'(v) + g(w) is a linear isomorphism. By definition, the
restriction of h to W is the isomorphism g from W to ker f. Then the grading-
restricted vertex algebra structure and the V-module structure on A give
a grading-restricted vertex algebra structure and a V-module structure on
V @& W such that the embedding i3 : W — V@& W and the projection p; : V@
W — V are homomorphisms of grading-restricted vertex algebras. Moreover,
ker p; is a square-zero ideal of V @& W, i5 is an injective homomorphism such
that io(W) = ker p; and the diagram

0 W 2 Vew 2V

wlo ] [ 1)

~
o

of V-modules is commutative. So we obtain a square-zero extension (V &
W, p1,1i2) equivalent to (A, f, g). We need only consider square-zero extension
of V- by W of the particular form (V & W, p;,is). Note that the difference
between two such square-zero extensions are in the vertex operator maps. So
we use (V & W, Yyew, p1,i2) to denote such a square-zero extension.

We now write down the vertex operator map for V & W explicitly. Since
(Ve W, Yvaw, p1,i2) is a square-zero extension of V', there exists W (u, x)v €



W((z)) for u,v € V such that

YV@W((th)vI)(U%O) (YV(Ulv )UQleJ(Uhx)U?)v
YVEBW((Uh )=I>(07w) = ( YV<Ulv )w2)
Yew ((0,wr),2)(v2,0) = ( Yivy (w, 2)vs),

YV@W((O,wl ,I)(O,U)Q) ==

for v1,v9 € V and wy,ws € W. Thus we have

Yyew ((v1,w1), ) (ve, ws)
= (Yy (v1, 2)va, Yiv (v1, 2)ws + Yy (wy, 2)vg + U (vy, 2)vy)  (3.2)

for v1,v9 € V and wy,wy € W.
The vacuum of V & W is (1,0). Since

Yvew((v,w),x)(1,0) = eILV@W(’l)(U,w)
(eILv(—l)U’ eILw(—l)w)

= (Yy(v,2)1, Y (w,z)1)
for v e W and w € W, we have
U(v,2)1 =0 (3.3)

forveV.
We identify (V @ W)" with V' @ W’. For vy,v, € V and w' € W,

((0,w"), Yvew((v1,0), 21)Yvew ((v2,0), 22)(1,0))
= (W', U(vy, 21)Yy (v, 20)1 + Vi (v1, 21) ¥ (vg, 29)1)
= (w', ¥(vy, 21) Yy (v2, 29)1),

((0,w"), Yvew((v2,0), 22)Yvew ((v1,0), 21)(1,0))

= (W', U(vy, 22)Yy (v, 21)1 + Yiy (v2, 22)¥(vy, 21)1)

= (w', U(vy, 29) Yy (v1, 21)1),

((0,w"), Yvow (Yvaw ((v1,0), 21 — 22)(v2,0), 22)(1,0))

= (w, Yy (U (v1, 21 — 22)v2, 22)1 4+ U (Ve (01, 21 — 22)02, 22)1)

= (W, Yy (U(v1, 21 — 22)03, 22)1)

are absolutely convergent in the region |z1| > |z2] > 0, |22 > |z1] > 0,
|zo| > |21 — 22| > 0, respectively, to one rational function in z; and zy with
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the only possible poles at z1, 20 = 0 and 2; = z5. Using our notation in [H],
we denote this rational function by

R((w', W (vy, 21)Yv (v2, 22)1))

or

R((w', ¥ (vy, 22) Yy (v1, 21)1))

or
R({(w', Yy (U (vy, 21 — 20)v, 25)1)).

Then we obtain an element, denoted by
E(\I/(Ul, Zl)Yv(Ug, 22)1)

E(\I](U2, ZQ)Yv(Ul, 21)1)

or
E(Ym‘}}/V(\I/(Ul, Z1 — ZQ)'UQ, 22)1),

of thzz given by
(w’, E(\IJ(Ul, Zl)Yv(Ug, 22)1)> = R((w’, ‘1’(1)1, Zl)Yv(’Ug, 2’2)1>)

(W', E(W(vg, 29) Yy (v1,21)1)) = R((w', ¥ (va, 22) Yy (v1, 21)1))

or
(W', E(Yoh (W vy, 21 — 22)v9, 20)1)) = R({(w', Yipy, (W (vy, 21 — 22)va, 22)1)).
By definition, we have

E(‘I’(Ul, 21>Yv(1)2, 22)1) = E(‘IJ(’UQ, ZQ)Yv<'U1, Zl)]_)
= E(YVI[//VV(\II(Ul,Zl — 22)1)2,2’2)1)
for vy, v9 € V.

Let .
VRV =W, .,



be the linear map given by

((I)(Ul ®’U2))(Z’1,2’2) = E(\IJ(Ul,Zl)Yv(Ug,Zz)l)
= E(‘I/(UQ, Zg)Yv(Ul, 21)1)
= By (Y(v1, 21 — 22)v2, 22)1) (3.4)

for v1,ve € V and (21, 29) € F»C. We first prove that ¢ € éi(V, W).
2

By the L(—1)-derivative property and the L(0)-bracket formula for VW,
we have

aw((0,0),2) = Voow((Ly(-1)0,0),2) (35

= [LV-I—W(_I)?YV@W((UvO)’x)]’ (36)

[Lvaw(0), Yvaw((v,0),z)] = YV@W((LV(O)%O),%)+1’%YV@W((U:0)>$)
(3.7)

for v € V. By (3.5), (3.6), (3.7), (3.2) and the L(—1)-derivative property
and the L(0)-bracket formula for V', we obtain

d

—U(v,2) = W(Ly(—1)v,x) (3.8)

dx
= Ly (—1)¥(v,z) — V(v,z)Ly(-1),
(3.9)

d
Ly (0)¥(v,z) — V(v,2)Ly(0) = Y(Ly(0)v,z)+ xd—\I/(v,x) (3.10)
x
for v € V. From (3.10), we obtain
ZLW(O)\IJ(v,x) = \I/(zLV(O)v, zx)zLV(O) (3.11)

forveV.
For vy,vy € V and w’ € W, by (3.8) and the L(—1)-derivative property
for V', we obtain

(W', (®(v1 ®@ v2))(21, 22))

0
=5,

9
821
w', BE(Y(vy, 21) Yy (v, 22)1))
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9
= g5 Rl Wlon, 20) Yy (v, 20)1)

~R <<w 0 W1, 20) Vi (v, 22)1 )

"0z
= R((w', U(Ly(—1)vy, 21) Yy (v2, 22)1))
= (w', E(¥(Ly(—1)v1, 21) Yy (v2, 22)1))

= (w', (P(Ly(—1)v; @ v))(21, 22)) (3.12)

and

9,
8_22<w (@01 ® ) (21, 22))
0

(922

0
= 8_zgR(<w (v, 21) Y (02, 22)1)

I (CATR e 1>)

= R({(w', ¥ (vy, 21) Yy (Ly (—1)vg, 22)1))
= (w', E(V(v1, 21)Yv (L (— )02722)1»
= (w', (®(v1 @ Ly (—1)v2)) (21, 22))- (3.13)

Using (3.8), (3.9) and the L(—1)-derivative property for V', we obtain

—(w', E(¥(vy, 21)Yy (vg, 29)1))

(i i) (W', (®(v1 ® v2))(21, 22))
< 4 _) (W', E(¥(vq, 21)Yy (va, 22)1))

— 4 —) R((w', U (v, 21) Yy (vg, 22)1)))

<<w’, 8%1\1!(@1, z1) Yy (v2, 22>1>)

+R <<w’, (v, Zl)aizzYV('UQ, 22)1>)
= R((w', U(Ly(=1)v1, 21)Yv (02, 22)1))

+R(<’LU/, \D(Ul, Zl)Yv(Lv(—l)UQ, ZQ)].))
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= R((w', Ly (—1)¥(vy, 21) Yy (v2, 22)1))

= R((Ly+(1)w', (v, 21) Yy (va, 29)1))

= (Ly(1)w', E(V(vy, 21) Yy (09, 29)1))

= (W', Ly (—1)E(V (v, 21) Yy (v9, 29)1))

= (w', Ly (—1)(®(vy @ v9))(21, 22)) (3.14)

for v1,v9 € V and w' € W', From (3.12), (3.13) and (3.14), we see that ®
satisfies the L(—1)-derivative property.

Also for vy, v € V and w’ € W', by (3.11) and the L(0)-bracket formula
for V', we have

(w', 22w O (p (Ul®v2))(21,22)>

= (W, PO BV (v, 21) Yy (v2, 22)1))
= <zLW'(0) L E(W (01, 20) Yy (v2, 22)1))
= R({z"v Ow/ (01, 21)Yy (02, 22)1))
= R, O o, 1) (02, 2)1)
= R((w', U (22 Oy, 220) Vi (22 Oy, 225)1))
= (W', E(U(z2vOuy, 22 Yy (22 Oy, 225)1))
= (', (2(z" vy @ 22 Oy)) (221, 220)),

that is, ® satisfies the L(0)-conjugation property.
Since V & W is a grading-restricted vertex algebra, for vy, vs,v3 € V' and
w' € W', the series

<(O’ w/)v YVEBW((Ulv 0)7 Zl)YVEBW((UQ7 0)7 Z2)YV€BW((U37 0)7 23)<17 0))
and
<(0> wl)’ YV@W(YV@W«Ula O)’ Rl = Z2)(UQv O)’ ZQ)YVGBW«U?M O)’ 23)(17 0)>

are absolutely convergent in the regions given by |z1| > 22| > |z3] > 0 and
by |z2] > |z1 — 22|, |2z3] > 0 and |22 — 23| > |21 — 22|, respectively, to a same
rational function with the only possible poles at z; = 25, 21 = 23, 20 = 23.
But by (3.2) and (3.3), these series are equal to

(W', U(vy, 21)Yy (02, 22) Yy (03, 23)1) + (W', Yiw (v1, 21) U (02, 22) Yy (v, 23)1)
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and

(W', U(Yy (v1, 21 — 29)v2, 29)Yi (vs, 23)1)
+{(w', YI}{}/V(\I/(Ul7 21 — 22)Ug, 22) Yy (v3, 23)1),

respectively, and are absolutely convergent to a same rational function which
in our convention is equal to

R({(w', W (vy, 21) Yy (v2, 22) Yy (v3, 23)1) + (0, Yiy (v1, 21) W (09, 29) Yy (v3, 23)1))
and

R((w', \I/(Yv<1)1, Z1 — ZQ)UQ, ZQ)Yv(Ug, 23)1>
+<U}/, YV[V;/V(\I’(Ul, Z1 — 22)1)2, ZQ)Yv(’Ug, Z3)1>)

In particular, we have proved that ® € éi(v, w).
2
Since by (3.4),

(@(1)1@1)2))(21,22) = E(‘I’(Ul,zl)YV(Ug,Zg)l)
= E(¥Y(vq, 22)Yy(v1,21)1)

(®(ve ®v1))(22, 21)
= (012(P(v2 ® v1))) (21, 22)

for v1,ve € V and (z1, 29) € F5,C, that is,
(I)(’Ul & 'UQ) — 0'12((1)(1)2 &® U1)> =0

for vy, v € V, We obtain

Y (=)o (@0 @ )

o€Ja;1
= <I>('U1 ® Uz) — 012((1)(@2 ® Ul))
=0

for vy,v9 € V. So @ € C*(V,W).
Next we show that 6% (®) = 0. For vy, vp,v3 € V, w' € W',
2

(w', ((52(‘1)))(1)1 ® vy ® v3))(21, 22, 23))
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= R((w', (B (01 (02 @ v3))) (21, 22, 23))
+(w', (®(v; @ E® (vy @ v3;1)))(21, 22, 23)))
—R((w', (®(E® (vy ® v9;1) ® v3))(21, 22, 23))
(', (i (@01 @ v);v3)) (21, 22, 23)))
= R((w', Y (v1, 21)¥(vg, 22) Yy (vs, 23)1)
+{w', W(vy, 21) Yy (va, 22) Yy (03, 23)1))
—R({w', W (Yy (v, 21 — 22)v9, 29) Yy (03, 23)1)
+(w', Y (W (v1, 21 — 20)v, 22) Yy (v3, 23)1)). (3.15)

Since V @ W is a grading-restricted vertex algebra, we have the associativity
property

R({(0,2"), Yvew ((v1,0), 21)Yvaw((v2,0), 22) Yvew ((vs, 0), 23)(1,0)))
- R(<(07 w/)7 YV@W<YVEBW((U1’ 0)7 21— ZQ)(UQ7 0)7 22) )
Yvew((vs,0),23)(1,0))),

which, by (3.2) and (3.3), is equivalent to

R({(w', W(vy, 21)Yy (vg, 20) Yy (03, 23)1)
+{w', Yy (v1, 21) U (vg, 29) Yy (03, 23)1))
= R({(w', W (Yy (v1, 21 — 29)v2, 20) Y (v3, 23)1)
Hw', Yy (U (v1, 21 — 20)v9, 20) Yo (03, 23) 1)),

as we have noticed above. So the right-hand side of (3.15) is 0. Thus ® +
63C3H(V, W) is an element of H?(V,W).
2
Conversely, given any element of H 2(V W), let & € 02 (V,W) be a rep-
resentative of this element. Then for any v1, V9 € V, there ex1sts N such that
for w € W', (w', (®(v; ® v9))(2,0)) is a rational function of z with the only

possible pole at z = 0 of order less than or equal to N. For vy,vy, € V, let
U(vy, x)ve € W((z)) be given by

(W', U(vy, 2)va)]a=: = (W', (P(01 ® 12))(2,0)).

for z € C*. For vy,ve € V, define Yygw (v1, x)vy using (3.2). So we obtain a
vertex operator map Yy g . Reversing the proof above, we see that V & W
equipped with the vertex operator map Yy, and the vacuum (1,0) is a
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grading-restricted vertex algebra and together with the projection p; : V &
W — V and the embedding io : W — V@& W, V & W is a square-zero
extension of V' by W.

Next we prove that two elements of ker §2 obtained this way differ by an

2
element of §;C*(V, W) if and only if the corresponding square-zero extensions
of V by W are equivalent.
Let ®,®P, € kerd? be two such elements obtained from square-zero
2

extensions (V @& W, Y‘%W,pl,ig) and (V & W, Y‘%W,pl,ig). Assume that
P = &y + §1(T") where T' € CH(V, W). Since

(W', ((61(1)) (01 @ v2)) (21, 22))
= R((w', Yiw (v1, 21)(T'(v2)) (22)))
—R((w', (D(Yv(v1, 21 — 22)v9))(22)))
+R((w', Yiw (v, 22)(L'(v1)) (21))),

we have

R({w', Wy (vy, 21) Yy (09, 29)1))

= (W', (1(v1 ® v2))(21, 22))

= (0, (P2(v1 ® v2))(21, 22))
+(w', (61(1)) (21, 22))

= R({(w', Wy (vy, 21) Yy (vg, 22)1)
+R(<w/ Yiw (v1, 21) (T (02))(22)))
—R((w', (P(Yv (v1, 21 — 22)v2))(22)))
+R((w', Yi (v2, 22)(L'(v1))(21)))

= R((w', Uy(vy, 21) Yy (vg, 22)1
+R(<w' Yiy (v, 21)(I'(v2))(22)))
—R((w' (F(Yv(vhzl—Zz)U2))( 2)))
+R((w', e WDy (g, —20) (T (01)) (22))- (3.16)

Let 25 go to zero on both sides of (3.16). We obtain

(w', \111(1}1, 21)1}2> = <’U],7 \112(1)1, Zl)U2>
+(w', Yoy (v1,21)(T'(02))(0))
— (W', (T(Yy (01, 21)v2))(0))

15



+(w', e DYy (09, —20) (T(01))(0))
= (W', Wy(vy, 21)09)

+(w', Yo (v1, 21) (I'(v2))(0))

— (W', (T(Yv(v1, 21)v2))(0))

+w', Yy (D (01))(0), 21)va).

Then

Uy (v, x)vg = Wy(vy,x)vg + Yy (vg, 2)(I(v2))(0)
—(T(Yy (v1, £)02))(0) + Yy (T (01))(0), 2)va. (3.17)

For vy,v9 € V and wy,wy € W, by (3.2) and (3.17), we have

Vi (v, w1), @) (02, w2)
= (Yy(v1, 2)vg, Yiv (v1, 2)wy 4+ Vi (wr, 2)vg + Uy (vg, ) 0y)
= (Yy (v1, 2)va, Yiv (v1, 2)ws + Yy (wy, 2)ve + Wa(vy, 2)s)
+(Yy (v1, 2)v2, Yiv (01, ) (' (v2))(0))
—(Yv(v1, 2)va, (D(Yy (01, 2)v2))(0))
(Y (v1, 2)vz, Vi (T (01))
= V{2 (1, w1+ (D(02))(0)), 2) (02, w3 + (T(02))(0))
—(Yy (vy, z)vg, (T (Yy (v1, 2)v2))(0)). (3.18)
We now define a linear map h: VoW — V & W by

e(v,w) = (v,w + (F(v))(0))

for v € V and w € W. Then h is a linear isomorphism and (3.18) can be
rewritten as

WY (0, w1), ) (02, w3)) = Y2 (h(vy, wy), 2)h(vs, ws). (3.19)

for vi,vo € V and wy,wy € W. Thus h is an isomorphism of grading-
restricted vertex algebras from (V@ W, Y‘ng, (1,0)) to (Ve W, Yx%vw (1,0))
such that the diagram

~
s}

0 s W 2L Vew Py

1% hl llv (3.20)




is commutative. Thus the two square-zero extensions of V' by W are equiv-
alent.

Conversely, let (V & W, Y‘Slﬁw,pl,iz) and (V & W, Y‘gw,pl,ig) be two
equivalent square-zero extensions of V' by W. So there exists an isomorphism
h:VeW — Va@W of grading-restricted vertex algebras such that (3.20) is
commutative. We have the following lemma which is also needed in the next
section:

Lemma 3.1. There exists a linear map g : V — V such that
h(v, w) = (v, w + g(v))
forveV andw e W.

Proof. Let h(v,w) = (f(v,w), g(v,w)) for v € V and w € W. Then
by (3.20), we have f(v,w) = v and ¢(0,w) = w. Since h is linear, we have
g(v,w) = g(v,0)+¢(0,w) = w+g(v,0). So h(v,w) = (v,w+g(v,0)). Taking
g(v) to be g(v,0), we see that the conclusion holds. |

Let (D(v))(z1) = etw(Dg(y) € W. Then I' : V — W,, is an element
of C3(V,W). By definition, we have g(v) = (I'(v))(0) and h(v,w) = (v, w +
(T(v))(0)) for v € V and w € W. Let ®; and ®, be elements of ker 43

obtained from (V @& W, Y‘%;W,pl, ip) and (V& W, Y‘gw,pl, i), respectively,
and ¥ and W, the corresponding maps from V ® V' to W((z)). Then since
h is a homomorphism of grading-restricted vertex algebras, (3.19) holds for
vy, vy € V and wy, wy € W. Thus the two sides of (3.18) are equal for vy, vy €
V and wy, ws € W. So the two expressions in the middle of (3.18) are equal
for vy, vy € V and wy, wy € W. Thus we have (3.17) for vy, v € V. Formula
(3.17) implies that the two sides of (3.16) are equal for vy, v € V. Thus the
middle expressions in (3.16) are all equal for vy,v, € V. In particular, we
obtain ®; = ®, +I'. So ®; and @, differ by an element of 5;CY(V,W). &

4 Square-zero extensions and first order de-
formations

In this section, we prove Theorem 1.7.
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Let V; : V@V — V((x)), t € U, be a first order deformation of V. By
definition, there exists

V:VeV — V()
v ®@vy — (v, x)ve

such that
Yi(v1, x)vg = Yy (v1, x)vg + tW (01, )0y

for vy,vy € V and (V,Y;, 1) is a family of grading-restricted vertex algebras
up to the first order in ¢.
The identity property for (V,Y;, 1) up to the first order in ¢ gives

Yy(1,2)v +t¥(1,2)v = v + O()

for v € V. So we obtain
U(l,z)v=0 (4.1)

for v € V. The creation property for (V,Y;,1) up to the first order in ¢ gives

lim (Yy (v, 2) + t9 (v, 2))1 = v + O(t?)

x—0

for v € V. Then we have
lim ¥(v,2)1 =0 (4.2)

x—0

forveV.
The duality property up to the first order in ¢ can be written explicitly
as follows: For vy, v9,v3 € V and v’ € V’,

(V' (Yy(v1, 21)U(vg, 29) + (01, 21) Yy (ve, 22))vs) (4.3)
<’Ul, (Yv(vg, ZQ)QJ(’Ul, Zl) + \Ij(’l}g, ZQ)Yv<U1, 21))U3> (44)
(W', (Yo (U(v1, 21 — 22)v9, 22) + V(Y (v1, 21 — 22) 9, 22))v3) (4.5)

are absolutely convergent in the regions |z1| > |23] > 0, |22] > |21] > 0 and
|z9| > |21 — 22| > 0, respectively, to a common rational function in z; and 2z
with the only possible poles at 21, 2o = 0 and z; = 25.
Let
Yvev:(VeVie(VeV) = (VeV)|ra ]

(ulavl)®(u27v2) = YV@V((U17U1)>$)(U2>UZ)
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be given by

Yvev ((u1, 01), 2)(uz, v)
= (Yy (uy, x)ug, Yy (ur, x)ve + Yy (v1, 2)us + V(uy, x)us)  (4.6)

for uy, us,v1,v9 € V. By (4.6) and (4.1),

Yvev((1,0),2)(u,v) = (Yy(1,2)u, Y (1, 2)v 4+ Yy (0, 2)u + V(1, x)u)
= (U,U)

for u,v € V, that is, (V& V, Yyav, (1,0)) has the identity property. By (4.6)
and (4.2),

hn(l) YV@V((ua U)u .’JJ)(]., 0)

r—r
= (glclg(l) Yv(u,x)1, glclir(l) Yv (u, )0 + ill}r(l) Yv(v,2)1 + ill)r(l) U(u,z)1)
= (U,’U)

for u,v € V, that is, (V @V, Yyev, (1,0)) has the creation property.
By (4.6), we have

(', 0), Yvev ((ur,01), 21)Yvev ((u2, v2), 22)(us, vs))
= <(ulv Ul)? Ywev((ur,v1), 21) -
(Y (ug, z2)us, Yy (ug, 20)vs + Yy (ve, 20)us + W(us, 29)us))
= (', Yy (u1, 21)Yy (uz, 22)us) + (v, Yy (u1, 21) Y (ua, 22)v3)
+(0", Yy (ur, 21) Yy (v2, 20)us) + (v, Yy (ur, 21) ¥ (ug, 22)us)
+(', Yy (1, 21) Y (ug, 20)us) + (v, W(ug, 21) Yy (ug, 22)us). (4.7)

By the properties of V' and the absolute convergence of (4.3), we see that
the left-hand side of (4.7) is absolutely convergent when |z;| > [z > 0.
Similarly, by (4.6), we have

((u',0"), Yvav ((uz, va), 22)Yvav ((u1, v1), 21)(us, v3))
= (v, Yy (ug, 22) Yy (uy, 21)us) + (v, Yy (ug, 20) Yy (1, 21)v3)
+ U,, YV (Ug, ZQ)Yv(Ul, Z1)U3> + <’U/, Yv(UQ, Zg)\I/(Ul, 21)U3>

{
+{(', Y (v, 20) Yy (ug, 21)usg) + (U, O (ug, 22) Y (uy, 21)us)  (4.8)

and the left-hand side of (4.8) is absolutely convergent when |z3] > |21]| > 0.
Moreover, since (4.3) and (4.4) converges absolutely when |z;] > [z3] > 0
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and when |z > |z1| > 0, respectively, to a common rational function with
the only possible poles at zy, 29,21 — 22 = 0, the left-hand side of (4.7) and
left-hand side of (4.8) also converges absolutely when |z;| > |z3] > 0 and
when |z2| > |21 > 0, respectively, to a common rational function with the
only possible pole at z; — 2z = 0. By (4.6) again, we have

('), Ywov (Yvev ((ur,v1), 21 — 22)(ug, v2), 22) (us, v3))
= ((u',v"), Ywev ((Yv (u1, 21 — 22)uz,
Yy (uy, 21 — 29)v9 + Yy (01, 21 — 22)us
+W(uy, 21 — 29)usg), 29)(us, v3))

= (', Yy (Y (uy, 21 — 22)ug, 20)ug) + (v, Yy (Y (ug, 21 — 22)ug, 29)v3)
+(v", Yy (Y (uy, 21 — 29)v2, 29)ug) + (v, Yo (Y- (v1, 21 — 22)us, 22)us)
+(', Y (W (uy, 21 — 22)us, 22)us) + (v, U(Yy (u1, 21 — 22)Us, 22)us).

(4.9)

By the properties of V' and the absolute convergence of (4.5) and (4.9), we see
that the left-hand side of (4.9) is absolutely convergent when |z| > |21 — 25| >
0. Moreover, since (4.3) and (4.5) converges absolutely when |z;| > |22 > 0
and when |23 > |21 — 22| > 0, respectively, to a common rational function
with the only possible poles at 21, 29, 21 — 2o = 0, the left-hand side of (4.7)
and left-hand side of (4.9) also converges absolutely when |z;| > |z2| > 0 and
when |z3| > |21 — 23| > 0, respectively, to a common rational function with
the only possible poles at z1, 25,21 — 22 = 0. So (V& V, Yyqv, (1,0)) has the
duality property.

Note that the L(—1)-derivative property is in fact a consequence of the
other axioms for vertex algebras. Thus (V &V, Yyqy, (1,0)) is a grading-
restricted vertex algebra.

By definition,

p1(Yvav((wr,v1), 2)(uz, v2))
= p1 (Yv (uy, x)ug, Yy (ug, x)ve + Yy (v1, 2)us + VU(uy, x)us)
= Yy (uy, z)usy
= Yv(pl(ul, Ul); x>p1(u27 Uz)

for uq, us, v1,v9 € V. Also
kerp; =0V
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and
YV@V((Oa Ul)? $) (Oa UQ) = (07 0)

for vi.v9 € V. So p; is a surjective homomorphism of grading-restricted
vertex algebras and ker p; is a square-zero ideal of V @ V.

We use Y,y to denote the vertex operator map for V&V when V@ V
is viewed as a V-module. Then by definition,

iQ(Yv(Ul,QT)UQ) == (O,Y\/(Ul,a?)vg)
- YX}/EBV(UMJ:)(OﬂU?)

= Yyav(vi,2)ia(vs)

for vy,v9 € V. So iy is an injective homomorphism of V-modules. Clearly,
we have i5(V') = kerp;. Thus (V@& V,Yyay, p1,i2) is a square-zero extension
of V by V.

Conversely, let (V &V, Yyav,p1,i2) be a square-zero extension of V' by
V. Then there exists

UV: VeV — V()
v @vy — W(v1,x)ve

such that
YV@V((UhO)J)(W;O) = (YV(Ulaﬁ)Um \Il<ulax)u2)

for uy,us € V. The identity property and the creation property of the

grading-restricted vertex algebra (V &V, Yyqy, (1,0)) give (4.1) and (4.2).

The duality property for (V &V, Yyav, (1,0)) gives (4.3), (4.4) and (4.5).
For t € C, define

Yi(v1, x)vg = Yy (v1, x)vg + tW (01, )0y

for vi,v; € V. Then (4.1) and (4.2) imply that Y; satisfies the identity
property and the creation property up to the first order in ¢ and (4.3), (4.4)
and (4.5) imply that Y; satisfies the duality property up to the first order in
t. Thus (V,Y;, 1) is a grading-restricted vertex algebras up to the first order
in ¢, that is, Y; is a first-order deformation of (V, Yy, 1).

Now we prove that two first-order deformations of V' are equivalent if and
only if the corresponding square-zero extensions of V' by V' are equivalent.
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Consider two equivalent first-order deformations of V' given by Y;(I) .
VeV — V() and Y vev - V((z)) for t € C. Then there exist
a family f; : V — V, t € C, of linear maps of the form f; = 1y + tg where
g :V — V is a linear map preserving the grading of V' such that (1.1) holds
for v1,v, € V. By definition, there exist linear maps

U VeV — V()
V1 @ Vg — ‘I’l(Ul,l’)Uz

and

Uy : VRV — V()
V1 Q Uy — \112(1)1,%)1}2

such that ¥;") = V4, + ¥ and Y,*) = Y}, + t0,. By (1.1), we have

Uy (vy, x)vg — Yo (v, T)vg
= —g(Yy (v1,2)v9) + Yy (g(v1), z)va + Yy (v1, 2)g(v2) (4.10)

for vy, vy € V.

Let (V &V, Y‘%;V,pl, iy) and (V &V, Y‘%V,pl, i5) be the square-zero ex-
tensions of V' by V' constructed from Yt(l) and Y;(z). Let h: VoV =VaoV
be defined by

h(vy,v9) = (v1,v9 + g(v1))

for vi,vy € V. Clearly, h is a linear isomorphism. For wuq,us,v1,v9 € V', by
definition and (4.10),

By (ur, o), @) (us, 02)
= h(Yy (u1, 2)ug, Yv (ur, x)va + Yy (v1, ®)us + Uy (ug, x)us)
= (Yv(u1, x)ug, Yy (ur, x)ve + Yy (01, )ug
+Uy (uy, 2)us + (Yo (ur, x)usg))
= (Yv (u1, x)ug, Yy (ur, x)ve + Yy (v1, )us
+Wo(ur, x)us + Y (g(ur), x)us + Yy (ur, 2)g(uz)))
= (Yy (uy, v)ug, Yy (ug, ) (vs + g(uz))
+Yy (v + g(wr)), x)ug + Yo (uy, x)uz)
= V{2 (h(u, 1), €)h(uz, vs).
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So h is in fact an isomorphism from the algebra (V &V, Y‘%V, (1,0)) to the

algebra (V &V, Y‘%V, (1,0)). Now it is clear that the following diagram is
commutative:

0 V= VeV —— v > 0
12 1
1Wl hl J{lv
0 >V — VoV - >V > 0,
12 1

So these two first order deformations are equivalent.

Conversely, let (VaV, Y{ggv,pl, iz) and (V&V, Y‘%V,pl, i5) be two equiv-
alent square-zero extensions of V by V. Let ¥y, ¥y : V@V — V((z)) be
given by

Yoy ((u1,0),2) (u2,0)) = (Yo (ur, 0)uz, U1 (ur, x)us),
Vi (1,0),2) (u2,0)) = (Yor(ur, @)uz, Ua(ur, 2)us)
for uy,us € V. Then ;) ;P : VoV — V((z)) given by
Yt(l)(vl, x)ve = Yy (vy, x)vg + Wy (vy, )00,
Yt(Q) (v1, 2)vy = Yy (v1, 2)ve + tWs(vy, ) vy
for vy,ve € V' are first-order deformations of (V, Y3, 1) by the proof above.

Let h : V®V — V@V be an equivalence from (V @ V, YD, p1,ia)
to (V@ V, Y‘%V,pl,ig). Then by Lemma 3.1, there exists a linear map
gV — V such that

h(vi,v2) = (v1,v2 + g(v1))

for vy, v, € V. Using the fact that h is an isomorphism of grading-restricted
vertex algebras from (V @&V, Y‘%V, (1,0)) to (V& V, Y‘%V, (1,0)), we obtain
(4.10) which implies (1.1). Thus the two first-order deformations v, and
Yt(Q) are equivalent. [
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