Meromorphic open-string vertex algebras and Riemannian manifolds

Yi-Zhi Huang

Rutgers University

August 7, 2012

Lie Theorey Session IV CONGRESO LATINOAMERICANO DE MATEMÁTICOS

Universidad Nacional de Córdoba

◆□▶ ◆□▶ ▲□▶ ▲□▶ □ のQ@

The vertex operator algebra approach to two-dimensional conformal field theory

- Nonlinear sigma models
- Meromorphic open-string vertex algebras and representations

(日) (日) (日) (日) (日) (日) (日)

- A sheaf $\ensuremath{\mathcal{V}}$ of "universal" meromorphic open-string vertex algebras
- A sheaf ${\mathcal W}$ of left modules for the sheaf ${\mathcal V}$
- A sheaf $\mathcal{V}^{\mathcal{B}}$ of meromorphic open-string vertex algebra associated to \mathcal{W}
- Lapacians and Ricci-flat manifolds
- Further studies and the main challenge

The vertex operator algebra approach to two-dimensional conformal field theory

Nonlinear sigma models

Meromorphic open-string vertex algebras and representations

(日) (日) (日) (日) (日) (日) (日)

A sheaf ${\mathcal V}$ of "universal" meromorphic open-string vertex algebras

A sheaf ${\mathcal W}$ of left modules for the sheaf ${\mathcal V}$

A sheaf $\mathcal{V}^{\mathcal{B}}$ of meromorphic open-string vertex algebra associated to \mathcal{W}

Lapacians and Ricci-flat manifolds

The vertex operator algebra approach to two-dimensional conformal field theory

Nonlinear sigma models

Meromorphic open-string vertex algebras and representations

(日) (日) (日) (日) (日) (日) (日)

A sheaf ${\mathcal V}$ of "universal" meromorphic open-string vertex algebras

A sheaf ${\mathcal W}$ of left modules for the sheaf ${\mathcal V}$

A sheaf $\mathcal{V}^{\mathcal{B}}$ of meromorphic open-string vertex algebra associated to \mathcal{W}

Lapacians and Ricci-flat manifolds

The vertex operator algebra approach to two-dimensional conformal field theory

- Nonlinear sigma models
- Meromorphic open-string vertex algebras and representations

(ロ) (同) (三) (三) (三) (○) (○)

- A sheaf $\ensuremath{\mathcal{V}}$ of "universal" meromorphic open-string vertex algebras
- A sheaf ${\mathcal W}$ of left modules for the sheaf ${\mathcal V}$
- A sheaf $\mathcal{V}^{\mathcal{B}}$ of meromorphic open-string vertex algebra associated to \mathcal{W}
- Lapacians and Ricci-flat manifolds
- Further studies and the main challenge

The vertex operator algebra approach to two-dimensional conformal field theory

- Nonlinear sigma models
- Meromorphic open-string vertex algebras and representations

(ロ) (同) (三) (三) (三) (○) (○)

- A sheaf $\ensuremath{\mathcal{V}}$ of "universal" meromorphic open-string vertex algebras
- A sheaf ${\mathcal W}$ of left modules for the sheaf ${\mathcal V}$
- A sheaf $\mathcal{V}^{\mathcal{B}}$ of meromorphic open-string vertex algebra associated to \mathcal{W}
- Lapacians and Ricci-flat manifolds
- Further studies and the main challenge

The vertex operator algebra approach to two-dimensional conformal field theory

- Nonlinear sigma models
- Meromorphic open-string vertex algebras and representations

(ロ) (同) (三) (三) (三) (○) (○)

- A sheaf $\ensuremath{\mathcal{V}}$ of "universal" meromorphic open-string vertex algebras
- A sheaf ${\mathcal W}$ of left modules for the sheaf ${\mathcal V}$

A sheaf $\mathcal{V}^{\textit{B}}$ of meromorphic open-string vertex algebra associated to \mathcal{W}

Lapacians and Ricci-flat manifolds

The vertex operator algebra approach to two-dimensional conformal field theory

- Nonlinear sigma models
- Meromorphic open-string vertex algebras and representations

< □ > < 同 > < Ξ > < Ξ > < Ξ > < Ξ < </p>

- A sheaf $\ensuremath{\mathcal{V}}$ of "universal" meromorphic open-string vertex algebras
- A sheaf ${\mathcal W}$ of left modules for the sheaf ${\mathcal V}$

A sheaf $\mathcal{V}^{\textit{B}}$ of meromorphic open-string vertex algebra associated to \mathcal{W}

Lapacians and Ricci-flat manifolds

The vertex operator algebra approach to two-dimensional conformal field theory

- Nonlinear sigma models
- Meromorphic open-string vertex algebras and representations

(ロ) (同) (三) (三) (三) (○) (○)

- A sheaf $\ensuremath{\mathcal{V}}$ of "universal" meromorphic open-string vertex algebras
- A sheaf ${\mathcal W}$ of left modules for the sheaf ${\mathcal V}$

A sheaf $\mathcal{V}^{\textit{B}}$ of meromorphic open-string vertex algebra associated to \mathcal{W}

Lapacians and Ricci-flat manifolds

The vertex operator algebra approach to two-dimensional conformal field theory

- Nonlinear sigma models
- Meromorphic open-string vertex algebras and representations

▲□▶ ▲□▶ ▲三▶ ▲三▶ - 三 - のへで

- A sheaf $\ensuremath{\mathcal{V}}$ of "universal" meromorphic open-string vertex algebras
- A sheaf ${\mathcal W}$ of left modules for the sheaf ${\mathcal V}$
- A sheaf $\mathcal{V}^{\mathcal{B}}$ of meromorphic open-string vertex algebra associated to \mathcal{W}
- Lapacians and Ricci-flat manifolds
- Further studies and the main challenge

The vertex operator algebra approach (Belavin-Polyakov-Zamolodchikov, Borcherds, Frenkel-Lepowsky-Meurman) is in fact the most successful mathematical approach to conformal field theories. The program of constructing conformal field theories in the sense Kontsevich-Segal from repsentations of vertex operator algebras was developed by the speaker and collaboartors.

A vertex operator algebra is a \mathbb{Z} -graded vector space $V = \prod_{n \in \mathbb{Z}} V_{(n)}$ equipped with a vertex operator map

$$Y_V: V \otimes V \rightarrow V[[z, z^{-1}]], \ u \otimes v \mapsto Y(u, z)v,$$

The vertex operator algebra approach (Belavin-Polyakov-Zamolodchikov, Borcherds, Frenkel-Lepowsky-Meurman) is in fact the most successful mathematical approach to conformal field theories. The program of constructing conformal field theories in the sense Kontsevich-Segal from repsentations of vertex operator algebras was developed by the speaker and collaboartors.

A vertex operator algebra is a \mathbb{Z} -graded vector space $V = \prod_{n \in \mathbb{Z}} V_{(n)}$ equipped with a vertex operator map

$$Y_V: V \otimes V \rightarrow V[[z, z^{-1}]], \ u \otimes v \mapsto Y(u, z)v,$$

The vertex operator algebra approach (Belavin-Polyakov-Zamolodchikov, Borcherds, Frenkel-Lepowsky-Meurman) is in fact the most successful mathematical approach to conformal field theories. The program of constructing conformal field theories in the sense Kontsevich-Segal from repsentations of vertex operator algebras was developed by the speaker and collaboartors.

A vertex operator algebra is a \mathbb{Z} -graded vector space $V = \coprod_{n \in \mathbb{Z}} V_{(n)}$ equipped with a vertex operator map

$$egin{array}{rcl} Y_V : V \otimes V &
ightarrow & V[[z,z^{-1}]], \ & u \otimes v & \mapsto & Y(u,z)v, \end{array}$$

The vertex operator algebra approach (Belavin-Polyakov-Zamolodchikov, Borcherds, Frenkel-Lepowsky-Meurman) is in fact the most successful mathematical approach to conformal field theories. The program of constructing conformal field theories in the sense Kontsevich-Segal from repsentations of vertex operator algebras was developed by the speaker and collaboartors.

A vertex operator algebra is a \mathbb{Z} -graded vector space $V = \coprod_{n \in \mathbb{Z}} V_{(n)}$ equipped with a vertex operator map

$$egin{array}{rcl} Y_{V}:V\otimes V&
ightarrow&V[[z,z^{-1}]],\ &u\otimes v&\mapsto&Y(u,z)v, \end{array}$$

The vertex operator algebra approach (Belavin-Polyakov-Zamolodchikov, Borcherds, Frenkel-Lepowsky-Meurman) is in fact the most successful mathematical approach to conformal field theories. The program of constructing conformal field theories in the sense Kontsevich-Segal from repsentations of vertex operator algebras was developed by the speaker and collaboartors.

A vertex operator algebra is a \mathbb{Z} -graded vector space $V = \coprod_{n \in \mathbb{Z}} V_{(n)}$ equipped with a vertex operator map

$$egin{array}{rcl} Y_{m{V}}:\,m{V}\otimesm{V}&
ightarrow\,m{V}&
ightarrow\,m{V}[[z,z^{-1}]],\ u\otimesm{v}&\mapsto&m{Y}(u,z)m{v}, \end{array}$$

The vertex operator algebra approach (Belavin-Polyakov-Zamolodchikov, Borcherds, Frenkel-Lepowsky-Meurman) is in fact the most successful mathematical approach to conformal field theories. The program of constructing conformal field theories in the sense Kontsevich-Segal from repsentations of vertex operator algebras was developed by the speaker and collaboartors.

A vertex operator algebra is a \mathbb{Z} -graded vector space $V = \coprod_{n \in \mathbb{Z}} V_{(n)}$ equipped with a vertex operator map

$$egin{array}{rcl} Y_{m{V}}:\,m{V}\otimesm{V}&
ightarrow\,m{V}&
ightarrow\,m{V}[[z,z^{-1}]],\ u\otimesm{v}&\mapsto&m{Y}(u,z)m{v}, \end{array}$$

- ▶ Let *V* be a vertex operator algebra. A *V*-module is a C-graded vector space $W = \coprod_{n \in \mathbb{C}} W_{(n)}$ equipped with a vertex operator map $Y_W : V \otimes W \to W[[z, z^{-1}]]$ satisfying all those axioms for *V* which still make sense.
- ▶ A lower-bounded generalized *V*-module is a \mathbb{C} -graded vector space $W = \coprod_{n \in \mathbb{C}} W_{(n)}$ equipped with a vertex operator map $Y_W : V \otimes W \rightarrow W[[z, z^{-1}]]$ satisfying all the axioms for a *V*-module except that $W_{(n)}$ are generalized eigenspaces instead of eigenspaces of L(0) and are not necessarily finite dimensional.
- Let W₁, W₂ and W₃ be V-modules. An intertwining operator of type (^{W₃}/_{W₁W₂}) is a linear map 𝒴 : W₁ ⊗ W₂ → W₃{z}, where W₃{z} is the space of all series in complex powers of z with coefficients in W₃, satisfying all those axioms for V which still make sense.

- ▶ Let *V* be a vertex operator algebra. A *V*-module is a C-graded vector space $W = \coprod_{n \in \mathbb{C}} W_{(n)}$ equipped with a vertex operator map $Y_W : V \otimes W \to W[[z, z^{-1}]]$ satisfying all those axioms for *V* which still make sense.
- ▶ A lower-bounded generalized *V*-module is a \mathbb{C} -graded vector space $W = \prod_{n \in \mathbb{C}} W_{(n)}$ equipped with a vertex operator map $Y_W : V \otimes W \rightarrow W[[z, z^{-1}]]$ satisfying all the axioms for a *V*-module except that $W_{(n)}$ are generalized eigenspaces instead of eigenspaces of L(0) and are not necessarily finite dimensional.
- Let W₁, W₂ and W₃ be V-modules. An intertwining operator of type (^{W₃}/_{W₁W₂}) is a linear map 𝔅 : W₁ ⊗ W₂ → W₃{z}, where W₃{z} is the space of all series in complex powers of z with coefficients in W₃, satisfying all those axioms for V which still make sense.

- ▶ Let *V* be a vertex operator algebra. A *V*-module is a C-graded vector space $W = \prod_{n \in \mathbb{C}} W_{(n)}$ equipped with a vertex operator map $Y_W : V \otimes W \to W[[z, z^{-1}]]$ satisfying all those axioms for *V* which still make sense.
- ▶ A lower-bounded generalized *V*-module is a C-graded vector space $W = \prod_{n \in C} W_{(n)}$ equipped with a vertex operator map $Y_W : V \otimes W \rightarrow W[[z, z^{-1}]]$ satisfying all the axioms for a *V*-module except that $W_{(n)}$ are generalized eigenspaces instead of eigenspaces of L(0) and are not necessarily finite dimensional.
- Let W₁, W₂ and W₃ be V-modules. An intertwining operator of type (^{W₃}/_{W₁W₂}) is a linear map 𝔅 : W₁ ⊗ W₂ → W₃{z}, where W₃{z} is the space of all series in complex powers of z with coefficients in W₃, satisfying all those axioms for V which still make sense.

- ▶ Let *V* be a vertex operator algebra. A *V*-module is a C-graded vector space $W = \coprod_{n \in \mathbb{C}} W_{(n)}$ equipped with a vertex operator map $Y_W : V \otimes W \to W[[z, z^{-1}]]$ satisfying all those axioms for *V* which still make sense.
- A lower-bounded generalized V-module is a C-graded vector space W = ∐_{n∈C} W_(n) equipped with a vertex operator map Y_W : V ⊗ W → W[[z, z⁻¹]] satisfying all the axioms for a V-module except that W_(n) are generalized eigenspaces instead of eigenspaces of L(0) and are not necessarily finite dimensional.
- Let W₁, W₂ and W₃ be V-modules. An intertwining operator of type (^{W₃}/_{W₁W₂}) is a linear map 𝔅 : W₁ ⊗ W₂ → W₃{z}, where W₃{z} is the space of all series in complex powers of z with coefficients in W₃, satisfying all those axioms for V which still make sense.

- ▶ Let *V* be a vertex operator algebra. A *V*-module is a C-graded vector space $W = \coprod_{n \in \mathbb{C}} W_{(n)}$ equipped with a vertex operator map $Y_W : V \otimes W \to W[[z, z^{-1}]]$ satisfying all those axioms for *V* which still make sense.
- A lower-bounded generalized V-module is a C-graded vector space W = ∐_{n∈C} W_(n) equipped with a vertex operator map Y_W : V ⊗ W → W[[z, z⁻¹]] satisfying all the axioms for a V-module except that W_(n) are generalized eigenspaces instead of eigenspaces of L(0) and are not necessarily finite dimensional.
- Let W₁, W₂ and W₃ be V-modules. An intertwining operator of type (^{W₃}/_{W₁W₂}) is a linear map 𝔅 : W₁ ⊗ W₂ → W₃{z}, where W₃{z} is the space of all series in complex powers of z with coefficients in W₃, satisfying all those axioms for V which still make sense.

- ▶ Let *V* be a vertex operator algebra. A *V*-module is a C-graded vector space $W = \coprod_{n \in \mathbb{C}} W_{(n)}$ equipped with a vertex operator map $Y_W : V \otimes W \to W[[z, z^{-1}]]$ satisfying all those axioms for *V* which still make sense.
- ► A lower-bounded generalized *V*-module is a \mathbb{C} -graded vector space $W = \coprod_{n \in \mathbb{C}} W_{(n)}$ equipped with a vertex operator map $Y_W : V \otimes W \to W[[z, z^{-1}]]$ satisfying all the axioms for a *V*-module except that $W_{(n)}$ are generalized eigenspaces instead of eigenspaces of L(0) and are not necessarily finite dimensional.
- Let W₁, W₂ and W₃ be V-modules. An intertwining operator of type (^{W₃}/_{W₁W₂}) is a linear map 𝒴 : W₁ ⊗ W₂ → W₃{z}, where W₃{z} is the space of all series in complex powers of z with coefficients in W₃, satisfying all those axioms for V which still make sense.

- ▶ Let *V* be a vertex operator algebra. A *V*-module is a C-graded vector space $W = \coprod_{n \in \mathbb{C}} W_{(n)}$ equipped with a vertex operator map $Y_W : V \otimes W \to W[[z, z^{-1}]]$ satisfying all those axioms for *V* which still make sense.
- A lower-bounded generalized V-module is a C-graded vector space W = ∐_{n∈C} W_(n) equipped with a vertex operator map Y_W : V ⊗ W → W[[z, z⁻¹]] satisfying all the axioms for a V-module except that W_(n) are generalized eigenspaces instead of eigenspaces of L(0) and are not necessarily finite dimensional.
- Let W₁, W₂ and W₃ be V-modules. An intertwining operator of type (^{W₃}/_{W₁W₂}) is a linear map 𝔅 : W₁ ⊗ W₂ → W₃{z}, where W₃{z} is the space of all series in complex powers of z with coefficients in W₃, satisfying all those axioms for V which still make sense.

- ▶ Let *V* be a vertex operator algebra. A *V*-module is a \mathbb{C} -graded vector space $W = \coprod_{n \in \mathbb{C}} W_{(n)}$ equipped with a vertex operator map $Y_W : V \otimes W \to W[[z, z^{-1}]]$ satisfying all those axioms for *V* which still make sense.
- ► A lower-bounded generalized *V*-module is a \mathbb{C} -graded vector space $W = \coprod_{n \in \mathbb{C}} W_{(n)}$ equipped with a vertex operator map $Y_W : V \otimes W \to W[[z, z^{-1}]]$ satisfying all the axioms for a *V*-module except that $W_{(n)}$ are generalized eigenspaces instead of eigenspaces of L(0) and are not necessarily finite dimensional.
- Let W₁, W₂ and W₃ be V-modules. An intertwining operator of type (^{W₃}/_{W₁W₂}) is a linear map 𝔅 : W₁ ⊗ W₂ → W₃{z}, where W₃{z} is the space of all series in complex powers of z with coefficients in W₃, satisfying all those axioms for V which still make sense.

- ▶ Let *V* be a vertex operator algebra. A *V*-module is a \mathbb{C} -graded vector space $W = \coprod_{n \in \mathbb{C}} W_{(n)}$ equipped with a vertex operator map $Y_W : V \otimes W \to W[[z, z^{-1}]]$ satisfying all those axioms for *V* which still make sense.
- ► A lower-bounded generalized *V*-module is a C-graded vector space $W = \coprod_{n \in \mathbb{C}} W_{(n)}$ equipped with a vertex operator map $Y_W : V \otimes W \rightarrow W[[z, z^{-1}]]$ satisfying all the axioms for a *V*-module except that $W_{(n)}$ are generalized eigenspaces instead of eigenspaces of L(0) and are not necessarily finite dimensional.
- Let W₁, W₂ and W₃ be V-modules. An intertwining operator of type (^{W₃}/_{W₁W₂}) is a linear map 𝒴 : W₁ ⊗ W₂ → W₃{z}, where W₃{z} is the space of all series in complex powers of z with coefficients in W₃, satisfying all those axioms for V which still make sense.

- ▶ Let *V* be a vertex operator algebra. A *V*-module is a C-graded vector space $W = \coprod_{n \in \mathbb{C}} W_{(n)}$ equipped with a vertex operator map $Y_W : V \otimes W \to W[[z, z^{-1}]]$ satisfying all those axioms for *V* which still make sense.
- A lower-bounded generalized V-module is a C-graded vector space W = ∐_{n∈C} W_(n) equipped with a vertex operator map Y_W : V ⊗ W → W[[z, z⁻¹]] satisfying all the axioms for a V-module except that W_(n) are generalized eigenspaces instead of eigenspaces of L(0) and are not necessarily finite dimensional.
- Let W₁, W₂ and W₃ be V-modules. An intertwining operator of type (^{W₃}/_{W₁W₂}) is a linear map 𝔅 : W₁ ⊗ W₂ → W₃{z}, where W₃{z} is the space of all series in complex powers of z with coefficients in W₃, satisfying all those axioms for V which still make sense.

- Free bosons: Representations of infinite-dimensional Heisenberg algebras. We will briefly discuss these theories later.
- Free bosons on tori: Vertex operator algebras, modules and classical vertex operators (intertwining operators) associated to lattices. We will also briefly discuss these theories later.
- Wess-Zumino-Novikov-Witten models: Representations of affine Lie algebras.
- Minimal models: Representations of the Virasoro algebra.
- Fermion theories: Representations of infinite-dimensional Clifford algebras, affine Lie superalgebras and superconformal algebras.
- Orbifolds, cosets and W-algebras, including in particular the moonshine module.

- Free bosons: Representations of infinite-dimensional Heisenberg algebras. We will briefly discuss these theories later.
- Free bosons on tori: Vertex operator algebras, modules and classical vertex operators (intertwining operators) associated to lattices. We will also briefly discuss these theories later.
- Wess-Zumino-Novikov-Witten models: Representations of affine Lie algebras.
- Minimal models: Representations of the Virasoro algebra.
- Fermion theories: Representations of infinite-dimensional Clifford algebras, affine Lie superalgebras and superconformal algebras.
- Orbifolds, cosets and W-algebras, including in particular the moonshine module.

- Free bosons: Representations of infinite-dimensional Heisenberg algebras. We will briefly discuss these theories later.
- Free bosons on tori: Vertex operator algebras, modules and classical vertex operators (intertwining operators) associated to lattices. We will also briefly discuss these theories later.
- Wess-Zumino-Novikov-Witten models: Representations of affine Lie algebras.
- Minimal models: Representations of the Virasoro algebra.
- Fermion theories: Representations of infinite-dimensional Clifford algebras, affine Lie superalgebras and superconformal algebras.
- Orbifolds, cosets and W-algebras, including in particular the moonshine module.

- Free bosons: Representations of infinite-dimensional Heisenberg algebras. We will briefly discuss these theories later.
- Free bosons on tori: Vertex operator algebras, modules and classical vertex operators (intertwining operators) associated to lattices. We will also briefly discuss these theories later.
- Wess-Zumino-Novikov-Witten models: Representations of affine Lie algebras.
- Minimal models: Representations of the Virasoro algebra.
- Fermion theories: Representations of infinite-dimensional Clifford algebras, affine Lie superalgebras and superconformal algebras.
- Orbifolds, cosets and *W*-algebras, including in particular the moonshine module.

- Free bosons: Representations of infinite-dimensional Heisenberg algebras. We will briefly discuss these theories later.
- Free bosons on tori: Vertex operator algebras, modules and classical vertex operators (intertwining operators) associated to lattices. We will also briefly discuss these theories later.
- Wess-Zumino-Novikov-Witten models: Representations of affine Lie algebras.
- Minimal models: Representations of the Virasoro algebra.
- Fermion theories: Representations of infinite-dimensional Clifford algebras, affine Lie superalgebras and superconformal algebras.
- Orbifolds, cosets and W-algebras, including in particular the moonshine module.

- Free bosons: Representations of infinite-dimensional Heisenberg algebras. We will briefly discuss these theories later.
- Free bosons on tori: Vertex operator algebras, modules and classical vertex operators (intertwining operators) associated to lattices. We will also briefly discuss these theories later.
- Wess-Zumino-Novikov-Witten models: Representations of affine Lie algebras.
- Minimal models: Representations of the Virasoro algebra.
- Fermion theories: Representations of infinite-dimensional Clifford algebras, affine Lie superalgebras and superconformal algebras.
- Orbifolds, cosets and W-algebras, including in particular the moonshine module.

Theorem (H. 2002–2006)

Let V be a simple vertex operator algebra satisfying the following conditions:

- 1. $V_{(n)} = 0$ for n < 0, $V_{(0)} = \mathbb{C}\mathbf{1}$ and V' is isomorphic to V as a V-module.
- 2. Every lower-bounded generalized V-module is a direct sum of irreducible V-modules.
- 3. *V* is C_2 -cofinite, that is, dim $V/C_2(V) < \infty$ where $C_2(V)$ is the subspace of *V* spanned by elements of the form $\operatorname{Res}_Z z^{-2} Y(u, z) v$ for $u, v \in V$.

(日) (日) (日) (日) (日) (日) (日)

Theorem (H. 2002–2006)

Let V be a simple vertex operator algebra satisfying the following conditions:

- 1. $V_{(n)} = 0$ for n < 0, $V_{(0)} = \mathbb{C}\mathbf{1}$ and V' is isomorphic to V as a V-module.
- 2. Every lower-bounded generalized V-module is a direct sum of irreducible V-modules.
- 3. *V* is C_2 -cofinite, that is, dim $V/C_2(V) < \infty$ where $C_2(V)$ is the subspace of *V* spanned by elements of the form $\operatorname{Res}_Z z^{-2} Y(u, z) v$ for $u, v \in V$.

(日) (日) (日) (日) (日) (日) (日)

Theorem (H. 2002–2006)

Let V be a simple vertex operator algebra satisfying the following conditions:

- 1. $V_{(n)} = 0$ for n < 0, $V_{(0)} = \mathbb{C}\mathbf{1}$ and V' is isomorphic to V as a V-module.
- 2. Every lower-bounded generalized V-module is a direct sum of irreducible V-modules.
- 3. *V* is C_2 -cofinite, that is, dim $V/C_2(V) < \infty$ where $C_2(V)$ is the subspace of *V* spanned by elements of the form $\operatorname{Res}_z z^{-2} Y(u, z) v$ for $u, v \in V$.

(日) (日) (日) (日) (日) (日) (日)

Theorem (H. 2002–2006)

Let V be a simple vertex operator algebra satisfying the following conditions:

- 1. $V_{(n)} = 0$ for n < 0, $V_{(0)} = \mathbb{C}\mathbf{1}$ and V' is isomorphic to V as a V-module.
- 2. Every lower-bounded generalized V-module is a direct sum of irreducible V-modules.
- 3. V is C_2 -cofinite, that is, dim $V/C_2(V) < \infty$ where $C_2(V)$ is the subspace of V spanned by elements of the form $\operatorname{Res}_Z z^{-2} Y(u, z) v$ for $u, v \in V$.

(日) (日) (日) (日) (日) (日) (日)

Rational conformal field theories

Theorem (H. 2002–2006)

Let V be a simple vertex operator algebra satisfying the following conditions:

- 1. $V_{(n)} = 0$ for n < 0, $V_{(0)} = \mathbb{C}\mathbf{1}$ and V' is isomorphic to V as a V-module.
- 2. Every lower-bounded generalized V-module is a direct sum of irreducible V-modules.
- 3. V is C_2 -cofinite, that is, dim $V/C_2(V) < \infty$ where $C_2(V)$ is the subspace of V spanned by elements of the form $\operatorname{Res}_Z z^{-2} Y(u, z) v$ for $u, v \in V$.

(日) (日) (日) (日) (日) (日) (日)

Then we have the following conclusion:

- 1. The Moore-Seiberg polynomial equations hold. In particular, the Verlinde conjecture holds.
- 2. The category of V-modules has a natural structure of a modular tensor category. In partciular, we have a modular functor (in all genera) and a 3-dimensional topological field theory.
- 3. All chiral and full correlation functions in genus-zero and genus-one can be constructed from intertwining operators (the part on full correlation functions being done jointly with Kong).
- 4. There exist locally convex topological completions of the spaces involved such that Segal's axioms in genus-zero and genus-one are satisfied.

- 1. The Moore-Seiberg polynomial equations hold. In particular, the Verlinde conjecture holds.
- 2. The category of V-modules has a natural structure of a modular tensor category. In partciular, we have a modular functor (in all genera) and a 3-dimensional topological field theory.
- 3. All chiral and full correlation functions in genus-zero and genus-one can be constructed from intertwining operators (the part on full correlation functions being done jointly with Kong).
- 4. There exist locally convex topological completions of the spaces involved such that Segal's axioms in genus-zero and genus-one are satisfied.

(ロ) (同) (三) (三) (三) (○) (○)

- 1. The Moore-Seiberg polynomial equations hold. In particular, the Verlinde conjecture holds.
- 2. The category of V-modules has a natural structure of a modular tensor category. In partciular, we have a modular functor (in all genera) and a 3-dimensional topological field theory.
- 3. All chiral and full correlation functions in genus-zero and genus-one can be constructed from intertwining operators (the part on full correlation functions being done jointly with Kong).
- 4. There exist locally convex topological completions of the spaces involved such that Segal's axioms in genus-zero and genus-one are satisfied.

(ロ) (同) (三) (三) (三) (○) (○)

- 1. The Moore-Seiberg polynomial equations hold. In particular, the Verlinde conjecture holds.
- 2. The category of V-modules has a natural structure of a modular tensor category. In partciular, we have a modular functor (in all genera) and a 3-dimensional topological field theory.
- 3. All chiral and full correlation functions in genus-zero and genus-one can be constructed from intertwining operators (the part on full correlation functions being done jointly with Kong).
- 4. There exist locally convex topological completions of the spaces involved such that Segal's axioms in genus-zero and genus-one are satisfied.

Higher-genus and non-rational theories

- For higher-genus correlation functions, there is one problem still to be solved: Convergence in higher-genus case. Need results on meromorphic functions on the moduli space of Riemann surfaces with parametrized boundaries (generalizations of the *q*-expansion of the Weierstrass ℘-function).
- Many results for rational theories can be generalized to non-rational theories, including unitary non-rational theories and logarithmic theories. But there are still conjectures and open problems to be solved. The construction and study of non-rational theories is important for the study of the moduli space of conformal field theories. Nonlinear sigma models with Calabi-Yau manifolds as targets are important examples to be constructed and studied.

Higher-genus and non-rational theories

- For higher-genus correlation functions, there is one problem still to be solved: Convergence in higher-genus case. Need results on meromorphic functions on the moduli space of Riemann surfaces with parametrized boundaries (generalizations of the *q*-expansion of the Weierstrass ℘-function).
- Many results for rational theories can be generalized to non-rational theories, including unitary non-rational theories and logarithmic theories. But there are still conjectures and open problems to be solved. The construction and study of non-rational theories is important for the study of the moduli space of conformal field theories. Nonlinear sigma models with Calabi-Yau manifolds as targets are important examples to be constructed and studied.

Open-closed conformal field theories

- Jointly with Kong, a notion of open-string vertex algebra is introduced. We also constructed open-string vertex algebras from modules and intertwining operators for a vertex operator algebra satisfying suitable conditions. These are the open parts of open-closed conformal field theories.
- Kong further studied the open-closed conformal field theories whose closed parts and open parts are constructed from modules and intertwining operators for vertex operator algebras, especially the important Cardy condition.
- In summary, genus-zero and genus-one open-closed conformal field theories can be constructed from vertex operator algebras, their modules and intertwining operators.

Open-closed conformal field theories

- Jointly with Kong, a notion of open-string vertex algebra is introduced. We also constructed open-string vertex algebras from modules and intertwining operators for a vertex operator algebra satisfying suitable conditions. These are the open parts of open-closed conformal field theories.
- Kong further studied the open-closed conformal field theories whose closed parts and open parts are constructed from modules and intertwining operators for vertex operator algebras, especially the important Cardy condition.
- In summary, genus-zero and genus-one open-closed conformal field theories can be constructed from vertex operator algebras, their modules and intertwining operators.

Open-closed conformal field theories

- Jointly with Kong, a notion of open-string vertex algebra is introduced. We also constructed open-string vertex algebras from modules and intertwining operators for a vertex operator algebra satisfying suitable conditions. These are the open parts of open-closed conformal field theories.
- Kong further studied the open-closed conformal field theories whose closed parts and open parts are constructed from modules and intertwining operators for vertex operator algebras, especially the important Cardy condition.
- In summary, genus-zero and genus-one open-closed conformal field theories can be constructed from vertex operator algebras, their modules and intertwining operators.

Outline

The vertex operator algebra approach to two-dimensional conformal field theory

Nonlinear sigma models

Meromorphic open-string vertex algebras and representations

◆□▶ ◆□▶ ▲□▶ ▲□▶ ■ ののの

A sheaf $\ensuremath{\mathcal{V}}$ of "universal" meromorphic open-string vertex algebras

A sheaf ${\mathcal W}$ of left modules for the sheaf ${\mathcal V}$

A sheaf $\mathcal{V}^{\mathcal{B}}$ of meromorphic open-string vertex algebra associated to \mathcal{W}

Lapacians and Ricci-flat manifolds

Further studies and the main challenge

Σ: 2-dimensional Riemannian manifold.
 M: *n*-dimensional Riemannian manifold.
 φ: smooth map from Σ to *M*.

• Action:
$$\int_{\Sigma} \| d\varphi \| dS$$
.
Locally: $\| d\varphi \| = \eta^{ij} g_{\mu\nu} \frac{\partial \varphi^{\mu}}{\partial x^{i}} \frac{\partial \varphi^{\nu}}{\partial x^{j}}$.

 Classical nonlinear sigma models: Harmonic maps, that is, critical points of the action above.

(日) (日) (日) (日) (日) (日) (日)

The action is conformally invariant. Only the Riemann surface structure on ∑ is needed.

Σ: 2-dimensional Riemannian manifold.
 M: *n*-dimensional Riemannian manifold.
 φ: smooth map from Σ to *M*.

• Action:
$$\int_{\Sigma} \| d\varphi \| dS.$$

Locally: $\| d\varphi \| = \eta^{ij} g_{\mu\nu} \frac{\partial \varphi^{\mu}}{\partial x^{i}} \frac{\partial \varphi^{\nu}}{\partial x^{j}}.$

 Classical nonlinear sigma models: Harmonic maps, that is, critical points of the action above.

(日) (日) (日) (日) (日) (日) (日)

The action is conformally invariant. Only the Riemann surface structure on Σ is needed.

Σ: 2-dimensional Riemannian manifold.
 M: *n*-dimensional Riemannian manifold.
 φ: smooth map from Σ to *M*.

• Action:
$$\int_{\Sigma} \| d\varphi \| dS.$$

Locally:
$$\| d\varphi \| = \eta^{ij} g_{\mu\nu} \frac{\partial \varphi^{\mu}}{\partial x^{i}} \frac{\partial \varphi^{\nu}}{\partial x^{j}}.$$

 Classical nonlinear sigma models: Harmonic maps, that is, critical points of the action above.

(日) (日) (日) (日) (日) (日) (日)

The action is conformally invariant. Only the Riemann surface structure on ∑ is needed.

Σ: 2-dimensional Riemannian manifold.
 M: *n*-dimensional Riemannian manifold.
 φ: smooth map from Σ to *M*.

• Action:
$$\int_{\Sigma} \| d\varphi \| dS.$$

Locally:
$$\| d\varphi \| = \eta^{ij} g_{\mu\nu} \frac{\partial \varphi^{\mu}}{\partial x^{i}} \frac{\partial \varphi^{\nu}}{\partial x^{j}}.$$

 Classical nonlinear sigma models: Harmonic maps, that is, critical points of the action above.

(日) (日) (日) (日) (日) (日) (日)

 The action is conformally invariant. Only the Riemann surface structure on Σ is needed.

Linear sigma models: *M* flat.

- ► $M = \mathbb{R}^n$ and $p \in \mathbb{R}^n$. $T_p M = T_p \mathbb{R}^n$: the tangent space of $M = \mathbb{R}^n$ at p.
- ► Heisenberg algebra: $\widehat{T_{\rho}M} = \widehat{T_{\rho}M}_{-} \oplus \widehat{T_{\rho}M}_{0} \oplus \widehat{T_{\rho}M}_{+}$, where

$$\begin{aligned} \widehat{T_{\rho}M}_{-} &= T_{\rho}M \otimes t^{-1}\mathbb{C}[t^{-1}], \\ \widehat{T_{\rho}M}_{0} &= T_{\rho}M \otimes \mathbb{C}t^{0} \oplus \mathbb{C}I \simeq T_{\rho}M \oplus \mathbb{C}I \\ \widehat{T_{\rho}M}_{+} &= TM \otimes t\mathbb{C}[t]. \end{aligned}$$

< □ > < 同 > < Ξ > < Ξ > < Ξ > < Ξ < </p>

• Eigenfunctions $|\mathbf{k}\rangle = e^{ik_{\mu}x^{\mu}}$ of the Laplacian with eigenvalues $-k_{\mu}k^{\mu}$.

- Linear sigma models: *M* flat.
- $M = \mathbb{R}^n$ and $p \in \mathbb{R}^n$. $T_p M = T_p \mathbb{R}^n$: the tangent space of $M = \mathbb{R}^n$ at p.
- ► Heisenberg algebra: $\widehat{T_{\rho}M} = \widehat{T_{\rho}M}_{-} \oplus \widehat{T_{\rho}M}_{0} \oplus \widehat{T_{\rho}M}_{+}$, where

$$\begin{aligned} \widehat{T_pM}_{-} &= T_pM \otimes t^{-1}\mathbb{C}[t^{-1}], \\ \widehat{T_pM}_{0} &= T_pM \otimes \mathbb{C}t^{0} \oplus \mathbb{C}I \simeq T_pM \oplus \mathbb{C}I \\ \widehat{T_pM}_{+} &= TM \otimes t\mathbb{C}[t]. \end{aligned}$$

(日) (日) (日) (日) (日) (日) (日)

► Eigenfunctions $|\mathbf{k}\rangle = e^{ik_{\mu}x^{\mu}}$ of the Laplacian with eigenvalues $-k_{\mu}k^{\mu}$.

Linear sigma models: *M* flat.

►
$$M = \mathbb{R}^n$$
 and $p \in \mathbb{R}^n$.
 $T_p M = T_p \mathbb{R}^n$: the tangent space of $M = \mathbb{R}^n$ at p .

• Heisenberg algebra: $\widehat{T_{\rho}M} = \widehat{T_{\rho}M}_{-} \oplus \widehat{T_{\rho}M}_{0} \oplus \widehat{T_{\rho}M}_{+}$, where

$$\begin{aligned} \widehat{T_{\rho}M}_{-} &= T_{\rho}M \otimes t^{-1}\mathbb{C}[t^{-1}], \\ \widehat{T_{\rho}M}_{0} &= T_{\rho}M \otimes \mathbb{C}t^{0} \oplus \mathbb{C}\mathbf{I} \simeq T_{\rho}M \oplus \mathbb{C}\mathbf{I}, \\ \widehat{T_{\rho}M}_{+} &= TM \otimes t\mathbb{C}[t]. \end{aligned}$$

• Eigenfunctions $|\mathbf{k}\rangle = e^{ik_{\mu}x^{\mu}}$ of the Laplacian with eigenvalues $-k_{\mu}k^{\mu}$.

▲□▶▲□▶▲□▶▲□▶ ▲□ ● ● ●

Linear sigma models: *M* flat.

►
$$M = \mathbb{R}^n$$
 and $p \in \mathbb{R}^n$.
 $T_p M = T_p \mathbb{R}^n$: the tangent space of $M = \mathbb{R}^n$ at p .

• Heisenberg algebra: $\widehat{T_{\rho}M} = \widehat{T_{\rho}M}_{-} \oplus \widehat{T_{\rho}M}_{0} \oplus \widehat{T_{\rho}M}_{+}$, where

$$\begin{aligned} \widehat{T_{\rho}M}_{-} &= T_{\rho}M \otimes t^{-1}\mathbb{C}[t^{-1}], \\ \widehat{T_{\rho}M}_{0} &= T_{\rho}M \otimes \mathbb{C}t^{0} \oplus \mathbb{C}I \simeq T_{\rho}M \oplus \mathbb{C}I, \\ \widehat{T_{\rho}M}_{+} &= TM \otimes t\mathbb{C}[t]. \end{aligned}$$

< □ > < 同 > < Ξ > < Ξ > < Ξ > < Ξ < </p>

► Eigenfunctions $|\mathbf{k}\rangle = e^{ik_{\mu}x^{\mu}}$ of the Laplacian with eigenvalues $-k_{\mu}k^{\mu}$.

- ► Let $\overline{T_pM_+}$ act on $|\mathbf{k}\rangle$ as 0, I on $|\mathbf{k}\rangle$ as 1 and elements of T_pM on $|\mathbf{k}\rangle$ as *i* times the vector fields obtained by parallel transporting the elements of T_pM . Then $\mathbb{C}|\mathbf{k}\rangle$ becomes a module for $\widehat{T_pM_0} \oplus \widehat{T_pM_+}$.
- ► Induced module: $W_{|\mathbf{k}\rangle} = U(\widehat{T_pM}) \otimes_{U(\widehat{T_pM}_0 \oplus \widehat{T_pM}_+)} \mathbb{C}|\mathbf{k}\rangle$ (Fock space generated by $|\mathbf{k}\rangle$).
- $W_{|0\rangle}$ has an algebraic structure called vertex operator algebra and $W_{|\mathbf{k}\rangle}$ for any **k** is a module for this vertex operator algebra $W_{|0\rangle}$.
- ► The corresponding conformal field theory can be constructed by studying the correlation functions among these modules for the vertex operator algebra W_{|0⟩}.

- ► Let $T_p M_+$ act on $|\mathbf{k}\rangle$ as 0, I on $|\mathbf{k}\rangle$ as 1 and elements of $T_p M$ on $|\mathbf{k}\rangle$ as *i* times the vector fields obtained by parallel transporting the elements of $T_p M$. Then $\mathbb{C}|\mathbf{k}\rangle$ becomes a module for $\widehat{T_p M_0} \oplus \widehat{T_p M_+}$.
- ► Induced module: $W_{|\mathbf{k}\rangle} = U(\widehat{T_{p}M}) \otimes_{U(\widehat{T_{p}M}_{0} \oplus \widehat{T_{p}M}_{+})} \mathbb{C}|\mathbf{k}\rangle$ (Fock space generated by $|\mathbf{k}\rangle$).
- $W_{|0\rangle}$ has an algebraic structure called vertex operator algebra and $W_{|\mathbf{k}\rangle}$ for any **k** is a module for this vertex operator algebra $W_{|0\rangle}$.
- ► The corresponding conformal field theory can be constructed by studying the correlation functions among these modules for the vertex operator algebra W_{I0}.

- ► Let $\overline{T_pM_+}$ act on $|\mathbf{k}\rangle$ as 0, I on $|\mathbf{k}\rangle$ as 1 and elements of T_pM on $|\mathbf{k}\rangle$ as *i* times the vector fields obtained by parallel transporting the elements of T_pM . Then $\mathbb{C}|\mathbf{k}\rangle$ becomes a module for $\widehat{T_pM_0} \oplus \widehat{T_pM_+}$.
- ► Induced module: $W_{|\mathbf{k}\rangle} = U(\widehat{T_{p}M}) \otimes_{U(\widehat{T_{p}M}_{0} \oplus \widehat{T_{p}M}_{+})} \mathbb{C}|\mathbf{k}\rangle$ (Fock space generated by $|\mathbf{k}\rangle$).
- $W_{|0\rangle}$ has an algebraic structure called vertex operator algebra and $W_{|\mathbf{k}\rangle}$ for any **k** is a module for this vertex operator algebra $W_{|0\rangle}$.
- The corresponding conformal field theory can be constructed by studying the correlation functions among these modules for the vertex operator algebra W_{I0}.

・ロト・日本・日本・日本・日本

- ► Let $\overline{T_pM_+}$ act on $|\mathbf{k}\rangle$ as 0, I on $|\mathbf{k}\rangle$ as 1 and elements of T_pM on $|\mathbf{k}\rangle$ as *i* times the vector fields obtained by parallel transporting the elements of T_pM . Then $\mathbb{C}|\mathbf{k}\rangle$ becomes a module for $\widehat{T_pM_0} \oplus \widehat{T_pM_+}$.
- ► Induced module: $W_{|\mathbf{k}\rangle} = U(\widehat{T_{p}M}) \otimes_{U(\widehat{T_{p}M}_{0} \oplus \widehat{T_{p}M}_{+})} \mathbb{C}|\mathbf{k}\rangle$ (Fock space generated by $|\mathbf{k}\rangle$).
- $W_{|0\rangle}$ has an algebraic structure called vertex operator algebra and $W_{|\mathbf{k}\rangle}$ for any **k** is a module for this vertex operator algebra $W_{|0\rangle}$.
- ► The corresponding conformal field theory can be constructed by studying the correlation functions among these modules for the vertex operator algebra W_{|0⟩}.

Sigma models on tori

- ► Given a torus, we still consider the vertex operator algebra *W*_{|0⟩}. But for modules we consider only *W*_{|k⟩} for those k such that *e^{ik_µx^µ* are well defined on the torus. Such k form a lattice.}
- The corresponding conformal field theory can be constructed by studying the correlation functions among W_{|k⟩} for such k for the vertex operator algebra W_{|0⟩}.

・ロト・日本・日本・日本・日本

Sigma models on tori

- Given a torus, we still consider the vertex operator algebra *W*_{|0⟩}. But for modules we consider only *W*_{|k⟩} for those k such that e^{ik_μx^μ} are well defined on the torus. Such k form a lattice.
- ► The corresponding conformal field theory can be constructed by studying the correlation functions among W_{|k⟩} for such k for the vertex operator algebra W_{|0⟩}.

- In general, it was conjectured by physicists that quantum nonlinear sigma models are not conformal field theories. In the case that the target manifold is a Calabi-Yau manifold, the quantum nonlinear sigma module is an N = 2 superconformal field theory.
- M: a Riemannian manifold. p ∈ M. T_pM: the tangent space of ℝⁿ at p.
- Affinization $T_p M$.
- Problem: How to define an action of T_pM on smooth functions, in particular, on eigenfunctions of the Laplacian, at least near *p*.

- In general, it was conjectured by physicists that quantum nonlinear sigma models are not conformal field theories. In the case that the target manifold is a Calabi-Yau manifold, the quantum nonlinear sigma module is an N = 2 superconformal field theory.
- ► M: a Riemannian manifold. p ∈ M. T_pM: the tangent space of ℝⁿ at p.
- Affinization $T_p M$.
- Problem: How to define an action of T_pM on smooth functions, in particular, on eigenfunctions of the Laplacian, at least near *p*.

- In general, it was conjectured by physicists that quantum nonlinear sigma models are not conformal field theories. In the case that the target manifold is a Calabi-Yau manifold, the quantum nonlinear sigma module is an N = 2 superconformal field theory.
- ► M: a Riemannian manifold. p ∈ M. T_pM: the tangent space of ℝⁿ at p.
- Affinization $\widehat{T_{\rho}M}$.
- Problem: How to define an action of T_pM on smooth functions, in particular, on eigenfunctions of the Laplacian, at least near *p*.

- In general, it was conjectured by physicists that quantum nonlinear sigma models are not conformal field theories. In the case that the target manifold is a Calabi-Yau manifold, the quantum nonlinear sigma module is an N = 2 superconformal field theory.
- ► M: a Riemannian manifold. p ∈ M. T_pM: the tangent space of ℝⁿ at p.
- Affinization $\widehat{T_pM}$.
- Problem: How to define an action of T_pM on smooth functions, in particular, on eigenfunctions of the Laplacian, at least near p.

- If we choose a local coordinate patch near p and define the action using derivatives with respect to the coordinates, the results depend on the local coordinate patch.
- If we define the action using the covariant derivatives, then we cannot view T_pM as an abelian Lie algebra becuase the commutators of covariant derivatives involve the curvature tensor.
- Moreover, we want to find a "categorification" of the algebra generated by eigenfunctions. To do this, we first need to find a certain algebra such that every eigenfunction generates a module for this algebra.

- If we choose a local coordinate patch near p and define the action using derivatives with respect to the coordinates, the results depend on the local coordinate patch.
- If we define the action using the covariant derivatives, then we cannot view T_pM as an abelian Lie algebra becuase the commutators of covariant derivatives involve the curvature tensor.
- Moreover, we want to find a "categorification" of the algebra generated by eigenfunctions. To do this, we first need to find a certain algebra such that every eigenfunction generates a module for this algebra.

- If we choose a local coordinate patch near p and define the action using derivatives with respect to the coordinates, the results depend on the local coordinate patch.
- If we define the action using the covariant derivatives, then we cannot view T_pM as an abelian Lie algebra becuase the commutators of covariant derivatives involve the curvature tensor.
- Moreover, we want to find a "categorification" of the algebra generated by eigenfunctions. To do this, we first need to find a certain algebra such that every eigenfunction generates a module for this algebra.

Outline

The vertex operator algebra approach to two-dimensional conformal field theory

Nonlinear sigma models

Meromorphic open-string vertex algebras and representations

(日) (日) (日) (日) (日) (日) (日)

A sheaf ${\mathcal V}$ of "universal" meromorphic open-string vertex algebras

A sheaf ${\mathcal W}$ of left modules for the sheaf ${\mathcal V}$

A sheaf $\mathcal{V}^{\mathcal{B}}$ of meromorphic open-string vertex algebra associated to \mathcal{W}

Lapacians and Ricci-flat manifolds

Further studies and the main challenge

Meromorphic open-string vertex algebras

A noncommutative generalization of a variant of the notion of vertex operator algebras.

A meromorphic vertex operator algebra consists the following data:

- A \mathbb{Z} -graded vector space $V = \prod_{n \in \mathbb{Z}} V_{(n)}$.
- A vertex operator map

$$\begin{array}{rcl} Y_V: V \otimes V & \to & V[[z, z^{-1}]], \\ & u \otimes v & \mapsto & Y(u, z)v. \end{array}$$

(日) (日) (日) (日) (日) (日) (日)

• A vacuum $\mathbf{1} \in V_{(0)}$.

Meromorphic open-string vertex algebras

A noncommutative generalization of a variant of the notion of vertex operator algebras.

A meromorphic vertex operator algebra consists the following data:

- A \mathbb{Z} -graded vector space $V = \prod_{n \in \mathbb{Z}} V_{(n)}$.
- A vertex operator map

$$\begin{array}{rcl} Y_V: V \otimes V & \to & V[[z, z^{-1}]], \\ & u \otimes v & \mapsto & Y(u, z)v. \end{array}$$

< □ > < 同 > < Ξ > < Ξ > < Ξ > < Ξ < </p>

• A vacuum $1 \in V_{(0)}$.

Meromorphic open-string vertex algebras

A noncommutative generalization of a variant of the notion of vertex operator algebras.

A meromorphic vertex operator algebra consists the following data:

• A \mathbb{Z} -graded vector space $V = \prod_{n \in \mathbb{Z}} V_{(n)}$.

A vertex operator map

$$\begin{array}{rcl} Y_V: V \otimes V & \to & V[[z, z^{-1}]], \\ & u \otimes v & \mapsto & Y(u, z)v. \end{array}$$

< □ > < 同 > < Ξ > < Ξ > < Ξ > < Ξ < </p>

• A vacuum $1 \in V_{(0)}$.

A noncommutative generalization of a variant of the notion of vertex operator algebras.

A meromorphic vertex operator algebra consists the following data:

- A \mathbb{Z} -graded vector space $V = \prod_{n \in \mathbb{Z}} V_{(n)}$.
- A vertex operator map

$$egin{array}{rcl} Y_V: V\otimes V &
ightarrow V[[z,z^{-1}]], \ & u\otimes v & \mapsto & Y(u,z)v. \end{array}$$

< □ > < 同 > < 三 > < 三 > < 三 > < ○ < ○ </p>

• A vacuum $1 \in V_{(0)}$.

A noncommutative generalization of a variant of the notion of vertex operator algebras.

A meromorphic vertex operator algebra consists the following data:

- A \mathbb{Z} -graded vector space $V = \prod_{n \in \mathbb{Z}} V_{(n)}$.
- A vertex operator map

$$egin{array}{rcl} Y_V: V\otimes V &
ightarrow V[[z,z^{-1}]], \ u\otimes v & \mapsto & Y(u,z)v. \end{array}$$

< □ > < 同 > < 三 > < 三 > < 三 > < ○ < ○ </p>

• A vacuum $\mathbf{1} \in V_{(0)}$.

These data satisfy the following axioms:

- Grading-restriction property: dim $V_{(n)} < \infty$ for $n \in \mathbb{Z}$ and $V_{(n)} = 0$ when *n* is sufficiently negative.
- ► Lower-truncation property: For $u, v \in V$, Y(u, z)v contains only finitely many negative power terms.

(日) (日) (日) (日) (日) (日) (日)

Axioms for the vacuum: For $u \in V$, Y(1, z)u = u and $\lim_{z\to 0} Y(u, z)\mathbf{1} = u$.

These data satisfy the following axioms:

- Grading-restriction property: dim $V_{(n)} < \infty$ for $n \in \mathbb{Z}$ and $V_{(n)} = 0$ when *n* is sufficiently negative.
- ► Lower-truncation property: For u, v ∈ V, Y(u, z)v contains only finitely many negative power terms.

(日) (日) (日) (日) (日) (日) (日)

Axioms for the vacuum: For $u \in V$, Y(1, z)u = u and $\lim_{z\to 0} Y(u, z)\mathbf{1} = u$.

These data satisfy the following axioms:

- Grading-restriction property: dim $V_{(n)} < \infty$ for $n \in \mathbb{Z}$ and $V_{(n)} = 0$ when *n* is sufficiently negative.
- ► Lower-truncation property: For u, v ∈ V, Y(u, z)v contains only finitely many negative power terms.

(日) (日) (日) (日) (日) (日) (日)

Axioms for the vacuum: For $u \in V$, Y(1, z)u = u and $\lim_{z\to 0} Y(u, z)\mathbf{1} = u$.

These data satisfy the following axioms:

- Grading-restriction property: dim $V_{(n)} < \infty$ for $n \in \mathbb{Z}$ and $V_{(n)} = 0$ when *n* is sufficiently negative.
- ► Lower-truncation property: For u, v ∈ V, Y(u, z)v contains only finitely many negative power terms.

(日) (日) (日) (日) (日) (日) (日)

Axioms for the vacuum: For $u \in V$, $Y(\mathbf{1}, z)u = u$ and $\lim_{z\to 0} Y(u, z)\mathbf{1} = u$.

▶ Rationality and associativity: For $u_1, u_2, v \in V$, $v' \in V' = \coprod_{n \in \mathbb{Z}} V^*_{(n)}$, the series

$$\langle v', Y(u_1, z_1)Y(u_2, z_2)v \rangle \langle v', Y(Y(u_1, z_1 - z_2)u_2, z_2)v \rangle$$

are absolutely convergent in the regions $|z_1| > |z_2| > 0$ and $|z_2| > |z_1 - z_2| > 0$, respectively, to a common rational function in z_1 and z_2 with the only possible poles at $z_1, z_2 = 0$ and $z_1 = z_2$.

・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・

Vertex (operator) algebras

► If in addition, the commutativity holds, that is, for $u_1, u_2, v \in V, v' \in V' = \prod_{n \in \mathbb{Z}} V^*_{(n)}$, the series

 $\begin{array}{l} \langle v', Y(u_1, z_1) Y(u_2, z_2) v \rangle, \\ \langle v', Y(u_2, z_2) Y(u_1, z_1) v \rangle \end{array}$

are absolutely convergent in the regions $|z_1| > |z_2| > 0$, $|z_2| > |z_1| > 0$, respectively, to a common rational function, then the meromorphic open-string vertex algebra is in fact a \mathbb{Z} -graded vertex algebra.

► A Z-graded vertex algebra *V* is a vertex operator algebra or conformal vertex algebra if there is an element $\omega \in V$ such that for $L(n) = \operatorname{Res}_{z} z^{n+1} Y(\omega, z)$, we have $[L(m), L(n)] = (m - n)L(m + n) + \frac{c}{12}(m^{3} - m)\delta_{m+b,0}$ (the Virasoro relation), $\frac{d}{dz}Y(u, z) = Y(L(-1)u, z)$ (L(-1)-derivative property) for $u \in V$ and L(0)u = nu for $u \in V_{(n)}$ (L(0)-grading property) conformal element

Vertex (operator) algebras

► If in addition, the commutativity holds, that is, for $u_1, u_2, v \in V, v' \in V' = \prod_{n \in \mathbb{Z}} V^*_{(n)}$, the series

 $\begin{array}{l} \langle v', Y(u_1, z_1) Y(u_2, z_2) v \rangle, \\ \langle v', Y(u_2, z_2) Y(u_1, z_1) v \rangle \end{array}$

are absolutely convergent in the regions $|z_1| > |z_2| > 0$, $|z_2| > |z_1| > 0$, respectively, to a common rational function, then the meromorphic open-string vertex algebra is in fact a \mathbb{Z} -graded vertex algebra.

A Z-graded vertex algebra V is a vertex operator algebra or conformal vertex algebra if there is an element ω ∈ V such that for L(n) = Res_Zzⁿ⁺¹Y(ω, z), we have [L(m), L(n)] = (m - n)L(m + n) + c/12(m³ - m)δ_{m+b,0} (the Virasoro relation), d/dz Y(u, z) = Y(L(-1)u, z) (L(-1)-derivative property) for u ∈ V and L(0)u = nu for u ∈ V_(n) (L(0)-grading property) conformal element

Operator product expansion

In the region $|z_1| > |z_2| > |z_1 - z_2| > 0$, we have

$$Y(u_1, z_1)Y(u_2, z_2) = Y(Y(u_1, z_1 - z_2)u_2, z_2)$$

in a suitable sense. Write $Y(u_1, x)u_2 = \sum_{n \in \mathbb{Z}} Y_n(u_1)u_2x^{-n-1}$. Then we have

$$Y(u_1, z_1)Y(u_2, z_2) = \sum_{n \in \mathbb{Z}} (z_1 - z_2)^{-n-1} Y(Y_n(u_1)u_2, z_2),$$

where $Y(u_1, z_1)$ and $Y(u_2, z_2)$ are the values of the quantum fields $Y(u_1, z)$ and $Y(u_2, z)$ at z_1 and z_2 , respectively, $Y(Y_n(u_1)u_2, z_2)$ for $n \in \mathbb{Z}$ are the values of the quantum fields $Y(Y_n(u_1)u_2, z)$ at z_2 and $(z_1 - z_2)^{-n-1}$ for $n \in \mathbb{Z}$ are analytic functions of $z_1 - z_2$.

Left modules for a meromorphic open-string vertex algebra

▶ Let *V* be a meromorphic open-string vertex algebra. A left *V*-module is a \mathbb{C} -graded vector space $W = \prod_{n \in \mathbb{C}} W_{(n)}$ equipped with a vertex operator map $Y_W : V \otimes W \rightarrow W[[z, z^{-1}]]$ satisfying all those axioms for *V* which still make sense.

 Vertex operators for left modules also have operator product expansion.

Left modules for a meromorphic open-string vertex algebra

▶ Let *V* be a meromorphic open-string vertex algebra. A left *V*-module is a \mathbb{C} -graded vector space $W = \prod_{n \in \mathbb{C}} W_{(n)}$ equipped with a vertex operator map $Y_W : V \otimes W \rightarrow W[[z, z^{-1}]]$ satisfying all those axioms for *V* which still make sense.

 Vertex operators for left modules also have operator product expansion.

Meromorphic open-string vertex algebras as noncommutative generalizations of vertex algebras

- In general, a meromorphic open-string vertex algebra satisfies all the properties for a vertex algebra except for the commutativity. Thus meromorphic open-string vertex algebras should be viewed as noncommutative generalizations of vertex algebras.
- Many other properties, for example, Jacobi identity, locality, the commutator formula, skew-symmetry or even the associator formula, of vertex algebras are also not satisfied by a meromorphic open-string vertex algebra.
- But as we discussed above, the vertex operators for a meromorphic open-string vertex algebra and its left modules still have operator product expansion.

Meromorphic open-string vertex algebras as noncommutative generalizations of vertex algebras

- In general, a meromorphic open-string vertex algebra satisfies all the properties for a vertex algebra except for the commutativity. Thus meromorphic open-string vertex algebras should be viewed as noncommutative generalizations of vertex algebras.
- Many other properties, for example, Jacobi identity, locality, the commutator formula, skew-symmetry or even the associator formula, of vertex algebras are also not satisfied by a meromorphic open-string vertex algebra.
- But as we discussed above, the vertex operators for a meromorphic open-string vertex algebra and its left modules still have operator product expansion.

Meromorphic open-string vertex algebras as noncommutative generalizations of vertex algebras

- In general, a meromorphic open-string vertex algebra satisfies all the properties for a vertex algebra except for the commutativity. Thus meromorphic open-string vertex algebras should be viewed as noncommutative generalizations of vertex algebras.
- Many other properties, for example, Jacobi identity, locality, the commutator formula, skew-symmetry or even the associator formula, of vertex algebras are also not satisfied by a meromorphic open-string vertex algebra.
- But as we discussed above, the vertex operators for a meromorphic open-string vertex algebra and its left modules still have operator product expansion.

Examples of meromorphic open-string vertex algebras

Theorem (H. 2012)

Given a finite-dimensional inner product space \mathfrak{h} over \mathbb{R} , let $\hat{\mathfrak{h}}_{-} = \mathfrak{h} \otimes t^{-1}\mathbb{C}[t^{-1}]$. Then the tensor algebra $T(\hat{\mathfrak{h}}_{-})$ of $\hat{\mathfrak{h}}_{-}$ has a natural structure of meromorphic open-string vertex algebra.

Example

Let *M* be a Riemannian manifold, $p \in M$ and T_pM the tangent space at *p*. Then $T(\widehat{T_pM})$ has a natural structure of meromorphic open-string vertex algebra.

(日) (日) (日) (日) (日) (日) (日)

Examples of meromorphic open-string vertex algebras

Theorem (H. 2012)

Given a finite-dimensional inner product space \mathfrak{h} over \mathbb{R} , let $\hat{\mathfrak{h}}_{-} = \mathfrak{h} \otimes t^{-1}\mathbb{C}[t^{-1}]$. Then the tensor algebra $T(\hat{\mathfrak{h}}_{-})$ of $\hat{\mathfrak{h}}_{-}$ has a natural structure of meromorphic open-string vertex algebra.

Example

Let *M* be a Riemannian manifold, $p \in M$ and T_pM the tangent space at *p*. Then $T(\widehat{T_pM})$ has a natural structure of meromorphic open-string vertex algebra.

Examples of left modules for meromorphic open-string vertex algebras

As we discussed above, the vertex operators for a left module have operator product expansion.

Theorem (H. 2012)

Given a finite-dimensional inner product space \mathfrak{h} over \mathbb{R} and a module Λ for the tensor algebra $T(\mathfrak{h}^{\mathbb{C}})$ ($\mathfrak{h}^{\mathbb{C}}$ being the complexification of \mathfrak{h}), the space $T(\hat{\mathfrak{h}}_{-}) \otimes \Lambda$ has a natural structure of left module for the meromorphic open-string vertex algebra $T(\hat{\mathfrak{h}}_{-})$.

According to this theorem, to construct a left module for the meromorphic open-string vertex algebra $T(\hat{\mathfrak{h}}_{-})$, one needs only construct left modules for the tensor algebra $T(\mathfrak{h}^{\mathbb{C}})$.

Examples of left modules for meromorphic open-string vertex algebras

As we discussed above, the vertex operators for a left module have operator product expansion.

Theorem (H. 2012)

Given a finite-dimensional inner product space \mathfrak{h} over \mathbb{R} and a module Λ for the tensor algebra $T(\mathfrak{h}^{\mathbb{C}})$ ($\mathfrak{h}^{\mathbb{C}}$ being the complexification of \mathfrak{h}), the space $T(\hat{\mathfrak{h}}_{-}) \otimes \Lambda$ has a natural structure of left module for the meromorphic open-string vertex algebra $T(\hat{\mathfrak{h}}_{-})$.

According to this theorem, to construct a left module for the meromorphic open-string vertex algebra $\mathcal{T}(\hat{\mathfrak{h}}_{-})$, one needs only construct left modules for the tensor algebra $\mathcal{T}(\mathfrak{h}^{\mathbb{C}})$.

Examples of left modules for meromorphic open-string vertex algebras

As we discussed above, the vertex operators for a left module have operator product expansion.

Theorem (H. 2012)

Given a finite-dimensional inner product space \mathfrak{h} over \mathbb{R} and a module Λ for the tensor algebra $T(\mathfrak{h}^{\mathbb{C}})$ ($\mathfrak{h}^{\mathbb{C}}$ being the complexification of \mathfrak{h}), the space $T(\hat{\mathfrak{h}}_{-}) \otimes \Lambda$ has a natural structure of left module for the meromorphic open-string vertex algebra $T(\hat{\mathfrak{h}}_{-})$.

According to this theorem, to construct a left module for the meromorphic open-string vertex algebra $T(\hat{\mathfrak{h}}_{-})$, one needs only construct left modules for the tensor algebra $T(\mathfrak{h}^{\mathbb{C}})$.

Outline

The vertex operator algebra approach to two-dimensional conformal field theory

Nonlinear sigma models

Meromorphic open-string vertex algebras and representations

◆□▶ ◆□▶ ◆□▶ ◆□▶ ● ● ● ●

A sheaf $\ensuremath{\mathcal{V}}$ of "universal" meromorphic open-string vertex algebras

A sheaf ${\mathcal W}$ of left modules for the sheaf ${\mathcal V}$

A sheaf $\mathcal{V}^{\mathcal{B}}$ of meromorphic open-string vertex algebra associated to \mathcal{W}

Lapacians and Ricci-flat manifolds

Further studies and the main challenge

- Given a Riemannian manifold *M*, we need to put the the meromorphic open-string vertex algebras constructed from the tangent spaces together to obtain a meromorphic open-string vertex algebra containing the global information of *M*.
- But more importantly, we need to find such a meromorphic open-string vertex algebra so that eigenfunctions generate left modules for this algebra.

◆□ ▶ ◆□ ▶ ◆ □ ▶ ◆ □ ▶ ● ● ● ● ●

- Given a Riemannian manifold *M*, we need to put the the meromorphic open-string vertex algebras constructed from the tangent spaces together to obtain a meromorphic open-string vertex algebra containing the global information of *M*.
- But more importantly, we need to find such a meromorphic open-string vertex algebra so that eigenfunctions generate left modules for this algebra.

◆□ ▶ ◆□ ▶ ◆ □ ▶ ◆ □ ▶ ● ● ● ● ●

Let *U* be an open subset of *M*, $TM^{\mathbb{C}}$ the complexification of the tangent bundle of *M*, \widehat{TM}_{-} the vector bundle whose fiber at $p \in M$ is $\widehat{T_pM}_{-}$, $T(\widehat{TM}_{-})$ the vector bundle whose fiber at $p \in M$ is $T(\widehat{T_pM}_{-})$ and $\Pi_U(T(\widehat{TM}_{-}))$ the space of parallel sections on *U* of the vector bundle $T(\widehat{TM}_{-})$.

Theorem (H. 2012)

The space $\Pi_U(T(TM_-))$ has a natural structure of meromorphic open-string vertex algebra. The assignment $U \to \Pi_U(T(TM_-))$ gives a sheaf of meromorphic open-string vertex algebras.

Let *U* be an open subset of *M*, $TM^{\mathbb{C}}$ the complexification of the tangent bundle of *M*, \widehat{TM}_{-} the vector bundle whose fiber at $p \in M$ is $\widehat{T_pM}_{-}$, $T(\widehat{TM}_{-})$ the vector bundle whose fiber at $p \in M$ is $T(\widehat{T_pM}_{-})$ and $\Pi_U(T(\widehat{TM}_{-}))$ the space of parallel sections on *U* of the vector bundle $T(\widehat{TM}_{-})$.

Theorem (H. 2012)

The space $\Pi_U(T(\widehat{TM}_-))$ has a natural structure of meromorphic open-string vertex algebra. The assignment $U \to \Pi_U(T(\widehat{TM}_-))$ gives a sheaf of meromorphic open-string vertex algebras.

Outline

The vertex operator algebra approach to two-dimensional conformal field theory

Nonlinear sigma models

Meromorphic open-string vertex algebras and representations

◆□▶ ◆□▶ ◆□▶ ◆□▶ ● ● ● ●

A sheaf ${\mathcal V}$ of "universal" meromorphic open-string vertex algebras

A sheaf ${\mathcal W}$ of left modules for the sheaf ${\mathcal V}$

A sheaf $\mathcal{V}^{\mathcal{B}}$ of meromorphic open-string vertex algebra associated to \mathcal{W}

Lapacians and Ricci-flat manifolds

Further studies and the main challenge

Constructing left modules for the sheaf $\ensuremath{\mathcal{V}}$ from smooth functions

- The interesting and difficult part of our construction is the construction left modules for the sheaf V from smooth functions.
- This construction is based on an action of the associative algebra Π_U(T(TM^C)) on the space of smooth functions. Such an action is equivalent to a homomorphism from Π_U(T(TM^C)) to the associative algebra of operators on the space of smooth functions.

(ロ) (同) (三) (三) (三) (○) (○)

Constructing left modules for the sheaf $\ensuremath{\mathcal{V}}$ from smooth functions

- The interesting and difficult part of our construction is the construction left modules for the sheaf V from smooth functions.
- This construction is based on an action of the associative algebra Π_U(T(TM^C)) on the space of smooth functions. Such an action is equivalent to a homomorphism from Π_U(T(TM^C)) to the associative algebra of operators on the space of smooth functions.

A map ϕ_U from $\Pi_U(T(TM^{\mathbb{C}}))$ to $L(C^{\infty}(U))$

- ► Let $T^m(TM^{\mathbb{C}})$ be the vector bundle whose fibers are the *m*-th tensor powers of the complexifications of the tangent spaces of *M*, $T(TM^{\mathbb{C}})$ the vector bundle whose fibers are the tensor algebras of the complexifications of the tangent spaces of *M* and $\Pi_U(T(TM^{\mathbb{C}}))$ the space of parallel sections on *U* of the vector bundle $T(TM^{\mathbb{C}})$.
- Let C[∞](U) be the space of smooth complex functions on U and L(C[∞](U)) the algebra of linear operators on the space C[∞](U) of complex-valued smooth function on U.
- ▶ We define $\phi_U^m : \Pi_U(T^m(TM^{\mathbb{C}})) \to L(C^{\infty}(U))$ to be the map $(\sqrt{-1})^m \nabla^m$, where the *m*-th order covariant derivative ∇^m is viewed as a map $\Pi_U(T^m(TM^{\mathbb{C}}))$ to $L(C^{\infty}(U))$. Puting ϕ_U^m together, we obtain $\phi_U : \Pi_U(T(TM^{\mathbb{C}})) \to L(C^{\infty}(U))$.

A map ϕ_U from $\Pi_U(T(TM^{\mathbb{C}}))$ to $L(C^{\infty}(U))$

- ► Let $T^m(TM^{\mathbb{C}})$ be the vector bundle whose fibers are the *m*-th tensor powers of the complexifications of the tangent spaces of *M*, $T(TM^{\mathbb{C}})$ the vector bundle whose fibers are the tensor algebras of the complexifications of the tangent spaces of *M* and $\Pi_U(T(TM^{\mathbb{C}}))$ the space of parallel sections on *U* of the vector bundle $T(TM^{\mathbb{C}})$.
- Let C[∞](U) be the space of smooth complex functions on U and L(C[∞](U)) the algebra of linear operators on the space C[∞](U) of complex-valued smooth function on U.
- ▶ We define $\phi_U^m : \Pi_U(T^m(TM^{\mathbb{C}})) \to L(C^{\infty}(U))$ to be the map $(\sqrt{-1})^m \nabla^m$, where the *m*-th order covariant derivative ∇^m is viewed as a map $\Pi_U(T^m(TM^{\mathbb{C}}))$ to $L(C^{\infty}(U))$. Puting ϕ_U^m together, we obtain $\phi_U : \Pi_U(T(TM^{\mathbb{C}})) \to L(C^{\infty}(U))$.

A map ϕ_U from $\Pi_U(T(TM^{\mathbb{C}}))$ to $L(C^{\infty}(U))$

- ► Let $T^m(TM^{\mathbb{C}})$ be the vector bundle whose fibers are the *m*-th tensor powers of the complexifications of the tangent spaces of *M*, $T(TM^{\mathbb{C}})$ the vector bundle whose fibers are the tensor algebras of the complexifications of the tangent spaces of *M* and $\Pi_U(T(TM^{\mathbb{C}}))$ the space of parallel sections on *U* of the vector bundle $T(TM^{\mathbb{C}})$.
- Let C[∞](U) be the space of smooth complex functions on U and L(C[∞](U)) the algebra of linear operators on the space C[∞](U) of complex-valued smooth function on U.
- ▶ We define $\phi_U^m : \Pi_U(T^m(TM^{\mathbb{C}})) \to L(C^{\infty}(U))$ to be the map $(\sqrt{-1})^m \nabla^m$, where the *m*-th order covariant derivative ∇^m is viewed as a map $\Pi_U(T^m(TM^{\mathbb{C}}))$ to $L(C^{\infty}(U))$. Puting ϕ_U^m together, we obtain $\phi_U : \Pi_U(T(TM^{\mathbb{C}})) \to L(C^{\infty}(U))$.

A homomorphism ϕ_U of associative algebras

Example: Let g^{-1} be the element of $\Gamma_U(T^2(TM^{\mathbb{C}}))$ corresponding to the metric on the cotagent bundle. Then g^{-1} is parallel, that is, $g^{-1} \in \Pi_U(T^2(TM^{\mathbb{C}}))$ and $\phi_U(g^{-1}) = -\Delta$.

(日) (日) (日) (日) (日) (日) (日)

Theorem (H. 2012)

 ϕ_U is a homomorphism of associative algebras.

A homomorphism ϕ_U of associative algebras

Example: Let g^{-1} be the element of $\Gamma_U(T^2(TM^{\mathbb{C}}))$ corresponding to the metric on the cotagent bundle. Then g^{-1} is parallel, that is, $g^{-1} \in \Pi_U(T^2(TM^{\mathbb{C}}))$ and $\phi_U(g^{-1}) = -\Delta$.

◆□▶ ◆□▶ ◆□▶ ◆□▶ ● ● ● ●

Theorem (H. 2012)

 ϕ_U is a homomorphism of associative algebras.

A presheaf

By the theorem above, C[∞](U) is a Π_U(T(TM^C))-module. For any p ∈ M, Π_U(T(TM^C)) is isomorphic to the fixed point subspace (T(T_pM^C))^{H_p(U)} of T(T_pM^C) under the holonormy group H_p(U). Let

$$\mathcal{C}_{
ho}(U)=\mathcal{T}(\mathcal{T}_{
ho}M^{\mathbb{C}})\otimes_{(\mathcal{T}(\mathcal{T}_{
ho}M^{\mathbb{C}}))^{H_{
ho}(U)}}\mathcal{C}^{\infty}(U).$$

We know that T(T_pM_{_}) has a natural structure of meromorphic open-string vertex algebra and T(T_pM_{_}) ⊗ C_p(U) has a natural structure of left T(T_pM_{_})-module. Then (T(T_pM_{_}))^{H_p(U)} is a meromorphic open-string vertex subalgebra of T(T_pM_{_}) and it is isomorphic to Π_U(T(TM_{_})). In particular, T(T_pM_{_}) ⊗ C_p(U) is also a left Π_U(T(TM_{_}))-module.

A presheaf

By the theorem above, C[∞](U) is a Π_U(T(TM^C))-module. For any p ∈ M, Π_U(T(TM^C)) is isomorphic to the fixed point subspace (T(T_pM^C))^{H_p(U)} of T(T_pM^C) under the holonormy group H_p(U). Let

$$\mathcal{C}_{\rho}(U) = \mathcal{T}(\mathcal{T}_{\rho}M^{\mathbb{C}}) \otimes_{(\mathcal{T}(\mathcal{T}_{\rho}M^{\mathbb{C}}))^{\mathcal{H}_{\rho}(U)}} \mathcal{C}^{\infty}(U).$$

We know that T(T_pM_{_}) has a natural structure of meromorphic open-string vertex algebra and T(T_pM_{_}) ⊗ C_p(U) has a natural structure of left T(T_pM_{_})-module. Then (T(T_pM_{_}))^{H_p(U)} is a meromorphic open-string vertex subalgebra of T(T_pM_{_}) and it is isomorphic to Π_U(T(TM_{_})). In particular, T(T_pM_{_}) ⊗ C_p(U) is also a left Π_U(T(TM_{_}))-module.

A presheaf

► Let W_U^0 be the left $\Pi_U(T(\widehat{TM}_-))$ -submodule of $T(\widehat{T_pM}_-) \otimes C_p(U)$ generated by elements of the form $1 \otimes (1 \otimes_{(T(T_pM^{\mathbb{C}}))^{H_p(U)}} f)$ for $f \in C^{\infty}(U)$, where $1 \otimes_{(T(T_pM^{\mathbb{C}}))^{H_p(U)}} f$ is the image of $1 \otimes f$ under the projection from $T(T_pM^{\mathbb{C}}) \otimes C^{\infty}(U)$ to $C_p(U)$.

(日) (日) (日) (日) (日) (日) (日)

• The assignment $U \to W^0(U)$ gives a presheaf \mathcal{W}^0 .

A presheaf

► Let W_U^0 be the left $\Pi_U(T(\widehat{TM}_-))$ -submodule of $T(\widehat{T_pM}_-) \otimes C_p(U)$ generated by elements of the form $1 \otimes (1 \otimes_{(T(T_pM^{\mathbb{C}}))^{H_p(U)}} f)$ for $f \in C^{\infty}(U)$, where $1 \otimes_{(T(T_pM^{\mathbb{C}}))^{H_p(U)}} f$ is the image of $1 \otimes f$ under the projection from $T(T_pM^{\mathbb{C}}) \otimes C^{\infty}(U)$ to $C_p(U)$.

• The assignment $U \to W^0(U)$ gives a presheaf \mathcal{W}^0 .

A sheaf ${\mathcal W}$ of left modules for the sheaf ${\mathcal V}$

Let \mathcal{W} be the sheafification of \mathcal{W}^0 . The section of \mathcal{W} on U is denoted W_U .

Theorem (H. 2012)

The space W_U of sections of W on U is a left $\Pi_U(T(\widehat{TM}_-))$ -module and W is a sheaf of left modules for the sheaf V of meromorphic open-string vertex algebras.

◆□▶ ◆□▶ ▲□▶ ▲□▶ ■ ののの

A sheaf ${\mathcal W}$ of left modules for the sheaf ${\mathcal V}$

Let \mathcal{W} be the sheafification of \mathcal{W}^0 . The section of \mathcal{W} on U is denoted W_U .

Theorem (H. 2012)

The space W_U of sections of W on U is a left $\Pi_U(T(\widehat{TM}_-))$ -module and W is a sheaf of left modules for the sheaf V of meromorphic open-string vertex algebras.

◆□▶ ◆□▶ ▲□▶ ▲□▶ ■ ののの

Outline

The vertex operator algebra approach to two-dimensional conformal field theory

Nonlinear sigma models

Meromorphic open-string vertex algebras and representations

・ロト・日本・日本・日本・日本

A sheaf ${\mathcal V}$ of "universal" meromorphic open-string vertex algebras

A sheaf ${\mathcal W}$ of left modules for the sheaf ${\mathcal V}$

A sheaf $\mathcal{V}^{\textit{B}}$ of meromorphic open-string vertex algebra associated to \mathcal{W}

Lapacians and Ricci-flat manifolds

Further studies and the main challenge

A sheaf $\mathcal{V}^{\mathcal{B}}$ of meromorphic open-string vertex algebra associated to \mathcal{W}

- For an open subset U of M, let V
 _U be the subspace of V_U consisting of elements u such that Y_{WU}(u, x) = 0. Then V
 _U is a meromorphic open-string vertex subalgebra of V_U and U → V
 _U for all U give a subsheaf V of V of meromorphic open-string vertex algebras. Let V^B be the sheafification of the quotient presheaf V/V.
- ► Let V_M^B be the space of global sections of \mathcal{V}^B . The correspondance $M \mapsto V_M^B$ gives a functor from the category of Riemannian manifolds to the category of meromorphic open-string vertex algebras. Moreover, when $M = \mathbb{R}^n$, $V_{\mathbb{R}^n}^B$ is isomorphic to the vertex operator algebra $W_{|0\rangle}$. We believe that V_M^B is the canonical meromorphic open-string vertex algebra associated to the nonlinear sigma model with the target space M.

A sheaf $\mathcal{V}^{\mathcal{B}}$ of meromorphic open-string vertex algebra associated to \mathcal{W}

- For an open subset U of M, let V
 _U be the subspace of V
 _U consisting of elements u such that Y
 _{WU}(u, x) = 0. Then V
 _U is a meromorphic open-string vertex subalgebra of V
 _U and U → V
 _U for all U give a subsheaf V
 of v of meromorphic open-string vertex algebras. Let V^B be the sheafification of the quotient presheaf V
 .
- Let V^B_M be the space of global sections of V^B. The correspondance M → V^B_M gives a functor from the category of Riemannian manifolds to the category of meromorphic open-string vertex algebras. Moreover, when M = ℝⁿ, V^B_{ℝⁿ} is isomorphic to the vertex operator algebra W_{|0⟩}. We believe that V^B_M is the canonical meromorphic open-string vertex algebra associated to the nonlinear sigma model with the target space M.

Outline

The vertex operator algebra approach to two-dimensional conformal field theory

Nonlinear sigma models

Meromorphic open-string vertex algebras and representations

◆□▶ ◆□▶ ▲□▶ ▲□▶ ■ ののの

A sheaf \mathcal{V} of "universal" meromorphic open-string vertex algebras

A sheaf ${\mathcal W}$ of left modules for the sheaf ${\mathcal V}$

A sheaf $\mathcal{V}^{\mathcal{B}}$ of meromorphic open-string vertex algebra associated to \mathcal{W}

Lapacians and Ricci-flat manifolds

Further studies and the main challenge

Lapacian as a component of a vertex operator

Let $\{E_i\}_{i=1}^n$ be an orthonormal frame in an open subset *U* of *M*. Let

$$g_{\mathbb{C}}^{-1}(-1,-1)=\sum_{i=1}^{n}(E_{i}\otimes_{\mathbb{R}}t^{-1})\otimes(E_{i}\otimes_{\mathbb{R}}t^{-1})\in\Pi_{U}(T^{2}(\widehat{TM}_{-})).$$

Then $g_{\mathbb{C}}^{-1}(-1, -1)$ is in fact well defined on any open subset of M. In particular, it is well defined on M. Also, we can identify $C^{\infty}(M)$ with a subspace of W_M .

Theorem (H. 2012)

The coefficient of the x^{-2} term of $Y_{W_M}(-g_{\mathbb{C}}^{-1}(-1,-1),x)$ acting on $f \in C^{\infty}(M)$ is equal to Δf .

Lapacian as a component of a vertex operator

Let $\{E_i\}_{i=1}^n$ be an orthonormal frame in an open subset *U* of *M*. Let

$$g_{\mathbb{C}}^{-1}(-1,-1)=\sum_{i=1}^{n}(E_{i}\otimes_{\mathbb{R}}t^{-1})\otimes(E_{i}\otimes_{\mathbb{R}}t^{-1})\in\Pi_{U}(T^{2}(\widehat{TM}_{-})).$$

Then $g_{\mathbb{C}}^{-1}(-1, -1)$ is in fact well defined on any open subset of M. In particular, it is well defined on M. Also, we can identify $C^{\infty}(M)$ with a subspace of W_M .

Theorem (H. 2012)

The coefficient of the x^{-2} term of $Y_{W_M}(-g_{\mathbb{C}}^{-1}(-1,-1),x)$ acting on $f \in C^{\infty}(M)$ is equal to Δf .

The Laplacian of a Ricci-flat manifold

Proposition

Let M be a Riemannian manifold and X a parallel tangent field. Then

 $[\Delta, \phi(X)] = \operatorname{Ric}(X).$

In particular, if M is Ricci flat, Δ and $\phi(X)$ is commutative.

Conjecture

Let (M, g) be Ricci flat. Then there exists a metric \tilde{g} on M such that for any parallel tensor field \mathcal{X} on (M, \tilde{g}) , $\Delta_{\tilde{g}}$ and $\phi_{\tilde{g}}(\mathcal{X})$ is commutative, where $\Delta_{\tilde{g}}$ and $\phi_{\tilde{g}}$ are the Laplacian and the map defined before with the metric \tilde{g} .

If this conjecture is true, then for a Ricci-flat manifold M, we can find a metric \tilde{g} on M such that eigenspaces of the Laplacian $\Delta_{\tilde{g}}$ generate modules for the meromorphic open-string vertex algebra of global sections of the sheaf $\mathcal{V}_{\tilde{g}}$, where $\mathcal{V}_{\tilde{g}}$ is the sheaf of meromorphic open-string vertex algebras constructed using the metric \tilde{g} .

The Laplacian of a Ricci-flat manifold

Proposition

Let M be a Riemannian manifold and X a parallel tangent field. Then

 $[\Delta, \phi(X)] = \operatorname{Ric}(X).$

In particular, if M is Ricci flat, Δ and $\phi(X)$ is commutative.

Conjecture

Let (M, g) be Ricci flat. Then there exists a metric \tilde{g} on M such that for any parallel tensor field \mathcal{X} on (M, \tilde{g}) , $\Delta_{\tilde{g}}$ and $\phi_{\tilde{g}}(\mathcal{X})$ is commutative, where $\Delta_{\tilde{g}}$ and $\phi_{\tilde{g}}$ are the Laplacian and the map defined before with the metric \tilde{g} .

If this conjecture is true, then for a Ricci-flat manifold M, we can find a metric \tilde{g} on M such that eigenspaces of the Laplacian $\Delta_{\tilde{g}}$ generate modules for the meromorphic open-string vertex algebra of global sections of the sheaf $\mathcal{V}_{\tilde{g}}$, where $\mathcal{V}_{\tilde{g}}$ is the sheaf of meromorphic open-string vertex algebras constructed using the metric \tilde{g} .

The Laplacian of a Ricci-flat manifold

Proposition

Let M be a Riemannian manifold and X a parallel tangent field. Then

 $[\Delta, \phi(X)] = \operatorname{Ric}(X).$

In particular, if M is Ricci flat, Δ and $\phi(X)$ is commutative.

Conjecture

Let (M, g) be Ricci flat. Then there exists a metric \tilde{g} on M such that for any parallel tensor field \mathcal{X} on (M, \tilde{g}) , $\Delta_{\tilde{g}}$ and $\phi_{\tilde{g}}(\mathcal{X})$ is commutative, where $\Delta_{\tilde{g}}$ and $\phi_{\tilde{g}}$ are the Laplacian and the map defined before with the metric \tilde{g} .

If this conjecture is true, then for a Ricci-flat manifold M, we can find a metric \tilde{g} on M such that eigenspaces of the Laplacian $\Delta_{\tilde{g}}$ generate modules for the meromorphic open-string vertex algebra of global sections of the sheaf $\mathcal{V}_{\tilde{g}}$, where $\mathcal{V}_{\tilde{g}}$ is the sheaf of meromorphic open-string vertex algebras constructed using the metric \tilde{g} .

Outline

The vertex operator algebra approach to two-dimensional conformal field theory

Nonlinear sigma models

Meromorphic open-string vertex algebras and representations

A sheaf $\ensuremath{\mathcal{V}}$ of "universal" meromorphic open-string vertex algebras

A sheaf ${\mathcal W}$ of left modules for the sheaf ${\mathcal V}$

A sheaf $\mathcal{V}^{\mathcal{B}}$ of meromorphic open-string vertex algebra associated to \mathcal{W}

Lapacians and Ricci-flat manifolds

Further studies and the main challenge

The construction generalizes without difficulties to differential forms.

- ▶ We already have a conjecture for Ricci-flat manifold. We expect that when *M* is Kähler or Calabi-Yau, we have stronger results.
- ► The main challenge is to construct correlation functions from (left or right or bi-) modules for the meromorphic open-string vertex algebra associated to *M* and prove that they satisfy all the properties for correlation functions for a quantum field theory, in particular, the operator product expansion.

(ロ) (同) (三) (三) (三) (○) (○)

- The construction generalizes without difficulties to differential forms.
- ► We already have a conjecture for Ricci-flat manifold. We expect that when *M* is Kähler or Calabi-Yau, we have stronger results.
- ► The main challenge is to construct correlation functions from (left or right or bi-) modules for the meromorphic open-string vertex algebra associated to *M* and prove that they satisfy all the properties for correlation functions for a quantum field theory, in particular, the operator product expansion.

(ロ) (同) (三) (三) (三) (○) (○)

- The construction generalizes without difficulties to differential forms.
- We already have a conjecture for Ricci-flat manifold. We expect that when *M* is Kähler or Calabi-Yau, we have stronger results.
- ► The main challenge is to construct correlation functions from (left or right or bi-) modules for the meromorphic open-string vertex algebra associated to *M* and prove that they satisfy all the properties for correlation functions for a quantum field theory, in particular, the operator product expansion.

(ロ) (同) (三) (三) (三) (○) (○)

Thank you!

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 のへで