Math 152, Fall, 2004, Workshop 2

Honors Section

1. Start with the region \mathcal{A} in the first enclosed by the x-axis and the parabola $y=2 x(2-x)$. Then obtain solids of revolution $\mathcal{S}_{1}, \mathcal{S}_{2}$, and \mathcal{S}_{3} by rotating \mathcal{A} about the line

$$
y=4, \quad y=-2, \quad \text { and } \quad x=4
$$

respectively. All three solids are (unusual) "doughnuts" which are 8 units across, whose holes are 4 units across, and whose heights are 2 units. Sketch them.
(a) Which do you expect to have larger volume, \mathcal{S}_{1} or \mathcal{S}_{2} ? Compute their volume and check your guess.
(b) Compute the volume of \mathcal{S}_{3}.
2. Consider the first quadrant region \mathcal{A} bounded by the curve $y=x^{2}$, the tangent line to this curve at $(1,1)$, and the x-axis. Sketch this region.
(a) Set up an integral giving the volume of the solid obtained by rotating \mathcal{A} about the y-axis using the method of washers.
(b) Set up an integral giving the volume of the solid obtained by rotating \mathcal{A} about the y-axis using the method of cylindrical shells.
(c) Compute one of the integrals above to find this volume.
(d) Find the volume of the solid obtain by rotating \mathcal{A} about x-axis. You may use any method.

