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Abstract

We introduce an associative algebra A∞(V ) using infinite matrices with entries in
a grading-restricted vertex algebra V such that the associated graded space Gr(W ) =∐
n∈NGrn(W ) of a filtration of a lower-bounded generalized V -module W is an A∞(V )-

module satisfying additional properties (called a nondegenerate graded A∞(V )-module).
We prove that a lower-bounded generalized V -module W is irreducible or completely
reducible if and only if the nondegenerate graded A∞(V )-module Gr(W ) is irreducible
or completely reducible, respectively. We also prove that the set of equivalence classes
of the lower-bounded generalized V -modules are in bijection with the set of the equiv-
alence classes of nondegenerate graded A∞(V )-modules. For N ∈ N, there is a subal-
gebra AN (V ) of A∞(V ) such that the subspace GrN (W ) =

∐N
n=0Grn(W ) of Gr(W )

is an AN (V )-module satisfying additional properties (called a nondegenerate graded
AN (V )-module). We prove that AN (V ) are finite dimensional when V is of positive
energy (CFT type) and C2-cofinite. We prove that the set of the equivalence classes
of lower-bounded generalized V -modules is in bijection with the set of the equivalence
classes of nondegenerate graded AN (V )-modules. In the case that V is a Möbius ver-
tex algebra and the differences between the real parts of the lowest weights of the
irreducible lower-bounded generalized V -modules are less than or equal to N ∈ N, we
prove that a lower-bounded generalized V -module W of finite length is irreducible or
completely reducible if and only if the nondegenerate graded AN (V )-module GrN (W )
is irreducible or completely reducible, respectively.

1 Introduction

In the representation theory of Lie algebras, the universal enveloping algebra of a Lie algebra
plays a crucial role because the module categories for a Lie algebra and for its universal
enveloping algebra are isomorphic. For a vertex operator algebra, there is also a universal
enveloping algebra introduced by Frenkel and Zhu [FZ] such that the module categories
for these algebras are isomorphic. Unfortunately, the universal enveloping algebra of a
vertex operator algebra is not very useful since it involves certain infinite sums in a suitable
topological completion of the tensor algebra of the algebra. On the other hand, the classes
of modules that we are interested in the representation theory of vertex operator algebras
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and two-dimensional conformal field theory do not involve such infinite sums since the vertex
operators on these modules are lower truncated when acting on elements of these modules.

Instead, in the representation theory of vertex operator algebras, we have the Zhu algebra
A(V ) introduced by Zhu in [Z] and it’s generalizations An(V ) for n ∈ N by Dong, Li and
Mason in [DLM] for a vertex operator algebra V . These algebras can be used to classify
irreducible modules for the vertex operator algebra and to study problems related to different
types of modules. But compared with the universal enveloping algebra of a Lie algebra, the
role of these associative algebras played in the representation theory of vertex operator
algebras is quite limited. For example, the module for one of these associative algebras
obtained from a suitable V -module in general do not tell us whether the original V -module
is irreducible or completely reducible.

In the present paper, we introduce an associative algebra A∞(V ) using infinite ma-
trices with entries in a grading-restricted vertex algebra V . The associated graded space
Gr(W ) =

∐
n∈NGrn(W ) of a filtration of a lower-bounded generalized V -module W is an

A∞(V )-module with an N-grading and some operators having suitable properties (called
a nondegenerate graded A∞(V )-module). In fact, the algebra A∞(V ) is defined using the
associated graded spaces of all lower-bounded generalized V -modules. We prove that a lower-
bounded generalized V -module W is irreducible or completely reducible if and only if the
nondegenerate graded A∞(V )-module Gr(W ) is irreducible or completely reducible, respec-
tively. We also prove that the set of the equivalence classes of irreducible lower-bounded
generalized V -modules is in bijection with the set of the equivalence classes of irreducible
nondegenerate graded A∞(V )-modules.

We show that A(V ) in [Z] and An(V ) [DLM] mentioned above are isomorphic to very
special subalgebras of A∞(V ). This fact gives a conceptual explanation of the role that these
associative algebras played in the representation theory of vertex operator algebras.

We then introduce new subalgebras AN(V ) of A∞(V ) for N ∈ N. These subalgebras can
also be obtained using finite matrices with entries in V . In the case that V is of positive
energy (or CFT type) and C2-cofinite, we prove that AN(V ) are finite dimensional. The
subspace GrN(W ) =

∐N
n=0Grn(W ) of Gr(W ) of a lower-bounded generalized V -module W

is an AN(V )-module with some operators having suitable properties (called a nondegener-
ate graded AN(V )-module). Wer prove that if a lower-bounded generalized V -module W is
irreducible or completely reducible, then the nondegenerate graded AN(V )-module GrN(W )
is irreducible or completely reducible, respectively. We also prove that the set of the equiva-
lence classes of irreducible lower-bounded generalized V -modules is in bijection with the set
of the equivalence classes of irreducible nondegenerate graded AN(V )-modules.

In the case that V is a Möbius vertex algebra so that a lowest weight of a lower-bounded
generalized V -module is defined, under the assumption that the differences between the real
parts of the lowest weights of the irreducible lower-bounded generalized V -modules are less
than or equal to N ∈ N, we prove that a lower-bounded generalized V -module W of finite
length is irreducible or completely reducible if and only if the nondegenerate graded AN(V )-
module GrN(W ) is irreducible or completely reducible, respectively. When AN(V ) for all
N ∈ N are finite dimensional (for example, when V is of positive energy (or CFT type)
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and C2-cofinite), we prove that an irreducible lower-bounded generalized V -module is an
ordinary V -module and thus every lower-bounded generalized V -module of finite length is
grading-restricted. In this case, under the assumptions above on V , lowest weights and N , a
lower-bounded generalized V -moduleW of finite length or a grading-restricted generalized V -
module W is a direct sum of irreducible ordinary V -modules if and only if the nondegenerate
graded AN(V )-module GrN(W ) is completely reducible.

Many of the main results mentioned above need the construction of universal lower-
bounded generalized V -modules in [H3] and some results from [H4].

The category of lower-bounded generalized V -modules and the category of nondegenerate
graded A∞(V )-modules are not equivalent because of morphisms, but they are “almost”
equivalent. We shall study the relations between these categories, the category of lower-
bounded generalized V -modules of finite lengths and the categories of graded AN(V )-modules
for N ∈ N in another paper.

This paper is organized as follows: In the next section, we introduce the associative
algebra A∞(V ) associated to a grading-restricted vertex algebra V and prove that the as-
sociated graded space Gr(W ) of a filtration of a lower-bounded generalized V -module W is
an A∞(V )-module. In Section 3, we introduce graded A∞(V )-modules and prove the results
mentioned above on the relations between lower-bounded generalized V -modules and non-
degenerate graded A∞(V )-modules. We show that the Zhu algebra and their generalizations
by Dong, Li and Mason are isomorphic to subalgebras of A∞(V ) in Subsection 4.1 and intro-
duce the new subalgebras AN(V ) of A∞(V ) for N ∈ N in Subsection 4.2. We also prove in
Subsection 4.2 that when V is of positive energy and C2-cofinite, AN(V ) for N ∈ N are finite
dimensional. In Section 5, we introduce graded AN(V )-modules and prove the results men-
tioned above on the relations between lower-bounded generalized V -modules, lower-bounded
generalized V -modules of finite lengths and nondegenerate graded AN(V )-modules.

Acknowledgment I am very grateful to Darlayne Addabbo for noticing that an early
version of Theorem 4.2 (which has been corrected now) does not hold for the Heisenberg
vertex operator algebra.

2 Associative algebra A∞(V ) and modules

In this paper, we fix a grading-restricted vertex algebra V . Most of the constructions and
results work and hold for more general vertex algebras, for example, lower-bounded vertex
algebras or superalgebras. The constructions and results certainly work and hold for a
Möbius vertex algebra or a vertex operator algebra. For some results in Section 5, we shall
assume that V is a Möbius vertex algebra.

Let U∞(C) be the space of all column-finite infinite matrices with entries in C, but doubly
indexed by N instead of Z+. In other words, U∞(C) is the space of all infinite matrices of
the form [akl] for akl ∈ C, k, l ∈ N such that for each fixed l ∈ N, there are only finitely
many nonzero akl. Let I∞ = [δkl] be the infinite identity matrix. Then U∞(C) is in fact an
associative algebra with the identity I∞. The space U∞(C) has a set of linearly independent
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elements of the form Ekl for k, l ∈ N with the entry in the k-th row and l-th column equal to
1 and all the other entries equal to 0. These infinite matrices do not form a basis of U∞(C)
but form a basis of the subspace U∞0 (C) of U∞(C) consisting of finitary matrices (matrices
with only finitely many nonzero entries). In particular,

U∞0 (C) =
∐
k,l∈N

CEkl.

Moreover,

U∞(C) ⊂
∏
k,l∈N

CEkl,

where
∏

k,l∈N CEkl is the algebraic completion of U∞0 (C) viewed as a graded space. Though
elements of U∞(C) are infinite linear combinations of Ekl for k, l ∈ N, any binary product
on U∞(C) satisfying the distribution axioms is still determined completely by the product of
Ekl for k, l ∈ N. For example, for the usual matrix product, we know that EklEmn = δlmEkn
for k, l,m, n ∈ N. Let A =

∑
k,l∈N aklEkl and B =

∑
k,l∈N bklEkl, where akl, bkl ∈ C for

k, l ∈ N. Then

AB =

(∑
k,l∈N

aklEkl

)( ∑
m,n∈N

bmnEmn

)
=
∑
k,n∈N

(∑
m∈N

akmbmn

)
Ekn.

So even though Ekl for k, l ∈ N do not form a basis of U∞(C), all the properties of the asso-
ciative algebra structure on U∞(C) can still be derived from the properties these matrices.
Thus we can study U∞(C) using Ekl for k, l ∈ N, k ≤ l. Also what we are mainly interested
is the subalgebra CI∞ ⊕ U∞0 (C) of U∞(C). This subalgebra has a basis {I∞} ∪ {Ekl}k,l∈N.

Let U∞(V ) = V ⊗ U∞(C). Then U∞(V ) is the space of column-finite infinite matrices
with entries in V , but doubly indexed by N instead of Z+. Elements of U∞(V ) are of the
form v = [vkl] for vkl ∈ V , k, l ∈ N such that for each fixed l ∈ N, there are only finitely
many nonzero vkl. Let U∞0 (V ) be the subspace of U∞(V ) spanned by elements of the form
v ⊗ Ekl for v ∈ V and k, l ∈ N. Then

U∞0 (V ) =
∐
k,l∈N

V ⊗ CEkl

and
U∞(V ) ⊂

∏
k,l∈N

V ⊗ CEkl.

We shall denote v ⊗ Ekl simply by [v]kl. Then elements of U∞(C) can all be written as∑
k,l∈N

[vkl]kl

for vkl ∈ V , k, l ∈ N. As in the case of U∞(C), we can study any binary product on U∞(V )
satisfying the distribution axioms using [v]kl for v ∈ V and k, l ∈ N. We are also mainly
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interested in the subspace V ⊗I∞⊕U∞0 (V ) of U∞(V ). This subspace is spanned by elements
of the form v⊗ I∞ and [v]kl for v ∈ V and k, l ∈ N. Because of this reason, though we might
give definitions of products and related notions using general elements of U∞(V ), we shall
study them using only [v]kl for v ∈ V and k, l ∈ N.

We also need some particular formal series and polynomials. In this paper, we shall use
the convention that a complex power or the integral power of the logarithm of an ordered
linear combination of formal variables and a complex number, always means its expansion
in nonnegative powers of the formal variables or the complex number that are not the first
one in the ordered linear combination. For example, (x + 1)−k−1 for k ∈ N and (1 + x)n

for n ∈ N mean the expansions in nonnegative powers of 1 and in nonnegative powers of x,
respectively. For k, n, l ∈ N, we have

(x+ 1)−k+n−l−1 =
∑
m∈N

(
−k + n− l − 1

m

)
x−k+n−l−m−1

= Tk+l+1((x+ 1)−k+n−l−1) +Rk+l+1((x+ 1)−k+n−l−1), (2.1)

where

Tk+l+1((x+ 1)−k+n−l−1) =
n∑

m=0

(
−k + n− l − 1

m

)
x−k+n−l−m−1

is the Taylor polynomial in x−1 of order k + l + 1 of (x+ 1)−k+n−l−1 and

Rk+l+1((x+ 1)−k+n−l−1) =
∑

m∈n+1+N

(
−k + n− l − 1

m

)
x−k+n−l−m−1

is the remainder of order k + l + 1.
We define a product � on U∞(V ) by

u � v = [(u � v)kl]

for u = [ukl], v = [vkl] ∈ U∞(V ), where

(u � v)kl =
l∑

n=k

ResxTk+l+1((x+ 1)−k+n−l−1)(1 + x)lYV ((1 + x)LV (0)ukn, x)vnl

=
n∑

n=k

l∑
m=0

(
−k + n− l − 1

m

)
Resxx

−k+n−l−m−1(1 + x)lYV ((1 + x)LV (0)ukn, x)vnl

(2.2)

for k, l ∈ N. Then U∞(V ) equipped with � is an algebra but in general is not even associative.
Let O∞(V ) be the subspace of U∞(V ) spanned by elements of the form[

l∑
n=k

Resxx
−k−l−p−2(1 + x)lYV ((1 + x)LV (0)ukn, x)vnl

]
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for u = [ukl], v = [vkl] ∈ U∞(V ), p ∈ N and elements of the form

[(LV (−1) + LV (0) + l − k)vkl]

for v = [vkl] ∈ U∞(V ).
The product � on U∞(V ) looks complicated. But as we mentioned above, though [v]kl for

v ∈ V and k, l ∈ N does span U∞(V ), their infinite linear combinations give all the elements
of U∞(V ) and U∞(V ) can be studied using these elements. In particular, the product � can
be studied using these elements. So instead of working with arbitrary matrices in U∞(V ),
we use [v]kl for v ∈ V and k, l ∈ N to write down �. For u, v ∈ V and k,m, n, l ∈ N, by
definition,

[u]km � [v]nl = 0

when m 6= n and

[u]kn � [v]nl = ResxTk+l+1((x+ 1)−k+n−l−1)(1 + x)l
[
YV ((1 + x)LV (0)u, x)v

]
kl

=
n∑

m=0

(
−k + n− l − 1

m

)
Resxx

−k+n−l−m−1(1 + x)l
[
YV ((1 + x)LV (0)u, x)v

]
kl
.

(2.3)

Since [u]km � [v]nl = 0 when m 6= n, we need only consider [u]kn � [v]nl for u, v ∈ V and
k, n, l ∈ N. By taking u = [u]kn and v = [v]nl, we see also that the subspace O∞(V ) is
spanned by infinite linear combinations of elements of the form

Resxx
−k−l−p−2(1 + x)l[YV ((1 + x)LV (0)u, x)v]kl

for u, v ∈ V , k, l, p ∈ N and elements of the form

[(LV (−1) + LV (0) + l − k)v]kl

for v ∈ V and k, l ∈ N, with each pair (k, l) appearing in the linear combinations only finitely
many times.

Let 1∞ be the element of U∞(V ) with diagonal entries being 1 ∈ V and all the other
entries being 0. Then 1∞ = 1⊗ I∞.

We shall take a quotient of U∞(V ) such that the quotient with the product induced from
� is an associative algebra and such that the associated graded space of a filtration of every
lower-bounded generalized V -module is a module for this associative algebra. To do this, we
need to first give an action of the (nonassociative) algebra U∞(V ) with the product � on a
lower-bounded generalized V -module.

We briefly recall the notion of lower-bounded generalized V -module. We refer the reader
to Definition 1.2 in [H1], where a lower-bounded generalized V -module is called a lower-
truncated generalized V -module. Definition 1.2 in [H1] is for a vertex operator algebra V
but the definition applies also to a grading-restricted vertex algebra except that we have
to require the existence of operators LW (0) and LW (−1) satisfying the same axioms for
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the corresponding operators coming from the vertex operator of the conformal element of a
vertex operator algebra. We also refer the reader to Definition 3.1 in [H2] for this notion
in the special case that V is a grading-restricted vertex algebra (not a superalgebra) and
the automorphism of V is 1V . Roughly speaking, a lower-bounded generalized V -module
is a C-graded vector space W =

∐
n∈CW[n] equipped with a vertex operator map YW :

V ⊗W → W [[x, x−1]] and operators LW (0) and LW (−1) on W satisfying all the axioms for
an (ordinary) V -module except that for n ∈ C, W[n] does not have to be finite dimensional
and is the generalized eigenspace with the eigenvalue n of LW (0) instead of the eigenspace
with the eigenvalue n of LW (0). Module maps between lower-bounded generalized V -modules
are defined in the obvious way as in Definition 1.1 in [H1], not those defined in Definition
4.2 in [H4]. On the other hand, if we replace V -module maps in the results below by those
in Definition 4.2 in [H4], these results still hold. The notion of generalized V -submodule
of a lower-bounded generalized V -module is defined in the obvious way. A generalized V -
submodule of a lower-bounded generalized V -module is certainly also lower bounded.

Let W be a lower-bounded generalized V -module. For n ∈ N, let

Ωn(W ) = {w ∈ W | (YW )k(v)w = 0 for homogeneous v ∈ V,wt v − k − 1 < −n}.

Then
Ωn1(W ) ⊂ Ωn2(W )

for n1 ≤ n2 and
W =

⋃
n∈N

Ωn(W ).

So {Ωn(w)}n∈N is an ascending filtration of W . Let

Gr(W ) =
∑
n∈N

Grn(W )

be the associated graded space, where

Grn(W ) = Ωn(W )/Ωn−1(W ).

Sometimes we shall use [w]n to denote the element w + Ωn−1(W ) of Grn(W ), where w ∈
Ωn(W ).

Lemma 2.1 For w ∈ Ωn(W ) and l ∈ N, Resxx
l−1YW (xLV (0)v, x)w ∈ Ωn−l(W ).

Proof. The operator Resx2x
l−1
2 YW (x

LV (0)
2 v, x2) has weight −l. Then for homogeneous u ∈

V , (YW )p(u)Resx2x
l−1
2 YW (x

LV (0)
2 v, x2) has weight wt u − p − 1 − l. Consider the gen-

eralized V -submodule of W generated by w. Then (YW )p(u)Resx2x
l−1
2 YW (x

LV (0)
2 v, x2)w

is in this generalized V -submodule. Using the associativity for YW , we know that the
generalized V -submodule generated by w is spanned by elements of the form (YW )m(ũ)w

for ũ ∈ V . So (YW )p(u)Resx2x
l−1
2 YW (x

LV (0)
2 v, x2)w is a linear combination of such ele-

ments. But for homogeneous w, the weight of (YW )p(u)Resx2x
l−1
2 YW (x

LV (0)
2 v, x2)w is wt u−
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p − 1 − l + wt w. So the elements of the form (YW )m(ũ)w whose linear combination is

(YW )p(u)Resx2x
l−1
2 YW (x

LV (0)
2 v, x2)w can also be chosen to be of weight wt u−p−1−l+wt w,

that is, the weight wt ũ−m− 1 of (YW )m(ũ) is equal to wt u− p− 1− l. Since w ∈ Ωn(W ),
(YW )m(ũ)w = 0 when wt ũ−m− 1 < −n, or equivalently, wt u− p− 1 < −(n− l). So we

have proved that (YW )p(u)Resx2x
l−1
2 YW (x

LV (0)
2 v, x2)w = 0 when wt u− p− 1 < n− l. This

means that Resxx
l−1YW (xLV (0)v, x)w ∈ Ωn−l(W ).

By Lemma 2.1, the operator Resxx
l−1YW (xLV (0)v, x) in fact induces an operator, still

denoted by the same notation, on Gr(W ), which maps Grn(W ) to Grn−l(W ).
For v = [vkl] ∈ U∞(V ), where vkl ∈ V and k, l ∈ N, we define an operator ϑGr(W )(v) on

Gr(W ) as follows: For w ∈ Gr(W ), we define

ϑGr(W )(v)w =
∑
k,l∈N

Resxx
l−k−1YW (xLV (0)vkl, x)πGrl(W )w,

where πGrl(W ) is the projection from Gr(W ) to Grl(W ). Note that since w is a sum of
elements of Grl(W ) for finitely many l ∈ N and for each l, there are only finitely many
nonzero vkl, the sum over k and l is finite. So ϑGr(W )(v)w is indeed a well defined element
of Gr(W ). In the case v = [v]kl and w = [w]n for v ∈ V , w ∈ W and k, l, n ∈ N, we have

ϑGr(W )([v]kl)[w]n = δln[Resxx
l−k−1YW (xLV (0)v, x)w]k. (2.4)

In the case that v is homogeneous and w ∈ Grl(W ), we have

ϑGr(W )([v]kl)[w]l = [(YW )wt v+l−k−1(v)w]k. (2.5)

We now have a linear map

ϑGr(W ) : U∞(V )→ End Gr(W )

v 7→ ϑGr(W )(v).

Let Q∞(V ) be the intersection of kerϑGr(W ) for all lower-bounded generalized V -modules W
and A∞(V ) = U∞(V )/Q∞(V ).

We shall need the following lemma:

Lemma 2.2 For l ∈ Z, k ∈ N and m ∈ Z+ and v ∈ V ,

Resxx
l−k−1YW

(
xLV (0)

(
LV (−1) + LV (0) + l

k +m

)
v, x

)
= 0. (2.6)

In particular, when k = 0 and m = 1, we have

Resxx
l−1YW

(
xLV (0)(LV (−1) + LV (0) + l)v, x

)
= 0. (2.7)

For l ∈ Z and v ∈ V ,

Resxx
l−k−1YW

(
xLV (0)

(
LV (−1) + LV (0) + l

k

)
v, x

)
= Resxx

l−k−1YW (xLV (0)v, x). (2.8)
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Proof. For l ∈ Z, n ∈ N and v ∈ V , using the L(−1)-derivative property for the vertex
operator map YW repeatedly, we have

1

n!

dn

dxn
YW (xLV (0)+lv, x) = YW

(
xLV (0)+l−n

(
LV (−1) + LV (0) + l

n

)
v, x

)
. (2.9)

Multiplying xp to both sides and then taking Resx, we obtain

Resx
xp

n!

dn

dxn
YW (xLV (0)+lv, x) = Resxx

l−n+pYW

(
xLV (0)

(
LV (−1) + LV (0) + l

n

)
v, x

)
. (2.10)

When 0 ≤ p ≤ n− 1, the left-hand side of (2.10) is 0. Thus we obtain

Resxx
l−n+pYW

(
xLV (0)

(
LV (−1) + LV (0) + l

n

)
v, x

)
= 0. (2.11)

Let n = k +m and p = m− 1 in (2.11) for k ∈ N and m ∈ Z+. Then we obtain (2.6).
Let p = −1 and n = k in (2.10), we obtain

Resx
x−1

k!

dk

dxk
YW (xLV (0)+lv, x) = Resxx

l−k−1YW

(
xLV (0)

(
LV (−1) + LV (0) + l

k

)
v, x

)
.

(2.12)
Since left-hand side of (2.12) is equal to

Resxx
l−k−1YW (xLV (0)v, x),

we obtain (2.8).

Proposition 2.3 We have O∞(V ) ⊂ Q∞(V ).

Proof. We need to prove ϑGr(W )(O
∞(V )) = 0 for every lower-bounded generalized V -module

W . For
Resx0x

−k−l−p−2
0 (1 + x0)

l[YW ((1 + x0)
L(0)v1, x0)v2]kl ∈ O∞(V ),

where v1, v2 ∈ V , k, l, p ∈ N and w ∈ Ωl(W ), we have

ϑGr(W )(Resx0x
−k−l−p−2
0 (1 + x0)

l[YW ((1 + x0)
L(0)v1, x0)v2]kl)[w]l

= Resx2x
l−k−1
2 Resx0x

−k−l−p−2
0 (1 + x0)

l[YW (x
LV (0)
2 YV ((1 + x0)

L(0)v1, x0)v2, x2)πGl(W )w]k

= Resx0Resx2x
−k−l−p−2
0 (1 + x0)

lxl−k−12 ·
· [YW (YV (x

LV (0)
2 (1 + x0)

L(0)v1, x0x2)x
LV (0)
2 v2, x2)w]k

= Resx0Resx2x
−k−l−p−2
0 x−k−12 Resx1x

l
1x
−1
1 δ

(
x2 + x0x2

x1

)
·

· [YW (YV (x
LV (0)
1 v1, x0x2)x

LV (0)
2 v2, x2)w]k
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= Resx0Resx2x
−k−l−p−2
0 x−k−12 Resx1x

l
1x
−1
0 x−12 δ

(
x1 − x2
x0x2

)
·

· [YW (x
L(0)
1 v1, x1)YW (x

LV (0)
2 v2, x2)w]k

− Resx0Resx2x
−k−l−p−2
0 x−k−12 Resx1x

l
1x
−1
0 x−12 δ

(
x2 − x1
−x0x2

)
·

· [YW (x
LV (0)
2 v2, x2)YW (x

L(0)
1 v1, x1)w]k

= Resx1Resx2x
−k−p−2
1 (1− x−11 x2)

−k−l−p−2xl+p2 [YW (x
L(0)
1 v1, x1)YW (x

LV (0)
2 v2, x2)w]k

− Resx1Resx2(−1 + x1x
−1
2 )−k−l−p−2xl1x

−k−2
2 [YW (x

LV (0)
2 v2, x2)YW (x

L(0)
1 v1, x1)w]k.

(2.13)

Since w ∈ Ωl(W ) and the series (1−x−11 x2)
−k−l−p−2 contains only nonnegative powers of x2,

Resx2(1− x−11 x2)
−k−l−p−2xl+p2 YW (x

LV (0)
2 v2, x2)w = 0.

So the first term in the right-hand side of (2.13) is 0. Since w ∈ Ωl(W ) and the series
(−1 + x1x

−1
2 )−2k−p−2 contains only nonnegative powers of x1,

Resx1(−1 + x1x
−1
2 )−k−l−p−2xl1YW (x

L(0)
1 v1, x1)w = 0.

So the second term in the right-hand side of (2.13) is also 0.
Taking l in (2.7) to be l − k, we obtain

ϑGr(W )([(LV (−1) + LV (0) + l − k)v]kl)[w]l

= [Resxx
l−k−1YW

(
xLV (0)(LV (−1) + LV (0) + l − k)v, x

)
w]k

= 0 (2.14)

for v ∈ V , k, l ∈ N and w ∈ Ωl(W ). Thus we have ϑGr(W )(O
∞(V )) = 0.

Theorem 2.4 Let W be a lower-bounded generalized V -module. Then the linear map

ϑGr(W ) : U∞(V )→ End Gr(W )

gives a U∞(V )-module structure on Gr(W ) (that is, ϑGr(W ) is a homomorphism of (nonas-
sociative) algebras from U∞(V ) to End Gr(W )). In particular, U∞(V )/ kerϑGr(W ) is an
associative algebra isomorphic to a subalgebra of End Gr(W ).

Proof. For u, v ∈ V , k, n, l ∈ N and w ∈ Ωl(W ), using (2.3), we have

ϑGr(W )([u]kn � [v]nl)[w]l

= Resx0Tk+l+1((x0 + 1)−k+n−l−1)(1 + x0)
lResx2x

l−k−1
2 ·

· [YW (x
LV (0)
2 YV ((1 + x0)

LV (0)u, x0)v, x2)w]k
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= Resx0Resx2Tk+l+1((x0 + 1)−k+n−l−1)(1 + x0)
lxl−k−12 ·

· [YW (YV ((x2 + x0x2)
LV (0)u, x0x2)x

LV (0)
2 v, x2)w]k

= Resx0Resx2Resx1x
−1
1 δ

(
x2 + x0x2

x1

)
Tk+l+1((x0 + 1)−k+n−l−1)xl1x

−k−1
2 ·

· [YW (YV (x
LV (0)
1 u, x0x2)x

LV (0)
2 v, x2)w]k

= Resx0Resx2Resx1x
−1
0 x−12 δ

(
x1 − x2
x0x2

)
Tk+l+1((x0 + 1)−k+n−l−1)xl1x

−k−1
2 ·

· [YW (x
LV (0)
1 u, x1)YW (x

LV (0)
2 v, x2)w]k

− Resx0Resx2Resx1x
−1
0 x−12 δ

(
x2 − x1
−x0x2

)
Tk+l+1((x0 + 1)−k+n−l−1)xl1x

−k−1
2 ·

· [YW (x
LV (0)
2 v, x2)YW (x

LV (0)
1 u, x1)w]k

= Resx2Resx1Tk+l+1((x0 + 1)−k+n−l−1)

∣∣∣∣
x0=(x1−x2)x−1

2

xl1x
−k−2
2 ·

· [YW (x
LV (0)
1 u, x1)YW (x

LV (0)
2 v, x2)w]k

− Resx2Resx1Tk+l+1((x0 + 1)−k+n−l−1)

∣∣∣∣
x0=(−x2+x1)x−1

2

xl1x
−k−2
2 ·

· [YW (x
LV (0)
2 v, x2)YW (x

LV (0)
1 u, x1)w]k. (2.15)

Since w ∈ Ωl(W ), the second term in the right-hand side of (2.15) is 0. Expanding
Tk+l+1((x0 + 1)−k+n−l−1) explicitly, we see that the first term in the right-hand side of (2.15)
is equal to

n∑
m=0

(
−k + n− l − 1

m

)
Resx2Resx1(x1 − x2)−k+n−l−m−1xk−n+l+m+1

2 xl1x
−k−2
2 ·

· [YW (x
LV (0)
1 u, x1)YW (x

LV (0)
2 v, x2)w]k

=
n∑

m=0

∑
j∈N

(
−k + n− l − 1

m

)(
−k + n− l −m− 1

j

)
(−1)jResx2Resx1x

−k+n−m−1−j
1 ·

· x−n+l+m−1+j2 [YW (x
LV (0)
1 u, x1)YW (x

LV (0)
2 v, x2)w]k. (2.16)

In the case j > n−m, since w ∈ Ωl(W ),

wt v − (wt v − n+ l +m− 1 + j)− 1 < −l

when v is homogeneous and hence we have

Resx2x
−n+l+m−1+j
2 YW (x

LV (0)
2 v, x2)w = 0.

Hence those terms in the right-hand side of (2.16) with j > n −m is 0. So the right-hand
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side of (2.16) is equal to

n∑
m=0

n−m∑
j=0

(
−k + n− l − 1

m

)(
−k + n− l −m− 1

j

)
(−1)j·

· Resx2Resx1x
−k+n−m−1−j
1 x−n+l+m−1+j2 [YW (x

LV (0)
1 u, x1)YW (x

LV (0)
2 v, x2)w]k

=
n∑

m=0

n∑
p=m

(
−k + n− l − 1

m

)(
−k + n− l −m− 1

p−m

)
(−1)p−m·

· Resx2Resx1x
−k+n−1−p
1 x−n+l−1+p2 [YW (x

LV (0)
1 u, x1)YW (x

LV (0)
2 v, x2)w]k

=
n∑
p=0

(
p∑

m=0

(
−k + n− l − 1

m

)(
−k + n− l −m− 1

p−m

)
(−1)p−m

)
·

· Resx2Resx1x
−k+n−1−p
1 x−n+l−1+p2 [YW (x

LV (0)
1 u, x1)YW (x

LV (0)
2 v, x2)w]k. (2.17)

For p = 0, . . . , n,

p∑
m=0

(
−k + n− l − 1

m

)(
−k + n− l −m− 1

p−m

)
(−1)p−m

=

p∑
m=0

(−k + n− l − 1) · · · (−k + n− l −m)

m!
·

· (−k + n− l −m− 1) · · · (−k + n− l − p)
(p−m)!

(−1)p−m

=

p∑
m=0

(−k + n− l − 1) · · · (−k + n− l − p)
p!

p!

m!(p−m)!
(−1)p−m

=

(
−k + n− l − 1

p

) p∑
m=0

(
p

m

)
(−1)p−m

=

(
−k + n− l − 1

p

)
(−1 + 1)p

=

(
−k + n− l − 1

p

)
δp,0. (2.18)

Using (2.18), we see that the right-hand side of (2.17) is equal to

Resx2Resx1x
−k+n−1
1 x−n+l−12 [YW (x

LV (0)
1 u, x1)YW (x

LV (0)
2 v, x2)w]k

= ϑGr(W )([u]kn)[Resx2x
l−n−1
2 YW (x

LV (0)
2 v, x2)w]n

= ϑGr(W )([u]kn)ϑGr(W )([v]nl)[w]l. (2.19)

From (2.15), (2.16), (2.17) and (2.19), we obtain

ϑGr(W )([u]kn � [v]nl) = ϑGr(W )([u]kn)ϑGr(W )([v]nl)
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for u, v ∈ V and k, n, l ∈ N. Thus ϑGr(W ) gives an U∞(V )-module structure on W .

Lemma 2.5 Let LU(−1) and LU(0) be operators on a vector space U satisfying

[LU(0), LU(−1)] = LU(−1).

We have
exLU (−1)(1 + x)LU (0) = (1 + x)LU (−1)+LU (0). (2.20)

Proof. This can be proved easily by showing

d

dx
exLU (−1)(1 + x)LU (0)(1 + x)−(LU (−1)+LU (0)) = 0

so that it must be independent of x and then setting x = 0 to obtain

exLU (−1)(1 + x)LU (0)(1 + x)−(LU (−1)+LU (0)) = 1U .

We can now write down explicitly the expressions of elements of the form [v]kl � 1∞ for
v ∈ V and k, l ∈ N satisfying k ≤ l.

Lemma 2.6 For v ∈ V and k, l ∈ N,

[v]kl � 1∞ =
l∑

m=0

(
−k − 1

m

)[(
LV (−1) + LV (0) + l

k +m

)
v

]
kl

. (2.21)

Proof. By the definition (2.2) of � and the skew-symmetry of YV ,

([v]kl �N 1∞)mn = δkmδlnResxTk+l+1((x+ 1)−k+n−l−1)(1 + x)nYV ((1 + x)L(0)v, x)1

= δkmδlnResxTk+l+1((x+ 1)−k+n−l−1)(1 + x)nexLV (−1)(1 + x)LV (0)v. (2.22)

Thus we obtain

[v]kl � 1∞ = ResxTk+l+1((x+ 1)−k−1)(1 + x)l[exLV (−1)(1 + x)LV (0)v]kl. (2.23)

Using (2.20) with U = V , expanding the formal series explicitly and then evaluating the
formal residue, we see that the right-hand side of (2.23) is equal to

ResxTk+l+1((x+ 1)−k−1)(1 + x)l[(1 + x)LV (0)+LV (0)v]kl

=
l∑

m=0

(
−k − 1

m

)
Resxx

−k−m−1[(1 + x)LV (−1)+LV (0)+lv]kl
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=
l∑

m=0

∑
j∈N

(
−k − 1

m

)
Resxx

−k−m−1+j
(
LV (−1) + LV (0) + l

j

)
v

=
l∑

m=0

(
−k − 1

m

)(
LV (−1) + LV (0) + k

k +m

)
v, (2.24)

proving (2.21).

Proposition 2.7 For v ∈ V and k, l ∈ N, [v]kl � 1∞ − [v]kl ∈ O∞(V ). For u, v ∈ V and
k, l, n ∈ N, ([v]kl � 1∞ − [v]kl) � [u]ln ∈ O∞(V ).

Proof. For m ∈ N,(
LV (−1) + LV (0) + l

k +m

)
v =

(
(LV (−1) + LV (0) + l − k) + k

k +m

)
v

=

(
k

k +m

)
v + (LV (−1) + LV (0) + l − k)ṽm

≡
{

0 m ∈ Z+

v m = 0
mod O∞(V ),

(2.25)

where ṽm is an element of V depending on m. Thus by (2.21),

[v]kl � 1∞ ≡ v mod O∞(V ).

By (2.21), (2.25) and (2.30),

([v]kl � 1∞) � [u]ln =
l∑

m=0

(
−k − 1

m

)[(
LV (−1) + LV (0) + l

k +m

)
v

]
kl

� [u]ln

=
l∑

m=0

(
−k − 1

m

)(
k

k +m

)
[v]kl � [u]ln

+
l∑

m=0

(
−k − 1

m

)
[(LV (−1) + LV (0) + l − k)ṽm]kl � [u]ln

≡ [v]kl � [u]ln mod O∞(V ).

Theorem 2.8 The product � on U∞(V ) induces a product, denoted still by �, on A∞(V ) =
U∞(V )/Q∞(V ) such that A∞(V ) equipped with � is an associative algebra with 1∞+Q∞(V )
as identity. Moreover, the associated graded space Gr(W ) of the ascendant filtration {Ωn(W )}n∈N
of a lower-bounded generalized V -module W is an A∞(V )-module.
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Proof. Since kerϑGr(W ) for a lower-bounded generalized V -module W is a two-sided ideal
of U∞(V ), Q∞(V ) as the intersection of such two-sided ideals is still a two-sided ideal of
U∞(V ). Thus � on U∞(V ) induces a product on A∞(V ). Since for each lower-bounded
generalized V -module W , the quotient algebra U∞(V )/ kerϑGr(W ) is associative, we have

v1 � (v2 � v3)− v1 � (v2 � v3) ∈ kerϑGr(W )

for v1, v2, v3 ∈ U∞(V ). Then we have

v1 � (v2 � v3)− v1 � (v2 � v3) ∈
⋂
W

kerϑGr(W ) = Q∞(V )

for v1, v2, v3 ∈ U∞(V ). Thus A∞(V ) = U∞(V )/Q∞(V ) is also associative.
By definition, we have 1∞ � [v]kl = [v]kl. So 1∞ is in fact a left identity of the algebra

U∞(V ). By Proposition 2.3, O∞(V ) ⊂ Q∞(V ). Then by Proposition 2.7, we have

([v]kl +Q∞(V )) � (1∞ +Q∞(V )) = [v]kl +Q∞(V ).

So 1∞ +Q∞(V ) is an identity of A∞(V ).
For a lower-bounded generalized V -module W , by Theorem 2.4, Gr(W ) is a module

for U∞(V )/ kerϑGr(W ). Since Q∞(V ) is a two-sided subideal of kerϑGr(W ), Gr(W ) is an
A∞(V )-module.

The ideal Q∞(V ) of U∞(V ) is defined using all lower-bounded generalized V -modules.
From Prposition 3.3 in [H5], it is now known that besides elements of O∞(V ), Q∞(V ) also
contains elements corresponding to the Jacobi identity for V . We conjecture that Q∞(V ) is
generated by O∞(V ) and these elements.

The only result above on O∞(V ) and Q∞(V ) is Proposition 2.3. Below we give another
result on O∞(V ) (Proposition 2.10). To prove this result, we need the following commutator
formula:

Lemma 2.9 For v ∈ V ,

[LV (−1) + LV (0), YV ((1 + x)LV (0)v, x)] = YV ((1 + x)LV (0)(LV (−1) + LV (0))v, x). (2.26)

Proof. By the L(−1) and L(0)-commutator formula with the vertex operator map YV and
the fact that the weight of LV (−1) is 1,

[LV (−1) + LV (0), YV ((1 + x)LV (0)v, x)]

= YV (((1 + x)LV (−1) + LV (0))(1 + x)LV (0)v, x)

= YV ((1 + x)LV (0)(LV (−1) + LV (0))v, x).

By Theorem 2.4, every lower-bounded generalized V -module is an A∞(V )-module.
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Proposition 2.10 For u, v ∈ V and k, n, l ∈ V , both

[(LV (−1) + LV (0) + n− k)u]kn � [v]nl

and
[v]kn � [(LV (−1) + LV (0) + l − n)u]nl

are in O∞(V ).

Proof. For u, v ∈ V , k, l,m ∈ N, by definition,

[(LV (−1) + LV (0) + n− k)u]kn � [v]nl

= ResxTk+l+1((x+ 1)−k+n−l−1)(1 + x)l[YV ((1 + x)LV (0)(LV (−1) + LV (0) + n− k)u, x)v]kl

= ResxTk+l+1((x+ 1)−k+n−l−1)(1 + x)k−n+l+1 d

dx
[YV ((1 + x)LV (0)+n−ku, x)v]kl

= −Resx

(
d

dx
Tk+l+1((x+ 1)−k+n−l−1)(1 + x)k−n+l+1

)
[YV ((1 + x)LV (0)+n−ku, x)v]kl

= −Resx

((
d

dx
Tk+l+1((x+ 1)−k+n−l−1)

)
(1 + x)k−n+l+1

+ (k − n+ l + 1)Tk+l+1((x+ 1)−k+n−l−1)(1 + x)k−n+l

)
·

· (1 + x)−k+n[YV ((1 + x)LV (0)u, x)v]kl. (2.27)

Applying − 1+x
k−n+l+1

d
dx

to bother sides of (2.1), we obtain

(x+ 1)−k+n−l−1

= − 1 + x

k − n+ l + 1

d

dx
Tk+l+1((x+ 1)−k+n−l−1)− 1 + x

k − n+ l + 1

d

dx
Rk+l+1((x+ 1)−k+n−l−1).

(2.28)

Since the first and second terms in the right-hand side of (2.28) contain only the terms with
powers in x−1 less than or equal to and larger than, respectively, k + l + 2, we must have

− 1 + x

k − n+ l + 1

d

dx
Tk+l+1((x+ 1)−k+n−l−1) = Tk+l+2((x+ 1)−k+n−l−1),

or equivalently,

(1 + x)
d

dx
Tk+l+1((x+ 1)−k−1)

= −(k − n+ l + 1)Tk+l+1((x+ 1)−k+n−l−1)− (k − n+ l + 1)

(
−k + n− l − 1

n+ 1

)
x−k−l−2,

(2.29)
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Using (2.29), the right-hand side of (2.27) becomes

(k − n+ l + 1)

(
−k + n− l − 1

n+ 1

)
Resxx

−k−l−2(1 + x)l[YV ((1 + x)LV (0)u, x)v]kl ∈ O∞(V ).

Thus we obtain

[(LV (−1) + LV (0) + n− k)u]kn � [v]nl

= (k − n+ l + 1)

(
−k + n− l − 1

n+ 1

)
Resxx

−k−l−2(1 + x)l[YV ((1 + x)LV (0)u, x)v]kl

∈ O∞(V ). (2.30)

For u, v ∈ V , k, l, n ∈ N satisfying n ≤ k ≤ l, by the definition, (2.26) and l − n =
(l − k)− (n− k)

[v]kn � [(LV (−1) + LV (0) + l − n)u]nl

= ResxTk+l+1((x+ 1)−k+n−l−1)(1 + x)l·
· [YV ((1 + x)LV (0)v, x)(LV (−1) + LV (0) + l − n)u]kl

= ResxTk+l+1((x+ 1)−k+n−l−1)(1 + x)l·
· [(LV (−1) + LV (0) + l − k)YV ((1 + x)LV (0)v, x)u]kl

− ResxTk+l+1((x+ 1)−k+n−l−1)(1 + x)l·
· [YV ((1 + x)LV (0)(LV (−1) + LV (0) + n− k)v, x)u]kl. (2.31)

The first term in the right-hand side of (2.31) is by definition in O∞(V ). The second term
in the right-hand side of (2.31) is equal to [(LV (−1) + LV (0) + n − k)v]kn � [u]nl, which is
also in O∞(V ) (2.30). So

[v]kn � [(LV (−1) + LV (0) + l − n)u]nl ∈ O∞(V ).

Remark 2.11 In [DJ], for m,n, p ∈ Z+, a product ∗nm,p on V is introduced. In terms of
these products, we have [u]kn � [v]nl = [u ∗kl,n v]kl. For each m,n ∈ Z+, a subspace O′m,n(V )
is also introduced in [DJ]. In terms of these subspaces, O∞(V ) can be easily shown to be
spanned by infinite linear combinations of elements of the form [v]kl for v ∈ O′k,l(V ) with
each pair (k, l) appearing in the linear combinations only finitely many times. For each
m,n ∈ Z+, a subspace Om,n(V ) of V containing in particular O′m,n(V ) and associators of the
products ∗qr,p is further introduced. By taking a suitable subspace of the direct product of the
quotient spaces Am,n(V ) = V/Om,n(V ) for m,n ∈ N, it is possible to obtain an associative
algebra. This associative algebra can be identified as the quotient of the nonassociative
algebra U∞(V ) by the ideal generated by O∞(V ) and all the associators of the product
�. Such a construction of associative algebras works for any nonassociative algebra with a
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subspace. As we have mentioned in the introduction, the algebra A∞(V ) plays the role of
universal enveloping algebra of V for the category of lower-bounded generalized V -modules.
So we now use an analogy with Lie algebra to compare the associative algebra that one
can get from [DJ] and the associative algebra A∞(V ) introduced in this paper. Given a
Lie algebra, one can generate a free nonassociative algebra. Then the quotient of this free
associative algebra by the ideal generated by associators is an associative algebra isomorphic
to the tensor algebra generated by the Lie algebra. To obtain the universal envelpoping
algebra of the Lie algebra, we need to further take the quotient by the Jacobi identity and
the skew-symmetry relations. The nonassociative algebra U∞(V ) is analogous to the free
nonassociative algebra generated by the Lie algebra. The associative algebra that one can
get from [DJ] is analogous to the tensor algebra of the Lie algebra. The associative algebra
A∞(V ) is analogous to the universal enveloping algebra of the Lie algebra. Certainly A∞(V )
is a quotient of the associative algebra that one can get from [DJ]. But A∞(V ) is not equal to
this associative algebra. In fact, Corollary 3.6 in [H5] says that Q∞(V ) contains the elements∑

j∈N
n+p−j≥0

(−1)j
(
p

j

)
[v]k,n+p−j � [u]n+p−j,l+p

−
∑
j∈N

l−n+k+p−j≥0

(−1)p−j
(
p

j

)
[u]k,l−n+k+p−j � [v]l−n+k+p−j,l+p

−
∑
j∈N

(
wt v + n− k − 1

j

)
[(YV )p+j(v)u]k,l+p

for k, l, n ∈ N, p ∈ Z such that l + p ∈ N, u ∈ V and homogeneous v ∈ V , corresponding to
elements giving the Jacobi identity. Such elements are in general not in Ok,l+p(V ) in [DJ].
We conjecture that Q∞(V ) is generated by O∞(V ) and these elements.

3 Lower-bounded generalized V -modules and graded

A∞-modules

We study the relations between lower-bounded generalized V -modules and suitable A∞(V )-
modules in this section.

Note that W is graded by the generalized eigenspaces of LW (0). Since Ωn(W ) for n ∈ N is
invariant under LW (0), LW (0) induces an operator on Grn(W ) = Ωn(W )/Ωn−1(W ) such that
Grn(W ) is also graded by the generalized eigenspaces of this operator. These operators on
Grn(W ) for n ∈ N together define an operator, denoted by LGr(W )(0), on Gr(W ) preserving
the N-grading on Gr(W ). Then Gr(W ) is also graded by the generalized eigenspaces of
LGr(W )(0).

For v ∈ V , k ∈ Z and w ∈ Ωn(W ), by the L(−1)-commutator formula,

(YW )k(v)LW (−1)w = LW (−1)(YW )k(v)w + k(YW )k−1(v)w.
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When wt v− k− 1 < −(n+ 1), we have wt v− k− 1 < −n and wt v− (k− 1)− 1 < −n. So
in this case, (YW )k(v)w = (YW )k−1(v)w = 0 since w ∈ Ωn(W ). Thus (YW )k(v)LW (−1)w = 0
when wt v − k − 1 < −(n + 1). This means that LW (−1)w ∈ Ωn+1(W ). In particular,
LW (−1) induces a linear map from Grn(W ) to Grn+1(W ) for n ∈ N. These maps for n ∈ N
together define an operator, denoted by LGr(W )(−1), on Gr(W ).

The operators LGr(W )(0), LGr(W )(−1) and ϑGr(W )([v]kl) satisfy the same commutator
formulas as those between LW (0), LW (−1) and Resxx

l−k−1YW (xLV (0)v, x) for v ∈ V and
k, l ∈ N. These structures on Gr(W ) motivates the following definition:

Definition 3.1 Let G be an A∞(V )-module with the A∞(V )-module structure on G given
by a homomorphism ϑG : A∞(V ) → End G of associative algebras. We say that G is a
graded A∞(V )-module if the following conditions are satisfied:

1. G is graded by N, that is, G =
∐

n∈NGn, and for v ∈ V , k, l ∈ N, ϑG([v]kl + Q∞(V ))
maps Gn to 0 when n 6= l and to Gk when n = l.

2. G is a direct sum of generalized eigenspaces of an operator LG(0) on G, Gn for n ∈ N
are invariant under LG(0) and the real parts of the eigenvalues of LG(0) have a lower
bound.

3. There is an operator LG(−1) on G mapping Gn to Gn+1 for n ∈ N.

4. The commutator relations

[LG(0), LG(−1)] = LG(−1),

[LG(0), ϑG([v]kl +Q∞(V ))] = (k − l)ϑG([v]kl +Q∞(V )),

[LG(−1), ϑG([v]kl +Q∞(V ))] = ϑG([LV (−1)v](k+1)l +Q∞(V ))

hold for v ∈ V and k, l ∈ N

A graded A∞(V )-algebra G is said to be nondegenerate if it satisfies in addition the following
condition: For g ∈ Gl, if ϑG([v]0l + Q∞(V ))g = 0 for all v ∈ V , then g = 0. Let G1 and
G2 be graded A∞(V )-modules. A graded A∞(V )-module map from G1 to G2 is an AN(V )-
module map f : G1 → G2 such that f((G1)n) ⊂ (G2)n, f ◦ LG1(0) = LG2(0) ◦ f and
f ◦ LG1(−1) = LG2(−1) ◦ f . A graded A∞(V )-submodule of a graded A∞(V )-module G is
an A∞(V )-submodule of G that is also an N-graded subspace of G and invariant under the
operators LG(0) and LG(−1). A graded A∞(V )-module G is said to be generated by a subset
S if G is equal to the smallest graded A∞(V )-submodule containing S, or equivalently, G
is spanned by homogeneous elements with respect to the N-grading and the grading given
by LG(0) obtained by applying elements of A∞(V ), LG(0) and LG(−1) to homogeneous
summands of elements of S. A graded A∞(V )-module is said to be irreducible if it has no
nonzero proper graded A∞(V )-submodules. A graded A∞(V )-module is said to be completely
reducible if it is a direct sum of irreducible graded A∞(V )-modules.
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From Theorem 2.8 and the properties of a lower-bounded generalized V -module W and
its associated graded space Gr(W ), we obtain immediately:

Theorem 3.2 For a lower-bounded generalized V -module W , Gr(W ) is a nondegenerate
graded A∞(V )-module. Let W1 and W2 be lower-bounded generalized V -modules and f :
W1 → W2 a V -module map. Then f induces a graded A∞(V )-module map Gr(f) : Gr(W1)→
Gr(W2).

We now give a direct and explicit description of Gr(W ) for a completely reducible lower-
bounded generalized V -module W . In this case,

W =
∐
µ∈M

W µ,

where M is an index set and W µ for µ ∈ M are irreducible lower-bounded generalized
V -modules. For µ ∈M, since W µ is irreducible, there exists hµ ∈ C such that

W µ =
∐
n∈N

W µ
[hµ+n],

where as usual, W µ
[hµ+n] for n ∈ N is the subspace of W µ of weight hµ + n, and W µ

[hµ] 6= 0.
For n ∈ N, let

Gn(W ) =
∐
µ∈M

W[hµ+n].

Then
W =

∐
n∈N

Gn(W ).

For n ∈ N, let

Tn(W ) =
n∐

m=0

Gm(W ).

It is clear that Tn(W ) ⊂ Ωn(W ). In particular, Gn(W ) ⊂ ΩN(W ) for n ≤ N . Let eW : W →
Gr(W ) be defined by eW (w) = w+ Ωn−1(W ) for w ∈ Gn(W ) and n ∈ N. Then eW preserves
the N-grading. We also define a map ϑW : U∞(V )→ End W by

ϑW (v)w =
∑
k,l∈N

Resxx
l−k−1YW (xLV (0)vkl, x)πGl(W )w

for v ∈ U∞ and w ∈ W , where πGl(W ) is the projection from W to Gl(W ). In the case
v = [v]kl and w ∈ Gn(W ) for v ∈ V and k, l, n ∈ N, we have

ϑW ([v]kl)w = δlnResxx
l−k−1YW (xLV (0)v, x)w. (3.1)

Proposition 3.3 Let W be a completely reducible lower-bounded generalized V -module.
Then Ωn(W ) = Tn(W ) for n ∈ N. Moreover, W equipped with ϑW is a nondegenerate
graded A∞(V )-module and eW : W → Gr(W ) is an isomorphism of graded A∞(V )-modules.
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Proof. If Tn(W ) 6= Ωn(W ), then there exists homogeneous w ∈ Ωn(W ) but w 6∈ Tn(W ).
Then w =

∑
µ∈Mwµ, where wµ ∈ W µ for µ ∈ M and only finitely many wµ is not 0. Since

w is homogeneous, we can assume that wµ for µ ∈ M are homogeneous. Since w ∈ Ωn(W )
but w 6∈ Tn(W ), there is at least one wµ such that wµ ∈ Ωn(W µ) but wµ 6∈ Tn(W µ) =∐n

m=0W
µ
[hµ+m]. Let W µ

0 be the generalized V -submodule of W µ generated by such a wµ.

Since wµ 6∈ Tn(W µ), wµ 6= 0 and hence W µ
0 6= 0. But W µ is irreducible. So W µ

0 = W µ.
Since wµ is homogeneous, there is m ∈ N such that wt wµ ∈ W µ

[hµ+m]. Since wµ 6∈ Tn(W µ),

we must have m > n. Since W µ = W µ
0 , W µ is spanned by elements of the form (YW )k(v)wµ

for v ∈ V and k ∈ Z. Since wµ ∈ Ωn(W µ), (YW )k(v)wµ = 0 for homogeneous v ∈ V and
k ∈ Z satisfying wt v − k − 1 < −n. Thus the homogeneous subspaces of W µ

[hµ+m−n−p] = 0

for p ∈ Z+. But for p = m − n ∈ Z+, W µ
[hµ+m−n−p] = W µ

[hµ] 6= 0. Contradiction. Thus

Tn(W ) = Ωn(W ).
For n ∈ N, we have Grn(W ) = Ωn(W )/Ωn−1(W ) = Tn(W )/Tn−1(W ). Then eW

∣∣
Gn(W )

is

clearly a linear isomorphism from Gn(W ) to Tn(W )/Tn−1(W ) = Grn(W ). This shows that
eW is an isomorphism of graded spaces. For v ∈ V , k, l ∈ N and w ∈ Gl(W ),

eW (ϑW ([v]kl)w) = eW (Resxx
l−k−1YW (xLV (0)v, x)w)

= Resxx
l−k−1YW (xLV (0)v, x)w + Tk−1(W )

= ϑGr(W )([v]kl)eW (w).

Thus we have eW ◦ϑW = ϑGr(W ) ◦eW . In particular, the A∞(V )-module structure on Gr(W )
given by ϑGr(W ) is transported to W by eW so that W equipped with ϑW is an A∞(V )-module
and eW : W → Gr(W ) is an isomorphism of A∞(V )-modules.

Theorem 3.4 A lower-bounded generalized V -module W is irreducible or completely re-
ducible if and only if the nondegenerate graded A∞(V )-module Gr(W ) is irreducible or com-
pletely reducible, respectively.

Proof. Let W be an irreducible lower-bounded generalized V -module. By Theorem 3.3,
W is a nondegenerate graded A∞(V )-module isomorphic to Gr(W ). Let W0 be a nonzero
graded A∞(V )-submodule of the graded A∞(V )-module W . For a homogeneous element
v ∈ V , n ∈ Z and w ∈ W0,

Resxx
nYW (v, x)w =

∑
l∈N

ϑW ([v](wt v−n−1+l)l)πGl(W )w ∈ W0.

This means that W0 is invariant under the action of the vertex operators on W . By the defi-
nition of graded A∞(V )-submodule, W0 is invariant under the actions of LW (0) and LW (−1)
and is the direct sum of generalized eigenspaces of LW (0)

∣∣
W0

. Thus W0 is also a nonzero
lower-bounded generalized V -submodule of W . Since W is an irreducible lower-bounded gen-
eralized V -module, W0 = W . So as a graded A∞(V )-module, W is also irreducible. Since as
a graded A∞(V )-module, Gr(W ) is equivalent to W , we see that Gr(W ) is irreducible.
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Conversely, assume that for a lower-bounded generalized V -moduleW , the nondegenerate
graded A∞(V )-module Gr(W ) is irreducible. Let W0 be a nonzero generalized V -submodule
of W . Then Ωn−1(W0) ⊂ Ωn−1(W ) for n ∈ N (when n = 0, Ω−1(W ) = 0). We have a
map from Gr(W0) to Gr(W ) given by w0 + Ωn−1(W0) 7→ w0 + Ωn−1(W ) for n ∈ N and
w0 ∈ Ωn(W0). This map is an injective graded A∞(V )-module map. So the image of
Gr(W0) under this map is a graded A∞(V )-submodule of Gr(W ). Since W0 is nonzero,
Gr(W0) is nonzero. Since Gr(W ) is irreducible, the image of Gr(W0) under this map is
equal to Gr(W ). Now it is easy to derive W0 = W . In fact, for n ∈ N, the image of
Grn(W0) under the map from Gr(W0) to Gr(W ) above is {w0 + Ωn(W ) | w0 ∈ Ωn(W0)}.
So Grn(W ) = {w0 + Ωn−1(W ) | w0 ∈ Ωn(W0)}. For n = 0, we obtain Ω0(W ) = Gr0(W ) =
Gr(W0) = Ω0(W0). Assume that Ωn−1(W ) = Ωn−1(W0). Given w ∈ Ωn(W ), w+Ωn−1(W ) ∈
Grn(W ). By Grn(W ) = {w0 + Ωn−1(W ) | w0 ∈ Ωn(W0)}, there exists w0 ∈ Ωn(W0) such
that w+ Ωn−1(W ) = w0 + Ωn−1(W ), or equivalently, w−w0 ∈ Ωn−1(W ) = Ωn−1(W0). Thus
w ∈ Ωn(W0). This shows Ωn(W ) = Ωn(W0) for n ∈ N. Then we have W = ∪n∈NΩn(W ) =
∪n∈NΩn(W0) = W0. So W is irreducible.

Assume that a lower-bounded generalized V -module W is completely reducible. Then
W =

∐
µ∈MW µ, where W µ for µ ∈ µ are irreducible generalized V -modules. From what

we have proved above, W µ for µ ∈ M as graded A∞(V )-modules are also irreducible. So
W as a graded A∞(V )-module is completely reducible. But Gr(W ) is equivalent to W
as a graded A∞(V )-module by Proposition 3.3. So Gr(W ) is also completely reducible.
Conversely, assume that for a lower-bounded generalized V -module W , the graded A∞(V )-
module Gr(W ) is completely reducible. Then Gr(W ) =

∐
µ∈MGµ, where Gµ for µ ∈ M

are irreducible nondegenerate graded A∞(V )-submodules of Gr(W ). For µ ∈ M, since
Gµ is a nondegenerate graded A∞(V )-submodule of Gr(W ), we have Gµ

n ⊂ Grn(W ) =
Ωn(W )/Ωn−1(W ). Let W µ be the subspace of W consisting of elements of the form wµ ∈
Ωn(W ) such that wµ+Ωn−1(W ) ∈ Gµ

n for n ∈ N. Since Gµ is a nondegenerate graded A∞(V )-
submodule of Gr(W ), for v ∈ V , k, l ∈ N and wµ ∈ Ωl(W ) such that wµ + Ωl−1(W ) ∈ Gµ

l ,

Resxx
l−k−1YW (xLV (0)v, x)wµ + Ωk−1(W ) ∈ Gµ

k .

By the definition of W µ, we obtain Resxx
l−k−1YW (xLV (0)v, x)wµ ∈ W µ. Since wµ ∈ Ωl(W ),

Resxx
l−k−1YW (xLV (0)v, x)wµ = 0 for k ∈ −Z+. Thus Resxx

l−k−1YW (xLV (0)v, x)wµ ∈ W µ for
k ∈ N are all the nonzero coefficients of YW (v, x)wµ. This means that W µ is closed under the
action of the vertex operators on W . Since Gµ is invariant under the actions of LGr(W )(0)
and LGr(W )(−1) and is a direct sum of generalized eigenspaces of LGr(W )(0), W µ is invariant
under the actions of LW (0) and LW (−1) and is a direct sum of generalized eigenspaces of
LW (0). Thus W µ is a generalized V -submodule of W .

Let wµ + Ωn−1(W
µ) ∈ Grn(W µ), where n ∈ N and wµ ∈ Ωn(W µ) ⊂ Ωn(W ). By the

definition of W µ, we see that since wµ is an element of W µ, wµ + Ωn−1(W ) ∈ Gµ
n. So

we obtain a linear map from Grn(W µ) to Gµ
n given by wµ + Ωn−1(W

µ) 7→ wµ + Ωn−1(W )
for wµ + Ωn−1(W

µ) ∈ Grn(W µ). These maps for n ∈ N give a map from Gr(W µ) to Gµ.
It is clear that this map is a graded A∞(V )-module map. If the image wµ + Ωn−1(W )
of wµ + Ωn−1(W

µ) ∈ Grn(W µ) under this map is 0 in Gµ, then wµ ∈ Ωn−1(W ). But
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wµ ∈ Ωn(W µ) ⊂ W µ. So wµ ∈ Ωn−1(W
µ) and wµ + Ωn−1(W

µ) is 0 in Gr(W µ). This means
that this graded A∞(V )-module map is injective. In particular, the image of Gr(W µ) under
this map is a nonzero nondegenerate graded A∞(V )-submodule of Gµ. But Gµ is irreducible.
So Gr(W µ) must be equivalent to Gµ and is therefore also irreducible. From what we have
proved above, since Gr(W µ) is irreducible, W µ is irreducible. This shows that W is complete
reducible.

Theorem 3.4 implies that there is a map from the set of the equivalence classes of irre-
ducible lower-bounded generalized V -modules to the set of equivalence classes of irreducible
nondegenerate graded A∞(V )-modules. This map is in fact a bijection. To prove this, we
need to construct a lower-bounded generalized V -module S(G) from a nondegenerate graded
A∞(V )-module G. We use the construction in Section 5 of [H3]. Take the generating fields
for the grading-restricted vertex algebra V to be YV (v, x) for v ∈ V . By definition, G is
a direct sum of generalized eigenspaces of LG(0) and the real parts of the eigenvalues of
LG(0) has a lower bound B ∈ R. We take M and B in Section 5 of [H3] to be G and the
lower bound B above. Using the construction in Section 5 of [H3], we obtain a universal

lower-bounded generalized V -module Ĝ
[1V ]
B . For simplicity, we shall denote it simply by Ĝ.

By Theorem 3.3 in [H4] and the construction in Section 5 of [H3] and by identifying
elements of the form (ψa

Ĝ
)−1,0 with basis elements ga ∈ G for a ∈ A for a basis {ga}a∈A of

G, we see that Ĝ is generated by G (in the sense of Definition 3.1 in [H4]). Moreover, after
identifying (ψa

Ĝ
)−1,0 with basis elements wa ∈ G for a ∈ A, Theorems 3.3 and 3.4 in [H4] in

fact say that elements of the form LĜ(−1)pwa for p ∈ N and a ∈ A are linearly independent

and Ĝ is spanned by elements obtained by applying the components of the vertex operators
to these elements. In particular, G can be embedded into Ĝ as a subspace. So from now on,
we shall view G as a subspace of Ĝ. Let JG be the generalized V -submodule of Ĝ generated
by elements of the forms

Resxx
l−k−1YĜ(xLV (0)v, x)g (3.2)

for l ∈ N, k ∈ −Z+ and g ∈ Gl,

Resxx
l−k−1YM̂(xLV (0)v, x)g− ϑG([v]kl +Q∞(V ))g (3.3)

for v ∈ V , k, l ∈ N, g ∈ Gl and
LĜ(−1)g− LG(−1)g (3.4)

for l ∈ N, g ∈ Gl.
Let S(G) = Ĝ/JG. Then S(G) is a lower-bounded generalized V -module. Let πS(G) be

the projection from Ĝ to S(G). Since Ĝ is generated by G (in the sense of Definition 3.1 in
[H4]), S(G) is generated by πS(G)(G) (in the same sense). In particular, S(G) is spanned by
elements of the form

Resxx
(l+p)−n−1YS(G)(x

LS(G)(0)v, x)LS(G)(−1)pπS(G)(g) (3.5)

for v ∈ V , n, l, p ∈ N and g ∈ Gl. For n ∈ N, let Gn(S(G)) be the subspace of S(G) spanned
by elements of the form (3.5) for v ∈ V , l, p ∈ N and g ∈ Gl.
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Proposition 3.5 Let G be a graded A∞(V )-module.

1. For n ∈ N, Gn(S(G)) = πS(G)(Gn) and for n1 6= n2, Gn1(S(G)) ∩ Gn2(S(G)) = 0.

Moreover, S(G) = πS(G)(G) =
∐
n∈N

Gn(S(G)).

2. If G is nondegenerate, then for n ∈ N, Ωn(S(G)) =
n∐
j=0

πS(G)(Gj) =
n∐
j=0

Gj(S(G)).

3. If G is nondegenerate, then Gr(S(G)) is equivalent to G as a graded A∞(V )-module.

Proof. Since elements of the forms (3.3) and (3.4) are in JG, for n ∈ N, the element (3.5)
for v ∈ V for l, p ∈ N and g ∈ Gl is in fact equal to

πS(G)(ϑG([v]n(l+p) +Q∞(V ))LG(−1)pg). (3.6)

Since ϑG([v]n(l+p)+Q∞(V ))LG(−1)pg for l, p ∈ N and g ∈ Gl certainly span Gn and elements
of the form (3.5) for v ∈ V for l, p ∈ N and g ∈ Gl span Gn(S(G)), elements of the form (3.6)
for v ∈ V for l, p ∈ N and g ∈ Gl also span Gn(S(G)). Thus Gn(S(G)) = πS(G)(Gn). When
n1 6= n2, we know Gn1 ∩ Gn2 = 0. Then Gn1(S(G)) ∩ Gn2(S(G)) = πS(G)(Gn1 ∩ Gn2) = 0.
As is mentioned above, S(G) is spanned by elements of the form (3.5) for v ∈ V , k, l, p ∈ N
and g ∈ Gl. But we already see that (3.5) is in fact equal to (3.6). Thus S(G) = πS(G)(G).
Since Gn(S(G)) = πS(G)(Gn) and Gn1(S(G)) ∩Gn2(S(G)) = 0, we have S(G) = πS(G)(G) =∐

n∈NGn(S(G)).
By definition, for j ≤ n, Gj(S(G)) ⊂ Ωn(S(G)). Then for j = 0, . . . , n, πS(G)(Gj) ⊂

Ωj(S(G)) ⊂ Ωn(S(G)). So we obtain πS(G)(
∐n

j=0Gj) ⊂ Ωn(S(G)). If G is nondegenerate,

nonzero elements of Gj for j > n are not in Ωn(Ĝ). From the construction of Ĝ, nonzero

elements of the form (3.2), (3.3) or (3.4) are not in G ⊂ Ĝ. In particular, the intersection of
J(G) with G is 0. So πS(G)

∣∣
G

: G→ S(G) is injective. Since πS(G)

∣∣
G

is injective, we conclude
that nonzero elements of πS(G)(Gj) for j > n are not in Ωn(S(G)). So we have

Ωn(S(G)) = πS(G)

(
n∐
j=0

Gj

)
=

n∐
j=0

πS(G)(Gj) =
n∐
j=0

Gj(S(G)).

Since Ωn(S(G)) =
∐n

j=0Gj(S(G)) for n ∈ N when G is nondegenerate, we see that as
a N-graded space, Gr(S(G)) is isomorphic to

∐
n∈NGn(S(G)) = πS(G)(G). We use fG to

denote the isomorphism from Gr(S(G)) to πS(G)(G). Then we have

fG ◦ ϑGr(S(G))([v]kl +Q∞(V )) = Resxx
l−k−1YS(G)(x

LS(G)(0)v, x) ◦ fG

for v ∈ V , k, l ∈ N, fG ◦LGr(S(G))(0) = LS(G)(0)◦fG and fG ◦LGr(S(G))(−1) = LS(G)(−1)◦fG.
We have proved that πS(G)

∣∣
G

is injective and surjective and preserves the N-gradings. So it
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is an isomorphism of graded spaces from G to S(G). From the fact that πS(G) is a V -module

map and on G ⊂ Ĝ, LĜ(0) = LG(0) and LĜ(−1) = LG(−1), we have

πS(G)

∣∣
G
◦ ϑG([v]kl +Q∞(V )) = Resxx

l−k−1YS(G)(x
LS(G)(0)v, x) ◦ πS(G)

∣∣
G

for v ∈ V , k, l ∈ N, πS(G)

∣∣
G
◦LG(0) = LS(G)(0) ◦πS(G)

∣∣
G

and πS(G)

∣∣
G
◦LG(−1) = LS(G)(−1) ◦

πS(G)

∣∣
G

. Then by the properties of fG and πS(G)

∣∣
G

above, we see that (πS(G)

∣∣
G

)−1 ◦ fG is an
equivalence of graded A∞(V )-modules from Gr(S(G)) to G.

Remark 3.6 Note that our construction of the lower-bounded generalized V -module Ĝ
seems to depend on the lower bound B of the real parts of the eigenvalues of LG(0). But by
Proposition 3.5, S(G) depends only on G, not on B.

Theorem 3.7 The set of the equivalence classes of irreducible lower-bounded generalized
V -modules is in bijection with the set of the equivalence classes of irreducible nondegenerate
graded A∞(V )-modules.

Proof. Let [W]irr be the set of the equivalence classes of irreducible lower-bounded gener-
alized V -modules and [G]irr the set of the equivalence classes of irreducible nondegenerate
graded A∞(V )-modules. Given an irreducible lower-bounded generalized V -module W , by
Theorem 3.4, Gr(W ) is an irreducible nondegenerate graded AN(V )-module. Thus we ob-
tain a map f : [W]irr → [G]irr given by f([W ]) = [Gr(W )], where [W ] ∈ [W]irr is the
equivalence class containing the irreducible lower-bounded generalized V -module W and
[Gr(W )] ∈ [G]irr is the equivalence class containing the irreducible nondegenerate graded
AN(V )-module Gr(W ). By Proposition 3.3, [Gr(W )] = [W ] in [G]irr, where W is viewed as
a nondegenerate graded A∞(V )-module.

Given an irreducible nondegenerate graded A∞(V )-module G, we have a lower-bounded
generalized V -module S(G). By Proposition 3.5, Gr(S(G)) is equivalent to G. Since G
is irreduible, Gr(S(G)) is also irreducible. Then by Theorem 3.4, S(G) is an irreducible
lower-bounded generalized V -module. Thus we obtain a map g : [G]irr → [W]irr given by
g([G]) = [S(G)].

We still need to show that f and g are inverse to each other. By Proposition 3.5, Gr(S(G))
is equivalent to G for an irreducible nondegenerate graded A∞(V )-module G. We obtain
[Gr(S(G))] = [G]. This means f(g([G])) = [G]. So we have f ◦ g = 1[G]irr .

Let W be an irreducible lower-bounded generalized V -module. By Theorem 3.4, Gr(W )
is an irreducible nondegenerate graded A∞(V )-module. We then have a lower-bounded gen-
eralized V -module S(Gr(W )). By Proposition 3.5, Gr(S(Gr(W ))) is equivalent to Gr(W ) as
a graded A∞(V )-module. Since Gr(W ) is irreducible, Gr(S(Gr(W ))) is also irreducible. By
Theorem 3.4, S(Gr(W )) is an irreducible lower-bounded generalized V -module. Since both
W and S(Gr(W )) are irreducible, by Proposition 3.3, W and S(Gr(W )) are nondegenerate
graded A∞(V )-modules and are equivalent to Gr(W ) and Gr(S(Gr(W ))), respectively. But
we already know that Gr(S(Gr(W ))) is equivalent to Gr(W ) as a graded A∞(V )-module.
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So both W and S(Gr(W )) are equivalent to Gr(W ) as graded A∞(V )-modules. Since vertex
operators on W and S(Gr(W )) can be expressed using the actions of elements of A∞(V ),
we see that W and S(Gr(W )) are also equivalent as lower-bounded generalized V -modules.
Thus [S(Gr(W ))] = [W ], or g(f([W ])) = [W ]. So g ◦ f = 1[W]irr .

4 Subalgebras of A∞(V )

We give some very special subalgebras of A∞(V ) and prove that they are isomorphic to the
Zhu algebra A(V ) [Z] and its generalizations AN(V ) for N ∈ N by Dong-Li-Mason [DLM]
in Subsection 4.1. Then we introduce the main interesting and new subalgebras AN(V ) for
N ∈ N of A∞(V ) in Subsection 4.2. Note that we use the superscript N instead of the
subscript N to distinguish this algebra from AN(V ) in [DLM].

4.1 Zhu algebra and the generalizations by Dong-Li-Mason

Let
U00(V ) = {[v]00 | v ∈ V } ⊂ U∞(V ).

Then U00(V ) can be canonically identified with V through the map i00 : U00(V )→ V given
by i00([v]00) = v for v ∈ V . Since by (2.3),

[u]00 � [v]00 = Resxx
−1 [YV ((1 + x)L(0)u, x)v

]
00
,

U00(V ) is closed under the product �. Let

A00(V ) = {[v]00 +Q∞(V ) | v ∈ V }.

Theorem 4.1 The subspace A00(V ) of A∞(V ) is closed under � and is thus a subalgebra of
A∞(V ) with [1]00 +Q∞(V ) as its identity. The associative algebra A00(V ) is isomorphic to
the Zhu algebra A(V ) in [Z] and, in particular, [ω]00 + Q∞(V ) is in the center of A00(V ) if
V is a vertex operator algebra with the conformal vector ω.

Since this result is a special case of the result on the generalizations AN(V ) in [DLM],
we will not give a proof. The proof is the special case N = 0 of the proof of Theorem 4.2
below for AN(V ).

Let

UNN =

{
N∑
k=0

[v]kk

∣∣∣∣ v ∈ V
}
⊂ U∞(V ).

By the definition of �,(
N∑
k=0

[u]kk

)
�

(
N∑
k=0

[v]kk

)
=

N∑
k,l=0

[u]kk � [v]ll
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=
N∑
k=0

[u]kk � [v]kk

=
N∑
k=0

ResxT2k+1((x+ 1)−k−1)(1 + x)k
[
YV ((1 + x)L(0)u, x)v

]
kk
.

Let

ANN(V ) =

{
N∑
k=0

[v]kk +Q∞(V )

∣∣∣∣ v ∈ V
}
⊂ A∞(V ).

Note that A00(V ) = A00(V ). Also let

1N =
N∑
k=0

[1]kk,

ωN =
N∑
k=0

[ω]kk,

Theorem 4.2 The subspace ANN(V ) of A∞(V ) is closed under � and is thus a subalgebra
of A∞(V ) with 1N +Q∞(V ) as the identity. The associative algebra ANN(V ) is isomorphic
to the associative algebra AN(V ) of Dong, Li and Mason in [DLM] and, in particular, ωN +
Q∞(V ) is in the center of ANN(V ) if V is a vertex operator algebra with the conformal vector
ω.

Proof. For u, v ∈ V , we have(
N∑
k=0

[u]kk

)
�

(
N∑
k=0

[v]kk

)
=

N∑
k=0

ResxT2k+1((x+ 1)−k−1)(1 + x)k
[
YV ((1 + x)L(0)u, x)v

]
kk

=
N∑
k=0

Resx

k∑
m=0

(
−k − 1

m

)
x−k−m−1(1 + x)k

[
YV ((1 + x)L(0)u, x)v

]
kk

=
N∑
k=0

[u ∗k v]kk

'
N∑
k=0

[u ∗N v]kk mod Q∞(V ),

where in the last step, we have used the result obtained in the proof of Proposition 2.4 in
[DLM] that u ∗k v is equal to u ∗N v modulo Ok(V ) for k = 0, . . . , N and the fact that
[Ok(V )]kk ∈ O∞(V ) ⊂ Q∞(V ). This calculation shows that ANN(V ) is closed under � and
is thus a subalgebra of A∞(V ). Let fN : UNN(V )→ AN(V ) be defined by

fN

(
N∑
k=0

[v]kk

)
= v +ON(V )
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for v ∈ V .
We now view AN(V ) as an AN(V )-module. We construct a lower-bounded generalized

V -module S(AN(V )) from AN(V ) using the construction in Section 5 of [H3] as follows: Take
the generating fields for the grading-restricted vertex algebra V to be YV (v, x) for v ∈ V .
Take M in Section 5 of [H3] to be AN(V ). We define the operator LM(0) on M to be the
multiplication by the scalar N . So M itself is an eigenspace of LM(0) with eigenvalue N .
Take the automorphism g of V in Section 5 of [H3] to be 1V since we are interested only in
untwisted modules. Take B in Section 5 of [H3] to be 0. Then we obtain a lower-bounded

generalized V -module M̂
[1V ]
0 , which shall be denoted by ÂN(V ) here. By Theorem 3.3 in

[H4] and the construction in Section 5 of [H3], ÂN(V ) is spanned by elements of the form

(Y
ÂN (V )

)n(u)L
ÂN (V )

(−1)p(v +ON(V ))

for homogeneous u, v ∈ V , p ∈ N and n ∈ wt u + N + p − 1 − N. Let J be the generalized

V -submodule of ÂN(V ) generated by elements of the form

(Y
ÂN (V )

)wt u−1(u)(v +ON(V ))− u ∗N v +ON(V )

for u, v ∈ V . Let S(AN(V )) = ÂN(V )/J . Then

S(AN(V )) =
∐
n∈N

(S(AN(V )))[n]

is a lower-bounded generalized V -module such that (S(AN(V )))[N ] = AN(V ). From the
construction in Section 5 of [H3] and the definition of S(AN(V )) above, elements of the form

(YS(AN (V )))wt u−1+N(u)(v +ON(V ))

for homogeneous nonzero u ∈ V and v ∈ V \ ON(V ) are not 0. Thus for v ∈ V \
ON(V ), v + ON(V ) ∈ AN(V ) is not in ΩN−1(S(AN(V ))). In other words, if v + ON(V ) ∈
ΩN−1(S(AN(V ))), then v ∈ ON(V ). On the other hand, we know thatAN(V ) = (S(AN(V )))[N ]

⊂ ΩN(S(AN(V ))).
Let W be a lower-bounded generalized V -module. Then kerϑGr(W ) is a two-sided ideal

of U∞(V ). So kerϑGr(W ) ∩ UNN(V ) is a two-sided ideal of UNN(V ). From [DLM], the map
oW : V → End ΩN(W ) defined by oW (v) = (YW )wt v−1(v) = Resxx

−1YW (xLV (0)v, x) gives
ΩN(W ) an AN(V )-module structure. In particular, oW (ON(V )) = 0. So ON(V ) ⊂ ker oW .
We take W = S(AN(V )). Then AN(V ) is an AN(V )-submodule of ΩN(S(AN(V ))). We use
oAN (V ) to denote the corresponding map from V to End AN(V ). By the definition of oAN (V ),
we have

oAN (V )(u)(v +ON(V )) = u ∗N v +ON(V )

for u, v ∈ V . For u ∈ ker oAN (V ), we have

oAN (V )(u)(v +ON(V )) = 0
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for v ∈ V . So we have u ∗N v +ON(V ) = 0 or u ∗N v ∈ ON(V ). In particular, for v = 1, we
have u ∗N 1 ∈ O(V ). But modulo ON(V ), u ∗N 1 is equal to u. So u ∈ ON(V ). This means
ker oSN (AN (V )) ⊂ ON(V ) and thus ker oAN (V ) = ON(V ).

For v ∈ V , we have shown that v + ON(V ) ∈ ΩN−1(S(AN(V ))) implies v ∈ ON(V ) or
equivalently v +ON(V ) = ON(V ). So using our notation above, we see that

[v +ON(V )]N = (v +ON(V )) + ΩN−1(S(AN(V )))

is an element of GrN(S(AN(V ))) and if it is equal to 0 ∈ GrN(S(AN(V ))), then v+ON(V ) =
ON(V ). By definition, for u, v ∈ V ,

ϑGrN (S(AN (V )))([u]NN)[(v +ON(V ))]N = [Resxx
−1YS(AN (V ))(x

LV (0)u, x)(v +ON(V ))]N

= [oAN (V )(u)(v +ON(V ))]N .

Then ϑGrN (S(AN (V )))([u]NN)[(v + ON(V ))]N = 0 if and only if oAN (V )(u)(v + ON(V )) ∈
ΩN−1(S(AN(V ))).

For
∑N

k=0[u]kk ∈ Q∞(V ),

ϑSN (AN (V ))([u]NN)[(v +ON(V ))]N = ϑSN (AN (V ))

(
N∑
k=0

[u]kk

)
[(v +ON(V ))]N

= 0

for all v ∈ V . So oAN (V )(u)(v + ON(V )) ∈ ΩN−1(S(AN(V ))) or equivalently [oAN (V )(u)(v +
ON(V ))]N is equal to 0 ∈ GrN(SN(AN(V ))) for all v ∈ V . Thus oSN (AN (V ))(u)(v+ON(V )) =
ON(V ) or equivalently oSN (AN (V ))(u)(v + ON(V )) is equal to 0 ∈ AN(V ). Then we have
u ∈ ker oSN (AN (V )) = ON(V ).

We have proved that
∑N

k=0[u]kk ∈ Q∞(V ) implies u ∈ ker oSN (AN (V )) = ON(V ). On the
other hand, since ON(V ) ⊂ Ok(V ) for k = 0, . . . , N and [Ok(V )]kk ⊂ O∞(V ) ⊂ Q∞(V ),
we have

∑N
k=0[u]kk ∈ Q∞(V ) for u ∈ ON(V ). Thus

∑N
k=0[u]kk ∈ Q∞(V ) if and only if

u ∈ ON(V ). By this result, we obtain ker fN = UNN ∩Q∞(V ). In particular, fN induces a
linear isomorphism f̂N : ANN(V )→ AN(V ).

For u, v ∈ V , using the calculation above, we have

f̂N

((
N∑
k=0

[u]kk +Q∞(V )

)
�

(
N∑
k=0

[v]kk +Q∞(V )

))

= f̂N

((
N∑
k=0

[u]kk

)
�

(
N∑
k=0

[v]kk

)
+Q∞(V )

)

= f̂N

(
N∑
k=0

[u ∗N v]kk +Q∞(V )

)
= u ∗N v +ON(V )

= (u+ON(V )) ∗N (v +ON(V )).
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Therefore f̂N is an isomorphism of associative algebras.
Since 1 +ON(V ) is the identity of AN(V ), 1N +O∞(V ) is the identity of ANN(V ). If V

is a vertex operator algebra with the conformal vector ω, since ω + ON(V ) is in the center
of AN(V ), ωN +O∞(V ) is in the center of ANN(V ).

4.2 Associative algebras from finite matrices

We now introduce new subalgebras of A∞(V ). For N ∈ N, let UN(V ) be the space of all
(N + 1) × (N + 1) matrices with entries in V . It is clear that UN(V ) can be canonically
embedded into U∞0 (V ) as a subspace. We shall view UN(V ) as a subspace of U∞0 (V ) in
this paper. As a subspace of U∞0 (V ), UN(V ) consists of infinite matrices in U∞(V ) whose
(k, l)-th entries for k > N or l > N are all 0 and is spanned by elements of the form [v]kl for
v ∈ V , k, l = 0, . . . , N .

Recall the element

1N =
N∑
k=0

[1]kk,

that is, 1N is the element of UN(V ) with the only nonzero entries to be equal to 1 at the
diagonal (k, k)-th entries for k = 0, . . . , N . By (2.2), we have

1N � [v]kl = ResxTk+l+1((x+ 1)−l−1)(1 + x)l[YV ((1 + x)L(0)1, x)v]kl = [v]kl

for v ∈ V and k, l = 0, . . . , N . So 1N is a left identity of UN(V ) with respect to the product
�. Note that for v ∈ V and k, l = 0, . . . , N ,

[v]kl � 1N = ResxTk+l+1((x+ 1)−k−1)(1 + x)l[YV ((1 + x)L(0)v, x)1]kl = [v]kl � 1∞.

This formula together with (2.21) immediately gives

[v]kl � 1N =
k∑

m=0

(
−k − 1

m

)[(
LV (−1) + LV (0) + l

k +m

)
v

]
kl

(4.1)

for v ∈ V and k, l = 0, . . . , N .
By (2.3), for u, v ∈ V and k, n, l = 0, . . . , N ,

[u]kn � [v]nl = ResxTk+l+1((x+ 1)−k+n−l−1)(1 + x)l
[
YV ((1 + x)L(0)u, x)v

]
kl
∈ UN(V ). (4.2)

So UN(V ) is closed under the product �. Let

AN(V ) = {v +Q∞(V ) | v ∈ UN(V )} = πA∞(V )(U
N(V )),

where πA∞(V ) is the projection from U∞(V ) to A∞(V ). Then AN(V ) is spanned by elements
of the form [v]kl +Q∞(V ) for v ∈ V and k, l = 0, . . . , N .

30



Proposition 4.3 The subspace AN(V ) is closed under � and is thus a subalgebra of A∞(V )
with the identity 1N +Q∞(V ).

Proof. By (4.2), we have

([u]kn +Q∞(V )) � ([v]nl +Q∞(V ))

= ResxTk+l+1((x+ 1)−k+n−l−1)(1 + x)l
[
YV ((1 + x)L(0)u, x)v

]
kl

+Q∞(V )

∈ AN(V )

for u, v ∈ V and k, n, l = 0, . . . , N . Thus AN(V ) is closed under � and is thus a subalgebra
of A∞(V ).

Since 1N is a left identity of UN(V ) with respect to the product �, 1N +Q∞(V ) is a left
identity of AN(V ). Since

[v]kl � 1N = [v]kl � 1∞ ≡ [v]kl mod Q∞(V ),

1N +Q∞(V ) is also a right identity of AN(V ). In particular, it is the identity of AN(V ).

Remark 4.4 We have derived AN(V ) as a subalgebra of A∞(V ). One can certainly obtain
AN(V ) directly starting with the space UN(V ) of (N + 1) × (N + 1) matrices with entries
in V .

Remark 4.5 It is clear from the definition that Ann(V ) for n = 0, . . . , N are subalgebras
of AN(V ). In particular, the Zhu algebra A(V ) in [Z] and its generalizations An(V ) for
n = 0, . . . , N by Dong, Li and Mason in [DLM] can be viewed as subalgebras of AN(V ). In
the case N = 0, A0 is equal to A00 = A00(V ) and is thus isomorphic to the Zhu algebra
A(V ) by Theorem 4.1.

We say that V is of positive energy if V =
∐

n∈N V(n) and V(0) = C1. (In some papers, V
being of positive energy is said to be of CFT type.) We recall that for n ∈ N, V is Cn-cofinite
if dimV/Cn(V ) < ∞, where Cn(V ) is the subspace of V spanned by elements of the form
(YV )−n(u)v for u, v ∈ V .

Theorem 4.6 Assume that V is of positive energy and C2-cofinite. Then AN(V ) is finite
dimensional.

Proof. By Theorem 11 in [GN] (see Proposition 5.5 in [AN]), V is also Cn-cofinite for n ≥ 2.
In particular, V is Ck+l+2-cofinite for k, l = 0, . . . , N . By definition, Ck+l+2(V ) are spanned
by elements of the form (YV )−k−l−2(u)v for u, v ∈ V . Since V is Ck+l+2-cofinite, there exists
a finite dimensional subspace Xk+l of V such that X + Ck+l+2(V ) = V . Let UN(X) be
the subspace of UN(V ) consisting matrices in UN(V ) whose (k, l)-th entries are in X for
k, l = 0, . . . , N . Since Xk+l for k, l = 0, . . . , N are finite dimensional, UN(X) is also finite
dimensional. We now prove UN(X) + (O∞(V ) ∩ UN(V )) = UN(V ). To prove this, we need
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only prove that every element of UN(V ) of the form [v]kl for v ∈ V and 0 ≤ k, l ≤ N , can be
written as [v]kl = [v1]kl + [v2]kl, where v1 ∈ Xk+l and v2 ∈ V such that [v2]kl ∈ O∞(V ). We
shall denote the subspace of V consisting of elements v such that [v]kl ∈ O∞(V ) by O∞kl (V ).
Then what we need to prove is V = Xk+l +O∞kl (V ).

We can always take Xk+l to be a subspace of V containing 1. We use induction on the
weight of v. When wt v = 0, v is proportional to 1 and can indeed be written as v = v + 0,
where v ∈ X and 0 ∈ O∞kl (V ).

Assume that when wt v = p < q, v = v1 + v2, where v1 ∈ Xk+l and v2 ∈ O∞kl (V ). Then
since V is Ck+l+2-cofinite, for v ∈ V(q), there exists homogeneous u1 ∈ Xk+l and homogeneous
ui, vi ∈ V for i = 1, . . . ,m such that v = u1 +

∑m
i=1 u

i
−k−l−2v

i. Moreover, we can always find
such u1 and ui, vi ∈ V for i = 1, . . . ,m such that wt u1 = wt ui−k−l−2v

i = wt v = q. Since

wt uin−k−l−2v
i < wt ui−k−l−2v

i = wt v = q

for i = 1, . . . ,m and n ∈ Z+, by induction assumption, uin−k−l−2v
i ∈ Xk+l + O∞kl (V ) for

i = 1, . . . ,m and k ∈ Z+. Thus

v = u1 +
m∑
i=1

ui−k−l−2v
i

= u1 +
m∑
i=1

Resxx
−k−l−2(1 + x)lY ((1 + x)L(0)ui, x)vi

−
m∑
i=1

∑
n∈Z+

(
wt ui + l

n

)
uin−k−l−2v

i.

By definition,
[Resxx

−k−l−2(1 + x)lY ((1 + x)L(0)ui, x)vi]kl ∈ O∞(V ).

Thus
Resxx

−k−l−2(1 + x)lY ((1 + x)L(0)ui, x)vi ∈ O∞kl (V ).

Thus we have v = v1 + v2, where v1 ∈ Xk+l and v2 ∈ O∞kl (V ). By induction principle, we
have V = Xk+l +O∞kl (V ).

We now have proved UN(X) + (O∞(V ) ∩ UN(V )) = UN(V ). Since O∞(V ) ∩ UN(V ) ⊂
Q∞(V )∩UN(V ), we also have UN(X) + (Q∞(V )∩UN(V )) = UN(V ). Since UN(X) is finite
dimensional, AN(V ) is finite dimensional.

5 Lower-bounded generalized V -modules and graded

AN(V )-modules

By Theorem 2.8, the associated graded space Gr(W ) of a filtration of a lower-bounded
generalized V -module W is a nondegenerate graded A∞(V )-module. In this section, for
N ∈ N, we give an AN(V )-module structure to a subspace of Gr(W ) and use it to study W .

32



Let N ∈ N. Let W be a lower-bounded generalized V -module. Since AN(V ) is a subal-
gebra of A∞(V ), Gr(W ) as an A∞(V )-module is also an AN(V )-module. Let

GrN(W ) =
N∐
n=0

Grn(W ) ⊂ Gr(W ).

By the definition of ϑGr(W ), we see that for v ∈ AN(V ) and [w]n ∈ GrN(W ), ϑGr(W )(v)[w]n ∈
GrN(W ). Thus GrN(W ) is an AN(W )-submodule of Gr(W ). But GrN(W ) has some addi-
tional structures and properties and we are only interested in those AN(W )-modules having
these additional structures and properties. Similar to Definition 3.1, we have the following
notion:

Definition 5.1 Let M be an AN(V )-module M with the AN(V )-module structure on M
given by ϑM : AN(V )→ End M . We say that M is a graded AN(V )-module if the following
conditions are satisfied:

1. M =
∐N

n=0Gn(M) such that for v ∈ V and k, l = 0, . . . , N , ϑM([v]kl + Q∞(V )) maps
Gn(M) for 0 ≤ n ≤ N to 0 when n 6= l and to Gk(M) when n = l.

2. M is a direct sum of generalized eigenspaces of of an operator LM(0) on M . Gn(M)
for n ∈ N are invariant under LM(0) and the real parts of the eigenvalues of LM(0) has
a lower bound.

3. There is a linear map LM(−1) :
∐N−1

n=0 Gn−1(M) →
∐N

n=1Gn(M) mapping Gn(M) to
Gn+1(M) for n = 0, . . . , N − 1.

4. The commutator relations

[LM(0), LM(−1)] = LM(−1),

[LM(0), ϑM([v]kl +Q∞(V ))] = (k − l)ϑM([v]kl +Q∞(V )),

[LM(−1), ϑM([v]pl +Q∞(V ))] = ϑM([LV (−1)v](p+1)l +Q∞(V ))

hold for v ∈ V , k, l = 0, . . . , N and p = 0, . . . , N − 1.

A graded AN(V )-module M is said to be nondegenerate if the following additional condition
holds: For w ∈ Gl(M), if ϑM([v]0l + Q∞(V ))w = 0 for all v ∈ V , then w = 0. Let M1 and
M2 be graded AN(V )-modules. An graded AN(V )-module map from M2 to M2 is an AN(V )-
module map f : M1 → M2 such that f(Gn(M1)) ⊂ Gn(M2) for n = 0 . . . , N , f ◦ LM1(0) =
LM2(0)◦ f and f ◦LM1(−1) = LM2(−1)◦ f . A graded AN(V )-submodule of a graded AN(V )-
module M is an AN(V )-submodule M0 of M such that with the AN(V )-module structure,
the N-grading induced from M and the operators LM(0)

∣∣
M0

and LM(−1)
∣∣
M0

, M0 is a graded

AN(V )-module. A graded A∞(V )-module M is said to be generated by a subset S if M is
equal to the smallest graded AN(V )-submodule containing S, or equivalently, M is spanned
by homogeneous elements obtained by applying elements of AN(V ), LM(0) and LM(−1) to
homogeneous summands of elements of S. A graded AN(V )-module is said to be irreducible
if it has no nonzero proper graded AN(V )-modules. A graded AN(V )-module is said to be
completely reducible if it is a direct sum of irreducible graded AN(V )-modules.
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From the discussion above and the property of GrN(W ), we obtain immediately:

Proposition 5.2 For a lower-bounded generalized V -module W , GrN(W ) is a nondegen-
erate graded AN(V )-module. Let W1 and W2 be lower-bounded generalized V -modules and
f : W1 → W2 a V -module map. Then f induces a graded AN(V )-module map GrN(f) :
GrN(W1)→ GrN(W2).

We have the following results on irreducible and completely reducible lower-bounded
generalized V -modules without additional conditions:

Proposition 5.3 Let W be a lower-bounded generalized V -module. If W is irreducible or
completely reducible, then GrN(W ) is equivalent to TN(W ) as an AN(V )-module and is also
irreducible or completely reducible, respectively.

Proof. Let W be irreducible. By Proposition 3.3, Ωn(W ) = Tn(W ) for n = 0, . . . , N . Then
TN(W ) is a nondegenerate graded AN(V )-module equivalent to GrN(W ). We need to prove
that the nondegenerate graded AN(V )-module TN(W ) is irreducible.

Let M be a nonzero graded AN(V )-submodule of TN(W ). We use the construction in

Section 5 of [H3] to construct a universal lower-bounded generalized V -module M̂ from M .
We take the generating fields for the grading-restricted vertex algebra V to be YV (v, x) for
v ∈ V . By definition, M is a direct sum of generalized eigenspaces of LM(0) and the real
parts of the eigenvalues of LM(0) have a lower bound B ∈ R. We take M and B in Section
5 of [H3] to be the given nondegenerate graded AN(V )-module M and the lower bound
B above. Using the construction in Section 5 of [H3], we obtain a universal lower-bounded

generalized V -module M̂
[1V ]
B . For simplicity, we shall denote it simply by M̂ . By the universal

property of M̂ (Theorem 5.2 in [H3]), for the embedding map eM : M → TN(W ), there is

a unique V -module map êM : M̂ → W such that êM
∣∣
M

= e. Then êM(M̂) is a generalized

V -submodule of W generated by M . It is nonzero since M ⊂ êM(M̂). Since W is irreducible,
it must be W . Then W is generated by M . In particular, TN(W ) is obtained by applying the
components of the vertex operators on W , LW (0) and LW (−1) to elements of M . Since the
components of the vertex operators on W and the operators LW (0) and LW (−1) preserving
TN(W ) are by definition the actions of elements of AN(V ), LW (0) and LM(−1) preserving
TN(W ), we see that as a graded AN(V )-module, TN(W ) is generated by M . But M itself
is an AN(V )-submodule of TN(W ). So we have M = TN(W ). Thus TN(W ) as a graded
AN -module is irreducible.

If W is completely reducible, by Proposition 3.3 again, Ωn(W ) = Tn(W ) for n = 0, . . . , N .
Then TN(W ) is a nondegenerate graded AN(V )-module equivalent to GrN(W ). Since W is
completely reducible, W =

∐
µ∈MW µ, where W µ for µ ∈ M are irreducible lower-bounded

generalized V -modules. By the definition of TN(W ), we have TN(W ) =
∐

µ∈M TN(W µ).

From what we have proved above, for µ ∈ M, TN(W µ) is an irreducible graded AN(V )-
module. Thus we see that TN(W ) is completely reducible.

Let M be a graded AN(V )-module given by a linear map ϑM : AN(V ) → End M and
operators LM(0) and LM(−1). We now construct a lower-bounded generalized V -module
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SN(M) from M . We use the construction in Section 5 of [H3]. We take the generating fields
for the grading-restricted vertex algebra V to be YV (v, x) for v ∈ V . By definition, M is
a direct sum of generalized eigenspaces of LM(0) and the real parts of the eigenvalues of
LM(0) has a lower bound B ∈ R. We take M and B in Section 5 of [H3] to be the given
graded AN(V )-module M and the lower bound B above. Using the construction in Section

5 of [H3], we obtain a universal lower-bounded generalized V -module M̂
[1V ]
B . For simplicity,

we shall denote it simply by M̂ .
By Theorem 3.4 in [H4] and the construction in Section 5 of [H3] and by identifying

elements of the form (ψa
M̂

)−1,0 with basis elements wa ∈ M for a ∈ A for a basis {wa}a∈A
of M , we see that M̂ is generated by M (in the sense of Definition 3.1 in [H4]). Moreover,
Theorems 3.3 and 3.4 in [H4] state that elements of the form LM̂(−1)pwa for p ∈ N and

a ∈ A are linearly independent and M̂ is spanned by elements obtained by applying the
components of the vertex operators to these elements. In particular, we identify M as a
subspace of M̂ . Let JM be the generalized V -submodule of M̂ generated by elements of the
forms

Resxx
l−k−1YM̂(xLV (0)v, x)w (5.1)

for l = 0, . . . , N , k ∈ −Z+ and w ∈ Gl(M),

Resxx
l−k−1YM̂(xLV (0)v, x)w − ϑM([v]kl)w (5.2)

for v ∈ V , k, l = 0, . . . , N and w ∈ Gl(M) and

LM̂(−1)w − LM(−1)w (5.3)

for w ∈
∐N−1

n=0 Gn(M).

Let SN(M) = M̂/JM . Then SN(M) is a lower-bounded generalized V -module. Let

πSN (M) be the projection from M̂ to SN(M). Since M̂ is generated by M (in the sense of
Definition 3.1 in [H4]), SN(M) is generated πSN (M)(M) (in the same sense). In particular,
SN(M) is spanned by elements of the form

Resxx
(l+p)−n−1YSN (M)(x

LV (0)v, x)LSN (M)(−1)pπSN (M)(w) (5.4)

for v ∈ V , l = 0, . . . , N , n, p ∈ N and w ∈ Gl(M). For n ∈ N, let Gn(SN(M)) be the
subspace of SN(M) spanned by elements of the form (5.4) for v ∈ V , l = 0, . . . , N , p ∈ N
and w ∈ Gl(M).

Proposition 5.4 Let M be a graded AN(V )-module.

1. For 0 ≤ n ≤ N , Gn(SN(M)) = πSN (M)(Gn(M)) and for 0 ≤ n1, n2 ≤ N , n1 6=
n2, Gn1(S

N(M)) ∩ Gn2(S
N(M)) = 0. Moreover, SN(M) =

∐
n∈NGn(SN(M)) and

πSN (M)(M) =
∐N

n=0Gn(SN(M)).
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2. For n = 0, . . . , N ,

πSN (M)

(
n∐
j=0

Gj(M)

)
=

n∐
j=0

Gj(S
N(M)) ⊂ Ωn(SN(M)) (5.5)

and in the case that M is nondegenerate,

πSN (M)

(
N∐
j=n

Gj(M)

)
∩ Ωn(SN(M)) =

(
N∐
j=n

Gj(S
N(M))

)
∩ Ωn(SN(M)) = 0. (5.6)

3. In the case that M is nondegenerate, M is equivalent to a graded AN(V )-submodule of
GrN(SN(M)).

Proof. By definition, Gn(SN(M)) for 0 ≤ n ≤ N is spanned by elements of the form (5.4)
for v ∈ V , l = 0, . . . , N , p ∈ N and w ∈ Gl(M). Using the L(−1)-commutator formula for
the vertex operator map YSN (M), we see that it is also spanned by elements of the form

Resxx
l−k−1LSN (M)(−1)pYSN (M)(x

LV (0)v, x)πSN (M)(w) (5.7)

for v ∈ V , l, k = 0, . . . , N , p = 0, . . . , n − k and w ∈ Gl(M). Since elements of the forms
(5.2) and (5.3) are in JM , we see that (5.7) is in fact equal to

πSN (M)(LM(−1)pϑM([v]kl +Q∞(V ))w) ∈ πSN (M)(Gn(M)). (5.8)

Since LM(−1)pϑM([v]k(l+p) + Q∞(V ))w for v ∈ V , l, k = 0, . . . , N , p = 0, . . . , n − k and
w ∈ Gl(M) certainly span Gn(M) (in fact, we need only v = 1, k = l = n, p = 0 and
w ∈ Gn(W )) and elements of the form (5.7) for v ∈ V , l, k = 0, . . . , N , p = 0, . . . , n − k
and w ∈ Gl(M) span Gn(S(G)) for 0 ≤ n ≤ N , we see that elements of the form (5.8)
for v ∈ V , l, k = 0, . . . , N , p = 0, . . . , n − k and w ∈ Gl(M) also span Gn(SN(M)). Thus
we obtain Gn(SN(M)) = πSN (M)(Gn(M)) for n = 0, . . . , N . When n1 6= n2, we know
Gn1(M)∩Gn2(M) = 0. Then Gn1(S

N(M))∩Gn2(S
N(M)) = πS(G)(Gn1(M)∩Gn2(M)) = 0.

Since SN(M) is spanned by elements of the form (5.4) for v ∈ V , l = 0, . . . , N , n, p ∈ N and
w ∈ Gl(M), by the definition of Gn(SN(M)), we have SN(M) =

∐
n∈NGn(SN(M)). Since

Gn(SN(M)) = πSN (M)(Gn(M)) for n = 0, . . . , N , we have

πSN (M)(M) =
N∐
n=0

πSN (M)(Gn(M)) =
N∐
n=0

Gn(SN(M)).

By definition, for 0 ≤ j ≤ n ≤ N , Gj(S
N(M)) ⊂ Ωn(SN(M)). Then for j = 0, . . . , n,

πSN (M)(Gj(M)) = Gj(S
N(M)) ⊂ Ωj(S

N(M)) ⊂ Ωn(SN(M)).

So we obtain (5.5). By the nondegeneracy of M , nonzero elements of Gj(M) for N ≥ j > n

are not in Ωn(M̂). From the construction of M̂ , nonzero elements of the form (5.1), (5.2)
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or (5.3) are not in M ⊂ M̂ . In particular, we see that the intersection of J(M) with M is
0. So πSN (M)

∣∣
M

is injective. Since πSN (M)

∣∣
M

is injective, we see that nonzero elements of

Gj(S
N(M)) = πSN (M)(Gj(M)) for N ≥ j > n are not in Ωn(SN(M)). Thus we obtain (5.6).

For 0 ≤ n ≤ N and w ∈ Gn(M), we define fM(w) = πSN (M)(w) + Ωn−1(S
N(M)). Since

πSN (M)(w) ∈ Ωn(SN(M)), fM(w) ∈ Grn(SN(M)). Therefore we obtain a linear map fM :
M → GrN(SN(M)). It is clear from the definition that fM is in fact a graded AN(V )-module
map. If for some 0 ≤ n ≤ N and w ∈ Gn(M), fM(w) = 0, then πSN (M)(w) ∈ Ωn−1(S

N(M)).
But we have proved above that nonzero elements of πSN (M)(Gn(M)) are not in Ωn−1(S

N(M)).
So πSN (M)(w) = 0. Since πSN (M)

∣∣
M

is injective, we obtain w = 0. So fM is injective. Thus

M is equivalent to the nondegenerate graded AN(V )-submodule fM(M) of GrN(SN(M)).

Remark 5.5 As in the case of S(G) in Section 3, our construction of the lower-bounded

generalized V -module M̂ depends on the lower bound B of the real parts of the eigenvalues
of LM(0). But by Proposition 5.4, SN(M) depends only on M , not on B.

Theorem 5.6 For N ∈ N, the set of the equivalence classes of irreducible lower-bounded
generalized V -modules is in bijection with the set of the equivalence classes of irreducible
nondegenerate graded AN(V )-modules.

Proof. Recall the set [W]irr of the equivalence classes of irreducible lower-bounded gener-
alized V -modules in the proof of Theorem 3.7. Let [MN ]irr be the set of the equivalence
classes of irreducible nondegenerate graded AN(V )-modules. Given an irreducible lower-
bounded generalized V -module W , by Theorem 5.3, GrN(W ) = TN(W ) is an irreducible
nondegenerate graded AN(V )-module. Thus we obtain a map f : [W]irr → [MN ]irr given by
f([W ]) = [TN(W )], where [W ] ∈ [W]irr is the equivalence class containing the irreducible
lower-bounded generalized V -module W and [TN(W )] ∈ [MN ]irr is the equivalence class
containing the irreducible nondegenerate graded AN(V )-module TN(W ).

Given an irreducible nondegenerate gradedAN(V )-moduleM , we have the lower-bounded
generalized V -module SN(M) generated by πSN (M)(M). The main difference of the proof
here and the the proof of Theorem 3.7 is that we do not know whether SN(M) is irre-
ducible. So we need to take a quotient of SN(M). Since M is an irreducible nondegenerate
graded AN(V )-module, it is generated by any nonzero element. Since SN(M) is generated
by πSN (M)(M), it is also generated by any element w0 ∈ πSN (M)(M). Then by Theorem
4.7 in [H4], there is a maximal generalized V -submodule Jπ

SN (M)
(M),w0 of SN(M) such that

Jπ
SN (M)

(M),w0 does not contain w0 and SN(M)/Jπ
SN (M)

(M),w0 is irreducible. The maximal

generalized V -submodule Jπ
SN (M)

(M),w0 is in fact independent of w0 ∈ πSN (M)(M). We prove

this fact by proving that no nonzero element of πSN (M)(M) is in Jπ
SN (M)

(M),w0 . In fact, if a

nonzero w ∈ πSN (M)(M) is also in Jπ
SN (M)

(M),w0 , since the actions of components of vertex

operators on w are equal to the actions of elements of AN(V ) and M is generated also by
w, we see that w0 must also be in Jπ

SN (M)
(M),w0 . Contradiction. Thus Jπ

SN (M)
(M),w0 is in

fact the maximal generalized V -submodule of SN(M) such that it does not contain nonzero
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elements of M . We denote it by J̃M , which depends only on πSN (M)(M), or equivalently, M .

Thus we obtain a map g : [MN ]irr → [W]irr given by g([M ]) = [SN(M)/J̃M ].
We still need to show that the two maps above are inverses of each other. Let M be an ir-

reducible nondegenerate graded AN(V )-module. Since SN(M)/J̃M is irreducible, by Propo-

sition 3.3, GrN(SN(M)/J̃M) is an irreducible nondegenerate graded AN(V )-module. By
Proposition 5.4, M is equivalent to a nondegenerate gradedAN(V )-submodule ofGrN(SN(M)).
As in the proof of Proposition 5.4, we denote this equivalence by fM . Let πJ̃M : SN(M) →
SN(M)/J̃M be the projection map. Since J̃M ∩ πSN (M)(M) = 0, πJ̃M

∣∣
π
SN (M)

(M)
is injective

and in particular, is not 0. The V -module map πJ̃M induces a graded AN(V )-module map

GrN(πJ̃M ) : GrN(SN(M)) → GrN(SN(M)/J̃M). Since πJ̃M

∣∣
π
SN (M)

(M)
is not 0, the restric-

tion GrN(πJ̃M )
∣∣
fM (M)

of GrN(πJ̃M ) to the image of M under fM is also not 0. Consider

the AN(V )-module map GrN(πJ̃M ) ◦ fM : M → GrN(SN(M)/J̃M). Since fM is injective

and GrN(πJ̃M )
∣∣
fM (M)

6= 0, GrN(πJ̃M ) ◦ fM is not 0. But both M and GrN(SN(M)/J̃M) are

irreducible. So GrN(πJ̃M )◦fM must be an equivalence of graded AN(V )-modules. Moreover,

by Proposition 5.3, GrN(SN(M)/J̃M) is equivalent to TN(SN(M)/J̃M). So M is equivalent

to TN(SN(M)/J̃M). Thus [M ] = [TN(M̂/J̃M)]. This means f(g([M ])) = [M ]. So we obtain
f ◦ g = 1[MN ]irr .

Let W be an irreducible lower-bounded generalized V -module. By Theorem 5.3, TN(W )
is an irreducible AN(V )-module. We then have a lower-bounded generalized V -module

SN(TN(W )). By the universal property of T̂N(W ), there is a unique V -module map 1̂TN (W ) :

T̂N(W ) → W such that ̂1TN (W ))
∣∣
TN (W )

= 1TN (W ), where 1TN (W ) is the identity operator

on TN(W ). Since W is irreducible, the image of T̂N(W ) under 1̂TN (W ) is either 0 or W .

Since ̂1TN (W ))
∣∣
TN (W )

= 1TN (W ), the image of T̂N(W ) under 1̂TN (W ) cannot be 0 and thus

must be W . In particular, 1̂TN (W ) is surjective. Moreover, since JTN (W ) is generated by

(5.1), (5.2) and (5.3) with M = TN(W ), the image of JTN (W ) under 1̂TN (W ) is 0, that is,

JTN (W ) ∈ ker 1̂TN (W ). In particular, 1̂TN (W ) induces a surjective V -module map fTN (W ) :

SN(TN(W )) = T̂N(W )/JTN (W ) → W . Since JTN (W )∩TN(W ) = 0, fTN (W )(TN(W )) = TN(W ).

We have a maximal generalized V -submodule J̃TN (W ) of SN(TN(W )) as in the construc-

tion above such that TN(W ) ∩ J̃TN (W ) = 0 and SN(TN(W ))/J̃TN (W ) is irreducible. Since
fTN (W )(TN(W )) = TN(W ), ker fTN (W ) is a generalized V -submodule of SN(TN(W )) that

does not contain nonzero elements of M . Hence ker fTN (W ) ⊂ J̃TN (W ). Thus we obtain a

surjective V -module map from SN(TN(W ))/J̃TN (W ) to W . Since both SN(TN(W ))/J̃TN (W )

and W are irreducible, this surjective V -module map must be an equivalence. So we obtain
[SN(TN(W ))/J̃TN (W )] = [W ], that is, g(f([W ])) = [W ]. So we obtain g ◦ f = 1[W]irr . This
finishes the proof that [W]irr is in bijection with [MN ]irr.

Corollary 5.7 For N1, N2 ∈ N or equal to∞, the set of the equivalence classes of irreducible
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nondegenerate graded AN1(V )-modules is in bijection with the set of the equivalence classes
of irreducible nondegenerate graded AN2(V )-modules.

We now assume that V is a Möbius vertex algebra, that is, a grading-restricted vertex
algebra equipped with an operator LV (1) such that LV (1), LV (0) and LV (−1) satisfying
the usually commutator relations for the standard basis of sl2 and the usual commutator
formula between LV (1) and vertex operators for a vertex operator algebra. See, for example,
Definition 7.1 in [H4] for the precise definition. In this case, a lower-bounded generalized
V -module should also have an operator LW (1) satisfying the same relations as LV (1). We
assume that V is a grading-restricted Möbius vertex algebra in the remaining part of the
paper because in this case, a lowest weight of a lower-bounded generalized V -module is well
defined. See Remark 7.3 in [H4].

Proposition 5.8 Let V be a Möbius vertex algebra. Assume that AN(V ) for all N ∈ N are
finite dimensional (for example, when V is C2-cofinite and of positive energy by Theorem
4.6). Then every irreducible lower-bounded generalized V -module is an ordinary V -module
and every lower-bounded generalized V -module of finite length is grading restricted.

Proof. Since for N ∈ N, AN(V ) is finite dimensional, there are only finitely many irreducible
AN(V )-modules. By Theorem 5.6, there are also finitely many irreducible lower-bounded
generalized V -modules. For an irreducible lower-bounded generalized V -module W with
lowest weight hW and N ∈ N, TN(W ) is an irreducible nondegenerate graded AN(V )-module
by Proposition 5.3. Since AN(V ) is finite dimensional, TN(W ) is also finite dimensional. Thus
GN(W ) = W[hW+N ] ⊂ TN(W ) is also finite dimensional. Since this is true for N ∈ N, we see
that W is grading restricted. Since W is irreducible, LW (0) must act semisimply on W . So
W is an irreducible ordinary V -module.

Since as a graded vector space, a lower-bounded generalized V module W of finite length
is a finite sum of irreducible lower-bounded generalized V -modules, which are all ordinary
V -modules from what we have proved above. Then W must be grading restricted.

Since V is a Möbius verex algebra, the associative algebras A∞(V ) and AN(V ) for N ∈ N
have an additional operator LV (1) induced from the operator LV (1) acting on V . For a
lower-bounded generalized V -module W , there is also an operator LGr(W )(1) on the A∞(V )-
module Gr(W ) induced from LW (1) on W such that LGr(W )(1) maps Grn(W ) to Grn−1(W ).
Restricting LGr(W )(1) to GrN(W ), we obtain an operator LGrN (W )(1) on GrN(W ).

Definition 5.9 Let V be a Möbius vertex algebra. A graded AN(V )-module is a graded
AN(V )-module M when V is viewed as a grading-restricted vertex algebra together with an
operator LM(1) satisfying the following conditions:

1. LM(1) maps Gn(M) to Gn−1(M) for n = 0, . . . , N , where G−1(M) = 0.

2. The operators LM(1) satisfies the commutator relations

[LM(0), LM(1)] = −LM(1),
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[LM(1), LM(−1)] = 2LM(0),

[LM(1), ϑM([v]kl +Q∞(V ))] = ϑM([(LV (1) + 2LV (0) + LV (−1))v](k−1)l +Q∞(V )).

An graded AN(V )-module M is said to be nondegenerate if M is nondegenerate when V is
viewed as a grading-restricted vertex algebra. Let M1 and M2 be graded AN(V )-modules. An
graded AN(V )-module map from M1 to M2 is an AN(V )-module map f : M1 →M2 such that
f(Gn(M1)) ⊂ Gn(M) for n = 0 . . . , N , f ◦LM1(1) = LM2(1)◦ f , f ◦LM1(0) = LM2(0)◦ f and
f ◦LM1(−1) = LM2(−1)◦f . A graded AN(V )-submodule of a graded AN(V )-module M is an
AN(V )-submodule M0 of M such that with the AN(V )-module structure and the N-grading
induced from M and the operators LM(1)

∣∣
M0

, LM(0)
∣∣
M0

and LM(−1)
∣∣
M0

, M0 is a graded

AN(V )-module. A graded A∞(V )-module M is said to be generated by a subset S if M is
equal to the smallest graded AN(V )-submodule containing S, or equivalently, M is spanned
by homogeneous elements obtained by applying elements of AN(V ), LM(1) and LM(−1)
to homogeneous summands of elements of S. Irreducible and completely reducible graded
AN(V )-module are defined in the same way as in the case that V is a grading-restricted
vertex algebra.

From Proposition 5.2 and the property of LW (1), we immediately obtain the following:

Proposition 5.10 Let V be a Möbius vertex algebra. For a lower-bounded generalized V -
module W , GrN(W ) is nondegenerate graded AN(V )-module. Let W1 and W2 be lower-
bounded generalized V -modules and f : W1 → W2 a V -module map. Then f induces a
graded AN(V )-module map GrN(f) : GrN(W1)→ GrN(W2).

As is mentioned above, in the remaining part of this paper, we assume that V is a Möbius
vertex algebra. We shall not repeat this assumption except in the statements of propositions,
theorems, corollaries and so on. Lower-bounded generalized V -modules and graded AN(V )-
modules always mean those for V as a Möbius vertex algebra, not as a grading-restricted
vertex algebra. All the results that we have obtained above certainly still hold.

We recall the notion of lower-bounded generalized V -module of finite length. A lower-
bounded generalized V -module W is said to be of fnite length if there is a composition series
W = W0 ⊃ · · · ⊃ Wl+1 = 0 of lower-bounded generalized V -modules such that Wi/Wi+1 for
i = 0, . . . , l are irreducible lower-bounded generalized V -modules.

Proposition 5.11 Let V be a Möbius vertex algebra. Assume that the differences between
the real parts of the lowest weights of the irreducible lower-bounded generalized V -modules
are all less than or equal to N ∈ N. Then a lower-bounded generalized V -module W of finite
length is generated by ∐

<(hW )≤<(n)≤<(hW )+N

W[n] ⊂ ΩN(W ),

where hW is a lowest weight of W .
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Proof. Let W = W0 ⊃ W1 ⊃ · · · ⊃ Wl+1 = 0 be a finite composition series such that
Wi/Wi+1 for i = 0, . . . , l are irreducible lower-bounded generalized V -modules. As a graded
vector space, W is isomorphic to

∐l
i=0Wi/Wi+1. In particular, the lowest weight of one of

the irreducible lower-bounded generalized V -modules Wi/Wi+1 for i = 0, . . . , l is a lowest
weight hW of W .

Let wi ∈ Wi be homogeneous for i = 0, . . . , l such that wi + Wi+1 is a lowest weight
vector of Wi/Wi+1. Then by assumption, the differences between the real parts of the lowest
weights of Wi/Wi+1 for i = 0, . . . , l are less than or equal to N . Since one of these lowest
weights is a lowest weight hW of W , we see that the the differences between the real parts
of the lowest weights of Wi/Wi+1 for i = 0, . . . , l and <(hW ) are less than or equal to N .
In particular wi ∈

∐
<(hW )≤<(n)≤<(hW )+N W[n]. Since for each i, Wi/Wi+1 is generated by

wi + Wi+1, Wi is generated by wi and Wi+1. Thus W is generated by wi for i = 0, . . . , l.
Since wi ∈

∐
<(hW )≤<(n)≤<(hW )+N W[n], W is generated by

∐
<(hW )≤<(n)≤<(hW )+N W[n]. It is

clear that
∐
<(hW )≤<(n)≤<(hW )+N W[n] is a subspace of ΩN(W ).

Corollary 5.12 Let V be a Möbius vertex algebra. Assume that AN ′(V ) for all N ′ ∈ N are
finite dimensional (for example, when V is C2-cofinite and of positive energy by Theorem
4.6). Let N ∈ N such that the differences between the real parts of the lowest weights of the
finitely many (inequivalent) irreducible ordinary V -modules are less than or equal to N . Then
a lower-bounded generalized V -module W of finite length or a grading-restricted generalized
V -module W is generated by ∐

<(hW )≤<(n)≤<(hW )+N

W[n] ⊂ ΩN(W ).

Proof. Since by Proposition 5.8, the finitely many (inequivalent) irreducible lower-bounded
generalized V -modules are all ordinary V -modules, the condition in Proposition 5.11 is sat-
isfied. Also, by Corollary 3.16 in [H1], every grading-restricted generalized V -module is of
finite length. Thus W is generated by

∐
<(hW )≤<(n)≤<(hW )+N W[n].

Theorem 5.13 Let V be a Möbius vertex algebra. Assume that the differences between the
real parts of the lowest weights of the irreducible lower-bounded generalized V -modules are all
less than or equal to N ∈ N. Then a lower-bounded generalized V -module W of finite length
is irreducible or completely reducible if and only if the nondegenerate graded AN(V )-module
GrN(W ) is irreducible or completely reducible, respectively.

Proof. By Proposition 5.3, we already know that if W is irreducible, GrN(W ) = TN(W ) is
irreducibile. Conversely, assume that the nondegenerate graded AN(V )-module GrN(W ) is
irreducible. Let W0 be a nonzero generalized V -submodule of W . Let eW0 : W0 → W be
the embedding map. Then we have a graded AN(V )-moudle map Gr(eW0) : GrN(W0) →
GrN(W ) given by (Gr(eW0))(w0 + Ωn−1(W0)) = w0 + Ωn−1(W ) for n = 0, . . . , N and w0 ∈
Ωn(W0). Since eW is injective, Gr(eW0) is also injective . So (Gr(eW0))(Gr

N(W0)) is a
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nondegenerate graded AN(V )-submodule of GrN(W ). Since W0 is nonzero, GrN(W0) is
nonzero. Since GrN(W ) is irreducible and Gr(eW0) is injective, (Gr(eW0))(Gr

N(W0)) is
equal to GrN(W ). We now prove W0 = W . In fact, for n = 0, . . . , N , (Gr(eW0))(Grn(W0)) =
{w0 + Ωn(W ) | w0 ∈ Ωn(W0)}. So Grn(W ) = {w0 + Ωn−1(W ) | w0 ∈ Ωn(W0)}. For n = 0,
we obtain Ω0(W ) = Gr0(W ) = Gr(W0) = Ω0(W0). Assume that Ωn−1(W ) = Ωn−1(W0) for
n < N . Given w ∈ Ωn(W ), w + Ωn−1(W ) ∈ Grn(W ). By Grn(W ) = {w0 + Ωn−1(W ) | w0 ∈
Ωn(W0)}, there exists w0 ∈ Ωn(W0) such that w+Ωn−1(W ) = w0+Ωn−1(W ), or equivalently,
w − w0 ∈ Ωn−1(W ) = Ωn−1(W0). Thus w ∈ Ωn(W0). This shows Ωn(W ) = Ωn(W0) for
n = 0, . . . , N . In particular, ΩN(W ) = ΩN(W0). But by Proposition 5.11, W0 and W are
generated by ΩN(W0) and ΩN(W ), respectively. Since ΩN(W ) = ΩN(W0), we must have
W = W0. So W is irreducible.

If W is completely reducible, then by Proposition 5.3, GrN(W ) = TN(W ) is completely
reducible. Conversely, assume that the nondegenerate graded AN(V )-module GrN(W ) is
completely reducible. Then GrN(W ) =

∐
µ∈MMµ, where Mµ for µ ∈ M are irreducible

nondegenerate graded AN(V )-submodules of GrN(W ). For µ ∈M, since Mµ is a nondegen-
erate graded AN(V )-submodule of GrN(W ), we have Mµ

n ⊂ Grn(W ) = Ωn(W )/Ωn−1(W )
for n = 0, . . . , N . Let W µ be the generalized V -submodule of W generated by the set of
elements of the form wµ ∈ Ωn(W ) such that wµ + Ωn−1(W ) ∈ Mµ

n for for n = 0, . . . , N .
Since W µ is a generalized V -submodule of W , for v ∈ V , k, l ∈ N and wµ ∈ Ωl(W ) such that
wµ + Ωl−1(W ) ∈Mµ

l ,

Resxx
l−k−1YW (xLV (0)v, x)wµ + Ωk−1(W ) ∈ Grk(W µ).

By the definition of W µ, we see that Resxx
l−k−1YW (xLV (0)v, x)wµ ∈ W µ. Since wµ ∈ Ωl(W ),

Resxx
l−k−1YW (xLV (0)v, x)wµ = 0 for k ∈ −Z+. Therefore Resxx

l−k−1YW (xLV (0)v, x)wµ ∈ W µ

for k ∈ N are all the nonzero coefficients of YW (v, x)wµ. So W µ is closed under the action
of the vertex operators on W . Since Mµ is invariant under the actions of LGr(W )(0) and
LGr(W )(−1) and is a direct sum of generalized eigenspaces of LGr(W )(0), W µ is invariant
under the actions of LW (0) and LW (−1) and is a direct sum of generalized eigenspaces of
LW (0). Thus W µ is a generalized V -submodule of W .

Let wµ + Ωn−1(W
µ) ∈ Grn(W µ), where 0 ≤ n ≤ N and wµ ∈ Ωn(W µ) ⊂ Ωn(W ). By the

definition of W µ, we see that since wµ is an element of W µ, wµ+Ωn−1(W ) ∈ Gn(Mµ). So we
obtain a linear map from Grn(W µ) to Gn(Mµ) given by wµ + Ωn−1(W

µ) 7→ wµ + Ωn−1(W )
for wµ + Ωn−1(W

µ) ∈ Grn(W µ). These maps for n = 0, . . . , N give a map from GrN(W µ)
to Mµ. It is clear that this map is a graded AN(V )-module map. If for 0 ≤ n ≤ N ,
the image wµ + Ωn−1(W ) of wµ + Ωn−1(W

µ) ∈ Grn(W µ) under this map is 0 in Mµ, then
wµ ∈ Ωn−1(W ). But wµ ∈ Ωn(W µ) ⊂ W µ. So wµ ∈ Ωn−1(W

µ) and wµ + Ωn−1(W
µ) is 0 in

GrN(W µ). This means that this graded AN(V )-module map is injective. In particular, the
image of GrN(W µ) under this map is a nonzero nondegenerate graded AN(V )-submodule
of Mµ. But Mµ is irreducible. So GrN(W µ) must be equivalent to Mµ and is therefore
also irreducible. From what we have proved above, since GrN(W µ) is irreducible, W µ is
irreducible. Thus W is complete reducible.

From Corollary 5.12 and Theorem 5.13, we obtain the following result:
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Corollary 5.14 Let V be a Möbius vertex algebra. Assume that AN ′(V ) for all N ′ ∈ N are
finite dimensional (for example, when V is C2-cofinite and of positive energy by Theorem
4.6). Let N ∈ N such that the differences between the real parts of the lowest weights of
the finitely many (inequivalent) irreducible ordinary V -modules are less than or equal to
N . Then a lower-bounded generalized V -module W of finite length or a grading-restricted
generalized V -module W is a direct sum of irreducible ordinary V -modules if and only if the
nondegenerate graded AN(V )-module GrN(W ) is completely reducible.

Proof. Since AN
′
(V ) is finite dimensional, there are only finitely many (inequivalent) irre-

ducible nondegenerate graded AN
′
(V )-modules. By Theorem 5.6, there are finitely many

irreducible lower-bounded generalized V -modules. By Corollary 5.12, these finitely many
irreducible lower-bounded generalized V -modules are all irreducible ordinary V -modules.
There exists N ∈ N such that the differences between the real parts of the lowest weights
of the finitely many irreducible ordinary V -modules are less than or equal to N . For such
N , the condition in Theorem 5.13 holds. So by Theorem 5.13, a lower-bounded generalized
V -module W of finite length is a direct sum of irreducible ordinary V -modules if and only
if GrN(W ) is completely reducible as a nondegenerate graded AN(V )-module.

By Corollary 3.16 in [H1], every grading-restricted generalized V -module is of finite
length. Thus the conclusion holds also for a grading-restricted generalized V -module W .

Remark 5.15 Note that the assumption or condition on the lowest weights of irreducible
V -modules in Proposition 5.11, Corollary 5.12, Theorem 5.13 and Corollary 5.14 can be
weakened to the assumption or condition that the differences between the real parts of
the lowest weights of the irreducible lower-bounded generalized V -modules appearing as a
quotient in a composition series of W are all less than or equal to N ∈ N. This is because
the proofs used only this weaker assumption or condition. For the study of some particular
lower-bounded generalized V -modules of finite length or some grading-restricted generalized
V -modules, this weaker assumption or condition is certainly easier to verify than the more
general ones in the statements of these results.
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