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Quantum Hall effect

Hall effect

The Hall effect was discovered by Edwin Herbert Hall in
1879.
Hall effect: When a magnetic field is applied perpendicular
to the direction of a current flowing through a conductor, a
measurable voltage is developed in the third perpendicular
direction.
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Quantum Hall effect

Hall effect

Hall resistance: The ratio

RH = VH/I

of the transverse voltage VH to the current I.
Hall’s original paper was purely on the experiment he did.
But it was actually published in American Journal of
Mathematics 2 (1879), 287-292.
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Quantum Hall effect

Quantum Hall effect

Klaus von Klitzing in 1980 discovered the integer quantum
Hall effect. Daniel Tsui and Horst Strörmer in 1982
discovered the fractional quantum Hall effect.
When magnetic field is strong and the temperature is low,
the Hall resistance RH is quantized:

RH =
h
νe2 ,

where h is the Planck constant, e is the elementary charge
and ν is an integer (integer quantum Hall effect) or a
rational number (fractional quantum Hall effect) called
filling factor.



Quantum Hall systems Representation theory of vertex operator algebras Applications The end

Quantum Hall effect

Quantum Hall effect

Klaus von Klitzing in 1980 discovered the integer quantum
Hall effect. Daniel Tsui and Horst Strörmer in 1982
discovered the fractional quantum Hall effect.
When magnetic field is strong and the temperature is low,
the Hall resistance RH is quantized:

RH =
h
νe2 ,

where h is the Planck constant, e is the elementary charge
and ν is an integer (integer quantum Hall effect) or a
rational number (fractional quantum Hall effect) called
filling factor.



Quantum Hall systems Representation theory of vertex operator algebras Applications The end

Quantum Hall effect

Quantum Hall states

In a two-dimensional quantum system, a state is given by a
wavefunction on the complex plane. When there are N
electrons, a state is given by a wavefunction of the form
Ψ(z1, . . . , zN) where z1, . . . , zN are complex variables.
Laughlin states: In the case that ν = 1

3 , Robert B. Laughlin
found in 1983 the k = 3 case of the wavefunction∏

i>j

(zi − zj)
ke−

∑
k

|zk |
2

4`0

which explains theoretically the fractional quantum Hall
effect discovered by Tsui and Strörmer. For general k , this
is the wavefunction for the filling factor ν = 1

k .
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Quantum Hall effect

Quantum Hall states

Moore-Read Pfaffian states: In the case that ν = 5
2 , using

conformal fiels theory, Gregory Moore and Nick Read
found in 1991 the wavefunction

Pf
(

1
zi − zj

)∏
i<j

(zi − zj)
me−

∑
k

|zk |
2

4`0 ,

where for a skew-symmetric matrix A, the Pfaffian Pf(A) is
the square root of the determinant of A.
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Abelian and nonabelian anyons

Abelian anyons

The wavefunctions above are for electrons only. If there
are some impurity in the material and so on, there might be
excitations called quasi-particles. If these quasi-particles
are indistinguishable, then we can exchange them using
paths in the configuration space of n-tuples (z1, . . . , zn)
satisfying zi 6= zj . These paths form the braid group Bn.
If the wavefunction after the exchange of quasi-particles is
equal to a complex number of absolute value 1 multiplying
the wavefunction before the exchange, these
quasi-particles are called abelian anyons.
Abelian anyons have been found in experiments.
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Abelian and nonabelian anyons

Nonabelian anyons

If the wavefunctions with quasi-particles form a Hilbert
space and the exchange of quasi-particles gives a unitary
operator on this Hilbert space, these quasi-particles are
called nonabelian anyons.
Nonabelian anyons are still to be found in experiments. An
announcement by a group of physicists about finding
nonabelian anyons has not been confirmed by other
groups of physicists.
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Abelian and nonabelian anyons

History

Abelian anyons were first suggested by Jon Leinaas and
Jan Myrheim in 1977. They are derived rigorously by
Gerald Goldin, Ralph Menikoff and David Sharp in 1980
and 1981 using representations of local nonrelativistic
current algebra and the corresponding diffeomorphism
group. Frank Wilczek in 1982 introduced the term anyons
and proposed a model for abelian anyons in connection
with fractional spin in two dimensions.
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Abelian and nonabelian anyons

History

Nonabelian anyons were considered theoretically by
Sander (F.A.) Bais (1980) Gerald Goldin, Ralph Menikoff
and David Sharp (1985), Gregory Moore and Nathan
Seiberg (1988), Edward Witten (1989), Klaus
Fredenhagen, Karl-Henning Rehren and Bert Schroer
(1989) Jürg Fröhlich and Fabrizio Gabbiani (1990).
Gregory Moore and Nick Read in 1991 suggested that the
quasi-particles in a system whose ground states are given
by the Moore-Read Pfaffian wavefunctions above are
nonabelian anyons.
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Topological quantum computation

Modular tensor categories

Nonabelian anyons can be described or even defined by
modular tensor categories.
A modular tensor category is a semisimple rigid balanced
braided tensor category with finitely many irreducible
objects W1, . . . ,Wn such that the matrix (Tr RWi Wj ◦ RWj Wi )
is nondegenerate.
If the algebraic structure of modular tensor categories can
be realized in a physical system such as a quantum Hall
system, then one can use such a physical system to do
quantum computation. Since modular tensor category is
essentially topological, this is called topological quantum
computation.
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Vetrex operator algebras, modules and intertwining operators

Representation theory of vertex operator algebras and
two-dimensional conformal field theory

Two-dimensional conformal field theory was first developed
by physicists; in particular, by Alexander Belavin,
Alexander Polyakov, Alexander Zamolodchikov, John
Cardy, Daniel Friedan, Stephen Shenker, Eric Verlinde,
Gregory Moore, Nathan Seiberg and many others. Maxim
Kontsevich and Graem Segal gave a mathematical
definition of conformal field theory.
Two-dimensional conformal field theory can be viewed as
the representation theory of vertex operator algebras, a
class of algebras introduced and studied first by Alexander
Belavin, Alexander Polyakov, Alexander Zamolodchikov,
Richard Borcherds, Igor Frenkel, James Lepowksy and
Arne Meurman.
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Vetrex operator algebras, modules and intertwining operators

Representation theory of vertex operator algebras and
two-dimensional conformal field theory

In this mathematical theory, we can
Introduce new mathematical concepts.
Formulate precise conjectures and theorems.
Give rigorous complete proofs.
Develop mathematical tools and intuitions.
Obtain deep and satisfying mathematical understandings.
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Vetrex operator algebras, modules and intertwining operators

Vertex operator algebras

A vertex operator algebra consists the following data:
A Z-graded vector space V =

∐
n∈Z V(n).

A vertex operator map

YV : V ⊗ V → V [[z, z−1]],

u ⊗ v 7→ Y (u, z)v .

A vacuum 1 ∈ V(0).
A conformal vector ω ∈ V(2).
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Vetrex operator algebras, modules and intertwining operators

Vertex operator algebras

These data satisfy the following axioms:
Grading-restriction property: dim V(n) <∞ for n ∈ Z and
V(n) = 0 when n is sufficiently negative.
Lower-truncation property: For u, v ∈ V , Y (u, z)v contains
only finitely many negative power terms.
Axioms for the vacuum: For u ∈ V , Y (1, z)u = u and
limz→0 Y (u, z)1 = u.
Axioms for the conformal element: Let L(n) : V → V be
defined by Y (ω, z) =

∑
n∈Z L(n)z−n−2, then

[L(m),L(n)] = (m − n)L(m + n) + c
12(m3 −m)δm+b,0,

d
dz Y (u, z) = Y (L(−1)u, z) (L(−1)-derivative property) for
u ∈ V and L(0)u = nu for u ∈ V(n) (L(0)-grading property).
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Vertex operator algebras

Duality property: For u1,u2, v ∈ V , v ′ ∈ V ′ =
∐

n∈Z V ∗(n),
the series

〈v ′,Y (u1, z1)Y (u2, z2)v〉
〈v ′,Y (u2, z2)Y (u1, z1)v〉

〈v ′,Y (Y (u1, z1 − z2)u2, z2)v〉

are absolutely convergent in the regions |z1| > |z2| > 0,
|z2| > |z1| > 0 and |z2| > |z1 − z2| > 0, respectively, to a
common rational function in z1 and z2 with the only
possible poles at z1, z2 = 0 and z1 = z2.
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Vetrex operator algebras, modules and intertwining operators

Modules

Let V be a vertex operator algebra. A V -module is an
C-graded vector space W =

∐
n∈C W(n) equipped with a

vertex operator map YW : V ⊗W →W [[z, z−1]] satisfying
all those axioms for V which still make sense.
An N-gradable weak V -module is an N-graded vector
space W =

∐
n∈N W〈n〉 equipped with a vertex operator

map YW : V ⊗W →W [[z, z−1]] satisfying all those axioms
for V which still make sense, except the L(0)-grading
property.
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Vetrex operator algebras, modules and intertwining operators

Intertwining operators

Let W1, W2 and W3 be V -modules. An intertwining operator of
type

( W3
W1W2

)
is a linear map Y : W1 ⊗W2 →W3{z}, where

W3{z} is the space of all series in complex powers of z with
coefficients in W3, satisfying all those axioms for V which still
make sense, that is, a lower-truncation property, an
L(−1)-derivative property and a duality property. Intertwining
operators are the quantum fields for nonabelian anyons. The
following theorem gives an algebraic structure to the quantum
fields of nonabelian anyons associated to a vertex operator
algebra.

Theorem (H. 1995)
For a vertex operator algebra satisfying certain conditions,
intertwining operators for this vertex operator algebra have an
algebraic structure called intertwining operator algebra.
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Vetrex operator algebras, modules and intertwining operators

Examples

Free bosons: Representations of infinite-dimensional
Heisenberg algebras.
Free bosons on tori: Vertex operator algebras, modules
and classical vertex operators (intertwining operators)
associated to lattices.
Wess-Zumino-Novikov-Witten models: Representations of
affine Lie algebras.
Minimal models: Representations of the Virasoro algebra.
Fermion theories: Representations of infinite-dimensional
Clifford algebras, affine Lie superalgebras and
superconformal algebras.
Orbifolds, cosets andW-algebras, including in particular
the moonshine module.



Quantum Hall systems Representation theory of vertex operator algebras Applications The end

Vetrex operator algebras, modules and intertwining operators

Examples

Free bosons: Representations of infinite-dimensional
Heisenberg algebras.
Free bosons on tori: Vertex operator algebras, modules
and classical vertex operators (intertwining operators)
associated to lattices.
Wess-Zumino-Novikov-Witten models: Representations of
affine Lie algebras.
Minimal models: Representations of the Virasoro algebra.
Fermion theories: Representations of infinite-dimensional
Clifford algebras, affine Lie superalgebras and
superconformal algebras.
Orbifolds, cosets andW-algebras, including in particular
the moonshine module.



Quantum Hall systems Representation theory of vertex operator algebras Applications The end

Vetrex operator algebras, modules and intertwining operators

Examples

Free bosons: Representations of infinite-dimensional
Heisenberg algebras.
Free bosons on tori: Vertex operator algebras, modules
and classical vertex operators (intertwining operators)
associated to lattices.
Wess-Zumino-Novikov-Witten models: Representations of
affine Lie algebras.
Minimal models: Representations of the Virasoro algebra.
Fermion theories: Representations of infinite-dimensional
Clifford algebras, affine Lie superalgebras and
superconformal algebras.
Orbifolds, cosets andW-algebras, including in particular
the moonshine module.



Quantum Hall systems Representation theory of vertex operator algebras Applications The end

Vetrex operator algebras, modules and intertwining operators

Examples

Free bosons: Representations of infinite-dimensional
Heisenberg algebras.
Free bosons on tori: Vertex operator algebras, modules
and classical vertex operators (intertwining operators)
associated to lattices.
Wess-Zumino-Novikov-Witten models: Representations of
affine Lie algebras.
Minimal models: Representations of the Virasoro algebra.
Fermion theories: Representations of infinite-dimensional
Clifford algebras, affine Lie superalgebras and
superconformal algebras.
Orbifolds, cosets andW-algebras, including in particular
the moonshine module.



Quantum Hall systems Representation theory of vertex operator algebras Applications The end

Vetrex operator algebras, modules and intertwining operators

Examples

Free bosons: Representations of infinite-dimensional
Heisenberg algebras.
Free bosons on tori: Vertex operator algebras, modules
and classical vertex operators (intertwining operators)
associated to lattices.
Wess-Zumino-Novikov-Witten models: Representations of
affine Lie algebras.
Minimal models: Representations of the Virasoro algebra.
Fermion theories: Representations of infinite-dimensional
Clifford algebras, affine Lie superalgebras and
superconformal algebras.
Orbifolds, cosets andW-algebras, including in particular
the moonshine module.



Quantum Hall systems Representation theory of vertex operator algebras Applications The end

Vetrex operator algebras, modules and intertwining operators

Examples

Free bosons: Representations of infinite-dimensional
Heisenberg algebras.
Free bosons on tori: Vertex operator algebras, modules
and classical vertex operators (intertwining operators)
associated to lattices.
Wess-Zumino-Novikov-Witten models: Representations of
affine Lie algebras.
Minimal models: Representations of the Virasoro algebra.
Fermion theories: Representations of infinite-dimensional
Clifford algebras, affine Lie superalgebras and
superconformal algebras.
Orbifolds, cosets andW-algebras, including in particular
the moonshine module.



Quantum Hall systems Representation theory of vertex operator algebras Applications The end

The category of modules for a rational vertex operator algebra

Outline
1 Quantum Hall systems

Quantum Hall effect
Abelian and nonabelian anyons
Topological quantum computation

2 Representation theory of vertex operator algebras
Vetrex operator algebras, modules and intertwining
operators
The category of modules for a rational vertex operator
algebra
Wave functions for quantum Hall states and vertex
operator operator algebras
Study of intertwining operator algebras (nonabelian
anyons)

3 Applications
From wavefunctions to modular tensor categories
An approach to a fundamental conjecture
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The category of modules for a rational vertex operator algebra

Modular tensor category structure

Theorem (H. 2005)
Let V be a simple vertex operator algebra satisfying the
following conditions:

1 V(n) = 0 for n < 0, V(0) = C1 and V ′ is isomorphic to V as
a V-module.

2 Every N-gradable weak V-module is completely reducible.
3 V is C2-cofinite, that is, dim V/C2(V ) <∞ where C2(V ) is

the subspace of V spanned by elements of the form
Reszz−2Y (u, z)v for u, v ∈ V.

Then the category of V -modules has a natural structure of
modular tensor category.
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Wave functions for quantum Hall states and vertex operator operator algebras

Outline
1 Quantum Hall systems

Quantum Hall effect
Abelian and nonabelian anyons
Topological quantum computation

2 Representation theory of vertex operator algebras
Vetrex operator algebras, modules and intertwining
operators
The category of modules for a rational vertex operator
algebra
Wave functions for quantum Hall states and vertex
operator operator algebras
Study of intertwining operator algebras (nonabelian
anyons)

3 Applications
From wavefunctions to modular tensor categories
An approach to a fundamental conjecture
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Wave functions for quantum Hall states and vertex operator operator algebras

Examples and the classification problem

Laughlin state wavefunctions can be obtained from
correlation functions for the vertex operator algebra of a
free boson on a circle.
Moore-Read Pfaffian wavefunctions can be obtained from
correlation functions for the tensor product of the vertex
operator algebra of a free boson on a circle and the vertex
operator algebra for the minimal model of central charge
1/2.
Xiaogang Wen and his collaborators initiated a program to
try to classify possible wavefunctions of quantum Hall
states using vertex operator algebras.
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Study of intertwining operator algebras (nonabelian anyons)

Analogy between codes, lattices and intertwining
operator algebras (nonabelian anyons)

Frenkel, Lepowsky and Meurman observed an analogy
among codes, lattices and vertex operator algebras. But
this analogy is not complete. For example, in the category
of vertex operator algebras, there is no functor
corresponding to the dual functor for codes and lattices.
In 2004, I gave a complete analogy among codes, lattices
and intertwining operator algebras. In particular, given an
intertwining operator algebra, there is a “dual” intertwining
operator algebra. Using this analogy, we can formulate
many conjectures concerning intertwining operator
algebras. Since intertwining operator algebras describe
exactly nonabelian anyons, the results and conjectures on
intertwining operator algebras are actually results and
conjectures for nonabelian anyons.
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Study of intertwining operator algebras (nonabelian anyons)

Analogy between codes, lattices and intertwining
operator algebras (nonabelian anyons)

Ongoing research project: Develop a representation theory
of intertwining operator algebras. Introduced and
constructed modules for an intertwining operator algebras.
Established an equivalence between intertwining operator
algebras containing a certain vertex operator algebra and
braided tensor subcategories in the braided tensor
category of modules for the vertex operator algebra. The
goal is to prove some of the conjectures using this
representation theory.
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From wavefunctions to modular tensor categories

Outline of the steps in the program

1 Obtain ground state wavefunctions (with only electrons)
from experimental data.

2 Find a vertex operator algebra such that the correlation
functions of certain elements give the wavefunctions.

3 Verify that the vertex operator algebra satisfying the
conditions needed.

4 Use the theorem above to obatin a modular tensor
category structure on the category of modules for this
vertex operator algebra.
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An approach to a fundamental conjecture

A fundamental conjecture and its proof in a special
case

Conjecture: The braid group representations given by the
wavefunctions of quantum Hall states are the same as
those given by the representations of the corresponding
vertex operator algebras.
Parsa Bonderson, Victor Gurarie, Chetan Nayak in 2010
proved the case of Moore-Read Pfaffian wavefunctions.
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An approach to a fundamental conjecture

General case

The approach used in the proof by Bonderson, Gurarie and
Nayak is not easy to be generalized to the general case.
The greatly developed representation theory of vertex
operator algebras should be very useful in finding a proof
of this fundamental conjecture.
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Thank you!
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