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Vertex operator algebras

The vertex operator algebra approach
(Belavin-Polyakov-Zamolodchikov, Borcherds,
Frenkel-Lepowsky-Meurman) is in fact the most successful
mathematical approach to conformal field theories. The
program of constructing conformal field theories in the sense
Kontsevich-Segal from repsentations of vertex operator
algebras was developed by the speaker and collaboartors.

A vertex operator algebra is a Z-graded vector space
V =

∐
n∈Z V(n) equipped with a vertex operator map

YV : V ⊗ V → V [[z, z−1]],

u ⊗ v 7→ Y (u, z)v ,

a vacuum 1 ∈ V(0) and a conformal vector ω ∈ V(2), satisfying
suitable axioms that will be briefly discussed later.
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Modules and intertwining operators

I Let V be a vertex operator algebra. A V -module is a
C-graded vector space W =

∐
n∈C W(n)equipped with a

vertex operator map YW : V ⊗W →W [[z, z−1]] satisfying
all those axioms for V which still make sense.

I A lower-bounded generalized V -module is a C-graded
vector space W =

∐
n∈C W(n)equipped with a vertex

operator map YW : V ⊗W →W [[z, z−1]] satisfying all the
axioms for a V -module except that W(n) are generalized
eigenspaces instead of eigenspaces of L(0) and are not
necessarily finite dimensional.

I Let W1, W2 and W3 be V -modules. An intertwining
operator of type

( W3
W1W2

)
is a linear map

Y : W1 ⊗W2 →W3{z}, where W3{z} is the space of all
series in complex powers of z with coefficients in W3,
satisfying all those axioms for V which still make sense.
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Examples

I Free bosons: Representations of infinite-dimensional
Heisenberg algebras. We will briefly discuss these theories
later.

I Free bosons on tori: Vertex operator algebras, modules
and classical vertex operators (intertwining operators)
associated to lattices. We will also briefly discuss these
theories later.

I Wess-Zumino-Novikov-Witten models: Representations of
affine Lie algebras.

I Minimal models: Representations of the Virasoro algebra.
I Fermion theories: Representations of infinite-dimensional

Clifford algebras, affine Lie superalgebras and
superconformal algebras.

I Orbifolds, cosets andW-algebras, including in particular
the moonshine module.
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Rational conformal field theories

Theorem (H. 2002–2006)
Let V be a simple vertex operator algebra satisfying the
following conditions:

1. V(n) = 0 for n < 0, V(0) = C1 and V ′ is isomorphic to V as
a V-module.

2. Every lower-bounded generalized V-module is a direct
sum of irreducible V-modules.

3. V is C2-cofinite, that is, dim V/C2(V ) <∞ where C2(V ) is
the subspace of V spanned by elements of the form
Reszz−2Y (u, z)v for u, v ∈ V.

Then we have the following conclusion:
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1. The Moore-Seiberg polynomial equations hold. In
particular, the Verlinde conjecture holds.

2. The category of V -modules has a natural structure of a
modular tensor category. In partciular, we have a modular
functor (in all genera) and a 3-dimensional topological field
theory.

3. All chiral and full correlation functions in genus-zero and
genus-one can be constructed from intertwining operators
(the part on full correlation functions being done jointly with
Kong).

4. There exist locally convex topological completions of the
spaces involved such that Segal’s axioms in genus-zero
and genus-one are satisfied.
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Higher-genus and non-rational theories

I For higher-genus correlation functions, there is one
problem still to be solved: Convergence in higher-genus
case. Need results on meromorphic functions on the
moduli space of Riemann surfaces with parametrized
boundaries (generalizations of the q-expansion of the
Weierstrass ℘-function).

I Many results for rational theories can be generalized to
non-rational theories, including unitary non-rational
theories and logarithmic theories. But there are still
conjectures and open problems to be solved. The
construction and study of non-rational theories is important
for the study of the moduli space of conformal field
theories. Nonlinear sigma models with Calabi-Yau
manifolds as targets are important examples to be
constructed and studied.
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Open-closed conformal field theories

I Jointly with Kong, a notion of open-string vertex algebra is
introduced. We also constructed open-string vertex
algebras from modules and intertwining operators for a
vertex operator algebra satisfying suitable conditions.
These are the open parts of open-closed conformal field
theories.

I Kong further studied the open-closed conformal field
theories whose closed parts and open parts are
constructed from modules and intertwining operators for
vertex operator algebras, especially the important Cardy
condition.

I In summary, genus-zero and genus-one open-closed
conformal field theories can be constructed from vertex
operator algebras, their modules and intertwining
operators.
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Harmonic maps from a Riemann surface to a
Riemnannian manifold

I Σ: 2-dimensional Riemannian manifold.
M: n-dimensional Riemannian manifold.
ϕ: smooth map from Σ to M.

I Action:
∫

Σ
‖ dϕ ‖ dS.

Locally: ‖ dϕ ‖= ηijgµν
∂ϕµ

∂x i
∂ϕν

∂x j .

I Classical nonlinear sigma models: Harmonic maps, that is,
critical points of the action above.

I The action is conformally invariant. Only the Riemann
surface structure on Σ is needed.
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Free bosons: Quantization of linear sigma models

I Linear sigma models: M flat.
I M = Rn and p ∈ Rn.

TpM = TpRn: the tangent space of M = Rn at p.

I Heisenberg algebra: T̂pM = T̂pM− ⊕ T̂pM0 ⊕ T̂pM+, where

T̂pM− = TpM ⊗ t−1C[t−1],

T̂pM0 = TpM ⊗ Ct0 ⊕ Cl ' TpM ⊕ Cl,

T̂pM+ = TM ⊗ tC[t ].

I Eigenfunctions |k〉 = eikµxµ
of the Laplacian with

eigenvalues −kµkµ.
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Conformal field theories associated to free bosons

I Let T̂pM+ act on |k〉 as 0, l on |k〉 as 1 and elements of
TpM on |k〉 as i times the vector fields obtained by parallel
transporting the elements of TpM. Then C|k〉 becomes a
module for T̂pM0 ⊕ T̂pM+.

I Induced module: W|k〉 = U(T̂pM)⊗U(T̂pM0⊕T̂pM+)
C|k〉 (Fock

space generated by |k〉).
I W|0〉 has an algebraic structure called vertex operator

algebra and W|k〉 for any k is a module for this vertex
operator algebra W|0〉.

I The corresponding conformal field theory can be
constructed by studying the correlation functions among
these modules for the vertex operator algebra W|0〉.
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Sigma models on tori

I Given a torus, we still consider the vertex operator algebra
W|0〉. But for modules we consider only W|k〉 for those k
such that eikµxµ

are well defined on the torus. Such k form
a lattice.

I The corresponding conformal field theory can be
constructed by studying the correlation functions among
W|k〉 for such k for the vertex operator algebra W|0〉.
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First difficulties in generalizing this construction to the
curved case

I In general, it was conjectured by physicists that quantum
nonlinear sigma models are not conformal field theories. In
the case that the target manifold is a Calabi-Yau manifold,
the quantum nonlinear sigma module is an N = 2
superconformal field theory.

I M: a Riemannian manifold. p ∈ M. TpM: the tangent
space of Rn at p.

I Affinization T̂pM.
I Problem: How to define an action of TpM on smooth

functions, in particular, on eigenfunctions of the Laplacian,
at least near p.
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First difficulties in generalizing this construction to the
curved case

I If we choose a local coordinate patch near p and define
the action using derivatives with respect to the coordinates,
the results depend on the local coordinate patch.

I If we define the action using the covariant derivatives, then
we cannot view TpM as an abelian Lie algebra becuase
the commutators of covariant derivatives involve the
curvature tensor.

I Moreover, we want to find a “categorification” of the
algebra generated by eigenfunctions. To do this, we first
need to find a certain algebra such that every
eigenfunction generates a module for this algebra.



First difficulties in generalizing this construction to the
curved case

I If we choose a local coordinate patch near p and define
the action using derivatives with respect to the coordinates,
the results depend on the local coordinate patch.

I If we define the action using the covariant derivatives, then
we cannot view TpM as an abelian Lie algebra becuase
the commutators of covariant derivatives involve the
curvature tensor.

I Moreover, we want to find a “categorification” of the
algebra generated by eigenfunctions. To do this, we first
need to find a certain algebra such that every
eigenfunction generates a module for this algebra.



First difficulties in generalizing this construction to the
curved case

I If we choose a local coordinate patch near p and define
the action using derivatives with respect to the coordinates,
the results depend on the local coordinate patch.

I If we define the action using the covariant derivatives, then
we cannot view TpM as an abelian Lie algebra becuase
the commutators of covariant derivatives involve the
curvature tensor.

I Moreover, we want to find a “categorification” of the
algebra generated by eigenfunctions. To do this, we first
need to find a certain algebra such that every
eigenfunction generates a module for this algebra.



Outline

The vertex operator algebra approach to two-dimensional
conformal field theory

Nonlinear sigma models

Meromorphic open-string vertex algebras and representations

A sheaf V of “universal” meromorphic open-string vertex
algebras

A sheafW of left modules for the sheaf V

A sheaf VB of meromorphic open-string vertex algebra
associated toW

Lapacians and Ricci-flat manifolds

Further studies and the main challenge



Meromorphic open-string vertex algebras

A noncommutative generalization of a variant of the notion of
vertex operator algebras.

A meromorphic vertex operator algebra consists the following
data:

I A Z-graded vector space V =
∐

n∈Z V(n).
I A vertex operator map

YV : V ⊗ V → V [[z, z−1]],

u ⊗ v 7→ Y (u, z)v .

I A vacuum 1 ∈ V(0).



Meromorphic open-string vertex algebras

A noncommutative generalization of a variant of the notion of
vertex operator algebras.

A meromorphic vertex operator algebra consists the following
data:

I A Z-graded vector space V =
∐

n∈Z V(n).
I A vertex operator map

YV : V ⊗ V → V [[z, z−1]],

u ⊗ v 7→ Y (u, z)v .

I A vacuum 1 ∈ V(0).



Meromorphic open-string vertex algebras

A noncommutative generalization of a variant of the notion of
vertex operator algebras.

A meromorphic vertex operator algebra consists the following
data:

I A Z-graded vector space V =
∐

n∈Z V(n).
I A vertex operator map

YV : V ⊗ V → V [[z, z−1]],

u ⊗ v 7→ Y (u, z)v .

I A vacuum 1 ∈ V(0).



Meromorphic open-string vertex algebras

A noncommutative generalization of a variant of the notion of
vertex operator algebras.

A meromorphic vertex operator algebra consists the following
data:

I A Z-graded vector space V =
∐

n∈Z V(n).
I A vertex operator map

YV : V ⊗ V → V [[z, z−1]],

u ⊗ v 7→ Y (u, z)v .

I A vacuum 1 ∈ V(0).



Meromorphic open-string vertex algebras

A noncommutative generalization of a variant of the notion of
vertex operator algebras.

A meromorphic vertex operator algebra consists the following
data:

I A Z-graded vector space V =
∐

n∈Z V(n).
I A vertex operator map

YV : V ⊗ V → V [[z, z−1]],

u ⊗ v 7→ Y (u, z)v .

I A vacuum 1 ∈ V(0).



Meromorphic open-string vertex algebras

These data satisfy the following axioms:
I Grading-restriction property: dim V(n) <∞ for n ∈ Z and

V(n) = 0 when n is sufficiently negative.
I Lower-truncation property: For u, v ∈ V , Y (u, z)v contains

only finitely many negative power terms.
I Axioms for the vacuum: For u ∈ V , Y (1, z)u = u and

limz→0 Y (u, z)1 = u.
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Meromorphic open-string vertex algebras

I Rationality and associativity: For u1,u2, v ∈ V ,
v ′ ∈ V ′ =

∐
n∈Z V ∗(n), the series

〈v ′,Y (u1, z1)Y (u2, z2)v〉
〈v ′,Y (Y (u1, z1 − z2)u2, z2)v〉

are absolutely convergent in the regions |z1| > |z2| > 0
and |z2| > |z1 − z2| > 0, respectively, to a common rational
function in z1 and z2 with the only possible poles at
z1, z2 = 0 and z1 = z2.



Vertex (operator) algebras
I If in addition, the commutativity holds, that is, for

u1,u2, v ∈ V , v ′ ∈ V ′ =
∐

n∈Z V ∗(n), the series

〈v ′,Y (u1, z1)Y (u2, z2)v〉,
〈v ′,Y (u2, z2)Y (u1, z1)v〉

are absolutely convergent in the regions |z1| > |z2| > 0,
|z2| > |z1| > 0, respectively, to a common rational function,
then the meromorphic open-string vertex algebra is in fact
a Z-graded vertex algebra.

I A Z-graded vertex algebra V is a vertex operator algebra
or conformal vertex algebra if there is an element ω ∈ V
such that for L(n) = Reszzn+1Y (ω, z), we have
[L(m),L(n)] = (m − n)L(m + n) + c

12(m3 −m)δm+b,0 (the
Virasoro relation), d

dz Y (u, z) = Y (L(−1)u, z)
(L(−1)-derivative property) for u ∈ V and L(0)u = nu for
u ∈ V(n) (L(0)-grading property) conformal element
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Operator product expansion

In the region |z1| > |z2| > |z1 − z2| > 0, we have

Y (u1, z1)Y (u2, z2) = Y (Y (u1, z1 − z2)u2, z2)

in a suitable sense. Write Y (u1, x)u2 =
∑

n∈Z Yn(u1)u2x−n−1.
Then we have

Y (u1, z1)Y (u2, z2) =
∑
n∈Z

(z1 − z2)−n−1Y (Yn(u1)u2, z2),

where Y (u1, z1) and Y (u2, z2) are the values of the quantum
fields Y (u1, z) and Y (u2, z) at z1 and z2, respectively,
Y (Yn(u1)u2, z2) for n ∈ Z are the values of the quantum fields
Y (Yn(u1)u2, z) at z2 and (z1 − z2)−n−1 for n ∈ Z are analytic
functions of z1 − z2.



Left modules for a meromorphic open-string vertex
algebra

I Let V be a meromorphic open-string vertex algebra. A left
V -module is a C-graded vector space W =

∐
n∈C W(n)

equipped with a vertex operator map
YW : V ⊗W →W [[z, z−1]] satisfying all those axioms for
V which still make sense.

I Vertex operators for left modules also have operator
product expansion.
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Meromorphic open-string vertex algebras as
noncommutative generalizations of vertex algebras

I In general, a meromorphic open-string vertex algebra
satisfies all the properties for a vertex algebra except for
the commutativity. Thus meromorphic open-string vertex
algebras should be viewed as noncommutative
generalizations of vertex algebras.

I Many other properties, for example, Jacobi identity, locality,
the commutator formula, skew-symmetry or even the
associator formula, of vertex algebras are also not satisfied
by a meromorphic open-string vertex algebra.

I But as we discussed above, the vertex operators for a
meromorphic open-string vertex algebra and its left
modules still have operator product expansion.
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Examples of meromorphic open-string vertex algebras

Theorem (H. 2012)
Given a finite-dimensional inner product space h over R, let
ĥ− = h⊗ t−1C[t−1]. Then the tensor algebra T (ĥ−) of ĥ− has a
natural structure of meromorphic open-string vertex algebra.

Example
Let M be a Riemannian manifold, p ∈ M and TpM the tangent space
at p. Then T (T̂pM−) has a natural structure of meromorphic
open-string vertex algebra.
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Examples of left modules for meromorphic open-string
vertex algebras

As we discussed above, the vertex operators for a left module
have operator product expansion.

Theorem (H. 2012)
Given a finite-dimensional inner product space h over R and a
module Λ for the tensor algebra T (hC) (hC being the
complexification of h), the space T (ĥ−)⊗ Λ has a natural
structure of left module for the meromorphic open-string vertex
algebra T (ĥ−).
According to this theorem, to construct a left module for the
meromorphic open-string vertex algebra T (ĥ−), one needs only
construct left modules for the tensor algebra T (hC).
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construct left modules for the tensor algebra T (hC).



Examples of left modules for meromorphic open-string
vertex algebras

As we discussed above, the vertex operators for a left module
have operator product expansion.

Theorem (H. 2012)
Given a finite-dimensional inner product space h over R and a
module Λ for the tensor algebra T (hC) (hC being the
complexification of h), the space T (ĥ−)⊗ Λ has a natural
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A sheaf V of “universal” meromorphic open-string
vertex algebras

I Given a Riemannian manifold M, we need to put the the
meromorphic open-string vertex algebras constructed from
the tangent spaces together to obtain a meromorphic
open-string vertex algebra containing the global
information of M.

I But more importantly, we need to find such a meromorphic
open-string vertex algebra so that eigenfunctions generate
left modules for this algebra.
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A sheaf V of “universal” meromorphic open-string
vertex algebras

Let U be an open subset of M, TMC the complexification of the
tangent bundle of M, T̂M− the vector bundle whose fiber at
p ∈ M is T̂pM−, T (T̂M−) the vector bundle whose fiber at

p ∈ M is T (T̂pM−) and ΠU(T (T̂M−)) the space of parallel

sections on U of the vector bundle T (T̂M−).

Theorem (H. 2012)
The space ΠU(T (T̂M−)) has a natural structure of meromorphic
open-string vertex algebra. The assignment U → ΠU(T (T̂M−))
gives a sheaf of meromorphic open-string vertex algebras.
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Constructing left modules for the sheaf V from smooth
functions

I The interesting and difficult part of our construction is the
construction left modules for the sheaf V from smooth
functions.

I This construction is based on an action of the associative
algebra ΠU(T (TMC)) on the space of smooth functions.
Such an action is equivalent to a homomorphism from
ΠU(T (TMC)) to the associative algebra of operators on the
space of smooth functions.
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A map φU from ΠU(T (TMC)) to L(C∞(U))

I Let T m(TMC) be the vector bundle whose fibers are the
m-th tensor powers of the complexifications of the tangent
spaces of M, T (TMC) the vector bundle whose fibers are
the tensor algebras of the complexifications of the tangent
spaces of M and ΠU(T (TMC)) the space of parallel
sections on U of the vector bundle T (TMC).

I Let C∞(U) be the space of smooth complex functions on
U and L(C∞(U)) the algebra of linear operators on the
space C∞(U) of complex-valued smooth function on U.

I We define φm
U : ΠU(T m(TMC))→ L(C∞(U)) to be the map(√

−1
)m∇m, where the m-th order covariant derivative ∇m

is viewed as a map ΠU(T m(TMC)) to L(C∞(U)). Puting φm
U

together, we obtain φU : ΠU(T (TMC))→ L(C∞(U)).
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A homomorphism φU of associative algebras

Example: Let g−1 be the element of ΓU(T 2(TMC))
corresponding to the metric on the cotagent bundle. Then g−1

is parallel, that is, g−1 ∈ ΠU(T 2(TMC)) and φU(g−1) = −∆.

Theorem (H. 2012)
φU is a homomorphism of associative algebras.
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A presheaf

I By the theorem above, C∞(U) is a ΠU(T (TMC))-module.
For any p ∈ M, ΠU(T (TMC)) is isomorphic to the fixed
point subspace (T (TpMC))Hp(U) of T (TpMC) under the
holonormy group Hp(U). Let

Cp(U) = T (TpMC)⊗(T (TpMC))Hp(U) C∞(U).

I We know that T (T̂pM−) has a natural structure of
meromorphic open-string vertex algebra and
T (T̂pM−)⊗ Cp(U) has a natural structure of left

T (T̂pM−)-module. Then (T (T̂pM−))Hp(U) is a meromorphic

open-string vertex subalgebra of T (T̂pM−) and it is

isomorphic to ΠU(T (T̂M−)). In particular,
T (T̂pM−)⊗ Cp(U) is also a left ΠU(T (T̂M−))-module.
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A presheaf

I Let W 0
U be the left ΠU(T (T̂M−))-submodule of

T (T̂pM−)⊗ Cp(U) generated by elements of the form
1⊗ (1⊗(T (TpMC))Hp(U) f ) for f ∈ C∞(U), where
1⊗(T (TpMC))Hp(U) f is the image of 1⊗ f under the projection
from T (TpMC)⊗ C∞(U) to Cp(U).

I The assignment U →W 0(U) gives a presheafW0.
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A sheafW of left modules for the sheaf V

LetW be the sheafification ofW0. The section ofW on U is
denoted WU .

Theorem (H. 2012)
The space WU of sections ofW on U is a left
ΠU(T (T̂M−))-module andW is a sheaf of left modules for the
sheaf V of meromorphic open-string vertex algebras.
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A sheaf VB of meromorphic open-string vertex algebra
associated toW

I For an open subset U of M, let ṼU be the subspace of VU
consisting of elements u such that YWU (u, x) = 0. Then ṼU
is a meromorphic open-string vertex subalgebra of VU and
U 7→ ṼU for all U give a subsheaf Ṽ of V of meromorphic
open-string vertex algebras. Let VB be the sheafification of
the quotient presheaf V/Ṽ.

I Let V B
M be the space of global sections of VB. The

correspondance M 7→ V B
M gives a functor from the

category of Riemannian manifolds to the category of
meromorphic open-string vertex algebras. Moreover, when
M = Rn, V B

Rn is isomorphic to the vertex operator algebra
W|0〉. We believe that V B

M is the canonical meromorphic
open-string vertex algebra associated to the nonlinear
sigma model with the target space M.
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open-string vertex algebras. Let VB be the sheafification of
the quotient presheaf V/Ṽ.
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Lapacian as a component of a vertex operator

Let {Ei}ni=1 be an orthonormal frame in an open subset U of M.
Let

g−1
C (−1,−1) =

n∑
i=1

(Ei ⊗R t−1)⊗ (Ei ⊗R t−1) ∈ ΠU(T 2(T̂M−)).

Then g−1
C (−1,−1) is in fact well defined on any open subset of

M. In particular, it is well defined on M. Also, we can identify
C∞(M) with a subspace of WM .

Theorem (H. 2012)
The coefficient of the x−2 term of YWM (−g−1

C (−1,−1), x) acting
on f ∈ C∞(M) is equal to ∆f .
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The Laplacian of a Ricci-flat manifold
Proposition
Let M be a Riemannian manifold and X a parallel tangent field.
Then

[∆, φ(X )] = Ric(X ).

In particular, if M is Ricci flat, ∆ and φ(X ) is commutative.

Conjecture
Let (M,g) be Ricci flat. Then there exists a metric g̃ on M such
that for any parallel tensor field X on (M, g̃), ∆g̃ and φg̃(X ) is
commutative, where ∆g̃ and φg̃ are the Laplacian and the map
defined before with the metric g̃.
If this conjecture is true, then for a Ricci-flat manifold M, we can
find a metric g̃ on M such that eigenspaces of the Laplacian ∆g̃
generate modules for the meromorphic open-string vertex
algebra of global sections of the sheaf Vg̃ , where Vg̃ is the
sheaf of meromorphic open-string vertex algebras constructed
using the metric g̃.
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I The construction generalizes without difficulties to
differential forms.

I We already have a conjecture for Ricci-flat manifold. We
expect that when M is Kähler or Calabi-Yau, we have
stronger results.

I The main challenge is to construct correlation functions
from (left or right or bi-) modules for the meromorphic
open-string vertex algebra associated to M and prove that
they satisfy all the properties for correlation functions for a
quantum field theory, in particular, the operator product
expansion.
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Thank you!
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