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Abstract

This is a sequel to [30], which studies the prescribing scalar curvature problem on S”. First we
present some existence and compactness results for n = 4. The existence result extends that of Bahri
and Coron [4], Benayed, Chen, Chtioui, and Hammami [6], and Zhang {39]. The compactness results
are new and optimal. In addition, we give a counting formula of all solutions. This counting formula,
together with the compactness results, completely describes when and where blowups occur. It follows
from our results that solutions to the problem may have multiple blowup points. This phenomena is
new and very different from the lower-dimensional cases n = 2,3.

Next we study the problem for n = 3. Some existence and compactness results have been given
in [30] when the order of flatness at critical points of the prescribed scalar curvature functions K(x) is
B € (n—2,n). The key point there is that for the class of X mentioned above we have completed L™
apriori estimates for solutions of the prescribing scalar curvature problem. Here we demonstrate that
when the order of flatness at critical points of K{(x} is 8 = n — 2, the L™ estimates for solutions fail
in general. In fact, two or more blowup points occur.

On the other hand, we provide some existence and compactness results when the order of flatness
at critical points of K(x) is 8 € [n — 2,n). With this result, we can easily deduce that C* scalar
curvature functions are dense in C'* (0 < a < 1) norm among positive functions, although this is
generally not true in the C? norm.

We also give a simpler proof to a Sobolev-Aubin-type inequality established in [16].

Some of the results in this paper as well as that of [30] have been announced in [29].© 1996 John
Wiley & Sons, Inc.

0. Introduction

Let (S", go) be the standard n-sphere. The following question was raised by L.
Nirenberg: Which function K (x) on §? is the Gauss curvature of a metric g on S?
conformally equivalent to go? Naturally one can extend this question to higher
dimensions S" (n > 2).

For n = 3, we write g = yis 8o; the problem is then equivalent to finding a
function v on §" that satisfies the following equation:

0.1 —QDgyv + c(m)Rov = c(mK(wiE, v>0onS",

where c(n) = 4{'";_21) Ro = n(n — 1) is the scalar curvature of go, and A, denotes
the Laplace-Beltrami operator associated with the metric go.
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For n = 2, we write g = ¢*go; the problem is then equivalent to finding a
function v on $? that satisfies the following equation:

0.2) ~Agv+ 1 =K(x)e?.

A necessary condition for solving (0.1) or (0.2) is that K be positive somewhere.
For n = 2, this follows from integrating (0.2) on $2. For n Z 3, this follows from
multiplying (0.1) by v and integrating by parts on S”. It turns out that there is at
least one other obstruction to solving the problem, the Kazdan-Warner condition
(see [27]). In particular, if S" is embedded as usual in R**! and K(x) € C/(S")
is strictly monotonic in one direction, then the equation cannot be solved. The
Kazdan-Warner condition is obtained by exploiting the centered dilation conformal
transformations of S”. In the same spirit, further obstructions are given in [9] by
exploiting the full conformal transformation group of S". (See [18] and [25] for
more discussions of the Kazdan-Warner-type conditions.)

Recall that the centered dilation conformal transformations of S” are defined as
follows: For P € S", 0 < t < 00, we define a centered dilation conformal trans-
formation pp, : S” — S§" by y — ty, where y € R" is the stereographic projection
coordinates of points on S" while the stereographic projection is performed with
P as the north pole to the equatorial plane of S".

Much work has been devoted to the existence of solutions of (0.1) and (0.2).
For the relation between this work and previous work, see the introduction and
references in [30].

In this paper we first present some existence and compactness results for the
problem on $* The existence result extends that of Bahri and Coron [4}, Be-
nayed, Chen, Chtioui, and Hammami [6], and Zhang [39]. We also have a com-
plete understanding of the compactness of solutions to the original equations and
subcritical approximation equations that give rise to a degree-counting of all solu-
tions. From our results we know when and where blowups occur. In fact, multiple
point blowups may occur. The phenomena of multiple point blowups in dimension
n = 4 is new and very different from that of lower-dimensional cases.

After the study of the problem on S*, we study the problem on S” for alln = 3,
Notice that the problem is much less understood for higher dimensions compared
to lower dimensions. For higher dimensions, one result is due to Escobar and
Schoen (21] concerning curvature functions with group symmetry; another is due
to Chang and Yang [16] concerning curvature functions close to constants. We
also recall one of the results we obtained in [30], which can be viewed as a natural
link between theorem II in [15], theorem 1 in [4), and theorem 2.1 in [21].

THEOREM L. ([30], a special case) For n = 3, we suppose that K € C'(S") is
some positive function for which the following is true: For any critical point gy of
K, there exists some real number 8 = (qo) € (n—2,n) such that in some geodesic
normal coordinate system centered at qo, K(y) = K(0) + ¥} a;ly;|? + R(y),
where a; = aj(qo) * 0,Xj_,a; * 0, and R(y) is C¥I=!"1 near O and satisfies
limyy| 0 Zog|a|si) [8*RO) [y| A+l = 0.
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Assume further that
Z (__l)i(qn) #(=1),

Ve Klgo)=0
Yi-14,(ge)<0

where i(qo) = #{a;(go) : ajlqo) < 0, 1 = j = n}. Then (0.1) has at least one
solution.

The key point in establishing the above is to obtain L™ apriori estimates for
solutions of (0.1). More precisely, it is shown in [30] that under the hypotheses
of the above theorem, if we let K, = uK + (1 — u)Rp, and let v be any solution
of (0.1) corresponding to K, for some 0 < y = 1, then maxs-v = C. It is
also shown that the Leray-Schauder degree of all solutions of (0.1) is equal to
=1+ (=1)" Zv, kign=05"., aj(gn<0f~1Y4"). Here the proper flatness hypotheses
near critical points of K (n — 2 < 8 < n) have been used.

A natural question is what happens when 3 is equal to n — 2. The subtlety in
this case has been illustrated by Bianchi and Egnell, who constructed in [8] some
smooth axisymmetric positive function K with the order of flatness at north and
south poles equal to n—2 and for which there is no axisymmetric solution to (0.1).
We will show that, in general, the L™ estimates for solutions of (0.1) fail when
the order of flatness at critical points of K is allowed to be equal to n — 2. This
is achieved by first establishing some existence results for those axisymmetric
K that are close to Ry in the L™ norm (see Theorem 0.18) and then argue by
contradiction. Namely, if the L™ estimates hold, we will be able to produce an
axisymmetric solution to (0.1) by using a degree argument and Theorem 0.18. In
fact, we know that what has happened in this case is that two isolated simple
blowup points occur to the corresponding solutions of (0.1) simultaneously at the
north and south poles. This phenomenon of multiple point blowups shows that
higher-dimensional cases (n = 4) are substantially different and more difficult than
lower-dimensional cases.

By assuming further some smallness hypothesis on the coefficients of |y|"~2,
we still obtain the L™ estimates as in [30] and hence some existence results. [t
follows from this existence resuit and section 6 of [30] that C* scalar curvature
functions are dense in the C'*(0 < a < 1) norm among all positive functions.
This density result is generally false in the C*> norm.

We first note some notation and definitions found in [30]. The notion of an
isolated simple blowup point was introduced by Schoen in [36] and [37].
Let @ C R” (n = 3) be a bounded domain, 7; = 0 satisfy lim;. 7; = 0,

pi = ntd _ i, and {K;} € C'(Q) satisfy, for some constant A; > 0,

n-2
(0.3) I/A, =K,x) = A, forallxe€ Q.
Consider

0.4) —Ay; = c(n)K,-(x)ui’" , u;>0i1n Q.
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DEerINITION 0.1.  Suppose that {K;} satisfies (0.3) and {«;} satisfies (0.4). A
point § € Q is called a blowup point of {u;} if there exists a sequence y; tending
to ¥ such that u;(y;) — oo.

DerFINITION 0.2,  Suppose that {K;} satisfies (0.3) and {u;} satisfies (0.4). A
point y €  is called an isolated blowup point of {u;} if there exists 0 < 7 <
dist(y, 992), C > 0, and a sequence y; tending to y such that y; is a local maximum

— 2
of u;, ui(y;) — oo, and ui(y) = Cly — y;| " »~" for all y € Bx(y,).
Let y; — 7 be an isolated blowup point of {;}; we define

1 2
u, wir)=rnta(r), r>0.
|0B,| J 98.(y) ' '

ui(r) =

DerFINITION 0.3.  y € Q is called an isolated simple blowup point if 7 is an
isolated blowup point such that for some p > 0 (independent of i) w; has precisely
one critical point in (0, p).

DerFINITION 0.4. For any real number § = 1, we say that a sequence of
functions {K;} satisfies condition (*); for some sequences of constants {L(8, i)}
and {L,(8, i)} in some region €; if {K;} € C¥I-11(),) satisfies

IVKillco@y = Li(B,1)

and, if 8 = 2, then

|0°Ki(y)| = Ly (8, i)IVKi(y)I% forall 2 = |a| =48], y € U, VKi(y) # 0.

Remark 0.5. Let {K;} be bounded in C¢(B;) (¢ = 2 is an integer) and have
the Taylor expansion

Kiy) = Kd0) + 0"0) + Ry), y€E By,
with Qﬁe) being some homogeneous polynomial of degree ¢ satisfying
IVe°)l = Ay, y € B,
for some positive constant A¢ independent of i. Furthermore, let R;(y) satisfy
2 o0=lal=e |O*Ri(Y)] ly|~¢*lel ~ 0 uniformly for i as |y| — 0. Then {K;} satisfies

(%) for Li{€) and L,(£) near the origin. Here L;(£) and L,(€) are some constants
independent of i.
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On a Riemannian manifold (M", g), Ly = Agtp — c(n)Rg4 is called the con-
formal Laplacian, where R, is the scalar curvature of g. The conformal Laplacian
has the following invariance properties under the conformal change of metrics.

For ¢ = unf-Zg,u > 0, we have
(0.5) Loy = w5 Ly(pu) for all € C(M).

Another well-known fact is that if OM = ), then for all ¢y € C™(M) we have

0.6) fM (IV1? + cimRey?}dV, = /M {1V, @] + iR uP}dV .

Equation (0.6) can be derived easily from equation (0.5). See [7] for the proof of
(0.5).

Let P be the south pole and make a stereographic projection to the equatorial
plane of S". Let x = (x1,x2,...,X,+1) € S", and let y = (yy,..., yn) € R" denote
the stereographic projection coordinates of x. It is easy to see that

2 . . y2-1
{xizl—Lf 1§l§n9xn+1=|y|2+l’

+yl2>
L= X <<
Vi = 1 1=i=n.

It follows that in the stereographic projection coordinates

4

n+l 2 2 2 %2 "
= dx?’-=(———) dy? = (—) dy?.
80 2 AT @ 1+ |y Y

For P € §”", let Gp(q) be Green’s function of L,, on S”. It is well-known that
Gp satisfies

Gplg) >0, LgGp(q) =0, forall g€ S*"\{P},
—fGpLo pdVy, = $(P),  for all § € C*(S").

In this paper, f, will denote |S"|™! fq.. The existence and uniqueness of Gp are
well-known (see [2]).

Using (0.5) with g = dy?, § = gy, it is elementary to see that in the stereo-
graphic projection coordinates as introduced above,

2rjs] (1+|y|2)%
0.7 G = .
oD SR TR T

It is also easy to see that

22—n | s» |

R o) = G e
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For K € C*(S"), we introduce the following notation:

X = {q € S":V,K(g) =0},
A+ ={qeS":V,K(g) =0, AK(g) > 0},
A~ ={q€S":V,K(g =0, AK(q) <O},
My = {v € CHS") : v satisfies (0.1) or (0.2)}.
We first present some compactness results and existence results for n = 4. For
K € CXS*), we associate any k (k = 1) distinct points ¢V),...,q*® € ¥\ X+
with a k X k symmetric matrix M = (M(q“’, i ,q(k))) defined by

A k(™) .
- K(g" 2 r1=7],
(0.8) M;; = _ag)s'|_ Gyla")
|s%] Kig)k gD’
. A, K (1)
Let (M) denote the least eigenvalue of M. Whenk =1, u(M) =M = -——f‘(’@fi"—z).

Remark 0.6. Bahri and Coron discovered through the theory of critical points
at infinity that some matrices like (0.8) play important roles in establishing exis-
tence results for critical exponent equations. See [3] and [4].

Set

o ={KeC¥S*:K>00nS* A,K+0o0nX%,
pM@D,....qP) =0, Vq,.... Y e X, k=2}.

Observe that for any K € &, there exists some constant 6 > 0 depending only
on ming: K, ||Kl|cxs such that for all ¢V, ..., g% with min;.; |V’ — ¢?| = 6 we
have u(M(q"V,...,q"*)) = —1. It follows that & is open in C*(S*). It is obvious
that & is dense in CX(S*)* = {K € C%(S*) : K > 0onS$*} with respect to the C?
norm.

We define Index : of ~ Z by the following properties:
(i) For any Morse function K € & with 7~ = {¢'"), ..., ¢}, we define

m N
Index(K) = —1 43 37 (~1fE0,

k=1 p(M((](”) ..... qlik)))>0
I=h <<t Em

where i(q"") denotes the Morse index of K at g¥).
(ii) Index : & — Z is continuous with respect to the C?(S*) norm of & and hence
is locally constant.

Remark 0.7. The existence and uniqueness of the Index mapping defined
above follows from Theorem 0.8 and the proof of Theorem 0.9.
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THEOREM 0.8.
(a) For any K € A, there exists § = 6(K) > 0, C = C(K) > 0, such that for all
K € CHSY, IK —Kllcxst) < 6, v € Mg, we have

CK) ' <v<CK)onS*, |viexsy < CK).

(b) For any K € CHSY)* \ o = 04, there exists K; — K in CX(S*) and v; € My,
such that

(0.9) lim (max Vi) = 00, llm(mm V) =

i—oc gt i—o00

THEOREM 0.9. Suppose K € . Then for all 0 < a < 1, there exists some
constant C depending only on ming: K, | K ||cxs+), C* modulo of continuity of K,
ming |Ag, K1, and min{| u (M(g®,....q%)) | :q".....q% € X", k = 2} such
that

1/C<v<C, |vlcsy <C,

for all solutions v of (0.1). Furthermore, for all R 2 C,
1
0.10) deg (v - 6(-Ax(, + 2" (KV), 0R,0) = Index(K),

where O = {v € C>*(S$*) : 1/R < v < R, ||V|lc2«s®) < R}, and deg denotes
the Leray-Schauder degree in C2*(S*). As a consequence, My + @ provided
Index(K) = O.

THEOREM 0.10. Let K € C*(S*) be a positive function. There exists some
number 6* > 0 depending only on ming: K, ||K||c2st), and the C* modulo of
continuity of K with the following property: Let {p;} satisfy p; = 3, pi — 3,
{K:} € CHS*) satisfy K; — K in CHS*), {v;} satisfy

1 ;
—Dg Vi +2v; = EK,-V,P', v; >0o0n S*,

and

lim maxv; = 00.
i—oc g

Then after passing to some subsequence we have
() {vi} (still denote the subsequence by {v;}) has only isolated simple blowup
points ¢V, ....q®¥ € I\ Xt (k 2 1) with |qV" — g = 6*, Vj * |, and
(M(q(”,...,q("))) = 0. Furthermore, ¢V,...,q® € ¥~ ifk =z 2.
(ii)
N o= K@) lim vilg"ilai") ™! € (0, o)
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and ’ 0
p = lim 1v(g" ) € [0,00), Vj:1=j=k,
=00

where g — g is the local maximum of vi.
(iii) When k = 1,

(0.11) #’(l) — -24K(q(”)“2Ag(,K(q(”).
When k = 2,

k
(0.12) S Meig?,....gPN = Elixjw’, Vji:lsjsk.
=1

(iv) u¥ € (0,00), Vj: 1= j =k if and only if uM(g",...,4®) > 0.

CoroLLARY 0.11.  Let K € & be a Morse function satisfying #%~ = 1 or
Jor any distinct P,Q € &,

Ay K(P)A,K(Q) < IK(P)K(Q).
Then for some constant C,
/€ <v<C, |vllcaey<C,

Jor all solutions v of (0.1), and for all R = C,

deg (v = £(~2, +27%), 0, 0)
=Index(K) = -1+ D> (-1},

Ve Klgo)=0
AgoK (qo) <0

where i(qo) denotes the Morse index of K at qo. Furthermore, if

E (—1)90 % 1,

VeoK{g0)=0
oK (g0)<0

equation (0.1) has at least one solution.

Using Theorems 0.8 through 0.10, we can completely characterize blowups of
a sequence of solutions for (0.1) when n = 4. For K € C%(S*)*, we define

FEK) ={g@V,....d") k=1, eX\ T, Vj:l=sj=k
g+ g" Vil uMG?,...,q") =0}.
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It is easy to see that #(K) = & if and only if K € .

THEOREM 0.10'.

(a) Let K € CH(SH*\ A, K; — K in C?, and v; € My, with maxs: v; — 0. Then
for some (g'", ..., q(")) € S(K), {vi}, after passing to a subsequence, blows up
at precisely the k points.

(b) Let K € CHS** \ A and (¢'V,. ..,q(")) € L (K). Then there exists K; — K in
C?, v; € M. such that {v;} blows up at precisely the k points.

COROLLARY 0.12.  For any k (k = 1) distinct points g1V, ...,q% € S*, there
exists a sequence of Morse functions {K;} € & such that for some v; € Mk, {v;}
blows up at precisely the k points.

The compactness results (Theorem 0.8, Theorem 0.9, and Theorem 0.10') are
new and optimal. The existence problem on S* has already been studied in [4],
[6), and [39]. In [4], Bahri and Coron stated some existence result on S* with a
brief description of the idea of a proof. Benayed, Chen, Chtioui, and Hammami
proved in [6] the result. The existence part of Theorem 0.9 extends the result in [6]
in two aspects. First is that we do not need to assume that X is a Morse function.
In fact, K can have infinitely many critical points. Second, even for a Morse
function K, our result assumes only that the least eigenvalue of M(q'?,...,q*)
is nonzero instead of all the eigenvalues. Notice that only the least eigenvalue
of M(g'),...,q") plays a role in counting the total degree of solutions of (0.1)
and the compactness of M. For instance, considering a continuous family of
K, the total degree of solutions of (0.1) changes when the least eigenvalue of
Mg, ..., q"%) crosses zero, while the total degree remains the same when other
eigenvalues of M(g'),...,4q") cross zero. The existence result on S* in [39] is
contained in the result of [6].

Next we study (0.1) for n = 3 and give an extension of theorem 0.5 in [30] that
is more general than Theorem L stated earlier. We assume a K € C'(S") such that
for any critical point gg of K there exists some real number 8 = 8(qo) € [n—2,n)
for which, in some geodesic normal coordinate system centered at go,

(0.13) K(y) = K(0) + Q2)\(y) + Rigy(y) for all y close t0 0,
where ng) satisfies

Qi) =N, VA>0,y e R, Q) € CU-H(SY),

Rigo)(y) is C1P1-11 near O with limy_o Y o< aj<is) |0* R 1yl #*14! = 0, and

(0.14) VOO ~ [y¥~1 for all y close to 0,
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%) Iy?
‘/ Q(qo) (1 + |y|2)n+ldy

¥ I/R 0y + XL+ |y "dy

2

0.15) .

0,

for those ¢ € R" satisfying

[ veio + e+ yrmay =o.
Set .

={q0 € S": VgK(go) =0, Blgo) =a}, n-2=a<n.

We assume for g9 € % ,— that

(0.16) / VO Py + (1 + [y)™dy =0 if and only if £ = 0.

Let
Koo = {qo € Hnma: [ 290" @1 + [z "z < o} :
and for any distinct ¢!, g® € %,_,, M = M(q", g?) is a symmetric 2 X 2 matrix
given by
(n-2) n .
~ ey e v V@ O + Iy dy, i=j,

_48s™!_Galg”)
4l \/K(q(i))K(q(j)) *

M,'j=

i#+j.
" THEOREM 0.13. Suppose K € C(S") (n = 3) sattsﬁes (0.13), (0.14), (0.15),
(0.16), and either #7,_, = 1 or M\ My < M2, for all distinct ¢V, ¢? €

KoM = MgV, g®).
Then for all 0 < a < 1, there exists some constant C such that

1/C<v<C, |vlces)<C,
for all solutions v of (0.1),

/ Kowp(x)x+0 foralPeS", r=C,
gn
andforall R=C,t = C,
—~1 n+2
deg (v - (— Ay, + c(nRy) (c(n)KvT—“Z),O’R,O)

= (—1)"deg (/§ K o pp,(x)x, B,O) )
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If we further assume that

deg (/ K o pp(x)x, B, 0) 0
§"

for t large, then (0.1) has at least one solution.

Remark 0.14. In Theorem 0.13, B denotes the unit ball of R**!, §" = 9B.
The map [ K o pp,(x)x was introduced in [16], and its many properties were
studied in section 6 of [30].

COROLLARY 0. 15 Forn = 3, let K € C'(S") be some positive function satisfy-
ing (0.13) with Q(q(;) = Yi-1a5ly;1%, where a; = aj(qo) # 0, X}, a; # 0. As-

sume either #%;_, = 1 or M\ \Myy < M2, for all distinct ¢¥,¢® € X5, M =
M(q(l),q(Z))'

Then for all 0 < a < 1, there exists some constant C such that
1/C<v<C, |vlcesy<C,

for all solutions v of (0.1), and for all R =z C,

deg (v — (= Ay +c(mRy)” HemKvi3), 08,0 )
=-1+(-11 > (-,

Vi Klqo}=0
3i=1ai(gn)<0

where
i(go) = #a;(go) : aj{go) <0, 1 = j = n}.

If we further assume that

(_ 1 )i(qo) + (_ 1)
VoK (go)=0
301 a5lgqu)<0

then (0.1) has at least one solution.

CoRrOLLARY 0.16.  Given any positive numbers ¢ > 0, 0 < a < 1, and any
positive C' function K on S", there exists K € C®(S"), |K - K|crug) < €,
such that K is the scalar curvature function of some smooth metric conformal to
8o-

Remark 0.17. A C? density result is false in general. For example, it follows
from the compactness results in [30] that for n = 3,4, (0.1) has no solution for
any function K which is C? close to x"*! + 2. For n = 2, the previous statement
is still valid following from the compactness results in [24] and [13].
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We have proved in [30] that if K satisfies (*),—, then solutions of (0.1) either
stay bounded or have only isolated simple blowups; if K satisfies (*)z on S” for
some 8 > n — 2 then solutions of (0.1) either stay bounded or have precisely one
isolated simple blowup point on §”. The following questions are natural.

Question: Assume that K is a positive smooth function on S” (n = 5) satis-
fying

0°K(go) =0, 2=|al=n-3, for all go € ", VK(qo) =0.

Is it true that solutions of (0.1) either stay bounded or have only isolated simple
blowup points?

Question: Assume that X is a positive smooth function on " (rn = 4) satis-
fying

8“K(q0)=0, 2= |lal=n-2, forallqOES",VK(qo)=0.

Is it true that solutions of (0.1) either stay bounded or have precisely one isolated
simple blowup point on $"?

Next we look at a special situation when K € C'(S") depends only on the
latitude. Here we assume K € C! for the sake of simplicity. For most of the results
in this case this smoothness condition can be weakened. Notice that not all of our
existence results in this case are new; there is much overlap with previous work
(see, e.g., [8], [20], [19], and the references therein). Our approach is different,
and the interesting part is that we can see that more than one blowup point indeed
occur.

Let x = (x',...,x"*") € §", x"! = cosh, 0 = § = 7. Suppose that K(x) =
K(6). Here we have abused the notation, but the meaning is evident. In the
following we say that K is axisymmetric if K depends only on 8. For 0 < a < 1,
let

HY{(S") = {u € H'(S") : u depends only on 6},
CH*(S") = {u € C**(S") : u depends only on 6} .

Let N denote the north pole of S" and let py, (0 < t < o0) denote the
conformal transformation defined before. Furthermore, let

X,={ueH,'(§"):][ |u|"?JT'2=1}, y,={u€X,:][x"“|u|"2'T'2=0}.
S" §ll

For a conformal transformation ¢ : $" — §", we set

Tou=uoyp| detd<p|"7_~~2 .
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We define 7 : &, X (0, 0) — X, by
u=mlw,t) = T;,J‘,w, wes,0<t<oo,

As in lemma 5.4 of [30), one can prove that 7 is a C? diffeomorphism.
For £, > 0, set

NM={weZL  w-1l<e},
Ny={u€ X, :u=mnw,t)forsomew € /], 0 <t < o0},
5= {ve H{(S")\ {0}:cv e A} for some c >0} .

THEOREM 0.18. There exist some small constants g, = £/(n), e = e2(n) > 0
with the property that for any function K() € CH(S") satisfying

IK = Roll=(s = €2,
and

©.17) {K(o) =K(n) +a(x — 6/ +R|(0),

= K(0) + 26 + R,(9),

where 1 < B1,8, < n, ai,ar # 0, Ry(6) = o((w — 8)), (9) = o((r — 0)1~))
as 6 — 7, and R,(8) = (%), ‘%(0) = o(#P27) as 0 — 0, there exists some large
positive constant C| such that

1/C, <v<Cy,  |Vlcresn < Cy,
for all solutions v € A7 (if there are any) of (0.1) and for all C = C,
deg (v + L) (c(n)Kv%) ,A5N
{vec: IVicusy < C,1/C <v<C},0)
= %(sign(al) + sign(ay)) .
In particular, (0.1) has at least one solution v € CXH(S™) N N provided a;a; > 0.

THEOREM 0.19.  Let K(8) € CL(S") be a nonnegative function satisfying (0.17)
with K(0), K(r) > 0, aj,az # 0, Ry(9) = o((m — 6)"), &(g) = o((x — 6)"*"") as
6 — =, and Ry(0) = o(6%), ‘%(0) = o(@”7!) as @ — 0. Assume any of the
following conditions:

(i) n-2 = By, < n, max{a;,a;) > 0.
(ll) n—2§ﬂ1,ﬁ2 <n, ﬁ] +ﬂ2 + 2n—-4.
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(iii) 1 < fy,B2<n, aj,a; >0
Then there exists some positive constant C| such that

1/Cy <v<Cy,  |vllcesny < Cy,
for all CKS") solutions (if there are any) of (0.1) and for all C = C,,
deg (v + Lz (cmKvit),
vect: Ivlicuey < C, 1/C <v<C}, 0)

= % (sign(a,) + sign(ay)) .

In particular, (0.1) has at least one CX(S") solution under a further assumption
aa; > 0.

In the following we set ¢, = (2"%(n - 2) [y~ (':—:;32‘1)—:)2

THEOREM 0.20. Let K(6) € C}(S") be a nonnegative function satisfying

K@) = K(n) + a;(r — 6" 2 + R\(0),
= K(0) + a,6"% + R,(0),

where K(0),K(r) > 0, ai,a; < 0, KO)K(r) # ciaiap Ri(6) = o((x - ) )
R 9) = o((m - 6)") as § — 7, and Ry(8) = o(8""2), Z2(6) = o(9"*) as 6 — 0.
Then there exists some positive number C, such that

(0.18) 1/C, <v<Cy,  |Vilgasn < Ca,

for all axisymmetric solutions v of (0.1). Furthermore, for all C = C; we have

deg(v + Lz (ctkvi? ), {v € CPN(SM : [IVllcaesn < C,1/C < v < C},0)

(0.19)
_ -1, K(O)X(r) > cia1a3,
h 0, K(O)K(‘n') < ciaiay.

Remark 0.21. Since we often need to work with a family of K, we need to
know the dependence of C, on K in Theorem 0.20. This can be seen easily from
the proof. For example, C is under control provided that K(0), K(r), —ai, —ay,
and |K(0)K(r) — c1a'a?| are bounded above and below by positive constants and
that X has certain uniform continuity near the poles.
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COROLLARY 0.22. Under the hypotheses of Theorem 0.20, (0.1) has at least
one C%(S") solution provided K(0)K ()} > c|a1a;. On the other hand, if we assume
K(0)K(r) < cia1a; and ||K — Roll.~sm = &2 (e, is defined in Theorem 0.18), then
(0.1) has at least two C*(S") solutions.

Remark 0.23. Examples given in [8] show that when K(0)K(7) < cja;4a3,
(0.1) may not have any CXS") solution.

COROLLARY 0.24. Let K(0 = t = 2) be a family of nonnegative CH(S")
Sunction. Writing

{K,(f)) = K,(7) + a;(t)(x — "2 + R/ (6),
K.(8) = K,(0) + ax(t)6"2 + R2(6),

where K (), K,(0), —a,(t), - ax(t) are positive continuous functions on the interval
0=r=2

KAO)K (7)) > cia,(H)ay(1), 0=1r«i,
K. (0K, (7) < cia)(t)ax(t), l<t=2,

RIB) = o((x — 6y"), %(9) = of(m — 8" as § — «, and R}(6) = o(¢""?),
4E(0) = o(6"3) as 6 — O uniformly for 0 < 1 < 2.

Then there exists a sequence t; — 1 and a v; € CXS") that is the solution of
(0.1) corresponding to K, such that

lim maxv; = 00.

j=o §"
Furthermore, {v;} has precisely two isolated simple blowup points, which are the
north and south poles.

This paper is organized as follows: In Section 1 we recall some results used in
[30]. In Section 2 we study the problem on S* and establish Theorems 0.8, 0.9, and
0.10, as well as Theorem 0.10'. Theorem 0.10 will be proved first, using results
in [30]. Then we use Theorem 0.10 and some results in [30] to prove part (a) of
Theorem 0.8. To prove Theorem 0.9, we consider a subcritical approximation of
(0.1), namely,

0.20) ~Ag,v + c(mRyv = (MKW, v>0onS*

for 7 > 0 small. Thanks to part (a) of Theorem 0.8, we can assume with-
out loss of generality that K is a Morse function. For any k distinct points
Pi,...,Px € X~ with W(M(P,,...,P;)) > 0, we carefully construct some set
2.(Py,...,Py) C H'(S*) that consists of suitable functions which are highly con-
centrated near Py, ..., P;. Using Theorem 0.10 and some results in [30], we first
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establish Proposition 2.1, which asserts that for 7 > 0 very small, solutions of

(0.20) either stay bounded or stay in one of the Z,(Py, ..., P;). On the other hand,

we establish Theorem 2.2’, which asserts that for + > 0 small enough, (0.20) has

precisely one solution in X.(Py, ..., P;), which is nondegenerate with Morse index
k.5

5k — 3251 iP)).

Now we point out a well-known fact (Proposition 2.7) which asserts that the H'
total degree of solutions of (0.20) is equal to —1 for all 0 < 7 < 2. It follows that
the H' degree contribution of those solutions of (0.20) which remain bounded as 7
tends to zero is equal to Index(K). Some well-known results in degree theory imply
that the H' degree contribution above is equal to the C>* degree contribution of
those bounded solutions of (0.20). Using part (a) of Theorem 0.8, Theorem 0.10
and the homotopy invariance of the Leray-Schauder degree, we obtain (0.10).
Theorem 0.9 is therefore established. Part (b) of Theorem 0.8 is proved by using
Theorem 0.9, Theorem 0.10, part (a) of Theorem 0.8 and the homotopy invariance
of the Leray-Schauder degree. The proof of Theorem 0.10’ is similar to the proof
of part (b) of Theorem 0.8, and is omitted. In Section 3 we establish Theorem
0.13 by proving a more general result. In Section 4 we establish results in the
axisymmetric case and demonstrate that when the order of flatness at critical points
of K(x) is n — 2, the L™ estimates for solutions fail in general. In Section 5 we
give a simpler proof of a Sobolev-Aubin type inequality established in [16]. In
Section 6 we list some elementary estimates.

1. Quick Review of Some Known Facts

In this section we recall some results used in [30]. Let ¢ > 0 and B, be a ball
of radius ¢ in R" (n = 3).

PROPOSITION 1.1.  Let p = 1, K be a C' function and u be a C* solution of

—Au = c(n)K&)|ul”'u, x€B,.

We have
c(n) / K, i n n—2 /
= + - KlulP*!
p+ 12,-: 5, ox, i p+1 2 cw) B, o
_ ocn) K|u|P*! =/ B(o,x,u,Vu)
p+1Josa, 8,
where )
SR T ()
B(o,x,u,Vu) = 7 45,73 |Vul* + o )

It is elementary to check that the boundary term B(o, x, u, Vu) has the following
properties:
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PROPOSITION 1.2. Let A € R and a(x) be some differentiable function near
the origin with a(0) = 0. Then for u(x) = |x|>™" + A + a(x), we have

_ 2
lim B(o, x, u(x), Vu(x)) = —MMS"_' .
a~0J a8, 2

PROPOSITION 1.3. Let {K;} satisfy (0.3), {u;} satisfy (0.4), and y; -~ 5 € Q
be an isolated blowup point. Then for any 0 < r < ¥/3, we have the following
Harnack inequality:

max ui{y) =C min u(y),
YEBy\B.;» VEB2\B, /2

where C is a positive constant depending only on n,C, and sup; ||K;||L> 8.y, and
7 and C are the constants in Definition 0.2,

PROPOSITION 1.4. Suppose {K;} € C,'OC(Q) is bounded in C},.() satisfying
(0.3) and {u;} satisfies (0.4). Let y € Q be an isolated blowup point of {u;} and
{yi} be the sequence of points as in Definition 0.2. Then for any R; — oo, &; — 0%,
we have, after passing to a subsequence (still denoted as {u;}, {y;}, etc.), that

i)™ (w3 - +3:) = (U + kil - YT Noimgon < &
R,-u,-(y,‘)‘ﬂz__l -0 asi— o
where k; = c(n)(n(n — 2)) _]Ki(_}’i)-
PROPOSITION 1.5.  Suppose {K;} € Cl.(B,) satisfies (0.3) with Q = B, and
(1.1) IVKiW = A, forally € B,

for some positive constant A,. Suppose also that u; satisfies (0.4) with Q = B, and
that y; — 0 is an isolated blowup point with, for some positive constant As,

(1.2) ly - yi|#u,~(y) =A; forally€B,.

Then there exists some positive constant C = C(n, A\, Az, A3) such that

wi(y) = Clui() (1 + kawi(yy? 'y —yil?) T forall |y -yl = 1.

In particular, for any e € R", |e| = 1, we have

uy; + e) = C"u,-(y,-)‘”"’?“.
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PROPOSITION 1.6. Suppose {K;} C Ci.(B,) satisfies (0.3) with Q@ = B, and
(1.1) for some positive constant A;. Suppose also that u; satisfies (0.4) with 2 = B
and y; — 0 is an isolated simple blowup point with (1.2) for some positive constant
As. Then there exists some positive constant C = C(n, Ay, A3, A3, p) such that

wi(y) = Cui(y) "'y —yi|*™" forall|ly—y| =1

where p is the constant in Definition 0.3.
Furthermore, for some harmonic function b(y) in B, we have, after passing to
a subsequence, that

ui(y)u(y) = h(y) = aly|*™" + b(y) in C5.(B1 \ {0}),

where

a= hmk 5 —c(n) 2 [n(n—2)] z (th(O))ZT

2. Proofs of Theorems 0.8, 0.9, and 0.10

Proof of Theorem 0.10: It follows from theorem 4.1 of [30] that {v;} has only
isolated simple blowup points ¢V, ...,4% € & (k = 1) with |q¥) — ¢¥| = 6"
(j # D) for some 6" depending only on the data stated in Theorem 0.10.

Since ¢ is an isolated simple blowup point of v;, we let q — gUi — 00)

be the local maximum of v;. Let q,  be the south pole and make a stereographic
projection to the equatorial plane of S" with y as the stereographic projection
coordinates. Set

—vi(y),

2
ui(y) 1+| |2

the equation (0.1) is transformed to
1 T .
—Auily) = cKiH Y,y € R*,

where H; (y) 2/(1 + |y|?).

Let y, — 0 be the local maximum of u; as in Definition 0.2. It follows from
proposition 2.3 of [30] that

iy i) — Ay
1= 88K(gW) 7y 72 + B00) in Ch®*\ {g™,...,q%}),

where b')(y) is some regular harmonic function in R*\ Uy ;{g}. It follows from
the maximum principle that b(y) = 0 if k = 1, and bY(y) > 0 if k = 2.
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It follows from [30] that

lim vilawilg) = 961S*1|S*| 71K (¢")' G o (q) + BNg)

for ¢ # gV and close to ¢', where bl(q) is some regular function in S%\
Us«,;{g"} satisfying L, 6" = 0 and the convergence is in the sense of CZ(S*\
{q(l), e q(k)}).

When &k = 2, it follows from the maximum principle and [30] that for all
l=j=k,

_ 0
. ) 96|S*| | Gyu(q) . vilgi ) Gyolg)
fim #Aa040) = T | Kig0) * 2 ) Kig

where the convergence is in Cp.(S*\{g"", ...,q"'}). It is not difficult to see (using

the fact that the blowup is isolated simple) that vi(yf»j ))v,-(qgj ))‘l — 1. It follows
from (0.7) that for |y| > 0 small,

48 3848 S lim vilg”) Go(g?)

h(j)( ) = i
y K(q(j))lyl2 |S4| oy HOQ vi(g! () ) K(g'®)

o(lyl).

It follows from lemma 2.4, lemma 2.6, lemma 2.7, and proposition 2.1 in [30]
and the evenness of (1 + |z|?)~? that

(19K =0 (uih'). =0 (u6!)?)
4 . .
Z / X P+ (j)) % (ui(ygj))al) .

(2.1) Z /xjxlu.p ' +yf’)) (u,(yf’)) )

Jl 4

[, (o) =o(ul)™).

) ,+1 o 18432|S3|
lim 1 (37 )2/ Pl (- +5") = K@y

Part (ii) of Theorem 0.10 follows from (2.1) and [30].
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It follows from Proposition 1.1 and (2.1) that for any 0 < ¢ < 1 we have

og, DO+ W, Vu + )

1 oK :H|') Uy, pitl 0
= — — o (+ v 4y
242,:/&” o C+y o C+yl)
+ T / it + 3y he + 30t + oy 2)
24 /5,
1 E)K, )\ pi+l ()
- — .+ £ oy
) /B,"'ax,‘ WP+ )
+ 8K(g") IS + olui(y) )
1 N ()
= ﬁ/ﬂnx'VKi(}’ij )uf’“(. +y)
1 O’K; | (), pi+! ()
24 %,:/Bﬂx’x"' Dy, i+ Y
+ 8K(g")![S3]7; + o(ui(y) )
1

= 57 80K(@”) /B et + )P + 8K (@)% + o)),

Multiplying the above by ui(ygj ))2 and sending i to co, we have

768|S°| A, K(g)  32|S3|u?
K(gV)} K(gY)

/ B(o,x, i, vhY) =
0B,

Sending o to 0, it follows from Proposition 1.2 that
768|S|K(g) 3 Ag, K(gD) + 32|S?|K ()" = —96K(g)!|S?|U(0).
It follows that ¢¥) € F\ %X *,1 = j<k,and, whenk =2, ¢V e ¥ ,1 =j =k

When k = 1, bY(0) = 0, we have verified (0.11).
When k = 2,forall 1 = j =k,

. G.olgV
pY(0) = 384|S%| |S*|! Z Ae 70(q”)

=1 M K (g'MK(g'©) -

It follows that

SN ICURD pE AuKl@?) 1

e — 1 =
27 K(q‘/))K(q“’)) ¢ K(q(l))Z I =

)\j #(j) .
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We have established (0.12) and thus verified part (iii) of Theorem 0.10. It follows
from linear algebra that there exists some X = (A\,..., ) # 0, X, = 0 V¢, such

that
k

S Meg..... g = wMR;, 1=k,
=1

Multiplying (0.12) by X; and summing over j, we have
— — 1 — .
/.L(M)Z)\()\( = ZM(])\()\,’ = EZ Z)\j)\j/.tm =0.
¢ € J

It follows that u(M) = 0. We have verified part (i) of Theorem 0.10.
Part (iv) of Theorem Q.10 follows from (i)-(iii) and some elementary arguments.

Proof of part (a) of Theorem 0.8: Suppose the contrary is true. Then it is
easy to see that there exists K; — K in C*(S*) such that maxs:v; — oo for
some v; € Mg,. It follows from Theorem 0.10 that {v;} has only isolated simple
blowup points {g'",...,4®}. It follows from theorem 4.4 in [30] that k > 1.
It follows from Theorem 0.10 that ¢'V,...,q¥ € %~ and for all 1 = j = &,
Z’éle(j)\e =0, where A\ >0(1 =€ = k).

Since p(M) has at least one nonnegative eigenvector and since eigenvectors with
respect to different eigenvalues are orthogonal to each other, we have u(M) = 0.
This fact contradicts the fact that K € &/.

The rest of this section is devoted to the proof of Theorem 0.9, and then part
(b) of Theorem 0.8. Due to part (a) of Theorem 0.8, we only need to prove
Theorem 0.9 for K € & being a Morse function. Once this is achieved, Index(K)
is well-defined. Therefore we always assume that K € & is a Morse function in
the rest of this section.

Fornz3, Pe€S" t>0,setép, =T,,, 1

It is well-known that u = ép, satisfies —Lgu = c(n)Rou%.

We denote the H' inner product and norm by

)= = [ e, il = .

Set for 7 > 0 small

1
6(4—17)Jst

I (u) = l/ (IVul? + 2u?) - Klul*".
2Jst

Let Py,...,P, € %~ be critical points of K with M(P},...,P;) > 0. For g > 0
small, let ,, = Q,, (P, ..., P,) CRL x RS X (S*)* be defined as

0y = {(a,1,P) € R X RE X (S* : |a; — (12/K(P)/?| < &,
|P; —}_)il < g t; > /g, 1 éigk}.
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It follows from [3] and [4] that there exists &g > 0 small (depending only
on mings K and ||K||¢cxs+) with the following property: For any u € H'(S?)
satisfying for some (&,7, P) € Q,,/, the inequality ||u — ¥, @;6p,7 || < £0/2, we
have a unique representation

k
u= Zaiép,.‘,,. +v
i=1

with (a,1,P) € Q,, and

6613,,,,- _ a‘sPiJi —
(2.2) <v’6l’i.fi) = <V, an.l) > - <V, ot > =0.

We work in some orthonormal basis near P;. ﬁ denotes the corresponding
i

derivatives. We denote the set of v € H'(S*) satisfying (2.2) by E, p. It follows
that in a small tubular neighborhood (independent of 7) of

{6 aibp,y, : (@, 1,P) € 2}, (@, 1, P,v) is a good parameterization.
Set for large constant A
E‘r = Z‘r(Fl,' v 9Fk)
= {(a, 1, P,v) € Q2 X H'(SY:
|P,' - F,l < Tl/zl logrl, A_IT_1/2 <t < AT_I/z, v e E,,p, ”V” < II()}.

Without confusion we use the same notation for

k
z, = {u= a,-ép,.,,,.+v:(a,t,P,v)€ET} C H'(SY).
i=1

PROPOSITION 2.1.  For K € & a Morse function, a € (0, 1), there exists some
positive constants vy < 1, A > 1, R > 1 depending only on K such that when
T > 0 is sufficiently small,

for all u satisfying u € H'(S*), u > 0 a.e., I'-(u) = 0.

Proof: The proposition follows from Theorem 0.10, (2.1), the properties of
isolated simple blowup points established in [30], and some elementary arguments.
We omit the details.

THEOREM 2.2. Let K € & be a Morse function, vy > 0 be suitably small,
A > 0 be suitably large. Then for P,,...,Py € X ~, M(P,,...,P,) >0, k = 1,
and T > 0 sufficiently small, we have

1 — -
degHI (u - g(_Ago + 2)-—-](K|u|2—7u)’ Z’r'(Pl," "Pk)a 0)

= (= 1)k+Zf-=, iP;) ,
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where deg,; denotes the Leray-Schauder degree on H'(S*).
In fact, we can establish a stronger result.

THEOREM 2.2'.  Under the same hypotheses of Theorem 2.2, there exists a
unique critical point of I in ¥, (P,...,P;). The critical point is nondegenerate
with Morse index Sk — Ele i(P;).

. Remark 2.3. For 7 > 0 small, u € £,,I/(u) = 0 implies u > 0 on §*. See
[28] for a proof.

In this paper we will prove only Theorem 2.2, which is enough to establish the
results in this paper. The proof of Theorem 2.2’ is similar to that of Theorem 2.2.
The difference is that we make the calculation at the level of one more derivative
of I,. With Theorem 2.2' and the compactness results we have established in
Theorems 0.8 and 0.9, we can immediately establish some more general existence
results by recording the information at the level of Morse inequality.

_ PrOPOSITION 2.4.  For 7 > 0 small, (a,1,P,0) € X, = Z,(P\,...,Py), Py,...,
P, € X, k = 1, there exists a unique minimizer v = V.(a,t,P) € E;p of
IT(Z:;, a;bp.y, + V) with respect to {v € E,p : ||v|| < vo}. Furthermore,

k
71 = € Y IVK(P)|7/ + Cr|logr| = Cr|logT],

i=1

k
<1’T (Z a;ibp,; + v) ,v> +0 Viet,P,VVEX, v+,
=1
and (r,a,t, P) = ¥.(a, 1, P) is a C® map to H'(S%).

Proof: For (a,t,P,v) € X, it follows from (2.2) and Lemma A.2 of the
Appendix that

k
IT(Z aibp.y, + V)
e

k
= |§4| Zaiz + 22“:‘“/‘/;4(5&,“)35&,1,
i=1

i<j

1 d o, 1 d
E i0p. )T — = K E i6p. 1. 37
64 — 1) /§ B A

i=1

1 (3 - T) . 2-7,2

+ V(r,a,t,P,v)
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where |V(7, a,t,P,v)| = C|Iv||*> and C depends only on K, vg, and A.
For ¢,v € E, p, set

f-v) = / K(Z @ibp,) 7V,
1 (3-17) k .,
QT(‘P9 v) = _5 ot Lg(,(p V- 127- /; K(g aia”i,l.‘)z PV,

1 1 ko,
Qolp,v) = —5/§4 Lgyp-v — Z/§‘4gépi.tin-

It is proved in [3] and [4] that there exists some 8y > O (independent of 7) such
that

Qo(v,v) = &ollvl|?, Vv EE,p.

We choose gy > 0 sufficiently small from the beginning. Using some elemen-
tary estimates as in the Appendix, we have, for 7 > 0 small,

(2-3) QT(V5 V) z 60/2”V||2 ’ V(a’ t’P’ v) E 21’ .
It follows from Lemma A.1, (A.15), (2.2), and (A.18) that

k
fr(V)=—‘é' §4K(Z 3= T5Pt,)V+0(Z/ 6I2’tféP,t,|v|)

i=1 i*j

1 koL,
¢ JoE K@D el v+ 0 (Z / 167217~ &bl lvl)
i=1 i=

+0(rlIv)
k k
=0 (Z |VK(P)) /§ e —Piléii,;iIVI) +0 (Z /§ - —Pi|26%i,,i|v|)
i=1 i=1
+ O(r|log||Ivll).

Using (A.20), we have, for all (a,t,P,v) € X, that

k
-0l =c {T‘/zz IVK(P)| + 7 IOgTI} vil = Crllogr|lIvil.

i=1

The existence, uniqueness, and C? dependence of the minimizer v = v (a,
t,P) as stated in Proposition 2.4 follows from standard arguments in functional
analysis.
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Setting 8 = (B1,...,Bx), Bi = a; — (12/K(P))!/2, Vi. It follows from (A.9),
(A.11), Lemma A.2, Lemma A.1, and (A.15) that

9 k

—I, Zajépj‘,j +v
j=1
k

=- Zaj/ (Lg()épj.lj)ép,,l,'
=t I8
k
K Za,-épj,,, +v

2-7 k
Za,ép,,,, +v ] bp

j_

3- 2-1
=2|$*a; - ‘/ Zaj5p 4 5P i 2/ Za,iﬁ 5| vépu
+0(7) + O(lIv]1?)
I ,
=2|S%a; - 6 /s K (Z 7T, 1,) op.1; 2/ K(ai 7657 Wop,,,
+0 (Z 1637 8.0, ||L4/3(§‘)) + O(IIv||*) + O(7).
Jj#i
Using (A.2), (A.15), (A.6), (2.2), (A.20), and (A.19), we have
k
—-(?—IT (Z ajépj',j + V)
=
4 3¢4 1 2 2
=28~ ¢ [ Kaloh[ — 5 | Kal6i[v+0(r)+ (W)
= 2S*ai - ¢ / K(P)aish, — = / K(P)aisp v + O(r) + O(||v||%)

— _4g, / 6371 [ K(P)2(6ET — 83,,)v

+ O(|B81%) + O(r| log 7}) + O(Iv||)
= —4|S*|8: + 0(|81%) + O(r| log 7|) + O(||v[|?).

Hence
F:) k
(2.4) 2l > ajop,, +v | = ~4S¥Bi + Vo (10,1, P,v),
(¢ 4] j=1

where V,, satisfies, for (a,7,P,v) € Z,, V,(r,a,t,P,v) = O(|B|* + 7|log7| +
lvii2).
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It follows that

k
iIT(E ajépj,,j +V) = —4|§4|ﬂ1 + Va;(T’ a, tQP’V)

Ba,- j=1
(2.5) = —4|S*|8; + O(1B]* + | log]).

Using Lemma A.2 we have

8& (]2::1 ajép! tj + V)
(953 3-7 5
Puy 1 E p, 1
= 2¥/§4 aiajéPj,tj ali - 6 §4K ( ; ajépjy'j> a,-._a—ti-—

2-7
(3-17) 0bp, 1, 2 || 06p.s
- o K (2}: aj5P,»,x,-) va'? (H I

)

i ati

LEMMA 2.5. 85
e

Proof: Using (2.2) we have

/ 2 0y 1 vaai,.,,,
Puli ™ 1, 3)s Oy

= Crivll.

1 J

= g Bt ( Lg{,ﬁp 1.)
18
6 <V 6P t, '
O
h 6<v’ ot ) :

1t follows from (A.6), (A.10), and (A.20) that

85Pt
KZT i
‘/ Opti o1,

06p. ;.
l/ [K — K(P; )]6p ,, 8 +K(P,)/ 6p ,, —5P W) al;.‘,t.v’
_ 06p. +. 06
=c|ll-=Piss || {1722 vl + € llop — 8, ,, ”" vl
L’ ot;

= Cr|vl.
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LEMMA 2.6.

=Crlv].

2-706p,,
K p. —
‘/54 (Zj:aj PI"I) ot ’

Proof: It follows from Lemma A.2, Lemma 2.5, and (A.16) that

2—-r1
66[3,‘[,
L4K (Zajépj',j) a—t,-v

'/K“& +CZ/ 5;,,75,,,1’65”"“1

J#i
06
vex [ M,J¥||
J=i li
06 , 96p
= Crivll +C 3 ober,, =\ vl +C D21 sp 7 =2 vl
e TR I72% T oty |l

=Crliv|l.

It follows from Lemma 2.6, (A.10), Lemma A.1, (A.17), (A.18), and (A.15)

that
Bt, (/Z::ajép f,+v)
=2 aaj— [ bp,, 6
;a a’at,- /54 Pt 0P, 1

|
o §4K{ 3- P,/+(3—T)a, p,,‘ (Za,ép,j)

ji
3-7
65,
+ i it
(;aj Pj"’) “ar,
+ O(T”V”) + 0(\/;”\)”2 )+ 0(7.3/2)

9 5 1 437 90p,,
:22&,‘&/5;/§46P1',/ /K 5/: Iy a,
; i
96
(E ajép ,])6’2)'1 3PI

j:ﬁl

3-r
96p,,,
6/ “K(Zafé”") on

J*F

+ O lIvl) + O IVIP) + o).
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It follows from Lemma A.1 that

3-7
(Z a,-ép,.,,,) =D (a6p,,) " + 0( > 6%;:,.6,»,,,,) :

=i e J*i
1#i
Jj*l

Using (A.24) and the above, we have

9 k
I, Zajép}.,,j +v
t j=1
0 3 1 4037 00p,;
=2Zaiaj6_t,-/§4 5P,-,t,-5P,~.ti - 6/4K 6 isti a
1 3 P t, 33— Taéphti
T 6™ Z/s4Ka’ P "oy Z/ K50 o,

JjFi J*i

+O0(r[IvIl) + OW/TIIvIR) + o(r¥/2).

Using (A.25),

86P IT
K6 l 1
/5 it
/ Kép, 1,5P 5
= K(P; )_/ 6P Xy Pt, + _/ K - K(P)]5P t,5P i

= K(P; )—/ bp, t,5P o+ ().

06p,,

K63 T il
[ Kt o

-9

ot;

= KPsr [ ohTon+ o JLIK — KP)IsE o,

K6P‘,Ij6Pi,If

= K5 [ 885 m+ o).
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Using (A.4), (A.5), (A.3), and (A.7), we have

(91 (Z a;bp,,, + v)

a 3 1 4 3 TaéP Wi
= 22&,’(”5;/%4 5pj‘,j6p“,,. - g_/g«iK 6p i 3
——a K(P)Za,a / 8p,4,6.1,

J¥

0
- s kel [ 6,

J¥F

+O(r|vl]) + 0(\/;||v"2) + 0(1'3/2)

9 3 1 43— Taép UOP; 1
= 2;11{0(]"8—[;/9 6Pj,1j6p,.,,‘. - ng K(P,) 6

Piti " o, a

1 L 08p.,
- ¢ L VK@) (- Paalel; 2
171 . 96p,.,
= & Jo 3 VasK B = Pl — P Dpatsd a”’
a6
+/ o| - —P;|2)s% 7 Opets
s ot

a
- Z {@dak(P) + o @ K(P))} ” /S 67,00

]tl

+0(r|lv]) + 0T III?) + o(r*/?)

- —Z{l2a a; — o} a;K(P;) — aia K(P; )} / 8p,1,83.

J#i

6(4 oK(P, )—/ b

1 4 6/ 24—
- ————af A, K(P)— —P;|26b
48(4 — T)a’ 20 ( I)ati st I l| Pt

+O(r|Ivl) + 0(\/T_I|VIIZ) + o(r%2)

z 6 0
= 8,000, = = | b
=i \K(P; )K(P)att o 2P0 Py o, J o 0P

_38K(P) 9.
4 K(P,)? ot; Jst

+ Olr|[VIl) + OW/TIIvII?) + o(r¥2) + O(187*/)

| ) _Pl|26?) Ji

569
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It follows from (A.7), (A.3), and (A.8) that

9 k
—IT(Z ajépj,,j +v)
ot; =1
(2.6) = Nak(P)' T + I‘4K(P,~)’2Ag(,K(P,-)l3

+Ts > K(P) "2K(P))"/2Gp,(P))5— 2 +V,(r,a,t,P,v),

j*i Li j

where V,(7, a, 1, P,v) = O(|8|73/%) + O(r||v||) + O(/T||V||?) + o(+¥/3), T3 = 8|S,
T4 = 16|S%|, and T's = 768|S%|2/|S*|.

Using Lemma A.2, Lemma A.1, and (2.2), we have

9 k
G—HIT(; ajépj,,j +v)

0bp,,,
/§ - (Z ajbp,; + v) a; BP:

o 8513 K
K Zj:ajéPf‘t/' +v (zj:ajépj,,j + v) a; 6})’[‘

Il

3-1

65pi_ 1 d6p,,
R AT s "6/§,4"(;“"5”""’) “p

j:#l

3- Y,
+ 820 (Za,ap,,) va i 4.0 (P

66”:‘-' i
oP;

It follows from Lemma A.2 that

2-7 2-7
k
(Z ajéPj,lj) = (a,'tSpi,,,. + Z ajépi"!)
=1

J#i

(aap t,)z T+0(Z6P 6Pj[/+26Pjtj> .

J¥l J#i
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Using (A.18), (A.9), (A.6), (A.23), the Sobolev embedding theorem, and the

above we have
—L
/ K(Z j6p,, V' Tvai =5
86[-" i ‘ | I)
66[’, t

06
/ Kaibp, ) a0 Pl-l, ( / 8br1 8P,
' J#i
06
+o(z “\n)

j*i
/ K(P)aibp,,)* Ta, +0(/ |- —P;|637

06
( /6Pt:Pt, P.h}l I)-}-O( /6Pt,
jEi jEi
06
_0(/ |63 — 6Pt, P"

= O(lvlD.

)
8613,;, ’ | |)

v |) +o(v

Using Lemma A.1, (A.24), (A.9), (A.23), and (A.15), we have

Pl k
—P-‘I-,- Zajépj'tj +v

1 dbp,.,
=23 e P, / 88,4,8P,0, — ga.-/;“ K(C(,’(SP‘.J‘.)S_T———GZ:'

j#l

_@3-7 ,08p,4;
6 . / (Z Ctj(SP !,) (atéP t,)2 ;’

J¥Fl

3—r
1 O6p, s,
-~ bp . ]
6a /§4K(;a, P,,r,) aP;
+0( / b1 b, )
JEL

. o<||v||> + o<r-1/2||vnz>
- —za / K5 0% + OL/7) + OlIvI) + Oyl

37'861”1
86 dbp.,.
__2 3—r YOP,ti L_p. (2| Lo
6a,VK(P)/( — P)6p, ——= P, +0(/§4| P oP,

+ O(7) + O(IvID) + O~ |Iv]1?)

35;) '1

)
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= —TeVK(P;) + O(/7) + O(|]v|) + OG-~ /2||v||?),

namely,

9 k
—1I, bp., +
@7 op,' (;“’ o v)

= —T¢li, 7, 0,8, PL,V)VK(P;) + Vp(7,0, 1, P, V),
where Tg(i, 7, a,t, P,v) = vy > 0 with v, independent of 7 and
Vi, (7,,8,P,v) = O(/7) + O(Iv|)) + OG-~ 2|Iv]|?).
Atu=Y"* aibp, +veEZ,

06p,;, Obp,,
Tqu(§4) = EI,P @ span {6[)‘.,,‘., Pt Piti } .

ot ’ OP;

We write I'-(«) € T ,H'(S*) as

Inu) =€+,
Op,s; Dbpi;
Whel'€§ S Et_Pa n € span{épivtl" (’;‘il ’ a;i }

For all ¢ € E, p, it follows, as in the proof of Proposition 2.4, that

& o) =Wy = f(p) +20:(p,v) +(V,(1,a,t,P,v), 0),

where V, is some function satisfying ||V, (7, a,1,P,v)|| = C|v||%.
Taking ¢ = v, we have, using (2.3), that

b
€l = Sollvll = I1£-1l = O(lIvi®) = —ZQIIVII = If-I.

k
5 = {u = wibpy, +vEE, |l < rllogrl?, |8] < | logr[z} .
i=1

It follows from Proposition 2.4 and (2.5) that I’ (1) # 0, Yu € ., \ ET.
For u = Yt a;bp.,, + v € %, it follows from (2.4) that

F) k
(77’ 6P,»,t,) = alr (; ai&Ph’i + V)

= —4|S*|B; + Vo (1,0, 1, P,v)
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with V,, satisfying |V, (7,a,2,P,v)| = C(|B]? + 7| log 7).
It follows from (2.6) that

0ép, ,,> 10
<7I, o |« Btll (Zalép ™ v)

i=1

1 { My TuA,K(P)
K(P); kPt
I'sGp.(P;
+Z sGp,(P;)

N i VI,(Tyast’Psv)}s
JEi \’K(P,')K(Pj)tiztj

with V,. satisfying |V (7, a,t, P,v)| = o(r3/?).
It follows from (2.7) that

aap,,,,.>
<"’ aP; _a,6P1 Z"é”"”

= —{ - Teli,7,0,t,P,V)VK(P;) + Vp.(1,a,t,P,V)},
a;

with Vp, satisfying |Vp(r,a,t,P,v)| = C/T.
It is well-known that /(«) = £ + 5 is of the form Id +compact in H'(S*).
We define
Xg=&+m, 0=6=1,

by the following: For all p € E;p, 0 =0 =1,
(€0, 0 = 0f () + (1 — )v, ) + 260 (p, V) + &V (7,2, P, V), ),

(10,6p,0) = —81S*|{er; — 6(12/K(P)"/? — (1 - 9)12/K (P))'/}
+ 0V, (r,a,1,P,v),

66P, Ji _ ﬁ _ F3 T F4 A g(,K (P ,-(0))
<T70, ot > - {ai v 0)} {K(Pi(o))ti ¥ K(P(6))%t}

5 T'sGp,a(P;(0)) } 9

N + =V, (r,a,t,P,v),
=i K(Pi(o))K(Pj(o))tiztf

Qa;
where P;(6) is the shortest geodesic trajectory on S* with P;(1) = P;, P,(0) = P;

{ne, 66;;;) [(1—9)+ I},] VK(P;) + 0Vp(7'a t,P,v).

It is easy to see that X, is well-defined in Z In addition, from the Sobolev
compact embedding theorem, the explicit forms of V,,V,,V,.Vp, A7 < ] r <
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A?, and the estimates we have obtained, X, is of the form Id + compact. Further-
more, it is not difficult to see that X, (0 = 6 = 1) is an admissible homotopy with
Xoloz, # 0.

It follows that

(2.8) degy, (X1, Z,,0) = degyy (Xo, Z,,0) .

Clearly,
Xo =& + o,

where & € E, p, no € span {5,:,._,,,, 2‘3)—';5’4 QZ—}’L} satisfy

<£0a ‘P> = <V, 90)9 V‘P € EI,P ’

(N0, 6p,1,) = —4|S*{e; — 12/KP))/?},
<77 0bp, 1, > 7 N T4A, K(P) N Z ['sGr.(P))
0s = Y — — — 3
ot; K(P)t; K(P); s ’K(Pi)K(Pj)t,ztj

aa,,‘,_>
= ) = —VK(P;).
<770, 6P, ( )

It is easy to see that Xo(u) =0, u= Ei;l a;bp,,, +vE f‘.,, if and only if

a; = (12/KP)Y/?,  Pi=P, v=0,

1 1
—K(P)— ZMU(PI""’ —2—=0.
2 Lty

Setting

k
— 1 _ —
F(si,...,s) = —% 2;K(Pj)_l logs,- + EZMij(Pl,...,Pk)S,'Sj,
J= L]

T -1
F(tl,...,tk)=F(s1,...,sk), Si=1t .

It is easy to see that

oF
—(t1,... 1) = —K(P)* ZM.,(P“. Pk>—
Ot; tj

Therefore

aap.,> 5 OF
— )y =1 — e tl).
<770, o, 6|S l(’?t,-(tl’ ©)

Clearly VF(¢y,...,t;) = 0 if and only if VF(sy,...,s;) = 0. It is also easy to
see that F(sy,...,s) is a strictly convex function having a unique critical point in



PRESCRIBING SCALAR CURVATURE 575

the first quadrant, which has a positive definite Hessian. It follows that F(¢,,...,#;)
has a unique critical point in the first quadrant with Morse index zero.
Since X, has precisely one nondegenerate zero in X, it is elementary to see

that
29 degy1 (Xo, E,,0) = (= kT iP)
Theorem 2.2 follows from (2.8) and (2.9).

PROPOSITION 2.7. Let K € C%S*) be a positive function, 0 < 79 = 1 <
4/(n — 2) — 7o. There exists some constant C depending only on 7y, mings K and
the modulo of continuity of K such that
(2.10) {ue H(SY:u>0ae, I.(w) =0} C ¥,

where Ve = {u € HY(S* : |lu"|| < 1/C, 1/C < ||lu|| < C}. Furthermore,

(2.11) degy (u— —(=Ag, +2) UK |ul*"u),7¢,0 ):—1,

Proof: Consider K, = tK + (1 — )K*,K*(x) = x> + 2. It follows from the
Kazdan-Warner condition that there is no solution to (0.1) with X = K*. Estimate
(2.10) follows from the compactness results of [22]. Therefore we only need to
establish (2.11) for K* and 7 > O very small. This follows from Theorem 0.10,
Proposition 2.1 and Theorem 2.2.

For § > O suitably small, let Ogs = {u € H(S*) : inf,,ecq, lu — w| < 6}.

It follows from theorem B.2 of [30] that

deng ( ( Ago +2)° l(K|u|2 T 0R5,0)
= deg (u — é(—Agl, + 2" UK |u|?"u), O, 0) .

Using (2.11), Proposition 2.1, Theorem 2.2, and the homotopy invariance of
the Leray-Schauder degree, we have

deg (u - é(_Ag“ + 2)_l(Ku3)a0R’0)
~ deg (u - é(—Ag‘, + 27 (K ul>"w), O, o) ~ Index(K).

Theorem 0.9 follows from the above.

Proof of part (b) of Theorem 0.8: It is not difficult to see that Morse functions
in C3(S*)* \ & = 84 are dense in C2(S*)* \ & = 0. Therefore we assume
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without loss of generality that K € 84/ is a Morse function. Let # \ Z* =
{g",...,q"™}, it follows from the definition that there exists 1 = i; < --- <
i, = m (k = 1) such that p(M(K;q",...,q%)) = 0. By making small C2
perturbations of K, we can assume without loss of generality that there is only
one such (ij,...,i). We can easily produce a smooth, one-parameter family of
Morse functions {K,} (—1 = t = 1) with the following properties:

(i) For —1 =t = 1, {K,} have the same critical points with the same Morse index
as K, Ko = K, and {K;} are identically the same as K except in some small
balls around ¢'",...,q%.

(i) K, € o fort 0.

(iii) Forany 1 = j, < --- < ji = m,Gy,...,J0) # G,-.., i), p(MK 3990,
qY")) have the same sign for —1 <t < 1.

(iv) p(M(K;q™,...,¢%)) <0for =1 <t <0, but u(M(K,;;4",...,q%)) >0
for0 <t < 1.

The above can be achieved easily. The idea is to perturb the function X near

q™,...,4"% to change the Hessian of K at g/, ...,q"W.
Using (0.10), we see that

2.12) Index(K,) = Index(K_,) + (—l)"_'+z§=' ig"”) 4 Index(K_,).

It follows from Theorem 0.10, (2.12), and the homotopy invariance of the Leray-
Schauder degree that there exist #; and v; € ./llK,,_ such that

lim ||V,'||C2‘a(§4) =00 Oor llm(mm V,') =0.
i—~00 i—oo gt
It follows from the above, the Harnack inequality, and standard elliptic estimates

that (0.9) holds. Using part (a) of Theorem 0.9 and (i), we know that #; — 0. In
fact, we know that {v;} blows up exactly at the k points g, ..., q%.

Proof of Theorem 0.10': The proof of Theorem 0.10 is similar to the proof
of part (b) of Theorem 0.8 and is left to the reader.

3. Proof of Theorem 0.13

We consider a situation more general than that in Theorem 0.13. Let K €
C'(S") be some positive function satisfying that for any critical point go € S" of
K, there exists some real number 8 = B(go) € [rn — 2,n) such that (0.13), (0.14),
and (0.15) hold in some geodesic normal coordinate system centered at gq.

Let #,_, denote the set of critical points go of K with 8(g¢) = n — 2 and

/Rn VQEZO_)Z’(y +no)1 + |y|)™"dy =0,
(3.1)

v 90?0 + no)1 + 1y12)nay <o.
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can be solved simultaneously for some 79 € R”.
When #7%,_, = 2, for distinct ¢*,....qY e ;" eR" (1 = j=m)
satisfying (3.1) with go = ¢, n9 = ', we define a k X k symmetric metric
M =Mg"h,...,q¢% 7D, n®) by
48 (n—2) i — . .
~ e g e ¥ VQH 0+ a1+ [y Ny, =,
4! Gl
18" \/K(q") )K(qm) ?

M,'j =

i#j.

THEOREM 3.1.  Suppose that K € C!(S") is some positive function satisfying
that for any critical point qy € S" of K, there exists some real number 8 =
B(qo) € [n—2,n) such that (0.13), (0.14), and (0.15) hold in some geodesic normal
coordinate system centered at qo. Suppose further that either #% ,,_, = 1 or for any
two points ¢V, ¢ € X ,_, and any 0V € R" solving (3.1) with gy = gV, ng = n9,
we have M| ;M < M3,.

Then for all 0 < a < 1, there exists some constant C such that

1/C<v<C, |lcws) <C,
for all solutions v of (0.1),
/SHKmpp,,(x)x +#0 foralPeS", t=C,
andforallR=zC,t=C,
deg (v — (=g + c(n)Rg)™ (c(n)Kv%) ,OR,O)
= (—1)"deg (/§ K o pp,(x)x, B, 0) .

If we further assume that

deg (/ K o pp (x)x, B,O) *0
§ll
for t large, then (0.1) has at least one solution.

PROPOSITION 3.2.  Suppose that K € C'(S"), minges» K(q) = 1/A, for some
positive constant Ay, and for any qo € S", Vg, K(qo) = O, there exists some real
number B = Bl(qo) € [n — 2,n) such that (0.13), (0.14), and (0.15) hold in some
geodesic normal coordinate system centered at qy.

Let {v;} be a sequence of solutions of (0.1) that blows up at {q",...,q"},
k = 2. Then we have {g"V,...,q"} € X ,_,, and for some n\/) € R" satisfying
(3.1) with go = ¢, 0o = 0 (1 = j = k), the equation

k
D M =0
=1
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has at least one solution \,...,\; > 0.

Proof: It follows from theorem 4.1 in [30] that, after passing to a subse-
quence, {v;} has only isolated simple blowup points. If {v;} blows up at {g"), ..., g%},
k = 2, then it follows from the proof of theorem 4.2 in [30] that 8(g"") = n — 2,
lsj=k

Since ¢! is an isolated simple blowup point of v;, we let ¢ — g (i — o0)

be the local maximum of v;. Let q,  be the south pole and make a stereographic
projection to the equatorial plane of S" with y being the stereographic projection
coordinates. Set

n-2
. = (—2 )Ty
ui(y) (1 + |y|2) vi(y),
the equation (0.1) is transformed to
(3.2) -Auily) = KO,y R,

It follows that (see (0.7))

lim vi(g vi(q)

n=2

= (n-2)|$"'||S"|~ lc(n) 7 [n(n -2)]7 K(q(f)) > G () + b(q)

for g # 4" and close to ¢/ where b(q) is some regular function near ¢/’ satisfying
Lg(,b(q) 0 near ¢g*) and the convergence is in the sense of CZ,.

After passing to a subsequence, it follows from the maximum principle that
forg+4Y, V1= j=k,

n-2

o2t — 21

| n
17|
+ z 11m vil (J)) ( {6))_11(( oy

i(qi Wilg, )7 Ggolg) ¢ .

€¢j

lxm v,(q(j ))v,-(q) (n-2)

{K(q(j))%ﬂqu(q)

Let y(’ ' — 0 denote the local maximum of u;; it is not difficult to see (using

the fact that the blowup is isolated simple) that v; (y(j ))v,(q(’ ))‘1
that for |y| > O small,

— 1. It follows

lim w0y s (y)

= c(n) 3 [n(n— )T K(q(f)) 5 |y|2—n 4272 — 2)|§n-l”§n|—lc(n)?

[n(n - Z hm v,(q(j))vi(qif))“'K(q(e)) G m(q(J)) + O(]yl)

=: hVy).
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Applying Proposition 1.1, we have, for ¢ > 0 small, that

2 i "n
M/ x-VK(x + ym Jui(x + ygj))% -0 (u,(y, )y )
= / B(o, x,u;(- + )?ij ), Vui(- + }’z('j))) .
08,

Multiplying the above by ui(yf»j ))2, sending i to oo, and arguing as before, we have

c(n)(n — 2)2"2 / z- VQ P+ €U )dz o 1)

Bo,x,h'", Vh\/) =
/,»)Bn (0. : 2n eV R

where £V = lim;_ . u,-(y,’))_ y;i© € R" (lemma 2.6 in [30] is used here) and
K9 = c(n)[nin — 2)]7'K(g).

It follows from Proposition 1.2 that

lim B(a, x, K VHY))
o—~0/08,

__211—3( —2)3c(n Z‘H[n _ ]n‘zlgn—l|2 |§"'_l
Y KT KGO T Gylg ¥) lim vilg Wilg!") "

[£7]

It follows that

[ e o
® (1 + kD)2
_In(n - Q1 n - 2)|S"1)?

(n)"'|s"|
()
2-n PP Vi( i )
> Kg?) ¥ K(g")F Gyolg) lim ™ B
Py vilg; )

Let Wy, ()
N; = K(g™)® =2 lim vi(g; vilg) "

It follows from Proposition 1.6, Proposition 1.5, and lemma 2.3 in [30] that 0 <
)\j < 00.
Making a change of variable, we obtain that

K(q”))_z"/ Y+ VO + )1 + [y[D)"dy

(3.3)
= —(n— 2)l§n—l |2 IS I—l ZK(q(j))—1/2K(q(€))—l/Zqu(q(j)))\( ,

€+j
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where ,,’(j) = \/k(j)é(j).

Next we derive the equation satisfied by 7). Multiplying (3.2) by Vi, and
integrating on Ba(ygj )), we have

—/ Vu;Au; = c(n) Vu,u,n K.
B, (yr ) B, (y:
Integrating by parts we have

/ Vu;Au;| =C |Vux|2 = Cu:(y(j))—z .
B,

B, (y.

It follows that
/B VK(x + y,(’))u,(x + y(l))n idx = O(u,(ym) 2.
Multiplying the above by u;(y\”)72"~ we have
/ v Q"f,, D)5 x + o)yt + y2 d
=o0 (1)/ 'u(y, 2x+u,(y(j)) 2y(J) u(x+y,(-j))%dx+ o(1).
Sending i to co we have
/ VOU e + €9)(1 + kP[22 "dz = o4(1).
Sending o to 0 we have
Ve €)1 + KNy de = 0
Making a change of variable, we have
(3.4) / VoL + 41 + [y "dy = 0.

Proposition 3.2 follows from (3.3) and (3.4).

Proof of Theorem 3.1: Let h be a C* function satisfying

1, 0=r=1/2,
h(r) =
r) {O, r=1,

with W (r)=0forallr =2 0.
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For 0 < & < 1, we choose é = 6(g) > 0 very small and define, forg = s = 1,
K*(y) = KO) + (1 - (1 - 5)h(|y|/8)) 09(y) + R(y),

in 6-geodesic balls of critical points of K and K* = K elsewhere. Clearly K = K'.
It is elementary to see that if & is small enough, K* (£ = s =< 1) have the same
critical points as K and we can, under the hypotheses of Theorem 3.1, apply
Proposition 3.2and the Kazdan-Warner identity to this family to conclude that all
solutions v of (0.1) with K replaced by K* (£ = s =< 1) satisfies C() ™' < v < C(g)
on S" and therefore ||v||c2« < C(g). Setting K = KF, it follows from the homotopy
invariance of the Leray-Schauder degree that for all R = C(z),

nt i+2
n—2

(3.5) deg (v + L) (c(m)Kvis ),U’R,O) = deg (v + Lz (cm)K v ),O’R,O) i

Set

x={ueH1(§"):]1 |u|3 =1}, Y():{MEX:][quI"ZT"z =o}.
S" n

Let B denote the open unit ball in R**!, 9B = S”, and define 7 : ¥y X B — X
by u = n(w,&) = T, w, where w € %o, E =sPO=s< 1), PES", 5=
’—:—1(1 =t < ).

It is easy to see that

Toaw =T ;iW; @p; = @_p; = ppi; ppy =1d, VPeES"
It follows that

u=1w,& =T, ,w, w=T, u.

It follows from lemma 5.4 in [30] that 7 : #o X B — X is a C? diffeomorphism.
Now define on X the following functionals:

fo (IVul® + R o For (IV0f? + cln)Row)
222 K= PN .
(ferRolul+2) (foK |u|73) "

Let P€ S", t = 1, and let ¢ = pp, be the conformal transformation we have
defined. It is well-known that

Eg,(u) =

/ IVg(,Tg‘,uI2 + c(n)ROITS,,uI2 = / IV,E‘,uI2 + c(n)Roud?,
§" S'l

/|T E /||ﬂ
un—2= unAZ_
sn 4 §”

It is elementary to derive that

T\ X = span{spherical harmonics of degree =2 1},
T\, = span{spherical harmonics of degree = 2},
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where T, X denotes the tangent space of X at # = 1 and T, denotes the tangent
space of Sy at u = 1.

It is also elementary to see that for w € T;%y, w close to O, there exist
W) € R, n = n(w) € R**! that are C? functions such that

|1+W)+u+n-x|n27"2=l, ][|1+W;+y+n~x|n%x=0.
§ll S"

Furthermore, 1(0) = 0, 7(0) = 0, Du(0) = 0, Dn(0) = 0.

Let us use w € T %, as local coordinates of w € Fonearw =1. w =0
corresponds to w = 1.

Let

2-n
Eo(#) = Ex,(w) = Ry’ ][ VW] + clm)Row?,
§”

where w € T\ %y and w = 1 + w + u(W) + n(w) - x as above.
It follows from a straightforward computation that

2-n

(3.6) Eo(W) = c)RY" + Ry" ][ (IVW]2 —mi?) + o(IWl®), WeT %.
§l'

The quadratic form in (3.6) is clearly positive definite in T|%.
The following propositions are established in [30].

PROPOSITION 3.3. There exist 5 = e3(n) > 0, &4 = e4(n) > 0, such that, if
IK = Roll=(s) = & = &3,
min EK(W)
Wey()
[lw=1ll<eq
has a unique minimizer wg. Furthermore, D*Eg | y)O(WK) is positive definite and
wg >0 onS",

lwg = 1|l = C(n}inf [|K — c||
ceR

L,%”z(gn)’
lwg — 1lct = oe(1),
where o.(1) denotes some quantity depending only on n, which tends to 0 as &
tends to 0.
Let
([ Ni={weFL:lw-1| <ea®},
Nao@®) = {u € X :u=m(w,¢) for some w € A and £ = sP,
PeS",s=%(l§t<?)},

Ny = N3(00),
N3(F) = {v e H(S")\ {0} : cv € N,(7) for some ¢ > 0},
./V3 =./V3(OO).

\
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Remark 3.4. Since g4 = g4(n) > 0 is chosen to be small, it is not difficult
to see that for |[K — Roll.~ = 1, any nonzero solution v € A5 of —Lgv =
cmK|v|*¥"=2y on $" has to be positive and [g. |v|*¥"~? = 1/C(n) for some
positive constant C(n) depending only on n.

PROPOSITION 3.5.  There exists some constant es = g5(n) € (0, e3) such that for
any T| > 0 and any nonincreasing positive continuous function w(t) (1 =<t < 00)
satisfying Wm,_. w(t) = 0, if a nonconstant function K € C%(S") satisfies, for
t=T,, that

1K~ RollL> s = s,

IK o op; — K(P)12sn|IK © pp, — K(P)|| | = w(r)

2n
Liv2(S"

/ K o pp,(x)x
Sll
forall P € S" and

deg (/ K © op,(x)x, B,O) #0, t=T,.
§H

then (0.1) has at least one solution. Furthermore, if we assume that K € C*(S")
(0 < @ < 1), then there exists some positive constant C,, T, depending only on
n,a, Ty, and w such that, for all t 2 T3, R 2 C,,

deg (v + L,;,lc(n)Kv%,./Vg(t) al UR,O) = (—1)"deg (/; Ko cpp,,(x)x,B,O) .

Set K, =uK+(1 - Ry for0=pu=1.
Claim: There exists some constant g7 > 0 such that, for 0 = p =< &7,
Ky — Roli=(s < es(n).

In addition, if we write any solution v of (0.1) with K = X, (0 = p = £7) in the
form 7~ cv) = W, &), W, &) € Fo X B, cv € X, then we have w € A|.

For the proof of the above claim, use the proof of a similar claim in section 7
of [30] and just substitute Proposition 3.2 from this paper where theorem 4.2 is
cited there.

Once & > 0 is chosen small enough, we can apply Proposition 3.2, theorem
4.4 in [30], and the Harnack inequality to conclude that there exists some constant
R>1lsuchthatforalle; = p =1,

1/R <v, <R,

where v, is any solution of (0.1) with K = K ,.
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It follows from the homotopy invariance of the Leray-Schauder degree and
corollary 6.1 in [30] that

deg (v + Lg,! (c(n)I?v% ),0R,0) = deg (v + L) (c(n)Ks7v% ),O’R,O)
= (—1)"deg ( /§ Ko, 0 0p,(0)x, §",O)
=(—1)"deg (/;"K o pp(xX)x, S”,O) .
Theorem 3.1 follows immediately from the ébove, (3.5), and Proposition 3.5.
Proof of Theorem 0.13: This theorem follows from Theorem 3.1.

Proof of Corollary 0.15: This corollary follows from Theorem 0.13 and
corollary 6.2 of [30].

4. Axisymmetric Case and More Than One Blowup Point

Lety=(G!...,y)ER", r = \/(xl)2 + -+ + (x)?. In this section all functions
are radially symmetric, namely, depending only on r. Let B C R" be the unit
ball, we consider

- Au=c(n)K(r)w’ in B,

4.1) u >0, uis radially symmetric,
' n+2 0<r<
= -, Er<——.
P=a n—2

PROPOSITION 4.1.  Suppose that K € C2(B)) (n = 3) satisfies, for some positive
constant A, that

4.2) 1/A| =K(r)=A Vr:0=r=1.
Let u satisfy (4.1). Then for any 0 < & < +, we have
ur)=C, Vr:e=r=l-s¢,

where C is some positive constant depending only on n, e, Ay, and the modulo of
continuity of K in B,.

PROPOSITION 4.2.  Suppose that K € C2%(B,) (n = 3) satisfies (4.2) for some
positive constant A|. Then there exists some constant C, depending only on n,A,,
and the modulo of continuity of K in B\ such that, for any solution u of (4.1), we
have

4.3) u(0) = max u

B2
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and

(4.4) rrur)=Cy Vr=1/2.

Proof of Propositions 4.1 and 4.2: Since u is superharmonic, (4.3) follows
from the maximum principle. Estimate (4.4) follows from some quite standard
blowup arguments, uniqueness results of [11] and [22], and the radial symmetry
of u. See, for example, the proof of proposition 2.1 in [28] for an idea of the
proof.

PROPOSITION 4.3. Let K € C%B,) be a nonnegative function and u satisfy
@4.1). Then'(r) =0 forall0=r = 1.

Proof: Once we write A as r'~"(+"~'u'), the proposition follows immedi-
ately.

LetO=r, = ’1272 satisfy lim;_.. 7, =0, p; = :—ﬁ% — 7;. We consider
45) ~ Au; = cm)K(r)u” in By,
' u; >0, u; is radially symmetric.

Remark 4.4. 1t follows from Proposition 4.2 that if {K} is a sequence of func-
tions in C}(B;) with uniform C' modulo of continuity that satisfy (4.2) for some
positive constant A, and {u;} is a sequence of solutions of (4.5) with lim;_. .. maxg, ,
u; = 0o, then, by setting y; = 0, y; — 0 is an isolated blowup point of {u;} (see
Definition 0.2).

It is not difficult to see that
11X, = {o € HYS" f v=o},
Sn

T.%, = {LpeHi(S"):l[ p =0, ][ x"“cp=0} .
s” s”

Therefore we have
T.X, = T\%, € span{x"*'}.
Set
e (VU] + c(n)Rou?)

n=2
(fer K lul72)

PROPOSITION 4.5.  For w € T\ &,, W close to 0, there exist C? functions u(w) €
R and n = n(w) € R such that

Ex(u)

-~ 2n
14w+ p+npta
§"

_ o
f [1+w+p+px" 2" = 0.
Sll

=1,
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Furthermore, u(0) = 0, n(0) = 0, Dp(0) = 0, Dn(0) = 0.

The proof of Proposition 4.5 is elementary.
Let

2-n

Eol#) = Ex,W) = Ry’ f IVw|? + clm)Row?,
§"

where w € T\%, and w = 1 + w + u(W) + n(W)x"*! as in Proposition 4.5. It
follows from a straightforward computation that

3:2
(4.6)  Eoli) = cmRy" + Ry’ ][ (1Vwl* —n#?) + (W%, WweT ;.
SH
The quadratic form in (4.6) is clearly positive definite in T',.%,.

Proof of Theorem 0.18: With the above results, we only need to follow the
arguments in section 6 of [30]. The details are left to the reader.

Proof of Theorem 0.19: Consider K, = puK +(1 —p)Rp (0 = p = 1). Choose
e > 0 small so that ||K, — Roll.x = &;, where &; is the constant in Theorem
0.18. Under hypothesis (i) or (ii), it follows from Propositions 4.2 and 4.3 and
the results in section 4 of [30] that there exists C, (depending on n, K, &) such that

1/Cy <v < Cy, vlcresny <Cu,s

for all C%(S") positive solutions of (0.1) with K = K,,, € = u = 1. Under hypoth-
esis (iii), the above estimate is still valid. This can be seen from the computation
in [30]. In addition, we know 6K'(6) = O for # small and (7 — 0)K'(#) = O for
close to m. Therefore, in the geodesic normal coordinate system centered at the
north pole or south pole, we have y - VK(y) = 0. This information is enough to
establish that the blowup has to be isolated simple and cannot have more than one
isolated simple blowup point on S"”. Applying the Kazdan-Warner identity as in
[30], we eventually conclude that a blowup can never occur.

With the above estimates we can establish Theorem 0.19 by using the homotopy
invariance of the Leray-Schauder degree and Theorem 0.18.

Proof of Theorem 0.20: Estimate (0.18) follows from Propositions 4.2 and
4.3, Proposition 3.2, and some standard elliptic estimates. In the following we
establish (0.19).

Casel. K(O)XK(r) > ciaya;.
In this case, we can actually assume

4.7 K(0) =K(x) =1, la)| + |az2] < 1.

This can be achieved by constructing a nice family of nonnegative functions
K, (0 =1t =1)such that K, = K,

K(8) = K1) + a1(t)(m — 6% + R (6),
K& = K,(0) + az(t)en_z + th(e),
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where K (), K,(0), —a(t), —ay(¢) are positive continuous functions on the inter-
val0=tr =1,

K, (0K (r) > cia)(t)ax(t), 0=t=1,
K](O)=K1(7T)= 1, |a;(1)+ Iaz(l)l <1,

Ri(6) = o(m — 6Y'2), i) = o((r — )" %) as 6 — m, and RS(H) = o(6""?),
’%(0) = o(§"3) as § — 0 uniformly for 0 = ¢ = 1. Using Propositions 4.2 and
4.3 and Proposition 3.2 (keeping track of the dependence of the constants) we
conclude that the degree for K = K|, is the same as the degree for K, that satisfies
4.7).

Once K satisfies (4.7), we consider K, = pK + (1 — )Ry 0 = p = 1). Tt
follows that for £ > ( small and all sufficiently large C = C(e),

deg (v + L, (C(n)KvH) , {v ecH: IVllczeeny < C, 1/C <v< C} , 0)
= deg(v +L,) (c(n)st:_g) ,
{v eC®: Wllcreeny < C,1/C <v < C} ,0)
=—1.

Casell. K(0)XK(r) < cia1a>.
In {8] Bianchi and Egnell constructed an axisymmetric function K*(4) > 0 with
the properties that limg_o 6>~"K *(9) < 0, limg_.,- (x—8)>""K " (8) < 0. In addition,
(0.1) has no axisymmetric solution for this function. We can easily construct a
nice family of functions K,, keeping K,(0)K,(r) > c,a,(t)a-(r) (0 = ¢ = 1) and
connecting K to K*. It follows as before that for all C large,

deg (v + Ly (ctwkvi?), {v e €7 : |vllcwen < €. 1/C <v < C}.0)

= deg(v + ng,‘ (c(n)K*v%) ,
{ve ™ Illcws < C.1/C <v<C},0)

=0.

Proof of Corollaries 0.22 and 0.24: These corollaries follow from the homo-
topy invariance of the Leray-Schauder degree and the results we have established.
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5. A Simpler Proof of a Sobolev-Aubin-Type Inequality in [16]

For u € H'(S"), a > 0, set

I,(u) = f |Vu|? +c(n)Ro][ u?,
5" SH
SLp= {u € H{(SY :][ |u|Px = O} ,
S"
7 = {uey),,;f |u|p=1}.
§"

The Sobolev Inequality
For n = 3,

For | Vul? + c(n)Ro frts?
min = )02
ueH' (SN0} (fe |u| -2

5.1 = c(nRy .

The Aubin Inequality [1]

For n = 3 and given any £ > 0, there exists some constant C, such that

inf { 2~ (n=2/n +e)][ | Vul? +c][ } = c(n)Ry .
ue‘(f()Zn

The following lemma is pointed out in [16] and can be proved in the same way
as the above Aubin inequality.

LEMMA 5.1. Fornz=z 3, 2<p = , given any £ > 0, there exists some
constant C, such that

(5.2) inf {(2—0’—2’/" + s)][ [Vul? + cs]l u2} = c(n)Ry .
s s

ues

Sobolev-Aubin-Type Inequality {16]

n

For n = 3, there exist some constants a*(n) < 1 and p*(n) < % such that
forall p*(n) = p= .= 2—"

a*(n)fg 1 Vul? + c(n)Ro fouui®
ueyp (for|ul?) 2/!’

(5.3) = c(n)Ry .
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The above Sobolev-Aubin type inequality is established in [16]. The rest of
this section will be devoted to providing a simpler proof of it.
Set

Mop = infl L),

uE.S/",,

It is well-known that fora >0and 2 < p < -2 M, p is achieved.

n-2’
LEMMA 5.2.
2n
Mop=cn)Ry forall0=a=1,2sp= >
n—
lin} Map = c(MRy uniformly for2 = p = 2n 5
a— n—

Proof: The first inequality follows easily by taking the test function u =
1. The second inequality follows from the Sobolev inequality and the Holder
inequality.

Suppose that (5.3) does not hold. Then there exist sequences {a;}, {p:} € R,
{ue} € ygk, suchthatay < 1, a4, = 1, gy < ;2_%, Dk — "2_—"2, w = 0, and

(5.4) Lo, () = My, p, < c(WRy.

It follows from (5.4) and (5.2) that for some positive constant C(n) (independent
of k) we have

Il = €. fid = 1/Cto).
It follows, after passing to a subsequence, that u, — % weakly in H'(S") for some

e H'(S)\{0}.
The Euler-Lagrange equation satisfied by u; is

(5.5 —ar Ay + c(n)Row = J{kuf"_l + Ay -)cuf‘k_l ,
where My = My, p, and A, € R™!.

Multiplying (5.5) by u; and integrating over S" we have, by using Lemma 5.2,
that

(5.6) Jim {7[ L Jrc(,,)R(,]fS ug} = Ry .
— 00 s 7
LEMMA 5.3.  |Ag] = O(1).

Proof: Suppose the contrary; let & = A/|Ay| and (after passing to a sub-
sequence) ¢ = lim_ & € S". Let n € C™(S") be any test function. We
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multiply (5.5) by |A;|™'n, integrate it over S”, and then send k to oo. It follows

immediately that fe.¢ - x@"+2/"~2n = 0. Hence % = 0, which is a contradiction.
Clearly % satisfies

(5.7 — AT + c(nRoTE = c(nReE™ P/ =2 4 A\ xyn 2/ =2}

where A = limy_ o Ag.
The Kazdan-Warner identity [27] gives

][g' Vi(c(m)Rg + A ‘x)VxﬁnZT"z =0.
It follows that
(5.8) A= kh-nolo Ay =0.
It follows from (5.1), (5.7), and (5.8) that

c(nRo = el I_ N (n—g)J/% = c(mRo (][ lul"z-Z) :
(ool =) 5

Therefore fgnlﬁln% = 1.

On the other hand, . |%| 5 = liminfy_. fo lu|P* = 1. Tt follows (using also
(5.7) and (5.8)) that

s =1,

(5.9) o
7[ |Val? + c(n)Ro][ w = c(mRy.
S" §"

From (5.6) and (5.9) we have that
Jlim llug — @llpism = 0.

Clearly @ € & S and hence by Obata’s result (see [33]) thatz = 1.

In the followmg we expand I,(u) for u € ¥ and |lu — 1| s small. It is

easy to see that
Vp:{cp:f @ =0, 7[ cpx=0}
S" §Il

= span{spherical harmonics of degree = 2}.

Here T %% denotes the tangent space of & at u = 1. The following lemma is
elementary.
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LEMMA 54. For 222 2 =p=s T" ue 19, u close to 0, there exist C*
functions p(u) € R and n () € R"” such that

][|l+ﬁ+p+n-x|”=1,
§'l

7[|l+ﬂ+p+n-x|px=0
S"

Furthermore, u(0) = 0, n(0) = 0, Du(0) = 0, Dn(0) = 0, and yu and n have
uniform (with respect to p) C* modulo of continuity near 0.

It is not difficult to see that for u € T\ &%

(@) = —”T‘l]l 2 + of |71
.

Let us use u € T¥) as local coordinates of u € &9 near u = 1. & = 0
corresponds to u = 1.
Let

B@ = 1,(0) = af_|Vul® + ctRo”

where u € leg and u = 1 + U + p@) + n(@) - x.
A straightforward computation yields

BG@ = crRo(l + 20(@) + af_ |V + c(n)RO][S @+ o[,
Hence

(5100 E@) = cmRo +a |vu|2—w][ @ + o[ill?)
5 4 5

It follows that there exists some positive constant C(n) (determined by the differ-
ence of the first and the second eigenvalue of —A,,) such that for a close to 1 and

p close to ”2—_" we have

(5.11) ](IV = LM]QHNBE(;][ |V,

It foliows from (5.10) and (5.11) that for k large we have I, () = c(n)Ro.
This is a contradiction. The Sobolev-Aubin-type inequality is thus established.

Appendix

Let d(P,x) denote the geodesic distance between P,x € S"; it is not difficult

to see that
t 2
6P,r(x) = 2.1 .
1+ ==(1- cosd(P, x))
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Let P be the south pole of S" and make a stereographic projection with respect
to the equatorial plane; we then have

1+ |y?

6P,t(y) = (1+t2|y|2

n-2

7
) , VyeR".
It is not difficult to see that

2
— [ Cabnrs = oo [ 657 = ctRolS"1,

i an
2z |§n|_l 1 —, VPxeS§".
(n=2)IS"'| (1 - cosd(P,x))F

For n = 4, it is easy to see that

Gplx) =

aﬁp,;
ot

201+ [y1?)

, VyeR:.
a+eyp Y

(y)‘ =

We list below some estimates that can be verified by elementary calculations.
The above formulae are helpful in verifying Lemmas A.4 through A.7.

LEMMA A.l. There exists some universal constant C > O such that for any
2=a=3andanya,b =0 we have

@+ by — a® — b* — aa™'b| 5 Ca™?,

(@ + b)* —a® — b*| = C(@*'b + ab*7!).

LEMMA A.2. For 2 = a = (3, there exists some constant C = C(B) depending
only on a such that for any a = 0, b € R, we have

—1
Jar212| = C(bl® + a71bl),

la +b|*Ya+b)—a* — aa®'b — a(a2

where y = max{0,« — 3}.
For 1 = a = 2, there exists some universal constant C > 0 such that for any
a,b = 0, we have
[(@+ b)* —a%| = C@*'b + b).

LEMMA A3,

/ . _|S / dz _|SY
re (1 4+ ]2)%)° 4’ re (1 + |22 12°




PRESCRIBING SCALAR CURVATURE 593

/ lzldz__ IS (1= |2z _ IS
R L+ 67 re (1+ 2% 12 -

LEMMA A4. Foranyey>0,A>0,0<7 <1, PP, €S* |P—Ps] = &,
ATV <4t < AT7V2, we have

713
(A1) /g‘gg,h,lé,,z,,ﬁw(/'% dz )GP.(PZ)_'_O(TZIlOgTI)

IS4 (1+ 12122 e
(A2) [, ¥k = 00,
D s o _ YIS (/ dz )Gp,(Pz)
(A3) oty Jor TrOPen IS*) U (1 +12122) £,
+0(r?),
(A.4) L N i/ 8,1 00,1, + O(T?| log 7|)
B at, Jst P, 0Pt ot Jst P12 0Pty ’
9]
(A-S) atl/ 6P‘n 126P1 S = a—tl'/g4 63’2’126}’]‘[' +0(T5/2|10g7'|),
2 |z|?
_p 12 - [ o 3/2
(A.6) / | P|| Pltl ” (1+|Z|2)4dz+0(7' ),
(A7) i o = —1/ 2—“d +0(7'5/2|10 7|)
' ot Jot P T T S (T 2P BTV
|z|? 5/2
. — = ———dz+ O 1 .
(A.8) 6t./ |- —Py|%6p /R‘(1+| Py 7+ O(r7*|log 7|)

For all the equations above,
|0(r2|log 7])| = Cr*|logrl, |0G*?log7|)| = C7*?|log7], ...,

for some constant C depending only on &) and A.



594

Y. Y LI

LEMMA A.5. Under the hypotheses of Lemma A.4 and £ + m,

(A.9)

(A.10)

(A.11)

(A.12)

(A.13)

(A.14)

(A.15)

(A.16)

(A.17)

(A.18)

(A.19)

66[3',” 66P|‘[|
PV’ apV

<6P1.I|56P|,11> = 2|§4| s < > = Flt% + O(T)y

<aap,,,. aap,,,,> o, <aap,,,l , aap.,t,> Dy,

PV " apt™ o o
86p,.
<6P|,n ] 6Pz,t2> = O(T) L) <6P|,t| £ 8P22’2 > = O(T) )

(6P|,I|9

66P2 7 3/2 < 66P1 ! 661:' I >
5 — 0 i 2502 = 3/2
o5 ) = 0(r9), “on, 0Py Oo(r7),

6(SPlt 86P t > <65P|t aéP { >
sl1 , 2582 - 0 , S , 2,12 - 2 ,
< oP, * 0P (v/7) o1 o o)

2 . 2
61’1-11’6 6Phtl =0, Ha 6P1'tl” =¢,
0t,0P, o1 oP,
6577, 6p,0,l33sty = C7, 18577 83, llessty = Cr,

2—7 aéPlJl
Pt ot

O6p,
Oprny 6Py —o
11 2512 atl

6 éCT3/2,

L4/3(§4)

éCTB/z,

L4/3(§4)

O6p, 1,
on

-7 2
61’1.11 6P2,t2

= Cr?| log 7|,
LY(SY)

3 3
67,1, = 8P, 1, L3y = Crllog ],

2 2
6p,r, = 6p, 1 ll12sty = CrllogT|,

4 4
"(SPIJI - 6P|,1| “Ll(§4) = CTl lOng >
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(A20) NIl =Pil6p o liomsy = CVT, NI - =P 1263, 4, |l Lomsny = CT,
_, 06
(A.21) H|-—P1|6,%l_,’, Pr <CJr,
ot sy

where I'(,["y > 0 are some universal constants and C depends only on &, A.

LEMMA A6. Foranyeg >0, A>0,0<7 <1, P|,P),P5 € s, {Py — P3|,
[Py — P3|, |Py — P3| Z 80, A7 V2 < 1y, 15,13 < A7V/2, we have

0
(A22) \ oP, / 6P2 f26P| nl = Cr, ‘5?1,/@ 62’”25[’,,:, =Cr,
06 96
3—7 P P
(A.23) /S . | 0P aP'l" =Cr, / &, 000 67'1" =cr¥?,
(A.24) 6,02',25})3',3 aéP"“ = °(,’.3/2 / |.—P 66P| oop 1 | = C\/_
6[1 LI(§4)

where C = C(gg, A).

LEMMA A.7. In addition to the hypotheses of Lemma A.4, we assume that
K € CY(S*). Then

g

8t1 K~ K(P) N6p,., 650, = O,

(A.25)

- / K — K(PILL 6., = Or2).
1

where |O(r%)| = C7* and C denotes some constant depending only on &y,Co,
IKlL~(s%, and [|VK || s
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