Math 152, Fall, 2004, Workshop 2

Honors Section

1. Start with the region \mathcal{A} in the first enclosed by the x-axis and the parabola y = 2x(2-x). Then obtain solids of revolution \mathcal{S}_1 , \mathcal{S}_2 , and \mathcal{S}_3 by rotating \mathcal{A} about the line

$$y = 4,$$
 $y = -2,$ and $x = 4,$

respectively. All three solids are (unusual) "doughnuts" which are 8 units across, whose holes are 4 units across, and whose heights are 2 units. Sketch them.

- (a) Which do you expect to have larger volume, S_1 or S_2 ? Compute their volume and check your guess.
- (b) Compute the volume of S_3 .
- 2. Consider the first quadrant region \mathcal{A} bounded by the curve $y = x^2$, the tangent line to this curve at (1, 1), and the x-axis. Sketch this region.
 - (a) Set up an integral giving the volume of the solid obtained by rotating \mathcal{A} about the *y*-axis using the method of washers.
 - (b) Set up an integral giving the volume of the solid obtained by rotating \mathcal{A} about the *y*-axis using the method of cylindrical shells.
 - (c) Compute one of the integrals above to find this volume.
 - (d) Find the volume of the solid obtain by rotating \mathcal{A} about x-axis. You may use any method.