Commun. Math. Phys. 200, 421444 (1999) Communications in

Mathematical
Physics
© Springer-Verlag 1999

Harnack Type Inequality: the Method of Moving Planes

Yan Yan Li*

Department of Mathematics, Rutgers University, Piscataway, NJ 08854-8019, USA.
E-mail: yyli@math.rutgers.edu

Received: 30 September 1997 / Accepted: 21 July 1998

Abstract: A Harnack type inequality is established for solutions to some semilinear
elliptic equations in dimension two. The result is motivated by our approach to the
study of some semilinear elliptic equations on compact Riemannian manifolds, which
originated from some Chern—-Simons Higgs model and have been studied recently by
various authors.

0. Introduction

Let (M, g) be a compact Riemann surface without boundérye a positive function on
M, W be afunction witth Wdvg = 1. Throughout the papeél, denotes the volume
element ofg, A, denotes the Laplace Beltrami operator with respegt teor A € R,
we seek a solution of

Vet

gu <fM Veud'l}g W) on ( ))\

Clearly [,, Wdv, = 1 is a necessary condition foE(), to have a solution. If we set
&=u—log fM Ve'duvg for a solution of ), then¢ satisfies

—AE=AVeE —W)  onM, (Ee)x
and
/ Vegdvg =1 (1)
M

* Partially supported by the Alfred P. Sloan Foundation Research Fellowship, NSF grant DMS-9706887,
and a Rutgers University Research Council grant.



422 Y.Y. Li

Equation §,), has been studied by Kazdan and Warner [29] in connection with
the prescribed Gauss curvature problem, while, it also arises from some Chern—-Simons
Higgs model as discussed in Taubes [40, 41], Hong, Kim and Pac [27], Jackiw and
Weinberg [28], Spruck and Yang [38], Caffarelli and Yang [11], Tarantello [39], Struwe
and Tarantello [35], Ding, Jost, Li and Wang [22, 23], and the references therein. Re-
lated problems are studied by Carleson and Chang in [14]. Such equations on bounded
domains ofR? with Dirichlet boundary conditions play an important role in the context
of statistical mechanics of point vortices in the mean field limit as discussed in Caglioti,
Lions, Marchioro and Pulvirenti [12, 13] and Kiessling [30]. In particular, it is proved
in [35], when (M, g) is a flat torus with fundamental cell domair§, 3] x [-1, 3],

V = 1andW = 1/vol(M), that Eq. ), has at least one nontrivial solution for

8T < \ < 4n2. On the other hand EqH,)s,, with W = 1/vol(M), is studied in [22]
where sufficient conditions are given for the existence of solutions. Such conditions ob-
viously hold when {4, g) is a flat two dimensional toru§] = 1 andW = 1/vol(M).

The author was recently informed by G. Tarantello that she and M. Nolasco have in-
dependently established the existence results in the special casédthgtié a flat
two-dimensional torusy = 1 andW = 1/vol(M).

In view of our earlier work [31], we propose a different approach to study the
existence of solutions ofH,),. Clearly (£,), is invariant when replacing by u +
constant. AssumingV and W are Lipschitz functions, it is well known that when
lies in compact subsets of-fo, 87), all solutionsu of (E,),, after a normalization
Sy udvg = 0, stay bounded iw?(M) for 0 < o < 1. For\ in compact subsets
of U;’,le(&rm, 8 (m + 1)), the same conclusion holds due to the results of Brezis and
Merle [8] and Li and Shafrir [32]. For & « < 1, let

X, ={ue€ > (M) | /M udvg = 0}.

X,, equipped with theZ%<(A) norm, is a Banach space. We introduce an operator
Ky X, — X, by

_ -1 Ve

It follows from standard elliptic theories thaf, is a well defined compact operator.
Equation §,), is equivalent to { — K,)u = 0 in X,. For any bounded open set
O C X, the Leray-Schauder degree deg( K, O, 0) is well defined provided 0 does
not belong to { — K,)(00). For the definition of the Leray-Schauder degree and its
various properties, see, for example, Nirenberg [34]. Let

By ={u e Xo | [|lullx, <a}

denote the ball itk , . Due to the above mentioned a priori estimates of solutions gfy
for X in compact subsets & \ U>_; {8mm}, there exists some continuous function
defined inR \ USS_,{8mm} such that for allh € R\ Uy°_;{8mm} anda > a,,

dy :=deg( — Ky, B,,0) ()

is well defined and, in view of the homotopy invariance of the Leray-Schauder degree,
is independent of. as long asu > a,. Moreoverd, is a constant in each interval
(8mm, 8w(m+1)). The piecewise constant functidgis determined by the Euler number
of M. We know thatd, is equal to 1 forA < 8r. However, due to the possible loss of
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compactness of solutions af{), whenA crosses 8m, we do not know yet the values
of d, in the other intervals. Knowing the values &f should lead to new existence
results for E,) sinced, Z 0 implies that £,), has at least one solution. The situation
here is similar to that in [31] where

1
—Au+2u = éK(:zc)u?‘7 u>0, onS 3)

is studied. LetA be the open and dense subsetB{S*)", the set of positive twice
differentiable functions, defined in [31]. For any Morse functiine A, let K =
(-XN+XK for0 < A < 1. Itis not difficult to see from [31] that there exist
0 < A\ < -+ <X\ < 1lsuchthatforallh € (0,1] \ {A\1,---, A} the total Leray-
Schauder degreg, of all possible solutions of (3) witli{ = K is well defined and
is a constant function ok in each interval X,,,, An+1)- Sinced; # 0 implies that (3)
has at least one solution, we wish to have a formuld;afi terms of K. The formula
of dy for small X is known due to the work of Chang and Yang [16]. So, one way to
derive a formula ofi; is to calculate the jump-values @f at\,,, for 1 < m < [. These
jump-values can be calculated by using the strong pointwise estimates in [31] of blowup
solutionsuy, solutions of (3) withK = K, asA — \,,. Once these jump-values are
known, we have a formula af; in terms of K. This provides an alternative derivation
of the formula ofd; obtained in [31].

We propose to take a similar approach to stully)(,, namely, to look for a formula
of d, in terms of the Euler number of/. Since we knowd, = 1 for A < 8x, we
only need to calculate the jump-valuesd)f at 8rm, m > 1. In view of the results
in [31], we tend to believe that a good enough pointwise estimate of blowup solutions
{ux} asA — 8mm is the most crucial step in evaluating the jump-valug pht 8rm.
Once we know the jump-values fot less than someng, we obtain a formula of, in
(—o0,8mmo) \ U2 1{8rm}. The main purpose of this paper is to start making good
pointwise estimates for blowup solutiofig, } asA — 8wm. The main analytical result
of this paper is a new local estimate given in Theorem 0.3.

We first state a well known fact in the subcritical case: 8.

Theorem 0.1 (vell known). Let(M, g) be a compact Riemann surfadépe a positive
continuous function o/, W e L>°(M) with [, Wdv, = 1. Then for alle > 0,

—e~1 < X\ < 81 — ¢, and allC? solutionsu of (E,,), with [, udv, = 0, we have
[ullLooan < C,

whereC depends only o/, g, €, | V|| Lo (ary, ||W || o< (ar), the modulo of continuity of
V', and the positive lower bound &f.

If both V andWW are Lipschitz functions, then it is well known that af@y solution
of (F,)x is actually inC%> (M) forall 0 < a < 1, andC?® estimates of: follow from
the L*° estimates. Thus, we have

Corollary 0.1. In addition to the hypothesis in Theorem 0.1, assume that Badind
W are Lipschitz functions. Then forall> 0, —¢ 1 < A < 87 —¢,0 < a < 1, and all
C? solutionu of (E,), with [, udv, = 0, we have

lullcz.ary < C,

whereC depends only o, g, €, o, || V|| Los(ar), [V V|| Lo (ary, || VW || Loo(ar), and the
positive lower bound of’.
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Corollary 0.2. In addition to the hypothesis in Theorem 0.1, we assume thatWoth
and W are Lipschitz functions. Then

d,\ =1
for all A < 8w. Consequently(F, ), has at least one solution for eveky< 8.

Remark 0.1.The existence of one solution t&(), for A < 8x can easily be estab-
lished by variational methods using the following consequence of the Moser-Trudinger
inequality: For every > 0,

1 1
|0/ewdv§—+e/ vV, w|?dv +7/ wdv, +C(e) Yw e HYM).
g o g (167T ) M| g | g UOZ(M) Y g () ( )
See, for example, [33, 29] and [22] for more details.

For \ > 8, EqQ. (£,)» is much more delicate. The difficulty lies in possible loss of
compactness of solutions df(), for A > 8. A good understanding of possible blowup
behavior of solutions offf,,)  is important in the study offf,,) . Our next theorem gives
some understanding of the possible blowup behavior of solutioris 9f ( which should
be relevant in the study of the existence of solutiongf)f)§ for A\ > 8.

Let {V,,} satisfy

",?L'Qof min Vi, >0, “rrlsolojp(n}v?xv" +||[VVal o)) < 00, (4)
{W, } satisfy
limsup|| VW, || e < 00, Wydvg =1, (5)
n—oo M
and{¢, } satisfy
_Aggn = A’rb(‘/tnegn - Wrb) on M7 (6)
and
/ Voesrdu, = 1. (7)
M

We will used(z, y) to denote the distance betweeandy in M and will use the notation

- _ 1
0= Gt J St

to denote the average §f on M.
Let G(z, y) denote the Greés function of—A, on M, namely,

vol(M)?
Sy G, y)dvg(x) = 0.

It is well known (see, e.g., [2]) tha¥(x, y) is uniquely defined, symmetric inandy,
and a solution of (6) satisfies

{ —A,G(x,y) =6y — —, in M,

En() — &0 = A /N VL) WG oy ). VoM. (8)



Harnack Type Inequality: the Method of Moving Planes 425

Theorem 0.2. Let (M, g) be a compact Riemann surfadéy, } and {W,,} satisfy (4)
and (5),\, — X € (—o0, 00), and{&,} ¢ C?(M) satisfy (6) and (7). Assume

max|¢, | - oo, (©)

Then after passing to a subsequence (still denotdd ay), there existn distinct points
{70} <1<, iIn M andm sequences of poini! — z such that

(@) &, — —oo uniformly on compact subsets bf \ {zY, - - |z},

(b) For eachl < I < m, andn large, Z) is the unique maximum point f, in
{z € M | d(z,7V) < Iminyo dist@), 70)}, ande, (@0) — oo.

(c) Foreachl <1 < m,letg = e?(dx? + dz3) be an isothermal coordinate system
(with ,,(0) = 0) centered atz!), we have, for some constafitindependent of,

n (0
c® |<C, V| < %rp;ly dist@®, 7)) andV n.

w(z)—lo
[&n (@) g(1+A"VT"(O)efn(O)Iﬂz)2 -

(d) For some constart’ independent of;,

My +¢ | <

(E) InC? (M \ {E(l)v T 75(1”)})1

loc
- €, 81 G.70) — B [ WEIGC.1)dv, o)
1=1 M
whereW =lim,,_, ., W,, weaksx in L>°(M). Consequently,

m
A\ Viefr — 8r Z -0 in the sense of measurand X = 8w,
=1

whered-« denotes the Delta massa).

Remark 0.2.Theorem 0.2 still holds when we replace the meirioy a sequence of
metricsg,, converging tog in the C? norm. This can be seen easily from the proof of
Theorem 0.2.

Due to Theorem 0.2 and Theorem 0.1, there exists some continuous fuagtion
defined inR\ U2, {8mm} such thatl, in (2) is well defined for alh € R\ US>, {8rm}
anda > ay. Furthermore, in view of Remark 0.2, is independent of the metrig
Therefore, in view of the homotopy invariance of the Leray-Schauder degyas,a
constant in each of the open intervals, and all these constants are indeperideRit of
and the metrig. Sod),, is a piecewise constant function ddetermined completely by
the Euler number of/. We know from Corollary 0.2 that, is equal to 1 fox < 8, but
we do not know yet the values df, in other intervals. Knowing the values @f should
lead to new existence results fdr,(),. As mentioned earlier we wish to calculate the
jump-value ofi, at 8rm. Inview of the resultsin[31], Theorem 0.2, providing pointwise
estimates of¢,, }, should be useful in evaluating the jump-valuelgfat 8rm.

Let {¢,,} be the subsequence in Theorem 0.2 satisfying (a)-(e). In an isothermal
coordinate system centeredzf, we set
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v () = £,(002) + 210g60, 2| < a/60,

wheres®) = ¢=6:@)/2 anda is some suitably small positive constant. It will be shown
by a blow up argument that
v, = v  inC2 (R?)

with
() = log{ 1 } in R? (10)
vlx) = —— s .
(1 + /\(||mn~>83c Vi (0) ‘ZZ?|2)2
Consequently,
(l) _
Ry =sup{R >0 : |lvn — vlloz@, 0y * 10 = 0l i2@,mop < € Bl - .

e&n@D)

This shows thaf,, () is very well approximated by |
a‘g (.1') y pp y Og(l + )‘"‘g"(o)egn(zg))|x|2)2

}in

lz| < R()é(l) ForR 6(5) < Jz| < Iminyy dist@),70), we will give, using (c),
some convergence estimate better than (e). For convenience, we use the notation

Cn ~0
to denote a sequence of functiofis, } in C2(M) satisfying

|<n(x)|
Jim max{l +>1 llogd(z, 79)|

xeM \ Ug:lBﬁg)égi) (E%))} = 07 (11)

V()| . ! —(O\\ —
and
[V2( ()] . ! —(O\\ —
nlmo maX{W S M \ Ulleﬁi)ég) ($n )} - 0 (13)

We also write{ ~q 0 for (11),{ ~1 0 for (12), and{ ~» O for (13).
Corollary 0.3. Let{¢,} be the subsequence in Theorem 0.2 satisfying (a)-(e). Then

m

=¢, — &, — 81 Z G, 7V) + 8rm /A . W)G(, y)dvg(y) ~ 0

Theorem 0.2 will be deduced from some local results on the behavior of blowup
solutions to equations of the typeAu = Ve in domains ofR?. In particular, a new
local estimate, Theorem 0.3, is needed in the proof of Theorem 0.2. We first recall some
known results.

Let 2 C R? be a bounded smooth domaingQ2, {V;,} be a sequence of Lipschitz
continuous functions satisfying

O0<a<Vu(z)<b<oo, Vzeg, (14)
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and
[VVa(2)| <A, VzeQ, (15)

wherea, b and A are positive constants.
Consider

—Auy, =Vpe',  inQ, (16)

and let{u,, } be a sequence @f? solutions of (16) satisfying

limsup [ V,e'" < . a7)
n—oo Q

It follows from Theorem 3 in Brezis and Merle [8] that, under (14)-(17), there are only
three alternatives after passing to a subsequence:

1. {u,} uniformly converges on compact subset<nf
2. {u,} tends to—oo uniformly on compact subsets &,
3. There exist finitely many blowup poinfs®, - - - | z®} of {u,, } such thafu,, } tends

to —oco uniformly on compact subsets &\ {z®, ... 2"} and
l
Vel — Z b,  inthe sense of measure
=1

with a; > 47. Hered, is the Dirac mass at(®.

We recall that a poiny is called a blowup point ofw,, } if there existy,, — 7 such
thatu, (y,) — oo asn — oo.

It was conjectured in [8] that eaeh can be written as; = 8rm; for some positive
integerm,;. This was established by Li and Shafrir in [32]. Chen further demonstrated
in [20] that any positive integer; can occur in such local situations.

Under (14) and (15), the following Harnack type inequality is proved by Brezis, Li
and Shafrir in [9] through the method of moving planes: Every solution of (16) satisfies,
on any compact subséf of 2,

supu,, + irng u, < C(a,b, A, K, Q). (18)
K
Itisraised as an open question in [9] whether the above Harnack type inequality still holds
when replacing| VV,, || Lo (o) bY ||Vl ce@) (0 < o < 1). The answer is affirmative due
to some recent work of Chen and Lin [19].
Now we are ready to state our new local estimate which is essentially equivalent to
a Harnack type estimatesupu,, + inf «,,| < C under additional hypotheses (20) and

(21) below. These additional hypotheses are necessary for such an estimate to hold. We
will further assume that

un(0) = maxu,, — oo, (29)
Q

and
Vpe' — ad, in Q, in the sense of measure (20)

wherea > 0 is a constant andlis the Dirac mass at the origin.
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Theorem 0.3. In addition to (14)—(16) and (19)—(20), we assume that
maxu,, — minu,, < A; (21)
oQ R

for some positive constadt;. Then for some constant independent of,, we have

etn(0)

S O

un(z) — lo |<C, VazeQandVn. (22)

Theorem 0.3 will be proved by the method of moving planes, which has become a
very powerful and convenient tool in the study of nonlinear elliptic partial differential
equations starting from the pioneering works of A.D. Alexandrov [1], Serrin [37], and
Gidas, Ni and Nirenberg [25, 26]. The method has been further developed in a series of
papers by Berestycki, Nirenberg and their collaborators [3]-[7], and Caffarelli, Gidas
and Spruck [10]. Many more applications of the moving plane method have been given
by various authors. The method of moving planes was used to obtain some Harnack type
inequalities by Schoen in [36], subsequently by Brezis, Li, and Shafrir in [9], and by
Chen and Lin in [18]. Our proof of Theorem 0.3 requires some new ingredients.

1. Compactness and Existence fok € (—oo, 87)

Throughout this sectiol” is a positive continuous function ol andW € L*(M)
with [,, Wdvg = 1.

Lemma 1.1. Lete > 0 and¢ satisfy(E), and (1) with—e~! < X\ < 87 — . Then

max|§| <
nax|¢| < ¢

for some constant’ depending only o/, g, €, [|W || Lo, ||V ||L(ar), the positive
lower bound oft”, and the modulus of continuity &f.

Proof. Suppose the contrary, then there eXiB}, } converging to some positive func-
tion in C(M), {W,,} bounded inL>(M), A\, — X\ € [—e 1,81 — €], &,, with
Jos Vnesndog = 1, satistying €¢), with V = V,, andW = W,,, but max |&,| — oo.
Let y, be a maximum point of,,. If £,(y,) — oo along a subsequence (still
denoted ag¢,, }), we work in some isothermal coordinate system (z1, x2) centered
at y,,. Without loss of generality, we may assumge — 7. In a neighborhood ofj,
g = e?n(dx? + dz3), whereyp,, (0) = 1 and{p, } converges in the neighborhood with
respect ta”< norms, and, in the neighborhood, the equatiog,ofakes the form

— A&, = Ao (ViePretn — e?n W),
whereA = 0,4, + Or,.,. CONnsider
vp(z) = &, (0,2) + 21090, lz| < ad; L,
whered,, = e=$2(/2 5 0 anda > 0 is some constant. Clearly, satisfies

—Av,(x) = M (Vn(5nx)egon(6nm)evn(m) _ 5%e¢n,(6n,:r)wn(5nx)) ; |3:| < a(;;l’
f\wISacS;l Va(Opa)errOnmemn@) <1,
vp(z) < v,(0) =0, |z| < ad;t.
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For anyR > 1, let f,, be the solution of

{ —Afn(x) = )\n (Vn((snx)eﬁan(énw)evn(fﬂ) — 6316Wn(5vzl)Wn(6nm)) , Iml < R7
fu(x) =0, |z| = R.

Then|f, | is bounded from above by some const@mt C(R)in |z| < R,soC+ f, —v,

is a nonnegative harmonic function ;o] < R with value at the origin not larger than
2C. The Harnack inequality yields the upper bound(of+ f,, — v, in |z| < R/2,
which in turn yields the lower bound af, in |z| < R/2. Therefore, after passing to a
subsequence, we have, by applyifg? estimates ta,,, that

v, v in CF.(R?),
wherev satisfies, in the distribution sense,

—Av = X(Ilrnn—>o<> Vrb(o))eva in R27
(M 00 Vi(0)) fpo €” < 1, (23)
v(z) < v(0) =0, in R2.

In fact, due to standard elliptic estimatess C?(R?).

_ltis easy to show (see the Appendix) that there is no solution to (28)<f0, so

A > 0. On the other hand, due to the classification of all solutions of (23) (see, for
example, [19, 21] and [15]), we know thats the function given in (10). It follows that

M lim V,(0) [ e =8r.
n—oo R2

Consequently) > 8r. This is a contradiction. Thugt,, } is bounded from above and
n(Pn) = —miny, &, — oo for somey,, € M. Without loss of generality, we may
assumey,, — 3. LetQ C M be any smooth open connected set contaipings? # ¢.
Definen,, by
_Ag77n = An(vnegn — Wh), in Q,
{ N =0, onon.

In view of the upper bound af,,, we derive from standard elliptic estimates tiay }
is uniformly bounded iff2. Letw,, = &, — n,, thenw,, satisfies

-Agw, =0,  w, <C, in Q.

Applying the Harnack inequality t6’ — w,, on compact subsets &, we have, in view
of C — w,(9,) = oo, thatC' — w,, — oo uniformly on compact subsets &f. Namely,
&, — —oo uniformly on compact subsets 61. Since2 can be chosen arbitrarily,
&, — —oo uniformly on M which vioIatesfM V,eé» = 1. Lemma 1.1 is established.
O

Theorem 0.1 can be deduced from Lemma 1.1 as follows.

Proof of Theorem 0.1Set{ = u — log [,, Ve“dv,. We know from Lemma 1.1 that
(| < C on M. Since [,, udv, = 0, u vanishes somewhere ilv. It follows that
|log [, Vedv,y| < C. Consequentlyu| < C. O
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2. A New Local Estimate by the Method of Moving Planes

In this section we establish Theorem 0.3 by the method of moving planes.
Let G(x,y) be the Greels function of —A in @ C R? with respect to the zero
boundary condition:

_Awé(xay) = 6y7 in Q7
G(z,y)=0, z € 0.

Consider
1) = | Gl nVale Dy,
Q
Namely,u;, is the solution of

_Aan = Vype'n, in Q,
Uy, = 0, onoQ.

Lemma 2.1. Under the hypothesis of Theorem 0.3, forratt O,

n(z) = aG(z,0) inCHQ\ B,).

Proof. Write
fin(2) = Oz, 0) / V(e @y + / [Ge. ) — G, O)]Vi(y)e™ Py,
Q Q

Asy — 0,G(x,y) — G(x,0) — 0 uniformly forz € Q\ B,.. Consequently, using (20),
i, (z) = aG(z,0)  InC%RQ\ B,).
On the other hand, we have
Vi) = [ V.G Vel Oy,
Q
and, asy — 0, V,G(z,y) — V,G(z,0) — 0 uniformly forz € Q \ B,. TheC*
convergence ofi,;(x) to aV,G(z, 0) follows immediately. [

Lemma 2.2. Under the hypotheses of Theorem 0.3, forralk- 0, there exists some
constantC' = C(r, 2, a, b, A, Az, ) such that

maxu, — min u, < C.
Q\B, Q\B.

Proof. It follows from Lemma 2.1 and (21) that the oscillation@f — %, on 9Q is
bounded. Since,, — i, is @ harmonic function, it follows from the maximum principle
that the oscillation ofi,, — @,, in Q is bounded. Lemma 2.2 follows. I



Harnack Type Inequality: the Method of Moving Planes 431
Due to Lemma 2.2, we only need to establish Theorem 0.3 for a speciafzasB;
is the unit ball inR?. Without loss of generality, we assume tfg(0) = 8. Set
5n — efun(O)/Z’
Tp(x) = up(0nx) + 2l0gd,,  for|z| < 1/6,,
Wy (x) =Tp(x) + 2l0g|z|,  for |z| < 1/6,.
It is clear that,, satisfies

{ — AT (x) = Vo (6p2)e™ @ for |z| < 1/6,,
T (2) <7,(0)=0 for|z| < 1/4,.
Arguing as in Sect. 1,
T, =T inCE (R, (24)
and therefore
W, —w—0 inC?.(R?), (25)

where

1
vl) = log { @ |x|2)2} ’

w(z) = Iog{(l_ll:vlflz)z}.

For convenience, we work in cylindrical coordinateg)f with

-t
{xl = ¢t cosh, (26)

xp = et sind.

It is easy to check that the transformation given by (26); £2) — (¢, cosf, sind) is a
conformal transformation d&? \ {0} to the cylinderR x St = {(t, cosf, sind)}.
Set, fort < 0 andd € [0, 2x],

W (t, 0) = un (e’ cosh, et sing) + 2¢,

and
2s

(l + e23)2

w(s) = Iog{

Under transformation (26),

} =25 — 2log(1 +e%°).

Wn(2) = Wn(t +10g6,, 0), w(z) = ().
We derive from (25) that in the new variables,

nlinoo H?I}n(s + Iogdn, 6‘) — QD(S)HLOO(SSQ,OG[O,ZW]) = O, YaelR. (27)

Clearly, under the above conformal transformatioR®f {0} to R x S?, the equation
of u,, is transformed to the following equation on the half cylinter x S':
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02 0% . - @ )
*(ﬁ + w)wn = Vi(t, 0e inQ,
where
Q={(t0) : t<0and0< g < 2r},
and

Viu(t, 0) = V(! cosb, e sinb).

Note thatw achieves its maximum at= 0,’(s) > 0 for s < 0, andu(—s) = w(s)
for all s.

Let us first describe the ideas of the proof. For sdine— oo, estimate (22) inside
the shrinking ball$z| < R,,d,, follows from the usual blow up argument. What we need
to estimate is in the regioR,,§,, < |z| < 1. We work onR_ x S, the left half cylinder.

It is not difficult to see that the desired estimate (22) in the regiop < |z| < lis
equivalent to

|0, (t, 6) — w(t — logd,)| < C, Vlogd, +C <t <0 andve. (28)
Here and in the following(’' denotes various constants independent.of
The blow up argument gives a precise estimatevidt,¥) — w(t — logd,,) for

t <logd, + C. Sincewl(t — logd,) is symmetric with respect to= logd,,, estimate
(28) is then, in view of (27), equivalent to

|, (t, 0) — 0, (21090, — t,0)| < C, V logd, + C <t <0 andve. (29)
To establish (29) we will introduce two functions,, andw;, which differ fromew,, by

some uniformly bounded functions. The functiep Will be chosen so that the method
of moving planes can be applieddg, from the left to obtain

Wn(t,0) > Bn(@\n —,6), ¥ Ay <t <0andve, (30)

where),, is some number smaller than I6g+ 2. On the other handy;; will be chosen
so that the method of moving planes can be applied’térom the right to obtain

wp (t,60) <wr 2\, —t,0), VA, <t <0andvé, (31)
where)\} is some number larger than l6g — C. We emphasize that in order to apply

the moving plane method to; from the right we need (30) and Lemma 2.1-2.2 so that
the plane moving process can get started. These estimates are also needed to ensure that

A —10gd,| +|A\; —logéd,| < C. (32)

The desired estimate (29) follows from (30), (31), (32) and (27).

We first introduce

Byt 0) = G (. 0) — St inQ.
a



Harnack Type Inequality: the Method of Moving Planes 433

Clearlyw,, satisfies

9% 02

. N
*(@ + W)U}n =Vpe™ + E€t7 (33)

where R . ,
Va(t, 0) = Vo (t, 0)e™ /.
It is easy to see that

aat{f/n(t,@)eg+fet} >0 V(0 eQVEER. (34)

We recall some estimates obtained fay if [9] by the method of moving planes. For
A< Oand) <t<0,weset*=2\—tand

WA (L, 0) = Dy, (1, 0).
Clearly) satisfies

0% 0% .\
—(@*‘ﬁ)wn

A

= ‘A/,?eﬁ’z + get , (35)

whereV} = V,,(t*, 6).
It is easy to see that,,{t, 0) behaves like 2for ¢ very negative and therefore far
very negative (depending ar), we have

WL, 0) — Dy(t,0) <0 forA <t <0,0<6<2r.
Define
A = sup{p < 0 :0Nt,0) — D,(t,0) <0 forall A < p, A <t<0,0<86<2r}.

For every fixedn € R, we know thatw, (¢, #) approximatesu(t — logd.,, 6) very
wellint < logéd, + «a. Therefore (see [9] for details)

An < logé, +2. (36)
Using the fact
DN, 0) — Dp(t,0) <0 VA<t <O A<A,0<6<2r,

it is not difficult to see from (34), (33), (35) and the mean value theorem that
— a—2+8—2 (Dp(t, 0) — 0, (t,0)) <O  forA <t <0,A<\,and0< 6 < 2r
atz 692 n\"“ n\% = = = Y = "\n = = .

Since the plane moving process stops.atwe derive, using the Hopf lemma and the
strong maximum principle, that

min {@n(0,0) — @, 2\, 0)} = 0. (37)

0<g<2r

Next, we introduce N
wi (t,0) = w,(t,0) + —et inQ.
a



434 Y.Y. Li

Clearly

82 82 * *_w A
_(8152+892> wy =Vre "—get, (38)

whereV*(t, 0) = V,(t, 0)e= A</,
It is easy to see that
0

{V;(t,@)ef—Aet} <0 V(0 e, VEER. (39)
ot a

We will apply the method of moving planes ig;, but from the opposite direction.
ForA <0and 2 <t < ), we set
w(t,60) = w;, (%, 0),

where, as beforg* = 2\ — ¢.
Clearly

P 02 \ N o A
N T *A = * w,” _
(8t2 892) wn Vn (t? 0)6 a € ) (40)
whereV;* (¢, 0) = V.*(t*, 0).
In order to get started with the plane moving process, appropriate estimates are

needed forw} . For that purpose, we first use the harmonicityugf— 4,, in B1, the
boundedness of the oscillation®f — ,, in By, and standard elliptic estimates to obtain

|v(un - an)| < c in Bl/2~ (41)

Taking —A; > —A; >> 1, we derive from (41) and Lemma 2.1, for large
(depending om\; and A ), that

ngy< S 41 WA <t<An0<0<2m
ot 2T
Notice thatoe > 8, we have
oy, ouy,
(tvo)zi(t70)+2§flv VAlStgAZaOSGSZW
ot ot
Consequently,
ow,
5 (t,0) <-1/2, VAL <t< A 0<t<0. (42)

Fix A, first. It follows from (37), (27), (36) and Lemma 2.2 that
wy,(t,0) < W2\, —1096,) + C(A2) < 2(2\, —1096,) + C(A2)

for Ao, <t <0,0<86 < 2r. Therefore, for allAg < Ay, 2Ag < t < 2A0 — Az, We
have

wro(t, 0) = wi (™, 0) < 2(2\, — logé,) + C(Ay). (43)
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Using the definition of\,,, we have
w;(tvo) > @n(tae) -C > @2"(1579) -C v >\n <t < an < 0 < 27T,

whereC is some constant independentgfA,, A; andAg. Namely, for all\,, <t <
0,0 < 0 < 27 we have
w(t,0) > 0,2\, —t,0) — C.

Therefore for all\, <t < Ag, 0< 6 < 27, we have, in view of (36) and (27),

> @(2\, — logé, —t,6) — C (44)
> 2(2\, —logé, —t) — C.

We see from (43) and (44) that there exists sakge< A, such that for allAg < Ao,
and all)\,, < 2Aq <t < 2Ag— Ay and 0< 6 < 27, we have

wo(t, 0) < w (¢, 0). (45)

Fix one suchAg < Ao.
Using (42) withA; = 2A¢, we have, fom large,

wito(t,0) < wi(t,0), V2Ao— Az <t< Ag,0<6<2r. (46)
Define
No=inf{p < Aot wNt, 0)—wi(t,0) <OV < A< Ag, 2\ <t < \,0<6< 21},

Due to (45) and (46)\* is well defined for large. It is easy to see from (27), for large
n, that

A > logé, — 2. (47)
Using the fact
wNt,0) —wi(t,0) <0, V2A<t <A\, <A< Ag,0<6< 2,

we derive from (38), (40), (39) and the mean value theorem that

2 02 \
I T * ¥ <
(W 892) (wi(t,6) = wi(t.6)) <0
V2N <t <AA <A< A, 0<6<2r.

Since the plane moving process stops\at we have, by using the strong maximum
principle and the Hopf lemma, that

*)\:L * _ * * -
Jmax {w @)%, 6) wn(zxn,e)} 0.

Namely,

Jmax {w;(0,0) — w;(2X;.0)} =0. (48)
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It follows from the definition ofw;; and (21) that

minu, — C < w;(0,0) < minu, +C V0<0 < 2r. (49)
831 aBl

Using (27) and the definition of,,, we also know that

min w(2\5,0) > min @, (2\%,0) — C
0<H<2n 0<H<2n

0<§<2r

min 0,(2\%) — C if 2\* < X\, (50)

Min - @n(2\n — 2X5) — C i 205 > A,
a 0<0<2r

L [2@ =2\, —logd,) — C'if2X7 > A,
- 22\, —logdy,) — Cif2), < A,

Combining (48), (49) and (50), we have

maxe, > {2(2>\n — 2\ —logéd,) — C if 205 > Ay . (51)
dB; 2(2\; —logo,) — Cif2X) < An
On the other hand, we know from (37) and (27) that
g}i{] Uy < 2(2\, —logé,) +C. (52)
It follows from (21), (51), (52) that either
—Ar < C, (53)
or
AL < A, +C. (54)

We rule out (53) as follows. Suppose (53) happens, then, sifice Ao, we derive
from (45), for all 2} <t < 2\: — Az and 0< 0 < 27, that

wy (£, 0) < wi(t, ).
Now, in view of (42), we have, for large, 2 — A, <t < Ay, and 0< 6 < 27, that

ow;
ot

These imply, for some > 0 and\ € [\ — ¢, \%], that

(t,0) < —1/2 < 0.

Wt 0) < wi(t, 0)

forall 2\ <t¢ < XAand 0< 6 < 2. This violates the definition ok}, so (53) can not
happen. Therefore we always have (54) and, in view of (47) and (36), that

|An —10gd,| +[A}, —logd,| < C. (55)
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Recall that
i (0) Swi(t0), V2N, <t<N,0<0<2m,

and
D (t,0) < Dp(t,0), VYA, <t<0,0<86<2nm.
Namely,
wr(t,0) <wk(2A: —t,0), VAR <t<0,0<6<2m,
and
Since

| (t, 0) — Wi (t, 0)] + |wi (E, 0) — Wi (t, 0)] < C,
for all ¢ < 0 andd, we have

'L’[}n(ta 9) > wn(Z)‘n - t7 9) - 07 v )\n

Due to (55), we have

2\, —t<logd, +C VX, <t<0,
and

2\, —t <logd,+C VA, <t<O.

So we can use (27) to estimate the right hand sides of (56) and obtain, using again (55),
that

2(logé,, — t) — C < w,(t,0) < 2(logd, —t)+C, Vlogd, <t <0,V6.
In terms ofu,,, this means
|wn () + u, (0) + 4log|z|| < C, Vo, <lz| <1 (57)

The standard blow up argument (see (24)) yields, for s@ne- oo,

-2

max |u,(z) — lo

— | =0 asn — 00.
|| <R, g 1 +5;2\x|2)2‘

On the other hand, (57) is equivalent to

-2

n(z) —log —F5—+
fun() =100 2y

| <OV6, <|z| <L

Theorem 0.3 follows from the above two estimates.
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3. Proof of Theorem 0.2

In this section we establish Theorem 0.2 by using Theorem 0.3.

Proof of Theorem 0.2\e know from Theorem 0.1 that € [8r, o). For any point
7 € M, letx = (x1, x2) be some isothermal coordinate system centergdi&ie metric
g takes the forme?(dz? + dz3) in B,.(0) := {x | 22 + 23 < r} with »(0) = 0. Then¢,,
satisfies

— A&, = e (Ve — W), in in + J:% <r,

whereA = 0,4, + Or,a,. Defineg, by

_ACn = )\nQSOWn + A‘pv in B'I‘(O)v
(=0, ondB;(0),

and sety,, = &, + (, + ¢. Thenn, satisfies
—Anp = Ane "V, e in B,(0).

Itis clear that{¢,, } is uniformly bounded irB,.(0). We see from (7) that/,, e*»dv, } is
bounded from above, sg, fBT(O) e~V e < C.Therefore it follows from Theorem 3
of [8] that, after passing to a subsequence, there are only three possibilities:

(i) {n.} uniformly converges itC%(B, ;»(0)),

(i) {nn} tends to—co uniformly on B, 5(0),

(iii) There exist finitely many blowup point§z™®, - -- | 2®} of {n,} such that{n, }
tends to—oo uniformly on compact subsets &, ,(0) \ {z®), - ,z®}.

Clearly, in view of the boundedness{, }, there are only the above three possibili-
ties for{¢,, } aswell. Sincé\/ is connected, we know that, after passing to a subsequence,
there are only three possibilities fo¢,,} on M:

1° {¢&,} uniformly converges it©?(M),

2° {¢,} tends to—oo uniformly on M,

3° There exist finitely many blowup pointsg®, - .. 7™} of {gn% such that{¢,,}
tends to—oo uniformly on compact subsets of \ {z, ...  z(™},

Since we know from (7) thaf [,, -~ dv,} has a positive lower bound, s6 2an
not occur. 2 can not occur either because of (9). We are left with Bplying the
result in [32], we know that, Vet — Y 87 N;d;0 for some positive integers
N,. Consequently, in view of (7)) = 8r>_,%; N;. We then derive from (8) that, in
Clooc(M \ {f(l)v e af(m)}%

m

b0 — €, = 8> NG, 70) - X /A WG ). (58)

=1

Due to (58),{&, } has bounded oscillations in compact subsets/of {z), - - - | 7™},
Let0< a; < 3 miny— d@®, 7)) be some small constant) be a maximum point of
&nin{y € M| d(y,7") < a;}, andz = (21, x2) be some isothermal coordinate system
centered at"), The metrigy takes the forma#~ (dz3+d23)in B, (0) := {z | 23+23 < a;}
with ¢,,(0) = 0. Defing(,, andn,, in B,.(0) as at the beginning of this section witkF a;,
then, by applying Theorem 0.3 tg,, we have
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e (0)
[<C Vil <a,

|7 () — log 1+ /\"'67C7é(D)V"(O)enn(o)‘z|2)2 =

namely,

£nl0)

1+ An‘gn(o)egn(O)|x|2)2

[§n(x) — log |<C, Viz|<a. (59)

It follows easily that

m
AnVnetn — 81 "6z inthe sense of measure
=1

In the isothermal coordinate system centeredlatwe define
Un(x) = gn((snx) +2 |Og(5n, |33| < CL[(Sn 5

whered,, = e~¢»(0/2 _, 0. Set

—

). _
Ry, = SURR >0 : flon = vl cogop * 1 = Ol egnon < €

where 1
v(z) = log { —— 1, in R2.
1+ >\|Im?H800 Vn(0) |22[2)2

Arguing by contradiction using the standard blow up argument as in Sect. 1, we can
show thatﬁﬁ) — oo asn — oo. Clearly,

)\n/ ) V,etn — 8,
d(y, /I-(l))<R(l)€*€n(_( )/2

ande,,, for largen, has a unique critical point ify € M | d(y,z0) < B e—é@)/2}
due to the fact that has a unique nondegenerate critical point at the origin. It is easy to
see from (59) that

l o Vpetn — 0.
E(n)ef‘gﬂ'(;n’ )/2<d(y,fgb))<al

ConsequentlyV; = 1 for alll and) = 8rm. (e) then follows from (58). We easily derive
(d) and (c) from (59) and (58).

The above discussion also yields the uniqueness of the maximumzipisince
otherwise another maximum poirfwould lead to\,, f( )T —enaDy2 Vn etn —
8r, and due to the definition ok, the two small balls{y € M | d(y,7¥) <
RYe=6@0/2) and{y € M | d(y, 30) < RYe=6@/2}) have no intersections. This
Would violateN; = 1. Theorem 0.2 is thus establlshed O

In the rest of this section we derive Corollary 0.3 from Theorem 0.2.
Proof of Corollary 0.3.Using (8), we writep,, as

on =+ @
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with

A0 = A, / VA DG y)duy(s) — 87 S O 70)
=1

and
apg) = 87rm/ W)G(-, y)dvg(y) — )‘n/ Wa@)G(, y)dvg(y).
M M

Since\, W,, — 8mmW in C*(M) for 0 < o < 1, we derive from Schauder estimates
thato® — 0 in C2*(M), so

©? ~o0. (60)

Without loss of generality, we may assumi(e, 71) = miny<;<,, d(z, 7). Write

A = Gt 4 824 10 1 00
with
m
A=Y /| o VD DIG 1) = Gy ),
*(’) (l)
PP =3" AnVa)es W, (y) — 8r | G-, 7Y),
=1 B\/E@aﬁ)@(’?)
e =\, Va@)e" WG, y)dvy (y),
dy,»)<d(x,75)/4
oD = Va@)e"WG(-, y)dvg (y).-

w
d(y,2)>d(,70)/4,ye M\UP lBﬁ o@D
Forx € M\ Uz Bgoso @), we derive from (c)-(d) in Theorem 0.2 that

13 En@D)
|90( )({E)| = C’(]_+ anrn )d(x T 1))2)2 fd(y,$)§d(acﬁg))/4 ‘G(SL’, y)|d’Ug (y)
efn rn )d(:r x(l))

(1)
< C(1 +[logd(z, T, )|)m7
which implies, in view of
(l)

@D d(z, 7D)2 > & ENRVsDY)2 = B2

that
1)~ 0. (61)
The usual blow up argument as in Sect. 1 yields

@12~ 0. (62)
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Apparently, forz € M\ Ui B, .1 o 50 (Z0),

11 n d(z,
N < CXa s o ity o 1100 Gt e )
0] /1)
m Rn+ Rn
< CZz:ﬂogﬂr)_ =
Consequently,
e~ 0. (63)

Using (a) and (c), we have
@) < C(1 +|logd(z, 7)) fM\U"g B . @D) et dug
1=1 Rn Sn n
= o(1)(L +|logd(z, Z))).
Namely,
¢ ~0 0. (64)

Combining (61)—(64), we have
¢(1) ~o 0.

Differentiatingy™® under the integral sign and making estimates as above, we can easily
show (details are left to readers) that

eW~0 and P ~j0.
Therefore
oW~ 0. (65)
Corollary 0.3 follows from (60) and (65). O

4. Appendix

For readers’ convenience, we provide a proof of the following well known fact.
Lemma 4.1. There is naC? solution to

Av=e’, inR?
Jpe ¥ < o0

Proof. Suppose the contrary,is aC? solution. Set

1
075 ),

for r > 0. We derive from Jensé&ninequality that

1

— e’ > "™, (66)
27TT 9B,
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It follows that7 satisfies B
AT > "M inR?,
namely,
1 _
=@’ (r)) > "7,
r
We derive from the above that
s
ro'(r) > / se’®) >0 forallr > 0.
0
Consequently,
o _ 2
o' (r) > / 5’0 = e”(o)% forall » > 0.
0
In turn we have
— 7'2
o(r) > v(0) +ev<°>Z forall > 0. (67)

It follows from (66) and (67) that

UV —

R2

Contradiction. O
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