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Abstract

Let V be a vertex operator algebra and A®(V) and AN(V) for N € N the asso-
ciative algebras introduced by the author in [H5]. For a lower-bounded generalized
V-module W, we give W a structure of graded A*(V')-module and we introduce an
A>®(V)-bimodule A® (W) and an AN (V)-bimodule A" (W). We prove that the space
of (logarithmic) intertwining operators of type (WVIVI}/2) for lower-bounded generalized
V-modules Wy, Wy and W3 is isomorphic to the space Hom goo(y) (A% (W1) ® 400 (v
Wo, Ws3). Assuming that Wa and W4 are equivalent to certain universal lower-bounded
generalized V-modules generated by their AV (V)-submodules consisting of elements
of levels less than or equal to N € N, we also prove that the space of (logarithmic) inter-
twining operators of type (WI;VI%) is isomorphic to the space of Hom 4 v (y) (AN (W) AN (V)
QR (Wa), O (Ws)).

1 Introduction

In [H5], for a grading-restricted vertex algebra V', the author introduced associative algebras
A>*(V) and AN(V) for N € N and proved basic properties of these algebras and their modules
in connection with V' and lower-bounded generalized V-modules. In the present paper, we
study the connections between (logarithmic) intertwining operators among lower-bounded
generalized V-modules and module maps between suitable modules for these associative
algebras in the case that V' is a vertex operator algebra so that there is a conformal vector
w € V. The results of the present paper will be used in the last step of a proof of the modular
invariance of (logarithmic) intertwining operators in the case that V satisfies the positive
energy condition (or CFT type) and Cs-cofiniteness condition in a paper in preparation.
For simplicity, we shall omit “(logarithmic)” in “(logarithmic) intertwining operator” in this
paper so that by an intertwining operator, we always mean an intertwining operator which
might contains logarithm of the variable.

In the case N = 0, the algebra A°(V') was proved in [H5] to be isomorphic to the Zhu
algebra A(V') (see [Z]). In this case, there is a theorem of Frenkel and Zhu [EZ] stating
that for irreducible V-modules W7, Wy and W3, the space of intertwining operators of type

(WZV;/Q) is linearly isomorphic to Homaw(A(W1) @ vy Q(W2), Q(Ws)), where Q(W5) and



Q(Ws) are the lowest weight spaces of Wy and Wi, respectively, and A(W;) is an A(V)-
bimodule introduced in the paper [FZ]. A proof of this theorem was given by Li in [L]
under the assumption that every lower-bounded generalized V-module (or N-gradable weak
V-module) is completely reducible. In the same paper [L], a counterexample was also given
to show that without this assumption, the theorem is not true. Since this result needs this
semisimplicity assumption, it cannot be used to study intertwining operators in the case
that lower-bounded generalized V-modules might not be completely reducible. In [HY1] and
[HY?2], under strong assumptions on W5 and W but without this semisimplicity assump-
tion, Yang and the author proved that the space of intertwining operators of type (W%”VQ)
is linearly isomorphic to Homa, () (Ax(W1) @4y ) QX (W), Q% (W3)), where O (W2) and
Q% (W3) are suitable subspaces of W, and W3, respectively, and Ay (W;) is a bimodule for
the generalization Ax (V') of A(V) by Dong, Li and Mason [DLM].

In the present paper, for a lower-bounded generalized V-module W, we introduce an
A>(V)-bimodule A*(W) and an AY(V)-bimodule A (W) for each N € N. We prove
that the space of (logarithmic) intertwining operators of type (WZVSVQ) for lower-bounded
generalized V-modules Wy, W, and W is isomorphic to the space Hom oo (1) (A% (W) @ a0 (v
Wy, W3). Assuming that Wy and W} are certain universal lower-bounded generated by their
AN(V)-submodules consisting of elements of levels less than or equal to N € N, we also
prove that the space of (logarithmic) intertwining operators of type (Wlf/lva) is isomorphic to
the space of Hom 4v v (AN(W) ®an vy Wa, Wi).

Here we give more discussions on the main results. In [H5], the associative algebra A (V)
is defined using the associated graded spaces given by suitable ascending filtrations of lower-
bounded generalized V-modules for a grading-restricted vertex algebra. These associated
graded spaces are by definition nondegenerate graded A*(V)-modules (see [H5]). But it
is not easy to work with the associated graded space of a lower-bounded module, since in
general it is very difficult to determine the associated graded space explicitly. In this paper
we shall work with a canonical N-grading W = [], .y W|j») of a lower-bounded generalized
V-module W and show that W itself also has a structure of graded A*(V)-module. We
construct the structure of graded A*(V')-module on W by showing that W is in fact a
quotient of the associated graded space of another lower-bounded generalized V-module.
But in general this structure of a graded A (V')-module on W might not be nondegenerate
(see [H5]). This result holds for a grading-restricted vertex algebra V' which might not have
a conformal vector.

Given a lower-bounded generalized V-module W, let U>(W) be the space of all column-
finite matrices with entries in W and doubly index by N. We introduce left and right
actions of A>(V) on U>®(W). Let Wy and W5 be lower-bounded generalized V-modules
and let ) be an intertwining operator of type (WWV?,Q). We introduce a linear map vy :
U>(W) — Hom (W5, W3). Note that A>(V) is a quotient of a nonassociative algebra U (V)
of column-finite matrices with entries in V' and doubly index by N. Since W5 and Wj
are left A>°(V)-modules, Hom(W5, W3) has a natural structure of A% (V)-bimodule and in
particular, a natural structure of U*°(V)-bimodule. We prove that ¥y commutes with the
left and right actions of A>(V'). Let Q>°(W) be the intersection of ker ¢y, for all such lower-



bounded generalized V-modules W5 and W3 and intertwining operators ) of type (WWV?,Z).
Then A®(W) = U>®(W)/Q>*(W) is an A*(V)-bimodule. The construction of the A>(V)-
bimodule A*(W) works for a grading-restricted vertex algebra V' which might not have a
conformal vector.

Given lower-bounded generalized V-modules W7, W5, W3 and an intertwining operator
Y of type (WVIVSVQ), we prove that the map ¥y discussed above in the case W = W, gives an
A*(V)-module map p(Y) : A% (W1) ® a0 (vy Wo — Ws. In particular, we obtain a linear map
p: VII,/‘V,f’% — Hom poo (vy (A% (W1) @ ge(vy Wa, W), where VV%% is the space of intertwining
operators of type (WVIVSVQ) Our first main theorem states that p is an isomorphism. In the
proof of the first main theorem, we need to assume that V' is a vertex operator algebra which
has a conformal vector. This first main theorem can be generalized to a grading-restricted
vertex algebra. But in this more general case, since there is no conformal vector, one has to
introduce additional structures so that left actions of L(—1) on the A*(V)-bimodules can
be introduced.

Let N € N and W a lower-bounded generalized V-module. Let Q% (W) = ]_LILO Winy-
Then Q% (W) is in fact an AN (V)-module. We consider the space UN (W) of (N+1)x (N+1)
matrices with entries in W. Then UM (W) can be viewed as a subspace of U®(W). In
particular, the cosets in A®(W) containing elements of UY (W) form an A (V)-bimodule
AN(W). The construction of the AY(V)-bimodule AN(W) works for a grading-restricted
vertex algebra V.

Given lower-bounded generalized V-modules Wy, W5, W3 and an intertwining operator )
of type (WZVSVQ), the A>°(V)-module map p(Y) : A% (W1)® g vy Wa — Ws induces an AN (V)-
module map p" (V) : AN(W1) @ vy QX (Wa) — Q% (W3). Then we obtain a linear map
PN Vi, — Homw 1y (AN (W) @ an vy Q% (Wa), Q% (W3). We prove that pV is injective.
Our second main theorem states that pv is an isomorphism when W, and W} are certain
universal lower-bounded generalized V-mdoules generated by the AN (V)-modules Q% (W5)
and Q% (W3), respectively. This second main theorem is proved using the first main theorem
above. In particular, V' is also assumed to be a vertex operator algebra. Again, this theorem
can be generalized to the case that V is a grading-restricted vertex algebra.

The main motivation of this paper is the modular invariance of intertwining operators
in the nonsemisimple (or logarithmic) case. In [HI], the author proved the conjecture of
Moore and Seiberg on modular invariance of intertwining operators for rational conformal
field theories (see [MS]). Mathematically this modular invariance is for intertwining op-
erators among modules for a vertex operator algebra V satisfying the conditions that V
is of positive energy (or CFT-type), V is Cy-cofinite and every lower-bounded generalized
V-module (or every N-gradable weak V-module) is completely reducible. After the conver-
gence and analytic extensions of shifted g-traces of products of intertwining operators and
the genus-one associativity is proved, the proof of the modular invariance is reduced to the
proof that a genus-one one-point correlation function can always be written as the analytic
extension of a shifted g-trace of an intertwining operator. It is in this last step of the proof
that the theorem of Frenkel and Zhu mentioned above is used.

In [F1] and [EF2], Fiordalisi proved the convergence and analytic extension property of



shifted pseudo-g-traces of products of intertwining operators and the genus-one associativity
under the condition that V' is of positive energy (or CFT-type) and V is Cs-cofinite, but
without assuming the condition that every lower-bounded generalized V-module (or every
N-gradable weak V-module) is completely reducible. The proof of the modular invariance
in this nonsemisimple (or logarithmic) case is then also reduced to the proof that a genus-
one one-point correlation function can always be written as a shifted pseudo-g-trace of an
intertwining operator. But in this case, the theorem of Frenkel and Zhu mentioned above
cannot be used. In a paper in preparation, we shall give this last step using the results
obtained in the present paper.

This paper is organized as follows: We recall in Section 2 the associative algebras A>(V)
and AN(V) and graded A*(V)- and AY(V)-modules introduced in [H5]. In Section 3, we
give an A (V')-module structure to a lower-bounded generalized V-module W . In Section
4, we construct the A% (V')-bimodule A> (W) from W. Our first main theorem stating that p
is an isomorphism is formulated and proved in Section 5. Our second main theorem stating
that pY is an isomorphism when when Wy and W} are certain universal lower-bounded
generalized V-modules generated by the AN (V')-modules Q% (W5) and Q% (W3), respectively,
is formulated and proved in Section 6.

Acknowledgment I am grateful to Robert McRae for helpful comments.

2 The associative algebras A*(V) and A" (V) and graded
A>®(V)- and AY(V)-modules

In this section, we recall the associative algebras A< (V') and AN (V) for N € N for a grading-
restricted vertex algebra V and A%°(V)- and AN (V)-graded modules introduced in [H5].

Let V' be a grading-restricted vertex algebra. Let U*(V') be the space of column-finite
infinite matrices with entries in V', but doubly indexed by N instead of Z,. Elements of
U (V) are of the form v = [vy] for vy, € V, k,l € N such that for each fixed | € N, there
are only finitely many nonzero vy;. For k,l € N and € V| let [v]; be the element of U>*(V)
with the entry in the k-th row and [-th column equal to v and all the other entries equal to
0.

We define a product ¢ on U(V) by

usv = [(u<> U)kl]
for u = [ug], 0 = [vy]| € U*(V), where

l
(Wov)i =Y Res,Tsra (@ + 1)) (1 + 2) Vi (1 + 2) 2 Qg vy
n==k

n

!
—k —-1-1
E ( o >Resmxk+nlm1(1 + )Yy (1 + x)LV(O)ukn, )i
m
k m=0

(2.1)



for k,1 € N, where

i Nkt —1—1\
Tk+l+1<<x+1) k+n—l 1): < )JJ k+n—l1 1

m
m=0

is the Taylor polynomial in 271 of order k+1+1 of (x +1)~*™~!=1. Then U*>(V) equipped
with ¢ is an algebra but in general is not even associative. By definition, for u,v € V and
k,m,n,l € N, by definition,

[U]km <& [U}nl =0

when m # n and

[Wn © [V = Resy T ((x 4+ 1) 7F 0 (14 2)' [V (1 + ) v Oy, )v] ol

n —k _ l _ ]_
_ Z < +n )ReSm$k+nlm1(1 + ) Yy ((1+ )" Oy, z)v] Kl
m
m=0
(2.2)

Since [u]gm © [v]n = 0 when m # n, we need only consider [u]g, ¢ [v]y for u,v € V and
k,n,l € N.

Let 1% be the element of U (V) with diagonal entries being 1 € V' and all the other
entries being 0.

Let W be a lower-bounded generalized V-module. For n € N, let

QW) ={weW | (Yw)g(v)w = 0 for homogeneous v € V,wtv —k —1 < —n}.
Then
2, (W) C 2, (W)

for ny < ns and
W= JQ.m).

neN
So {2, (w) }nen is an ascending filtration of W. Let

Gr(W) =Y Gr,(W)

be the associated graded space, where
Gr,(W) =Q,(W)/Qp_1(W).

Sometimes we shall use [w], to denote the element w + Q,,_1(W) of Gr,(W), where w €
Q,(W).

For v = [vy] € U>(V), where vy € V and k,l € N, we have an operator Y¢,uw)(b) on
Gr(W) defined by

ﬁGT(W)(U)l‘O = Z ReSx.’ﬂl_k_l}/W(.’ELV(O)Ukl, x)ﬂgrl(w)m,
kN



for v € Gr(W), where g, vy is the projection from Gr(W) to Gri(W). Then we have a
linear map

ﬁGr(W) : UOO(V) — End GT’(W)
D — 19GT(W)<U)'

Let @>°(V') be the intersection of ker ¥¢, ) for all lower-bounded generalized V-modules W
and A®(V) =U>(V)/Q>(V).
The following result gives the associative algebra A>(V):

Theorem 2.1 ([H5]) The product o on U*(V) induces a product, denoted still by o, on
A®(V) = U=(V)/Q>=(V) such that A>®(V') equipped with < is an associative algebra with
1°° + Q>*(V) as identity. Moreover, the associated graded space Gr(W) of the ascendant
filtration {Q,(W)}nen of a lower-bounded generalized V -module W is an A (V')-module.

We also need the following notion introduced in [H5]:

Definition 2.2 Let G be an A*°(V)-module with the A*(V')-module structure on G given
by a homomorphism J¢ : A°(V) — End G of associative algebras. We say that G is a
graded A>(V')-module if the following conditions are satisfied:

1. G is graded by N, that is, G = [[,,cy G, and for v € V, k,1 € N, Jg([v] + Q>(V))
maps G, to 0 when n # [ and to G}, when n = |[.

2. G is a direct sum of generalized eigenspaces of an operator Lg(0) on G, G, for n € N
are invariant under L (0) and the real parts of the eigenvalues of L;(0) have a lower
bound.

3. There is an operator Lg(—1) on G mapping G,, to G, 41 for n € N.

4. The commutator relations

[LG(O)a LG(_l)] = LG(_1)7
[La(0), Vg ([v]m + Q7 (V)] = (k = Dda([v]m + Q> (V)),
[La(—1),Ya([v] + Q™ (V)] = Ya([Lv(=1)v]ks1y + Q™ (V)

hold for v € V and k,l € N

A graded A*(V)-algebra G is said to be nondegenerate if it satisfies in addition the following
condition: For g € G, if Vg([v]o + Q>*(V))g = 0 for all v € V, then g = 0. Let G; and
G5 be graded A>®(V)-modules. A graded A (V')-module map from G, to Gy is an AN (V)-
module map f : Gy — Gq such that f((G1),) C (G2)n, f o L, (0) = Lg,(0) o f and
foLg (—1) = Lg,(—1)o f. A graded A*(V)-submodule of a graded A*(V)-module G is
an A% (V)-submodule of G that is also an N-graded subspace of G and invariant under the
operators Lg(0) and Lg(—1). A graded A*(V)-module G is said to be generated by a subset
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S if G is equal to the smallest graded A*(V')-submodule containing S, or equivalently, G
is spanned by homogeneous elements with respect to the N-grading and the grading given
by Lg(0) obtained by applying elements of A>*(V'), Ls(0) and Lg(—1) to homogeneous
summands of elements of S. A graded A>(V)-module is said to be irreducible if it has no
nonzero proper graded A*(V)-submodules. A graded A (V)-module is said to be completely
reducible if it is a direct sum of irreducible graded A*(V')-modules.

We now recall the subalgebras AN (V) of A*°(V) also introduced in [H5]. For N € N,
let UN (V) be the space of all (N + 1) x (N + 1) matrices with entries in V. It is clear
that UM (V) can be canonically embedded into U$(V) as a subspace. We view UN (V) as a
subspace of Ug°(V). As a subspace of Us°(V), UN (V) consists of infinite matrices in U>(V)
whose (k,[)-th entries for £ > N or [ > N are all 0 and is spanned by elements of the form
[V]gg forv eV, k1=0,...,N.

By , for u,v € V and k,n,l =0,..., N,

[]gn © V] = ResyThgrpr ((z + 1)7F 0 (1 + 1) (Y ((1+ 2)E Oy, z)v] € UN(v). (2.3)
So UN(V) is closed under the product o. Let
AY(V) ={o+Q*(V) [0 € UN(V)} = maw(y (UN(V)),

where 7 40 (v) is the projection from U>(V) to A®(V). Then AN (V) is spanned by elements
of the form [v]g; +Q>*(V) for v € V and k,l =0,...,N. Let 1V = Zgzo[l]kk, that is, 1V is
the element of U™ (V') with the only nonzero entries to be equal to 1 at the diagonal (k, k)-th
entries for K =0,..., N.

Proposition 2.3 The subspace AN (V) is closed under o and is thus a subalgebra of A®(V)
with the identity 1V + Q> (V).

We also have the following notion introduced in [H5]:

Definition 2.4 Let M be an A" (V)-module M with the AY(V)-module structure on M
given by ¥y : AN(V) — End M. We say that M is a graded AN (V')-module if the following
conditions are satisfied:

1. M =[], Gu(M) such that for v € V and k,1 = 0,..., N, Op([v] + Q¥(V)) maps
Gn(M) for 0 <n < N to 0 when n # [ and to G(M) when n = .

2. M is a direct sum of generalized eigenspaces of of an operator Ly (0) on M. G, (M)
for n € N are invariant under L,/(0) and the real parts of the eigenvalues of L/(0) has
a lower bound.

3. There is a linear map Ly (—1) : [[2) Gn1(M) — [T, Gn(M) mapping G, (M) to
Gni1(M) forn=0,...,N — 1.



4. The commutator relations

[Lar(0), Lar(—1)] = Ly (1),
[Lar(0), Onr([v]i + Q@ (V)] = (k — DVu([v]m + Q% (V)),
[Lar(—=1), Ipr([v]p + Q7 (V)] = I ([Ly (= 1)v] iy + Q(V))

hold forv eV, k,l=0,...,Nand p=0,...,N — 1.

A graded AN (V)-module M is said to be nondegenerate if the following additional condition
holds: For w € Gy(M), if p([v]or + Q°(V))w = 0 for all v € V, then w = 0. Let M; and
M, be graded AN(V)-modules. An graded Ay (V)-module map from My to My is an AN (V)-
module map f : My — M, such that f(G,(My)) C G,(My) forn=0...,N, fo Ly, (0) =
Ly, (0)o fand fo Ly, (—1) = Ly, (—1)o f. A graded AN (V)-submodule of a graded AN (V)-
module M is an AY(V)-submodule My of M such that with the AY(V)-module structure,
the N-grading induced from M and the operators Ly, (0) ’M and Ly(—1) ’M , My is a graded
AN(V)-module. A graded A°°(V)-module M is said to be generated by o subset S if M is
equal to the smallest graded A" (V)-submodule containing S, or equivalently, M is spanned
by homogeneous elements obtained by applying elements of AN (V), Ly;(0) and Ly (—1) to
homogeneous summands of elements of S. A graded AN (V)-module is said to be irreducible

if it has no nonzero proper graded AN (V)-modules. A graded AY(V)-module is said to be
completely reducible if it is a direct sum of irreducible graded A" (V')-modules.

3 Lower-bounded generalized V-modules and A>(V)-
modules

In this section, V is a grading-restricted vertex algebra. In particular, we do not assume
that V' has a conformal vector. We give an A*(V)-module structure to a lower-bounded
generalized V-module W in this section. For the associative algebra A>(V), its subalgebras,
its modules and related structures and results, see Section 2 and [H5].

Let W be a lower-bounded generalized V-module. Let W* for u € C/Z be the generalized
V-submodule of W spanned by homogeneous elements of weights in u. Let

PW) ={neC/Z|W" #0}.

We call I'(W) the sets of congruence classes of weights of W.
For p € I'(W), there exists h* € C such that

WH = H Winkgn)

neN

w= ][ wr= LT W

pel (W) nel (W) neN

and Wiy # 0. Then
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For n € N, let
WH_”JJ = H W[h“+n}-

pel (W)

Then W has a canonical N-grading
W= Wi

For n € N, we call the space W, the n-the level of W and for an element w € W),, we
call n the level of w. From the definition, we have W, C Q,(W).
We define a linear map dy : U (V) — End W by

D ([v]p)w = (5lnResxa:l_k_1YW(a:LV(o)v, T)w

for k,l e N,v eV and w € Wj,.

We now want to show that W is in fact a graded A*(V)-module. For simplicity, we
discuss only the case that W = W# = [, .y Winnn for some p € I'(IW). The general case
follows immediately from the decomposition W =[] perowy WH.

We need to use the construction in Section 5 of [H2]. Take the generating fields for the
grading-restricted vertex algebra V' to be Yy (v, z) for v € V. By definition, W is a direct sum
of generalized eigenspaces of Ly, (0) and the real parts of the eigenvalues of Ly, (0) has a lower
bound R(h*) € R. We take M and B in Section 5 of [H2] to be W and R(h*), respectively.
Using the construction in Section 5 of [H2], we obtain a universal lower-bounded generalized
V-module /Wg(‘,i). For simplicity, we shall denote it simply by w.

By Theorem 3.3 in [H3] and the construction in Section 5 of [H2] and by identifying
elements of the form (¢%)_101 with basis elements w® € W for a € A for a basis {w”}eca
of W, we see that W is generated by W (in the sense of Definition 3.1 in [H3]). Moreover,
after identifying (1/1%)_1701 with basis elements w® € G for a € A, Theorems 3.3 and 3.4 in
[H3] say that elements of the form Ly (—1)Pw® for p € N and a € A are linearly independent

and W is spanned by elements obtained by applying the components of the vertex operators
to these elements. In particular, W can be embedded into W as a subspace. So we shall
view W as a subspace of . But note that W is “not a V-submodule of W since W is not
invariant under the action of vertex operators on W, -

Smce W = [1,,en Wiks4n), from the construction of W in Section 5 of [H2], we also have

= [en W[hu_t,_n} For n € N, Wiy is a subspace of W[hu_t,_n}

Lemma 3.1 Forn € N, Wipuy, N Qn_l(W) = 0. In particular, we can view Wiy as a
subspace of Gr,(W).

Proof. Let w € Wipngpn N Qn_l(/W). Then for homogeneous v € V,

Res, 2" Yo (25 Ov, 2)w = (Y )wi 4n1 (0)w = 0.



When w is a basis element w® of W as in [H2], the element (Y5 )wt +n—1(v)w® can be written
as (Y/m?)wtv+n—1(v)(¢%)—l701- Since w® # 0 as a basis element,

(Vi Dat no1 (0) (1) 1,01 = 0 (3.1)

for v € V and a € A is a relation in W with the left-hand side being of weight h*. But
relations in W of weight A* (or of level 0) and involving the operator (¢%)_10 must have
elements of V' not equal to 1 to the right of (¢%.)_10 (see Section 5 of [HQ]) So 1.} is not

a relation in W. Thus we must have w® = 0 for a € A, that is, Winsgn) N 2y 1(W) 0.
By the construction of W Wihugn) C Q (W) We define a linear map from Wiy, to

Grn(W) by w — w + 2, 1(W) Since Wh,u+n] N Q- 1(W) = 0, this map is injective. So we

can view Wipsgp) as a subspace of G’rn(W) |

Let Jy be the generalized V-submodule of W generated by elements of the forms
Res, 2 " 1Yo (25 Dv, 2)w — Res, 2 iy (25 Qv 2)w (3.2)
forveV,kleN, we Wpuy and
Lz (—1)w — Ly (=1)w (3.3)
for w € W. Let
Grul(Jw) = {w + Qua(W) | w € Qu(Ji)} € Gra(IV)

w) = [ Gulw).

neN

for n € N and let

Since Jy is a generalized V-submodule of W and Grn(/W) is an A*°(V)-module, G(Jw) is
an A*(V)-submodule of Gr(WW).

Proposition 3.2 The N-graded space W with the action of U (V') given by dw induces a
graded A>(V')-module structure on W canonically equivalent to the quotient A®(V')-module

Gr(W)/G(Jw).

Proof. As we have done above, we prove only the case that W = W* for some u € T'(W).
The general case follows immediately.
Since W is generated by W, Wis spanned by elements of the form
Res, 2 " 1Y (22 Vv, 2)w
= (Res, 2" Ve (257 O, 2)w — Res, 2™ iy (257 O, 2)w)
+ Res, 2! F 1Yy (22 O, 2)w
eJw+W
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forveV,kleN, weWpuy and
Lw<—1)w = (Lw(—l)w — LW<—1)U}) + Lw(—l)w ceJw+W

for w € W. From the definition of Jy, we have Jyy NI = 0. Hence W= Jw @& W. From

—~

this decomposition and Lemma , we have Gr,(W) = G,(Jw) ® Wihugn and Gr(W) =
G(Jw) @ W. Thus the N-graded space W is canonically isomorphic to GT(/W) J/G(Jw).
Since GT(W) is an A*(V)-module and G(Jyw ) is an A*°(V)-submodule of GT(/W), we see
that Gr(/W)/G(JW) as a quotient of A*(V) is also an A*(V')-module.

Let f be the canonical isomorphism from W to Gr(/I/I?) /G(Jw). Then

—

f(w) = (w+ Q2 (W) + Gi(Jw)

for w € Wipuyy. We use U, /(5 ([V]in) 0 to denote the action of [v]x, on w € GT(W)/G(JW).
Then

ﬁGr(W\)/G(JW)([U]kn>f<w)
=Y i)/6) ([Uln) (w0 + Q1 (W) + Gi(Jw))
= 0 (Res, 2"y (a2 Ov, 2)w + Q1 (W) + Gi(Jw)
= S (Res, 2t 1y (v Ou, 2)w + Ql,l(W)) + Gi(Jw)

—

= (w([vlin)w + Qi (W) + Gi(Jw)
= fWw ([v]rn)w)

forveV, kl,neNand w € Wypuyy. So the isomorphism f from W to GT(W)/G(JW)

commutes with the actions of A*(V') on W and GT’(W)/G(Jw). Thus f is an A*(V)-module
map. Since f is also a linear isomorphism, it is an equivalence of A*°(V)-modules.

The four conditions for W to be a graded A>°(V)-module in Definition [2.2 are in fact the
properties of the N-grading of W, the operators Ly (0) and Ly (—1) and Jy . |

Remark 3.3 Note that in general, W is not nondegenerate as a graded A*(V')-module (see
Definition .

Remark 3.4 It is easy to see that kerdy C ker Jg,(w). In fact, let v € ker Jy,. Then for
k,l e N, we Wy, mwy, dw(b)w = 0, where myy,  is the projection from W to Wx. By
the definition of Jy, we know that my, Jw(v)w must be of the form Jy ([v]y)w for some
v € V. So we have Yy ([v])w = 0, or explicitly, Res, ' * 1Yy (21v v, 2)w = 0. Then we
also have

T wyOcron) (0)[w] = Far ([V]w) ]y = [Res,z™ Yo (2" Qv 2)w]y, = 0

in Gr(W). Since k,l and w are arbitrary, we obtain Jg,uwy(v) = 0, that is, v € ker Vg w).
So ker ¥y C ker Y, w). This fact together with Proposition means that Q> (V) is also
equal to the intersection of ker ¢y, for all lower-bounded generalized V-modules W. This fact
gives new definitions of Q*°(V') and A (V). In this paper, we shall use these new definitions.
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4 Intertwining operators and A>(V)-bimodules

In this section, V' is still a grading-restricted vertex algebra which does not have to have a con-
formal vector. We construct an A (V')-bimodule A*(W) from a lower-bounded generalized
V-module using all intertwining operators of type (WWVf,Q) for all lower-bounded generalized
V-modules W5 and Wj.

Let U (W) be the space of all column-finite infinite matrices with entries in W and
doubly index by N. For w € W and k,l € N, we use [w]y to denote the infinite matrix
in U (W) with the (k,[)-th entry equal to w and all the other entries equal to 0. Then
elements of U*°(W) are infinite linear combinations of elements of the form [w]y; for w € W
and k,[ € N with only finitely many elements of such a form for each fixed k,l € N. We can
use elements of the form [w]y for w € W and k,l € N to study U>*(W).

ForveV,weW and k,m,n,l € N, we define

[V]km © [W]n =0
when m # n and

[V]kn © (W] = ReSsz+z+1((f + 1) (1 a)! Vi (1 + 2)2 Qv 2)w],

k —1—-1
= Z ( o )Resxx’””lml(l + ) (Y ((1+ z)Ev @y, z)w] .
(4.1)
This is a left action of U*°(V) on U (W), that is, a linear map from U>(V) ® U> (W) to

U>(W).
Forv eV, we W and k,m,n,l € N, we define

[w]km % [U]nl =0
when m # n and

[W]kn © [V] = Resy T ((x + 1)~ (1 4 2)? [YW((l + x)_LV(O)v, —z(1+ x)_l)w}
B Z < k +n— [ — 1) Resxaf—k+n_l_m_l(1 + CL’)k

. [YW((l +2) Oy —2(1 + z) Hw]

kl

. (4.2)

We then obtain a right action of U*(V') on U (W), that is, a linear map from U>®(W) ®
U>(V) to U (W). With the left and right actions of U*(V'), U (W) becomes a U*(V)-
bimodule. The definition (4.2]) can also be rewritten using the L(0)-conjugation formula
as

[W]kn © [V]m

= Res, Tiyrr1((z + 1) 7F (1 + 2)F (14 2) " OV (v, —2) (1 + 2)"v O]

12



= <—k;+n—l—1
0

) Reswx—k—i-n—l—m—l (1 + SL‘)k
m

m=

[+ 2) O (o, —a) (1 + 2)P O] (4.3)

kL

The definition (4.2) can also be rewritten using the right vertex operator map Y;l, : W@V —
W[z, x| defined by
Yy (w, z)v = e EW DY, (v, —2)w (4.4)

for v € Vand w € W (see [FHL]). To do this, we need a formula involving Ly (—1) and
Ly (0). It is straightforward to show

diea:yLmn(l ) EwO) (1 )= Wlw(-D+Lw ) _
x

Then e™vEw (=D (1 4 2)EwO) (1 4 )~ Wlw(D+Lw(0) must be independent of x. Setting z = 0,
we obtain

ewyLW(—l)(l + x)LW(O)(l + x)_(yLW(_l)'i'LW(O)) = 1w,

which is equivalent to

emyLw(—l)(l + I)LW(O) = (1+ x)yLw(—1)+LW(0)_
Let y = 1. We obtain

e"lw (1 4 g)lw (0 = (1 4 ) Ew CDFEw (0) (4.5)
Using (4.5) and (4.4]), we see that (4.3 can also be rewritten as

[w];m & [U]nl = ResITkHH((x + 1>7k+n7l71)(1 + m)k
. [(1 + x)—(LW(—l)'FLW(O))YWV/‘/V((l + x)LW(O)w7 I)U}

N —k+n—1-1
_ Z ( +n )Resx$k+nlml<1 + x)k
m=0

kl

m

(14 a) DO (14 2) O o] (46)

kl*

The definition is more conceptual since it says that the right action of U*(V) on
U (W) is defined using the right action (the right vertex operator map) of V' on W.

Now let Wy and W3 be lower-bounded generalized V-modules and ) an intertwining
operator of type (WWV;Q). As we have mentioned in the introduction, for simplicity, by an
intertwining operator, we always mean a logarithmic intertwining operator defined in Defi-
nition 3.10 in [HLZ], except that in the case that V is a grading-restricted vertex algebra so
that there are no Ly (1) on V and no Ly/(1) on a lower-bounded generalized V-module W,
we do not require that the L(1)-commutator formula for intertwining operator hold. Such
an intertwining operator might contain the logarithm of the variable and might even be an
infinite power series in the logarithm of the variable. See [HLZ| for more details. But in ad-

dition, we are interested in only intertwining operators ) such that the powers of the formal
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variable x in Y(w, z)w, for w € W and we € W5 belong to only finitely many congruence
classes in C/Z. For such an intertwining operator, its image is in a finite direct sum of W4
for v € C/Z. We say that such an intertwining operator has locally-finite sets of congruence
classes of powers or is an intertwining operator with locally-finite sets of congruence classes of
powers. If T'(W3) is a finite set, then every intertwining operator of type (WW‘E’,Z)) in the sense
of Definition 3.10 in |[HLZ] has locally-finite sets of congruence classes of powers. In this
paper, by an intertwining operator, we always mean an intertwining operator with locally-
finite sets of congruence classes of powers. In particular, the space of intertwining operators
also means the space of intertwining operators with locally-finite sets of congruence classes
of powers.

As is discussed in the preceding section, there exist by, b € C for u € T'(W3), v € T'(Ws)
such that

Wo = [Ty =TT TT 0"pesnrs Ws=TTVs)my =TT TT W3)ingsm-

neN neN uel(Ws) neN neN el (W3)

For w € W, we have

D)= Ynalw)z " (log )",

keN meC

where for m € C, k € N and homogeneous w, the map V,, x(w) : Wy — W3 is homogeneous
of weight wtw —m — 1. For w € W, let

Zymk x " 1~

meC

Note that Y*(w,z) for k € N satisfy the same Jacobi identity as the one for intertwining
operators but do not satisfy the L(—1)-derivative property for intertwining operators.

For a vector space U and k € N, let Coeff{“ogx U{z}[[log z]] — U{x} be the linear map

given by taking the coefficients of (log x)*¥. Then we have
Coeﬁlogxy(w7 l’) = yk<w7 I)

for w € W and k € N.
For k,l € N, p € T(Wy), v € T(W3), w € W and wy € (Wa) ey C Q) (Wa),

Coeff) Res, > MHF=1p (2 lw Oy 1),

log x
hb —h¥+l—k— 1y0(

= Res,x wOs, 2)w,

€ (Wa)pug+r) © Wiy
For k,l,n € N, p € (W), w € W and wy € (Wa)psiy C (Wa)yyy, we define

Oy ([w])ws = Z Coeﬁ?ongesm hl —hY+1—k— Y(x Lw (0),, )Wy
I/EF(W?,)

14



— Z Resxxhgf}%‘#l*k‘flyo(wa(O)sw’ $)w2
Z/EF(Wg)
€ W[Ufﬂ'

In this definition, the sum is finite since there are only finitely many congruence classes of
powers of z in Y°(z""©sw, )w,. We now have a linear map

Oy([wlk) : Wa — W,
or equivalently, we obtain an element
Uy ([w]r) € Hom(Ws, W3).
The maps ¥y ([w]k) for w € W and k, [ € Ngive a linear map
vy : UP (W) — Hom(Ws, W3).

Since Wy and W3 are both left A*°(V')-modules, Hom (W5, W3) is an A (V')-bimodule. In
particular, we have left and right actions of U (V') on Hom (W5, W3) such that both the left
and right actions of Q> (V') on Hom(Ws, W3) are 0.

Proposition 4.1 The linear map 9y commutes with the left and right actions of U>®(V).
In particular, U (W) / ker 9y is an A>®(V')-bimodule.

Proof. We first prove that ¥5 commutes with the left action of U*(V'). Let k,m,n,l,p € N,
p€T(Ws),veV,weW, wy € (Wa)peyy C (Wa)ypy. In the case m # n or p # 1 by
definition, we have

Dy([v]km © [w]n)we = 0 = v, ([V]km) Dy ([w]nr)ws.

In the case m =n and p =1,

Dy ([v]kn © [w]n)ws

= > Resy T ((@o + 1)) (14 20)' 0y ([Yir (1 + 20) " O, wo)wlaa)ws
I/EF(WS)

H__ v L
— Z ReSZOReSZQTk+l+1((xO + 1)*k+n*l*1)(1 _i_xo)lxgg h3+l k 1‘

vel'(Ws)
V@t OV (1 + 20)™ Ou, o) w, 1) wy

= Z Resz Resz, T (w0 + 1) 7F 0 (1 + @)l
vel(Ws)

hb —hY+l—k—1
2

VP (Vig (g + zoma) v Vo, xoxz)xgwm)sw, To)Ws

- Z Res,,Res,, Res;, 2710 ( ) Thori1((mo + 1) 7FHn=i=h).

VGF(Wg)

T + ToZa
X1
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hl—hY—k—1
2

xllx yO(YW(xLV(O)v, x0x2)x§W<°)Sw, To) Wy

Z Res,,Res,, Res,, 2 25 10 ( — ) Thoti41((wo + 1) 7FHn=i=1).

ToT
Vel (W) 042

i —hy—k—1
2

xllx Yiv, (xf‘/(o)v xl)yo(xQW(O)Sw, To) Wy

Ty —x
Z Res,,Res,,Res,, 2 25 10 ( : 1) Thsr1((wo + 1) FHm=171).
vel'(Ws) Lot2

1 hh—hY—k—1~,0, Lw (0 Ly (0
Txe? y ($2W( )Sw,xg)YWQ(xIV( )U,l’l)wg

Z Resﬂ?zR‘eSCﬁTk‘—H-‘,—l((ﬁCo + 1)—k+n—l—1)
VEF(W&)

1 hb—hY—k—2 Ly (0 0/ Lw(0
riwy? P Y, (73 v( )v,xl)y (a:QW( )Sw,wg)wg

Z RestReleTk+l+l(($o + 1)—k:+n—l—1>

zo=(x1—22 )1’2_1

vel'(W3) zo=(—zatz1)zy "
H_pv_ L.
31;11:1:’212 K 2y0($§W(O)Sw,a:Q)YWQ(:UlLV(O)v,xl)wg. (4.7)

The second term in the right hand side of ( . is 0 since wy € (WQ)W +- Expanding

Thos11((wo + 1)7F+7=1=1) explicitly, we see that the first term in the right-hand side of (4.7)
is equal to

+n—1—
—k+n—l—-m—1_k—n+l+m+1
( )Resw2 Resy, (71 — x2) x5 :
vell W3 m=0
ht
Ly

b ah Ty (e O, ) V0 (a8 DS w, 2 )w,

Z ZZ( k+n—l—1)(—k%—n—'l—m—l)(_l)j.

I/GF W3 m=0 jeN J

S (Y ARV A G R I
3 ) s .

(4.8)

- Res,,Res,, 7,

Since wy € (Wa)psyy, we know that Res,a> =010 (2twiOsw, 2)wy € (Ws)pyti—g
and thus is equal to 0 if ¢ > [. In the case j > n —m, we have —n 41+ m + j > [ and hence

R —hY —n-+l+m—1+5~0, Lw(0)
V' (,

Res,,zy Sw, x9)we = 0.

In particular, those terms in the right-hand side of (4.8) with j > n — m is 0. So the
right-hand side of (4.8) is equal to

S EECT

vel'(Ws) m=0 j=0 J
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m
k4+n—m—1— j h —hg—n+l+m— 1+JY ( fv(o)v T )yO( w(0)s

¥ ZZ( k+n—l—1>(—k—i—n—l—m—l)(_l)q_m'

—m
VEFngqu q

- Res,,Res,, z7 W, T )W

ktn—l-q, h“ h{—n+l-1+4q Ly (0) 0/, Lw(0)
- Res,,Res,, z7 Y, (27" 0, 21) Y7 (25" 0, 20)w

S Z(;( k+7:n—l—1)(—k+n—ln:m—1)(_1)q_m>'

vel(Ws) a-

- Res,, Resy, x; F 17 hﬂ K Y (@ Ou, 2 VO (2 D50 w)w. (4.9)
Using (2.18) in [H5], that is,
q
ktn—l—1\/—k4+n—l—m—1 ktn—l-1
Z +n +n m (—1)m = +n 5p0  (4.10)
m=0 m g—m q 7

for g =0,...,n, we see that the right-hand side of (4.9)) is equal to

—k4n—1 h5—hY—n+l-1 v (0) 0 w(0)s
g Resy,Res,, x7 " " ay? 0 Yiv (27" "0, 20) ) (5 W, 2) W
vel'(Ws)

= G, ([V]kn) Z ReSmQQ:gg_thrl_n_lyo(:LéW(O)Sw, To) W

vel(Ws)

= Y, ([0]n )0y ([w]nt) w2 (4.11)

From —, we obtain
Dy ([v]kn © [wln)we = Gws ([V]kn) Oy ([w] ) w2

We have now proved

Dy ([V]km © [W]n)wa = D ([0]km ) Oy ([w]n1) w2

for k,l,m,n e Nyv eV, weW and wy € Wy. This shows that 1y commutes with the left
actions of U (V).

Next we prove that 9y commutes with the right actions of U>(V'). Let k,m,n,l,p € N,
p€T(Wa),veV,weW, w € (Wa)puyy C (Wa)ppy. In the case m # n or p # [, by
definition, we have

Dy ([w]em © [v]n)wz = 0 = Fy([w]em ) Dws ([v]n) w2

In the case m = n and p = [, using (4.3)), we have

Uy ([w]en © [V]n) w2

= ReSIOTk+l+1((xO + 1)7k+n7l71)(1 + xo)k'
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- ([(1 +x )_LW(O)Yw(U, —Io)(l + l’o)LW(O)w]kl)wg

= Z Res,, Coeffy, . Resg, Thgii1 (o + 1)1 (1 4 @)
Z/EF W3)

V@O 4 ) POV (0, —20) (1 4 20) 5 Ow, 20)ws

= Z Resg, Coeft), . Resq, Thsi1((zo + 1) 7*" 7 (1 + 2o)*
l/EF(Wg)

(1+ xo)*LwB(O)y(xéw( )YW(U7 —x0)(1 4+ 3,;())va/(0)w7 2o(1 + 20))(1 + xo)L%(O)wQ
= Z Res,, Coeff] . Resy, Tiyi1((xg + 1)F71).

log zo
vel'(Ws)
(14 xo)hé‘—h§+lxgé‘*h§+lfkfl(1 + ) ~Lws ),
V(Y (22 O, —wo2) (2 + 20w9) " O, 2 + 20m9) (1 + 20)2W2 Oy
- Z Resy, Coeffi, ,, Resy, Res, zy 5( )Tk+l+1((x0 +1)7Hm).

vell W3
(x2+x0x2)h hV—i—l —k 1(1—|—$) LW3(0)N'

VY (22 O, —2ome) (22 + 2ow2) " Ow, 25 + 2022) (1 + 30) X2 Oy (4.12)

k h —h§+l—k—1

k h“ hY+l—k—1

To + ToZa

X1

From the L(0)-conjugation property for intertwining operators,
(1 + $0)_LW3(O)y((1 + .Io)LW(O)w, To + JZQ.TQ)(l + l’o)LW? ©) = y(w, .232),

or equivalently,

K
Z(l + .’l)'o)iLW3(0)yk((1 + l‘o)LW(O)w, To + 1'01'2)(1 + x’0>LW2(0) (log(l'g + xol'Q))k
k=0
K
= " V¥(w, z5)(log 2)". (4.13)
k=0
Taking Coeﬂ?og =, on both sides of 1) we obtain
K
Z(l + 33'0)7LW3 (O)yk<(1 + JJQ)LW(O)U), To + 1’0332)(1 + Q?o)LW?(O) (10g<1 + Q?o))k
k=0
= yo(wa 1:2)'

Then we have

Coeff?

log 2

(1+ 20) " EwsON Y (1 + 2)EW OV ey 29 + 2o29) (1 + 20) LW O

K
Z (14 20) EWsONPR((1 4 20) W ON 4 o0 (1 + 20) W2 0N (log (1 + 20))*
k=0
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= (1+ mO)LWS(O)SyO((l + :L‘O)_LW(O)SU}, 2)(1 + xo)_LWQ(O)S

= V' (w, 13 + 20T2).
In particular, we have

Coeffy, 5, (1 4 z9) "W OIS

. y(YW(xg‘/(O)v, —Zox2)(xe + xoxg)LW(O)w, To + xoxe) (1 + xO)LWQ(O)N
= Coeffd (14 z0) LwsOn.

log x2
. y((l + l’o)LW(O)NYW(JJgV(O)U, —I0$2)($2 + JIQJ)Q)LW(O)SJISW(O)N’(U, T2 + JIOLL’Q)'
X (1 + x())LWQ(O)N

= VOV (22 O, —2ow2) (22 + 20w2) " OS5 w, 29 + mo22). (4.14)
Using (4.14)), we see that the right-hand side of (4.12) is equal to

5 ([L’Q + ToZo
xy

Z Res,,Res,,Res,, 77" ) Tsr41((zg + 1)7FF=t=1),
vel'(Ws)

RY—RhY+1 . —k—1~50 v(0)
CR B y(

v, —ToTz) (T2 + xoxz)LW(O)Sw, Ty + ToT)Ws.

(4.15)

. (1‘2 + 1’01'2) Yw(l‘g

On the other hand,
(22 + IOIEQ)hg_thyO(YW(QUSV(O)U; — 202 (w2 + om2) W OSw, 2 + wowa )W

contains only integral powers of x5 + x¢z and does not contain log(xg + xgza). Then (4.15)
is equal to

Z Resy,Res,, Res,, 2519 (@) Tryri1((zo + 1) K==ty

2

IJGF(Wg)
xlfgfhgﬂxgk_lyo(YW(xé:‘/(o)v, —x0x2)xf‘”(0)sw, T1)Ws. (4.16)
The Jacobi identity for Y° gives
Res, 310 < xowz) Py (22 O o) O w 1)y
X2
“Res, 2716 ( :cl) YL (VO OB Osy, 4 Y,
—XoT2
+ Res,, 2516 ( x2> ha—hg *’y“( w,a:l)YWQ(:UQLV(O)v,xQ)wQ. (4.17)
ToL2

Since wy € (Wa) 4y, we have
Resmlx?gfhgﬂﬂyo(xf‘”(o)sw,xl)w2 € Wa)py-1-5 =0 (4.18)
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for j € N. Using (4.17) and - we see that - is equal to

Z Res,,Res,,Res,, 750 ( — T2 )Tk+z+1(($0 1) Ry,

D)
vel'(Ws) 0

Ry —hy+1 —k—QyO( Lw(0)s

-y w,xl)sz(xg‘/(O)v,xg)wg

o —k+n—l-m—1
= E E ( Ftn—i- )RGSIQRGSII (ml :UQ) .
T2

vel'(W3)

hly h+l_k20 Lw (0
e y( w(0)s

SO0 55 N (N | [

vel(Ws3) m=0 r=0 jeN J

v (0)

w, 1) Yw, ($2L v, To)Ws

Ry —hY —k+n—m—1—j —n+l+m—1+jy0(xfw(0)s

Ly (0)
- Res,,Res;, 73 T w, 1) Y, (x5 v, 29)ws.

(4.19)
Since wy € (Wa) ey, Respa™ Y, (22 ©v, 2) € (W) sy and thus is equal to 0 if ¢ > 1.
In the case j > n —m, we have —n + 1+ m + 7 > [ and hence

n+l+m— 1+]Y ( Lv(0)
Lo

Res,,ry v, Ty)wy = 0.

In particular, those terms in the right-hand side of (4.19) with j > n —m 4 r is 0. So the
right-hand side of (4.19) is equal to

S

vel'(W3) m=0 j=0 J

RGSIZRGSIILC}; —h3—k+n—m-1 ]x;n+l+m 1+Jy0( Lw(0)s w,l’l)YWQ(ISV(O)U,Qig)wQ
k —1—1\(—k —l—-m-1
S0 3D 30 5l (e | G [ 10
qg—m
vel'(Ws) m=0 g=m
: Restesmlxlff §-ktn- l_qatz_nH_quO(mlLW(o)Sw, 1) Yiw, (25 Qv 25)ws
q
—k —1—1\[—k —l—m-1
- S (s ).
m qg—m
I/EF W3) q=0 m=0

hy—h—k+n—1—q —n+l—14q~,0/ Lw(0)s
- Res,,Res,, r; Tq Vo(x;

Using (4.10)), we see that the right-hand side of (4.20) is equal to

Ry —h¥—k+n—1 _pi1-1~50/, Lw(0)s Ly (0)
g Res,,Res;, xy? ™* Z5 Vo (x; w, 1) Yy, (25 0, 29)wy
vel'(Ws)

= Uy ([w ]kn)ReszxZTLH 1Y 5 (1, S (0)U7x2)w2

w,ml)Y%(gi(O)v,xg)wg. (4.20)
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= Dy ([w]kn) I, ([v] 1) w2 (4.21)

The calculations from (4.12)) to (4.21]) gives

Dy ([w]kn © [V]n) w2 = Dy([w]kn) I, ([V] ) wa.

Thus we have proved

Dy ([wlkm © [V]n)we = Iy ([W]km) P, ([V]n) w2

for k,m,n,l e N;v eV, we W and wys € W,. This shows that ¥y commutes with the right
actions of U(V).

We know that U (W) / ker 1y, is linearly isomorphic to the image 0, (U (W)) of U (W)
in Hom (W5, W3) under 9y. Since 9y commutes with both the left and right actions of U (V'),
U>(W)/ ker vy is in fact equivalent to ¥y (U (W)) as U>°(V)-bimodules. But Hom(W,, W)
is an A*°(V')-bimodule and 9y (U>(W)) is an A*(V')-subbimodule of Hom(W5, W3). Thus
U>*(W)/ker vy is an A (V)-bimodule equivalent to the A (V)-bimodule ¥y (U*(W)). =

Let Q> (W) be the intersection of ker dy for all lower-bounded generalized V-modules

W5 and W3 and all intertwining operators Y of type (WW;/Q).

Theorem 4.2 The quotient A (W) = U®(W)/Q>*(W) is an A>®(V)-bimodule.

Proof. For every pair of lower-bounded generalized V-modules W5 and W5 and every inter-
twining operator ) of type (WW‘/?@), U (W) /ker vy is an A*°(V)-bimodule. Hence U (W) is
an A*°(V)-bimodule modulo elements of ker ¢y, for all lower-bounded generalized V-modules
W5 and W35 and all intertwining operator ) of type (WWV?/Q)' Thus U>®(W) is an A®(V)-
bimodule modulo elements of the intersection Q>°(W) of all such kerdy. This shows that

AX(W) = U>®(W)/Q>(W) is an A*(V)-bimodule. |

Proposition 4.3 In the case W =V, the A®(V)-bimodule A>(W) is equal to the associa-
tive algebra A (V') introduced in [H3] (see also Section 2).

Proof. We need only prove that Q¥(W) for W = V as a lower-bounded generalized V-
module is equal to Q(V) in [H5] (see also Section 2). By Remark [3.4) Q°(V) in [H5] is
equal to the intersection of kery, for all lower-bounded generalized V-modules W. Note
that ker dy, = ker vy, . If for every pair of lower-bounded generalized V-modules W, and

W3 and every intertwining operator ) of type (VV“%), ker ¥y, C ker ¢}y, then the intersection
of ker ¥y, for all lower-bounded generalized V-module W is equal to the intersection of all
ker 9y for all lower-bounded generalized V-modules W5 and W3 and all intertwining operator
Y of type (VMI%), that is, the proposition is true.

We now prove this fact. From the L(—1)-derivative property and Ly (—1)1 = 0, we see
that Y(1,x) must be independent of x. We denote it as f and then f is a linear map from
Wy to Ws. It is easy to verify that f is in fact a V-module map.

21



Using the associativity between the intertwining operator ) and the vertex operator
maps Yy and Yy,, we have

<wg= y(”? 22)w2> = <w:/37 y(YV(la 21 — 22)U7 22)w2>
= <wga y(17 Zl)YWQ (Uv 22)w2>
= (W5, f (Yo, (v, 22)w2)) (4.22)

forv eV, wy € Wy and w} € Wj. Since every term in (4.22)) is defined for all z; and z3 # 0,
(4.22)) holds for all such z; and zy. In particular, we obtain

Y(v, x)ws = f(Yw, (v, 2)w,)
for v € V and wy € W;. By the definition of ¥y, and 9y we have
Iy ([V]i)ws = Respz'F 1Y (21 O, 2)w,

= Res, 2! ¥ f (Vi (257 O, 2)w,)

= f (wy ([v]k)w2)
for k,l € N, v € V and w, € (W3)|y. Then we have

Uy () = f o dy,(v)

for v € U>°(V). Now ker dy, C ker Jy follows immediately. |

Using the Jacobi identity of intertwining operators, we have the following result giving
some particular elements of Q> (WV):

Proposition 4.4 For k,l,n € N, p € Z such that | + p € N, homogeneous v € V and
w e W, the element

5 0 ()l by

jEN J
n+p—32>0

(P
- > (= ](~>[w]k7l—n+k+p—j0[U]l—n-‘rk-i-p—jvl-ﬁ-]?

JEN j
l—n+k+p—35>0
wto+n—k—1
-y ( | ) (Vi )y )t (4.23)
JeN J

of U*(W) is in fact in Q®(W).

Proof. Let W5 and W35 be lower-bounded generalized V-modules and ) an intertwining
operator of type (WW‘;/Q). For k,l,n € N, p € Z such that [ +p € N, p € T'(W5), homogeneous
veV,welWand wy € (WQ)[hl2‘+l+p],

S (1 (f) Oy ([Wlomtps © [Wtlspesisn) s
n+IJ;€*R}ZO
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R O K I

SID DD DICH (4 LA (E e

vel'(Ws) jEN
n+p—32>0

hy —h¥+(l4+p)—(n+p—j)—1 Ly (0
Resg,xzy® ° Hp)=(rtp—d) y(xZW( )w,xg)wg

- Coeff}

og T2

= Z Z <> JReleCoeﬂ?ogmzRestxE"er*j)*k*l_

vel'(Ws) jEN
n+p—35>0

hu hY+(I4p)— (n+p—j)—1YW3 (22 Oy, 2 )Y@ Ow, 24)w,

= E Res,, Coeff) log 3 €Sz, (T1 — T2)"

VEF W5)
n—k—1, hh—h§+l-n-1 Ly (0) Lw (0)
"X Ty Yiw, (27" 0, 21) Y (2, W, T2)Wws
-
— 1 2
= E Res,, Coeff) log 2, €82, ReS, 2070 5( " ) .
ver(Ws) 0
n—k— 1 h —h§+l—-n—1 Ly (0) Ly (0)
-y Y (27" 0, 20) V(23" w, 29)ws. (4.24)

Using the Jacobi identity for the mtertwmlng operator ), we see that the right-hand side of
(4.24])) is equal to

To— T
p. —1 2 1
E Res,, Coeff) log 1, €Sz, Resz, 1oz 0 ( ) .

I/EF(Wg)
n—k—1_ hh—hY+l-n—1 Lw (0) Ly (0)
-z Ty P V(zy w, o) Y, (27 v, 21wy
n Res,, Coeff  Res,, R g (T2t
es,, Coeffy,, ., Res,, €84, TOT] .

VGF(Wg)
n—k—1_h5—h{+l-n—1 Ly (0) Lw (0)
"Iy Ty Y (Yw, (2 v, o) Ty W, To)Ws

Z Res,, Coe bngesm(—xQ + 1)P-

vel'(Ws)
n—k— 1 hy —h¥+1—n—1 Ly (0) Ly (0)
-] 9z ° V(zy w, x9) Yy, (27 v, 21wy
To + Xo
+ E ResxlCoeﬂﬂogmResmResgcoazosc1 (5( - >
Ve (W3) 1

n—k— 1. h” h{4+1-n—1 Lw (0) LV(O) Ly (0) -1
x4 y(% Y, (:El Ty vV, oLy )w7$2)w2

= —1)77 (V) Coefl? | Res,,zhz "HEnthte=i =k,
log z2 )
J

Vel (Ws) jEN

()= (l=ntk+p—j) =1y, Ly (0)

: y(ajgww)w, x9)Res,, x4 wo (27 0, 21 )ws
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+

+ Z Res,, Coeff}, . Resy, Resy afz1 "0 (@x IO) :
Ve (W3) 1

: x’f’kflxgg*hg“*n*ly(xgw(O)le (fo(O)xQ_LV(O)U, ToTy w, To)wy.  (4.25)

Using the definitions of ¥y and ¥y, the property of the formal J-function, noting that v is

homogeneous and Res,, 2\ 7)== =ty (o Iv0y 4wy = 0 when I—n—+k+p—j < 0,

and changing the variable x4 to y = 925" in the second term, we see that the right-hand

side of (4.25)) is equal to
(P
) DENC ] () TN (0% -

JEN j
I—n+k+p—j>0
) Resxlx§l+p)*(l*n+k+p*j)*lyw2 (va(o)% 71 )ws
+ Z Coeffy,, ,, Resz, Resy 2 (22 + )" "'
VGF(Wg)
x;g—thrl—n—ly(xQLw(O)YWl((1 + xomgl)LV(O)v, xoxgl)w,aa)wg
(P
= > (= ]<j)19y([w]k,zn+k+pj)79W2([U]ln+k+pj,l+p)w2
lfnJrngerR}I)*ij
+ Z Coeff},, ., Resq, Resg 2 (1 + woay )™ o1
I/GF(Wg)
H__pv S
SL’;Q K Qy(xSW(O)le(v,xoxgl)w,xg)wQ
(P
= > (= ( j> Dy ([Wlki—ntktp— © [V)imntktp—jiep) w2
lfnJrlgiRII)*jZO
+ Z Coeff},, ., Resg, Resyy? (1 4 y) ™t o1
VGF(Wg)

. a:gg*thr(Hp)*k*ly(a:gW(O)le (v, y)w, x2)ws. (4.26)

Expanding (1+y)"***"~%~1 and Yy, (v,y) and evaluating Res,, we see that the second term
in the right-hand side of (4.26|) is equal to

wtv+n—k—1 by L
Z Z ( i )Coeﬂ?onges%xgz hE +(14p)—k 1))(335”/(0) (Vi )y (00, )y

vel'(Ws) jeN

= (Wt e 1)%({% )t (0) 002 (4.27)

jEN
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From (4.24)—(4.27)), we obtain
i(P
i ( 5 1 (2 by o lnspeioes

jEN
n+p—52>0
p—i (P
D SRRVl (4 [0 PSR A
JEN ]
l—n+k+5>0
wtv+n—k—1
-3 ( . ) [(Yw); (U>w1]k,l+p) Wy
jeN J
— 0. (4.28)
Since ws, [ and p are arbitrary, we see from (4.28)) that (4.23)) is in ker 5. Since Wy, W3 and
Y are arbitrary, (4.23)) is in the intersection Q> (W) of all ker 1}y |

Remark 4.5 In the case that V' is a vertex operator algebra, that is, we have a conformal
vector w € V. Let w™(0) and w>(—1) be the elements of U (V') with diagonal entries being
w € V and all the other entries being 0 and with the (k + 1, k)-entries being w for £ € N and
all the other entries being 0, respectively. Then

W (0) = Wk, wP(=1) =) [Wlkt1-

keN keN
From the definitions of the left and right actions of U>(V) on U (W), we have [w]g; ©
(Wl = w*(0) o [wly, (W o wlu = [w]k o w>(0), Wik o [Wk = w?(-1) ¢ [w]y and

(W] © [Wit1y = W]k o w>®(—1) for k,l € Nand w € W. Takingn =k, p=0and v =w in
(4.23), we see that elements of the form

w™(0) o [w]n — [w]w 0w (0) — [(Lw(=1) + Lw (0))w]u
= [Wlnn © (W] — [W]w © [wW]n — [(Lw(=1) + Lw (0))w]u

for n,l € Nand w € W are in Q*°(W). Taking k =n+1, p=0 and v = w in (4.23)), we see
that elements of the form

w*(=1) o [w]u — [W]nt1441 0w (=1) = [Lw (=1)w]nt1,
= [Wnt1m © [0 = [W]ng 1041 © (W1 — [Lw (=Dw]ngag

for n,l € N and w € W are in Q*°(W). In particular, we have

(W=(0) + Q@*(W)) o ([wlu + QF(W)) — ([wln + Q% (W)) o (w*(0) + Q=(W))

= [(Lw(=1) 4+ Lw(0))w]u + Q= (W),
(W>(=1) + Q= (W)) o ([wlu + QW) = ([w]ht1441 + QF(W)) 0 (w™(=1) + Q™ (W))
= [Lw(=Dw]pt1 + QF(W)

in A>®(W).
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In the special case that W = V| we have:

Corollary 4.6 For k,l,n € N, p € Z such that [ + p € N, homogeneous u € V and v € V,
the elements

)NG4 [ RY s A

jEN

n+p—j>0
p=i (P
- ). (-1 ( ) [V]k—ntktp—i © [Uimnthtp—jitp
JEN J
l—n+k+p—3>0
wtu+n—Fk—1
S (T 0 el (1.29)
jeN J
is in Q¥ (V).
Proof. This corollary follows immediately from Propositions [4.3] and [4.4] |

Remark 4.7 We can also give a subspace O (W) of Q> (1) analogous to O (V') in [H5].
We conjecture that Q> (W) is spanned by O (W) and the elements of the form for
k,l,n,p € N, homogeneous v € V and w € W. In particular, we also conjecture that Q>°(V)
is spanned by O>(V') in [H5] and elements of the form of Q>(V). We shall discuss
these in a future paper.

5 Isomorphisms between spaces of intertwining oper-
ators and A*(V)-module maps

We formulate and prove the first main theorem of the present paper in this section. For
lower-bounded generalized V-modules W7, W5 and W3, we define a linear map p : VVVI‘/?WQ —

Hom poo (v) (A% (W1) @ ace(vy Wa, W3), where Wi, W5 and Wy are lower-bounded generalized
W3

Wlwg)' Our first main

V-module and VMVIE”WQ is the space of intertwining operators of type (
theorem states that p is an isomorphism.

Before we formulate and prove this theorem, we prove first that the category lower-
bounded generalized V-modules and the category of graded A (V')-modules are isomorphic
(not just equivalent since the underlying vector space are the same). In Section 2, we have
obtained a functor from the category of lower-bounded generalized V-modules to the category

of graded A*(V)-modules. We now have:

Theorem 5.1 The functor from the category lower-bounded generalized V -modules to the
category of graded A>(V')-modules is in fact an isomorphism of categories.
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Proof. Given a graded A>(V')-module W, we need to construct a lower-bounded generalized
V-module structure on W. We define

(YW )wt vi—k—1(v)w = Jw ([v]p)w

for k,l € N, homogeneous v € V' and w € W) and

Y (v, z)w = Z(Yw)wtv+17k71(v)7ﬂl’7m71+k
keN

for I € N, homogeneous v € V and w € W. It is clear that Yy (v, z)w is lower truncated.
For any lower-bounded generalized V-module Wy, by definition,

D, ([1r)wo = Resa'™ wy = dp[L]uwo

for k,l € N and wy € Wy. So we have (1] — du[1l]y € kerdy,. Since Wy is arbitrary,
by Remark , we see that [1]g — 0[]y € @°(V). In particular, dy ([1]g)w = dw for
k,l € N and w € W;. Thus we have Yy (1,z)w = w. The L(0)- and L(—1)-commutator
formulas and the L(0)-grading condition follow hold since W is a graded A>(V')-algebra.
The only remaining axiom to be proved is the Jacobi identity.

We now prove the Jacobi identity using Corollary From Corollary [4.6], we know that
(4.29)) with w replaced by w; is an element of Q*°(V). In particular,

)IINCRV] ¢ LA O

JjeN ]
n+p—52>0
(P
- Y (= ( j)ﬁw([v]k,zmkﬂ)j O [uli-ntktp—jiap)W
lfnJrlgiNII?*jZO
wtu+n—Fk—1
S (T a0 s
jEN J
_0 (5.1)

for k,I,n € N, p € Z such that | + p € N, homogeneous u,v € V and w € W)4,. The
left-hand side of ([5.1)) is equal to

JZ@; (-1 (?) Dw ([u]knrp—3) 0w ([V]ntp—jisp) w0

(P
Y J(J.)ﬁwwk,lMmmﬂwdv]ln+k+pj,z+p>w2
I—nthsp—j>0

wtu+n—k—1
N Z ( j )’l?w([(YV)erj (W) 0] 14p)w- (5.2)

jEN
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From the definitions of ¥y, we see that ([5.2)) is equal to

Z <_1) <]>Resleesxzx1+p Ik 1xl T 1Y ( v (O)U,xl)YW<$§V(O)U,Z‘2)w
n‘HJf—I\;ZO

— Z (—1)’”]( )f~’ues‘,,31f~’uesx2 nkti-l,
J

jEN
l—n+k+p—3j=>0

P Y (2 Lv(0),, @)YWZ(fo(O)u,xl)w

Wtu+n k—1
—Z( >R T (@5 O 0 ) (), )

jEN
= Res,, Res,,z7 %~ 1xl2 "y — xg)pYW(:L'lLV(O)u :L’l)Yw(léV(O)U To)W
— Resy, Res,, a7 1 ab " (—ay + 21)PYip (2" vOy g 2)Yw (2] Oy T1)w
— Resg,Res,y? (1 4 y) W etk tgbte=h =1yl (e 2v Oy (u, y)o, xg)w (5.3)

Since the left-hand side of ((5.3)) is equal to the left-hand side of (5.1]), we see that the right-
hand side of (5.3) is 0 for k,l,n € N, p € Z such that [ + p € N, homogeneous u,v € V' and
w € W4py- In fact, the right-hand side of (5.3)) is also 0 for all p € Z even if [ + p < 0 since

w = 0. Multiplying the right-hand side of (5 1.D by x_p ~ and then take sum over p € Z, we
obtain

- L1 — T2 Ly (0 Ly (0
Res,, Resg, " " 1ol "o ts ( ) Yw(x1V( )u,xl)YW(xQV( )v,a:Q)w
o

To — 7

— Res,, Res,, a7 ol tagte < ) Yw(l’g‘/(o)v,Ig)Yw<$fV(O)U,JI1>w

— Res,,Res,z 5( ) (1+ )" F e =ty (a2 © )YV((l + )V Ou, ), 29w
Zo
=0. (5.4)
The third term in the left-hand side of ([5.4) is equal to

— Res,,Res, x5 '8 (—> (1+ )" e =1y (2 Oy (1 + ) 2 Ou, y)o, z0)w
Zo
—Res,,Res,zy '8 (ng) (1 + zozy ) Ftgh kL.
o
: YW(%LV(O)YV((l + zoxy DY Ou, zozz v, 20w
= —Resg, (22 + 20)" F a7 (Yo (20 4 20) 2V O, xg)xg‘/(o)v, To)w

_ 15 (T2t X0
= —Res,,Res o7 F ol a5 (
T

) YW(YV(QUILV(O)U, xo)xg‘/(o)v, xzo)w.  (5.5)
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Using 1) and substituting .CE;LV(O)’U and z, e (O)Swl for v and wy, respectively, we see that

(5.4) becomes

—k— 1 — 1 — X9
Res,, Res,, a7 "1zl 1ZE015( " )Yw(u,xl)YW(v,xg)w
0

Ty —x

n—k—1,_l-n—1_-1 2 1

— Res,, Res,, 2] Ty I, (5( . )Yw(v,xg)YWQ(u,wl)w
—Zo

N [ T T2 + Zo
— Res,, Res,, " * 1ol 1aT1s < " ) Yw (Yv (u, zo)v, z9)w
1

=0. (5.6)

Since k,l,n € N and w € W are arbitrary, ((5.18|) gives the Jacobi identity for Yy .
This construction of a lower-bounded generalized V-module structure from a graded
A (V)-module gives us a functor from the category of lower-bounded generalized V-modules
to the category of graded A (V)-modules. It is clear that the graded A*(V')-module struc-
ture on W obtained from Yy, is the same as the graded A*°(V')-module structure that we
start with. So this functor is the inverse of the functor from the category of graded A>(V)-

modules to the category of lower-bounded generalized V-modules. The proposition is proved.
|

Let V be a grading-restricted vertex algebra and Wy , Wy and W35 lower-bounded gen-
eralized V-modules. Let A®(W;) ®ax(vy Wa be the tensor product over A>(V) of the

A>(V)-bimodule A* (W) and the left A (V')-module Ws.
We first prove some lemmas which we shall need later.

Lemma 5.2 The A®(V)-module A% (W1) ®as(vy Wa is spanned by elements of the form
([wi]k + Q*(W1)) ®as(v) wo

for k,l e N, wy € Wy, wy € (Wa) .

Proof. We know that elements of the form
([wikn + Q% (W1)) ®ace vy wa

for k,1,n € N, wy € Wy span A% (W1)® a0 vy Wa. If I # n, then by definition [w; ], o[1]y = 0.
Also for I € N and wy, € (Wy)|y, by definition, ¥y, ([1]y)ws = w,. Hence for k,I,n € N,
wy € Wl, Wy € (WQ)U_”J, if n 7& l, then

([wi]gn + Q™ (W1)) ®ax(v) w2
= ([wi]en + @7 (W1)) @ace(vy Dwa([Lu) w2
= ([wi1lgn © [y + QF(W1)) @ ace(vy w2
0

Hence the lemma is true. [ |

29



Lemma 5.3 Let
f € HOH]AOO(V)(AOO(Wl) ®Aoo(v) Wg, Wg)

Fork,l e N, w; € Wi, w, € (W2)[UJJ>

f((fwi]m + Q™ (Wh)) @ac vy w2) € (W3) k-

Proof. For k,l € N, wy € Wy, wy € (Wy)y, since f is an A*(V)-module map,

F(([wi]m + Q> (W1)) ®am(v) w2)
= f(([1kr © (w1l + Q™ (W1)) @ace(v) wa)
= Ywy ([er) f(([wi]m + Q7 (W1)) @as(vy wa).

By the definition of Yy, Yw, ([1]w)ws = 0 for ws € (Ws)ny, n # k. Hence the lemma is
true. |

W3
WiWa

p(y) : Aoo(W1> QR Wy — W3

Let YV be an intertwining operator of type ( ) We define a linear map

by
(P(V) (w1 + Q% (W1)) ® w) = Fy(101)ws

for ro; € U*®(W;) and wy € Ws. Since Q°(W)) C ker dy, p()) is well defined.
Using Proposition we have:

Proposition 5.4 The linear map p(Y) is in fact an A*(V')-module map from A>(W1)® ace(v)
Wy to W3, that 1s,
p(Y) € Hom oo (v)(A*(W1) ®ace vy Wa, W3).

Proof. By Proposition [1.1] for v € U*(V), oy € U*(W;) and w, € Wa, we have

(P)(((0 +Q>(V)) © (o1 + QF(W1))) ® ws)
= (p(I))((0 o101 + Q7 (W1)) ® wy)
= Jy(v o 10)wy
= U, (0)Uy(to1)ws
= Y (0) (p(V)) ([0 + Q@ (W1)) ® w2)

and

() (01 +Q>(W1)) o (b + Q*(V))) @ wy)
= (pV))((t1 00 + Q®(V)) ® wy)



= (p)) (w01 + Q=(W1)) © Jw, (0)ws),
proving that p(Y) is indeed an A*(V)-module map from A*(W;) ® gy Wa to Wi. n
We now have a linear map

p: VV%WQ — Hom geo (1) (A (W7) @ a0 vy Wa, W3)
Y= p(Y).

In the proof of Theorem below (in fact only in the surjectivity part), we need a
conformal vector of V' (that is, V is a vertex operator algebra) so that we do not have to verify
separately the L(0)- and L(—1)-commutator formulas when we construct an intertwining
operator.

Theorem 5.5 LetV be a vertex operator algebra. Then the linear map p is an isomorphism.

Proof. Let Y € VW1W Assume that p())) = 0. Then for k,l € N, p € T'(Wy), wy € Wh,
Wo € (WQ)[h’;—i-l]a we have

H__pv L
§ Resxa:h2 hg+l—k 1y0($LW1(O)Sw1,ZU)'LU2

vel(Ws)
= Vy([w]m)w:
= (p(V)(([w]a + Q%) ® ws)
= 0.

So for wy € (W3)ny4k), we have
(wh, Resga ~MH=F=190 (1 Lwi Os ) 2)awy) = 0. (5.7)
On the other hand,

Vo (w, x) = Coeff)

logx

(w,z)
— Coeﬂ?ogx L4 (0 y(x—LW(O)w71)x_LW2(O)

= Pws s Y0 (1= Lw Oy 1)z~ EwaO)s (5.8)
By (5.8),
<wg’ReS$xh§‘—h§+l—k—1y0($LW1 Os gy, 2)ws)

= Res,a ™ (oD g, Y0P Oy a)al e O )
= Resx Hwly, YO (wy, 1)ws)
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From (5.7) and (j5.9)), we obtain
(wy, YV°(wy, Nwz) = 0 (5.10)

for k,l € N, p € D(Wy), v € T(W3), wy € Wi, wy € (Wa)puiy and wy € (W3)hu+k] Since
W, v, k.l are also arbitrary, we see that ( - ) holds for w; € Wy, wy € Wy and wh € Wj.
Hence Y°(wy,1) = 0 for w; € W;. Then by the L(0)-conjugation property of intertwining
operators, we have

V(wy,z) = :ULW3(0)y(m*LW1 g, 1)$*LW2 (0)
= xLW;g(O)yO(x—LWI @y, 1>x—LW2 (0)
=0

for wy € Wj. Since w; is arbitrary, we obtain ) = 0, proving the injectivity of p.
We now prove the surjectivity of p. Let

f € HOl’Ileo(V)(AOO(Wl) ®A°°(V) W, Wg)

We want to construct an intertwining operator Y/ of type (WIT/‘E’VQ) such that p(Y/) = f. For

simplicity, we construct Y/ and prove the surjectivity only in the case Wy = W4' # 0 and
W3 = WY # 0 for u,v € C/Z. The surjectivity in the general case follows immediately.
We define

yh” Y +1—k-+wt wi — 10(w1)w2:f(([w1]kl+Q (W1)) ®ae(v) w2)

for k,1 € N, homogeneous wy € Wy and wy € (W2)ps4y. Then by Lemma ,

yh“ Y +1—k4wt wi — 10(w1)w2 € (Ws)ywy = (W3)[h§+k’]'
We define a map
VN Wy @ Wy — Wa{z}
wy ® wy — (Y1) (wr, )ws

by

hERY — It k—wt
(V1) (wy, Z ht —hY Hl—k+whw; — 10<w YT TR

keN
for wy € Wy, wy € (Wg)[h;;“] and [ € N. We then define

yf(wl, T)wy = 2Lws(0) (yf)O(x—Lwl (O)wh 1)x_LW2(0)w2
= PO (PO (g P ON gy )=t On g, (5.11)

for wy € Wy, wy € Wy and wy € W5. Since Ly, (0)y and Ly, (0)x are locally nilpotent
operators, w10~y € Willogz] and 72O~ w, € Whllogz]. Then the coefficient of
to a power in

(yf)o(x*Lwl (O)Nwl’ x)quWQ(O)NwQ
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is an element of Wj[logz]. Since Ly, (0)y is also locally nilpotent, the coefficient of = to a
power in the right-hand side of (5.11)) is also in W3[log z]. This shows that Y/ (w;, z)ws is in
fact in Wslog z]{z}. In particular, we obtain a linear map

YWy @ Wy — Wallog 2){x}

wy @ wy — Y (wy, 2)ws.

We now prove that Y7 is indeed an intertwining operator of type (WT/SVQ) From the

definition of Y/, we see that it is lower truncated. Also by definition, for wy € Wy, wy €
(Wo)pegy, L EN,

<yf)0(w1’ Dw, = Z yffg—hg—l—l—k—i-wtw1—1,0(w1>w2
keN

=3 F((fwili + Q% (W) ©av) wa).

kEN
Then we have
Y (wi,)wy =y @O f ([ O]y + Q% (W) @ ase vy 21 Owy)
kEN

and

f(([wi]i + Q% (Wh)) ®@ace(vy wa)
_ Resxxh‘z‘—hg’-l-l—k—l(yf)O(wal (O)Swl, [L’)wg

= Coeﬁ?ogxResx:chg’hEH’k’lyf(xLWl Oy, 2)ws. (5.12)

From Proposition 7 we know that (4.23) with w replaced by w; is an element of
Q> (Wy). In particular,

S -1y (f) F([Wntrs © (01 nrposirn + QWD) @ sy 102)
AP0

- Y (e (é’)

i€EN
l—n+k+p—35>0

- f(([wr ]k —ntbtp—j © [Vli—nthtp—jitp + Q@ (W1)) @ Ace (W) wy)

wtv+n—k—1 -
B ( | )f(([(le Joes (Ol + Q2(W1)) © 4y 102)
jEN J
=0 (5.13)
for k,l,n € N, p € Z such that [ +p € N, v € V, w; € Wi and wy € (Wa) s, Since

f € Hom oo (v (A (W1) ®ace vy Wa, W),

33



the left-hand side of ([5.13) is equal to

5 1 (7)ol (o + Q1) @y o)

- Y (- <p>

JEN ']
I—n+k+p—j>0

- f((Qwi]ki—ntrtp—i + Q@7 (W1)) @acwn) Vws ([Vimnthtp—iii+p)W2)

jeN

From the definitions of Yy, Jw, and (5.12), we see that (5.14]) is equal to

JEN J
n+p—32>0

e Y @B O ) (910 (25" VS wy, ),

- T () ReReat

JEN
l—n+k+p—j>0
hly—hE+l—n+p—j—1 ,~,f\0, . L, (0)s (0)
"Ly (V') (23

wl,xg)Y%(va v, T1)We

jeN J

n—k—1_hb—h¥+l-n—1

= Res,, Res,,z] Ty (x1 — 22)PYw, (:ClLV(O)v, xl)()}f)o(xgwl (O)Swl, Tg)We

_ Z (Wt G nj_ k= 1) FUYw)ptj (V)W 4p + QF(W1)) @ ace () w2)-

t o k: _ 1 _pv b
B (W vtn )Rx M N (@™ (Vi s (0)wn, 20w

(5.14)

— ResxlRest:B?_k_lxgg_hg+l_n_l(—;E2 + xl)p(yf)o(x§W1 (O)Swl, x2)Yw, (leV(O)v, x1)wsy

H_pv b
— Resy,Res,y? (1 + )™t b=1gh s =it piyo i sy (0, y)wn, aa)ws. (5.15)

Since the left-hand side of is equal to the left-hand side of , we see that the
right-hand side of is 0 for k,[,ne N, peZsuchthat [+ pe N, v eV, w, € W; and
wy € (Wa)pesrap. The right-hand side of (5.15) is also 0 when [ + p < 0 since in this case
wy = 0. Multiplying the right-hand side of 1) by x,” ~! and then take sum over p € Z,

we obtain

n—k—1 hb—h¥+l-n—1 _1 Ty — T2 Ly (0) 0/ Lw;(0)s
Res,, Res,,z] Ty? P xy 0 Yiv, (21 0, 20) (Y9 (2™ 5wy, 29)ws

Zo

—k—1_ Y —h§+l-n—1
— Res,, Resg, 27,2 :

_ To — T L 0
~15'0 ( 2—$o 1) (V) ay " w1, 9) Yy (277 Vv, 1w
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— Res,,Res, x5 '8 (@) (L4 y)
o

x;g—hg—&-l—k—l(yf) ( Ly, (0 )st((l +y)LV(0)v,y)w1,x2)w2

— 0. (5.16)

The third term in the left-hand side of ((5.16) is equal to

- ReSmReSny K ( ) (1 + y)n_k_lxggihgﬂik*l.
o

Lw,

()"

(2 s Y (1 + y)LV(O)U; Y)wr, To)ws
= —Res,,Res,z;'6 <@) (1+ xoxgl)nfkflxggfh?rlfkfl‘
2o
(5

(yf) L O)SYW((I + Jrgxz_l)LV(O)v, xoxgl)wl, To) W
= —Res,, (r2 + xo)n_k_lxg2 “htlenl,
(VN (Yar (02 + 20) ™ O, o)y ™ ™ wy, 22wy

RE—hY4+l-—n—1 _q1. ([ T2+ To
= —Res,,Res o7 F 1527 xy 0 .
x

(VN (Yiw (a1 O, o)y ™ P wr, w5)ws. (5.17)

—Lw, (0)s

Lv©y and T

wy for v and w;q, respectively, we see

Using (5.17)) and substituting z;
that (5.16)) becomes

Rl T — T
Res,, Res,, 27 "1 ’;5 KA 1x515< ! 2) Yiv, (v, 21) (V)% (w1, 29)ws

Zo

Y len Ty —x
— Res,, Res,, 27 F 1 h K ) (#> (VN0 (w1, 29) Y, (v, 21 )wsy

I N7 To +x
—ReleResxzﬂf?_k_l?f]z12 e lel(s( 23: O) (VN (Yiw (v, 20) w1, 72)ws
1

— 0. (5.18)

Since k,[,n € N are arbitrary, (5.18]) gives

%0 (T ) Yo () O = %8 (P2 ) (9P, )V 0

=70 (%1%) VN (Y (v, mo)wy, T2)w. (5.19)

This is the Jacobi identity for (0% )0 To obtain the Jacobi identity for Y/, we replace o,

—Ly(0)

_ — L, (0) _ .
x1, Lo, v, w1 and we by :ong , $1x2 , 1z, v, T, ' wp and x Lwy0)qpy, respectively
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in (5.19) and then multiply %7 from the left of both sides of (5.19)). Then we obtain

~1

-1 B _

x; ' 20 ($1§2x 1 )Igwl(O)sz(xz Oy 22 (V) (@ LWl(O)wlal)% Oy,
0Ty

o les 1-— xlarg_l LW1 ¥ —Lw, (0) DY —Ly(0) —1y ..~ Lw, (0)
To w20 | T o )@ "1, wi, 1) Yo, (25 0, T1Ty )Ty wo
2

1
= 7t <%) OO Wiy Oy, ™ D (5.20)
2

Using the L(0)-conjugation formulas for vertex operators and the definition

Y (wr,) = 2y O (W), P, 1)y
of Y/, we see that (5.20)) is equivalent to

1

x50 (xl — mQ) Yiv, (v, 20) V! (w1, 29)ws — 2510 (—

Zo —Zo

) yf(w17372)YW2(U,ZU1)w2

+
= 13 15 <$2 5130) yf(YW(U’xo)wl,x2)w27

X1

the Jacobi identity for Y.

We also need to show that )/ satisfies the L(—1)-derivative property. This follows from
and the L(0)-commutator formula for (/)% which is a special case of the Jacobi
identity for (J¥)°. In fact, applying 2 < to both sides of - we obtain

d
%yf(wl, T)we =T 1:ELW3(0)LW3(0)(yf)0(:r_LW1 Oy, 1):U_LW2(O)w2

—  Lptws 0 ( )O

o :L’*leW3 ( )O

(Lw, (0 ) ~Lwy Oy 1)z Ewa 0,
(2751 Oy 1) Ly, (0) 5w Oy (5.21)
for wy; € Wy and wy € W,. Using the L(0)-commutator formula
Ly ()9 (@5 Oy, 1) — (M) 2 Oy, 1) Luy, 0)
= (V)°((Lw, (=1) + L, (0)2~F1 Oy, 1)
and with w; replaced by Ly, (—1)w, the right-hand side of is equal to
Ly lws (0) (yf) (LWl(—l)x_Lwl(O)wl, l)x_LW2(0)w
= lws O (PN (= Iwi O L (— 1wy, 1)a=Lwa gy,
= YV (L, (—1D)wy, x)w,. (5.22)

From (5.21)) and (5.22)) , we obtain the L(—1)-derivative property for /.

Since V is a vertex operator algebra and )/ satisfies the lower-truncation property, the
Jacobi identity and the L(—1)-derivative property, J/ is an intertwining operator of type
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(WVIV;,Q) (see Definition 3.10 in [HLZ] for the definition of intertwining operator in the case

that V' is a vertex operator algebra).
Finally we prove p(Y/) = f. By definition,

(PN (w1l + Q™ (W1)) @ ase(v) w2)
= Dy ([wi])we

_ Resxxhg‘—hg-&-l—k—l (yf)() ($LW1 (())w1 : ZB)"LUQ

= f(([wiw + Q> (W1)) ®as(v) w) (5.23)
for k,1 € N, wy € Wy and wy € (Wa)ppeyy. From Lemmaand 1} we obtain p(Y/) = f.
This finishes the proof that p is surjective. |

6 AY(V)-bimodules and intertwining operators

In this section, we formulate and prove the second main theorem of the present paper. For
N € N, we use the results obtained in the preceding two sections to give an A (V')-bimodule
AN(W) for a lower-bounded generalized V-module W. For lower bounded generalized V-
modules W;, W, and W, we obtain a linear map p' : VV%WQ — Hom AN(v)(AN (W) @an )
Q% (Wy), Q% (W3) induced from the linear isomorphism p in the preceding section (see below
for the definition of Q% (W) for a lower-bounded generalized V-module). We prove that p" is
surjective. Our second main theorem states that p is an isomorphism when W and W} are
certain universal lower-bounded generalized V-modules generated by Q% (W5) and Q% (W3),
respectively.

Let V be a grading-restricted vertex algebra and W a lower-bounded generalized V-
module. For n € N, let

n

X)) =TI Wy =TT TI Wiresm-
m=0

m=0 uel (W)
For homogeneous v € V, k,l,n € N, p € I'(W) and w € Wiu,y, we have
O ([V]n)w = SuRes, ' Yy (25 Qv 2)w € Wiy C Wiy

We fix N € N in the rest of this section. Recall the associative algebra AN (V) (see
Section 2 and Subsection 4.2 in [H5]). Then the discussion above in particular shows that
when restricted to AN(V), dy gives Q% (W) a graded AY(V)-module structure. But in
general, Q% (W) is not nondegenerate as a graded AY(V)-module (see Definition [2.4] for the
definition of nondegenerate graded AY(V)-module).

Let UN(W) be the space of all (N + 1) x (N + 1) matrices with entries in W. Then
UN(W) can be viewed as subspaces of U (W). In this paper, we shall always view UN (W)
as subspaces of U>(W) and we shall use the notations for elements of U (W) to denote
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elements of UV (W). Using these notations, we see that UN (W) are spanned by elements of
the forms [w]g for w € W and k,[=0,..., N.

Let AN (W) be the subspace of A>(W) consisting of elements of the form o+ Q> (W) for
o € UN(W). Since AN (V) is a subalgebra of A%(V), A®(W) as an A>®(V)-bimodule is also
an AN (V)-bimodule. For v € V, w € W and k,m,n,l =0, ..., N, by definition, [v]xm ¢ [w]u
and [w]y © [v] are still in UN(W). Thus AY(W) is in fact an AY(V)-subbimodule of
A>(W).

Let Wy, W5 and W3 be lower-bounded generalized V-modules and ) an intertwining
operator of type (WVIVIj”VQ) Let

" s AN(WL) @ vy Q(We) — A% (W) @ase(r) Wa
be the AN (V)-module map defined by
n™ (g +Q>(V)) @ an () W2) = (101 + Q7 (V) @ace(v) we
for ro; € UN(W}) and wy € Q% (Ws). Given
[ € Hom poo () (A (W1) @ ace vy Wo, W),

we have a map f¥ = fon". By Lemma , the image of AN(W1) ® g~y Q) (Wa) under
SV is in fact in Q% (W3). So fV is an element of

Hom yx (v (AN (W1) @ an vy QN (Wa), Q% (W3)).
Hence f — f~ gives a linear map from
Hom oo (1) (A% (W1) @ a0 (v) Wa, W3)

to
Hom 4 1y (AN (W1) @ anv 1y QX (W2), Q% (W3)).

In particular, the image of
p(Y) € Hom pee () (A% (W1) @ae(v) Wa, W3)
under this map is an element
PN (V) = p(Y) on™ € Homyw ) (AY (W1) @an () Qn(Wa), Uy (W3))

More explicitly, (p™V())) is given by

(PN V) ([wilk + QF(Wh)) @ an vy w2)
(PO ([l + Q% (W1)) @A (v) w2)
ﬁY([wl]kl)U)Q
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K_pv ]
§ Rele'hQ hy+l—k 1y0<xLW1 (O)wh l’)wg
vel'(W3)

for k, 0l =0,...,N, wy € Wy, wy € (WQ)[h§+l] and u € F(Wg)
We now have a linear map

VW1W2 — HOIIIAN(V) (AN(Wl) ®AN(V) Q?V(Wg), Q?V(Wg))
Y= ().

Proposition 6.1 Assume that Wy and W} are generated by Q3% (W) and Q% (W3). Then
the linear map p~ is injective.

Proof. Assume that p™(Y) = 0. Then for to; € UM (W), wy € Q% (Ws),

(p(Y)) (o1 + Q> (W1)) @ase(vy w2) = 0. (6.1)

Since W is generated by Q% (W5), Wy is spanned by elements of the form (Yiy, )wtvri—x—1(v)ws
for k € N, 0 <[ < N, homogeneous v € V and wy € (Wa). For k € N, 0 <1 < N,
ro; € UN(W;) homogeneous v € V and wy € (Wa)yy C Q% (Ws), we have

(p(V)) (101 + Q7 (W1)) @ase(vy (Y )wtvti—k—1(v)w2)
= (p(IV) (1 + Q= (W1 : X)) @ ac(v) I ([0]11)w2)
= (p())((r01 o [v]l + Q™ (W1)) @ ace(v) Wo)

So holds for to; € UN(W,) and wy € Wh.

Since W4 is generated by Q% (Wj), every element of W is a linear combination of elements
of the form (Yiw, )wtvk—n—1(v)ws forn € N, 0 < k < N, homogeneous v € V', wh € (W3)|n),
where (Y, )wtvtk—n—1(v)" is the adjoint of (Y, )wtvik—n—1(v). Then forn € N, 0 <k, I < N,
; € U*(W;) homogeneous v € V, wy € Wy and wh € (W3)|x), we have

(Ywy Jwivth—n—1(v)wy, (p(3)) (01 + Q% (W1)) @ ax(v) wa))
= (w5, (Yw)wtvrh—n-1(0)(p(V))(r01 + Q(W1)) @ 4o (vy wa))
= (wy, Y, ([V]ak) (p(V)) (01 + Q% (W1)) @ 4 (v) w2))
= (w3, (p(I)([V]nk © 101 + QF(W1)) @ace(vy w2))
=0.

Then we see that . holds for oy € U>(W;) and wy € W. Thus we obtain p()) = 0. By
Theorem [5.5f - p is injective. So Y = 0, proving the injectivity of p» [ |

In general, pV is not surjective. But we shall prove that in the case that W, and W} are
equivalent to certain universal lower-bounded generalized V-modules, it is also surjective.
Such a universal lower-bounded generalized V-module S¥ (M) has been constructed from
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an AN (V)-module M in Section 5 of [H5] using the construction in Section 5 of [H2] for a
grading-restricted vertex algebra.

Since in our result below on the surjectivity, we assume for simplicity that V' is a vertex
operator algebra, we shall instead use the modified construction for vertex operator algebra
in subsection 4.2 of [H4|.

In the remaining part of this section, V is a vertex operator algebra. Let M = ]_[2]:0 Gn(M)
be a graded AY(V)-module given by a linear map 95, : AY(V) — End M and operators
L(0) and Lys(—1) (see Definition [2.4). Take g = 1y and B € R a lower bound of the real
parts of the eigenvalues of Lj(0). From Subsection 4.2 of [H4], we have a lower-bounded
generalized V-module M }3" satisfying the universal property given by Theorem 4.7 in [H4].
For simplicity, we shall denote it simply by M.

Using the construction in Subsection 4.2 of [H4] and the results in [H2] and [H3|, we see
that M is generated by M. In particular, we identify M as a subspace of M. Let J v be the
generalized V-submodule of M generated by elements of the forms

Resxa:l’kleﬁ(:cLV(o)v, T)w (6.2)
foril=0,...,N, k€ =Z, and w € G;(M),
Resxa:l’kleﬁ(:cLV(o)v, x)w — Py ([v]g)w (6.3)

forveV,k1=0,...,N and w € G;(M).
Let SN (M) = M/Jy. Then SN (M) is a lower-bounded generalized V-module. From

voa voa

(6.2) and (6.3]), we see that Jy; N M = 0. Then we can also identify M as a subspace of
SN (M). Since M is generated by M, SN (M) is also generated by M and hence is spanned

voa voa
by elements of the form

Res, 2" 'Yon (an) (zBv Oy, 2)w (6.4)

voa

forv eV, 1=0,...,N,n € Nand w € Gy(M). In Section 5 of [H5], the nondegen-
erate graded A% (V)-module Gr(SY(M)) is studied. What we are interested here is the
graded A*(V)-module structure on S (M) and the graded AY(V)-module structure on
0, (SN, (M)
Proposition 6.2 For a graded AN(V)-module M, the graded AN(V')-module Q% (SN, (M))
18 equal to M.
Proof.  We prove only the case that the eigenvalues of L);(0) are all congruent to each other
modulo Z. The general case can be obtained by taking direct sums. In this case, there exists
w € C/Z and h* € C such that M = Hg:o Mgy, where for [ = 0,..., N, Mpuqq is the
generalized eigenspace of Ly, (0) with eigenvalue h* + [.

Since SN, (M) is spanned by elements of the form (6.4), (SN,(M))jny for n € N is

spanned by elements of the form (6.4) forv € V, 1 =0,..., N and w € G;(M). But from the
definition of Jy;, when 0 <n < N, an element of this form is equal to ¥/ ([v]n)w € Mpu iy
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So (SN

voa

the construction, M C Q% (SN

voa

(M))ny € M for n=0,...,N. In particular, we have Q% (SX

voa(M)) C M. But by
(M)). Thus we obtain Q% (S¥_(M)) = M. |

From the construction of S¥_(M), we have the following universal property:

voa

Proposition 6.3 Let W be a lower-bounded generalized V -module and f : M — QR (W) be
a graded AN (V)-module map. Then there exists a unique V-module map f¥ : SN (M) — W
such that |y = f.

Proof. By Theorem 4.7 in [H4], there is a unique V-module map } . M — W such that
flar = f. Since f is a V-module map, the image of f is in Q% (W) and f is a graded
AN (V)-module map,

}(Resle_”_lYﬁ(xLV(o)v, z)w) = Res, 2"y (22 Qv 2) f(w) = 0
forl=0,...,.N, k€ —Z, and w € G;(M) and

}(Resmxl_k_lYﬁ(a:LV(o)v, x)w — Py ([v]r)w)
= Res,2' Yy (2" v, 2) f(w) — Iw ([v]) f (w)
=0

forveV, kil=0,...,N and w € G;(M). So we obtain Jy; C ker}. In particular, ?
induces a V-module map fV : S¥ (M) — W such that fY|5; = f. The uniqueness of fV

voa
~

follows from the uniqueness of f. |
Using Propositions [5.1] and [6.3] we have the following consequence:

Corollary 6.4 Let W be an A®(V)-module. Let f: M — W be an AN (V')-module map with
W wviewed as an AN (V)-module. Then there exists an A*(V)-module map f¥ : SN (M) —
W such that f¥|y = f.

Proof. Since V is a vertex operator algebra, we have a conformal vector w such that
Lgx ary(0) and Lgy (ay(—1) are given by the actions of w™>(0) and w™>(—1) on S¥, (M)
(see Remark [4.5). The actions of w™(0) and w™(—1) on W also give operators Ly, (0)
and Ly (—1) on W. In particular, Ly (0) and Ly (—1) acts on M and on ]_[7]1\/;01 Gn(M),
respectively (recall from [H5|] that G, (M) is the homogeneous subspace of M of level n).
Since f is an AY(V)-module map, it in particular commutes with the actions of w*(0) and
w>®(—1). Then f(M) is also a graded A*(V)-module. Let Wy be the A*(V')-submodule of
W generated by f(M). Then W is a graded A (V')-module containing f(M).

We now have a graded A (V')-module Wy and an AY(V)-module map from M to f(M) C
Wo. By Propositions[5.1]and [6.3] there exists a unique A%(V)-module map fV : SY (M) —
Wy such that fY|y = f. Since Wy C W, we can also view f¥ as an A*°(V)-module map
from SN (M) to W. |

voa
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We also need a right A°°(V)-module structure on S (M) and a universal property of

this right A% (V')-module structure. These can be obtained using the following result and
Corollary [6.4k

Proposition 6.5 The linear map O : U (V) — U>®(V) given by
O([vlu) = [=e" M (=1)~F O]y,
for k,l € N and v € V induces an isomorphism from A*(V') to its opposite algebra.

Proof. 'We need only prove
O(uov) —O(p) o O(u) € Q= (V)

for u,0 € U>(V).
Let W be a lower-bounded generalized V-module. Then
(- ([ole)w’, w)
= Res, 2"~ 1<YW/( 0y, 2)w’, w)
:Resle k— 1<w/,Yw( :va(l)< x72>LV(O)xLV(O)U7x71)w>
:Resle k— 1<w,,Yw( xLy (1) _LV(O)<—1)_LV(0)U,ZL'_1>
= Res,z' "Y', Yiy (a7 v O elvD(—
= —Res,y* " (w, Yiy (y Ly (©) Ly (1)(_1)- LV(OU Jy)w)
(1)(

= (W', O (=" (=1)"H O]y )w)

= (W', 9w (O([v]w))w) (6.5)
for k,leN,veV,weW and w € W'. From (6.5, we obtain
(W', 9w (O(0))w) = (D (0)w', w) (6.6)

forv e U®(V), w € W and w' € W'.
Using , we have

= (W', I (O(0))dw (O(u))w)

{
= <19W/<U w’,ﬁW(O(u))w>
< ’
(W', 9w (O(v) © O(u))w) (6.7)

foru,0 € U®(V), w € W and w' € W'. Since w’ and w are arbitrary, we obtain from ([6.7))

O(uov) —O(p) o O(u) € ker Jy
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for u,0 € U*(V). Since W is arbitrary, we obtain
Ouon)—O(0)oO(u) € Q(V),
proving that O indeed induces an isomorphism from A* (V') to its opposite algebra. [

Since A*(V') is isomorphic to its opposite algebra, a left A>°(V')-module also give a right
A*(V)-module and vice versa. In particular, S¥_ (M) is also a right A>(V)-module. Then

voa

from Corollary [6.4] we obtain the following consequence immediately:

Corollary 6.6 Let W be a right A~(V)-module. Let f: M — W be a right AN (V)-module
map when W is viewed as a right AN (V)-module. Then there exists a right A>(V')-module
map f¥ : SN (M) — W such that f¥|y = f.

We now prove our second main theorem.

Theorem 6.7 Let V' be a vertex operator algebra. Assume that Wy and W are equivalent
to SN (% (Ws)) and SN (9% (W3)), respectively. Then pV is a linear isomorphism.

Proof. By Theorem , p is a linear isomorphism. Then the composition p” op~! is a linear
map from

Hom goo (1) (A% (W1) @ ase vy Wa, W3)

to

HOHIAN(V) (AN(Wl) ®AN(V) Q?V(WQ), Q(])V(Wg))

We need only prove that p"¥ o p~! is an isomorphism. Then from the definition of p" and
Theorem , pY is also a linear isomorphism.

By Proposition 6.1, p” is injective. Since both p"¥ and p~! are injective, p¥ o p~! is also
injective. We still need to prove that p% o p=! is surjective. Let

FY € Homw ) (AY (W) @ 4w vy Qy (Wa), QR (W3)).

We want to find
[ € Hom goo (1) (A (W1) @ a0 (v) Wa, W3)

such that the (p% o p~)(f) is fV.

Let AN>°(W)) be the subspace of A®(W;) obtained by taking sums of elements of
the form [wi]n, + Q¥ (W7) for wy € Wi, 0 < n < N and p € N, including certain in-
finite sums as in the case of U*(W;). Then AN>(W;) is an AN(V)-A>(V)-bimodule.
Since QY (W3) @~y AV (W) is a right A®(V)-module, its dual space (Q% (W5) @~ (v
AN (V) aleft A%(V)-module. The map f~ gives an AN (V)-module map from Q% (W5)
to (Q} (W5) @anqry AN°(Wh))* as follows: For wy € QY (W5), we define the image of w, in
QX (W) @ av )y AN>(W7))* to be the linear functional given by

wh @an(wy ([wilnp + Q% (W) = (wh, 7 (([wilnp + Q% (W1)) ® vy w2))
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for 0 < n,p < N, w; € W; and wjy € Q% (W3) and
Wy @ an(v) ([Wilny +QF(W1)) = 0

for0<n<N,pe N+1+N, w; € Wy and w} € Q% (Wj}). For 0 < kI < N,v eV, we
have

(wi, F (([wilep + Q% (W1)) @av () Dws([v]r)w2))
= (W, [N (([wilnp + Q@ (W) o ([v]u + Q% (V) @an(v) w2)).
This means that the linear map from QY (Ws) to (Q (W35) ® gn 1y ANV (W7))* is an AN(V)-

module map.
Since Wj is equivalent to SY

N (Q%(Ws)), by Corollary there exists a unique A>(V)-
module map from W5 to (Q% (W5) ® s~y AN>°(W1))* such that when restricted to QY (W2),
it is equal to the AN(V)-module map given above. But such an A*(V)-module map is
equivalent to an element

JV e (QX(W5) @an vy AV (Wr) @ ase 1y Wa)*.

Since A®(W1) ® ae(vy Wo is a left A%°(V)-module, its dual space (A% (W1) ®as(vy Wa)*
is a right A°°(V)-module. The map f™> gives a right A" (V)-module map from Q% (Wj)
to (AN°(W1) ®a(v) Wa)* as follows: For wj € Q% (Wj), we define the image of wj in
(AN22 (W) ® a0y Wa)* to be the linear functional given by

([wi]np + QF(W1)) @ asevy wa = [V (wh @ an vy ([winp + Q™ (W1)) @an(yy w2))
for 0 <n<N,peN, w €W; and wy € W5 and

([wl]np + QOO(WI)) ®A°°(V) Wo > 0

forne N+1+N,peN, w € W; and wy € Wy. We use wgﬂgvé(n) to denote the right
action of v on Wj. Then for 0 < k,l < N, v € V, we have

F (Wi ([Wlk) @av ) ([wilnp + Q% (W1)) @an(y) w2))
= [N (ws @av () ([U]k © [wilnp + QF(W1)) @ av(v) w2)).
This means that the linear map from Q% (W3) to (AY>°(W1) ® a1y Wa)* is a right AN (V)-
module map.

Since W} is equivalent to S¥_(Q%(W3)), by Corollary , there exists a unique right
A% (V)-module map from W to (A (W1)® ae(v) W2)* such that when restricted to Q% (W3),
it is equal to the right AN (V)-module map given above. But such a right A*(V)-module
map is equivalent to a left A(V)-module map from (A%(W;) ® ae(vy Wa)™ to Ws. Since
AX(W1) @ a0 vy Wa is a A®(V)-submodule of (A%(W;) ®ae(v) W2)**, we obtain a unique
left A%°(V')-module map from A (W;) ® a4y Wa to W3, or equivalently, an element

f € HOl’Ileo(V)(AOO(Wl) ®A°°(V) Wg, Wg)

From our construction of f, it is clear that (p" o p=1)(f) = fV. This proves the surjectivity
of pN o pL. [
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