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Abstract 

This is a sequel to [30], which studies the prescribing scalar curvature problem on S". First we 
present some existence and compactness results for n = 4. The existence result extends that of Bahri 
and Coron [4], Benayed, Chen, Chtioui, and Hammami [6], and Zhang [39]. The compactness results 
are new and optimal. In addition, we give a counting formula of all solutions. This counting formula, 
together with the compactness results, completely describes when and where blowups occur. It follows 
from our results that solutions to the problem may have multiple blowup points. This phenomena is 
new and very different from the lower-dimensional cases n = 2,3. 

Next we study the problem for n 2 3. Some existence and compactness results have been given 
in [30] when the order of flatness at critical points of the prescribed scalar curvature functions K(x)  is 
p E (n - 2,n). The key point there is that for the class of K mentioned above we have completed Lm 
apriori estimates for solutions of the prescribing scalar curvature problem. Here we demonstrate that 
when the order of flatness at critical points of K(x)  is = n - 2, the L" estimates for solutions fail 
in general. In fact, two or more blowup points occur. 

On the other hand, we provide some existence and compactness results when the order of flatness 
at critical points of K ( x )  is p E [n - 2,n). With this result, we can easily deduce that C" scalar 
curvature functions are dense in CIa (0 < a < 1) norm among positive functions, although this is 
generally not true in the C2 norm. 

We also give a simpler proof to a Sobolev-Aubin-type inequality established in [ 161. 
Some of the results in this paper as well as that of [30] have been announced in I291.0 1996 John 

Wiley & Sons, inc. 

0. Introduction 

Let (§", go) be the standard n-sphere. The following question was raised by L. 
Nirenberg: Which function K(x)  on §* is the Gauss curvature of a metric g on §* 
conformally equivalent to go? Naturally one can extend this question to higher 
dimensions §" (n > 2). 

For n 2 3, we write g = ~"-2go; the problem is then equivalent to finding a 
function v on S" that satisfies the following equation: 

4 

where c(n) = 6, RO = n(n - 1) is the scalar curvature of go, and Ago denotes 
the Laplace-Beltrami operator associated with the metric go. 
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For n = 2, we write g = e2"go; the problem is then equivalent to finding a 
function v on S2 that satisfies the following equation: 

(0.2) -AB,,v + 1 = K(x)e2" . 

A necessary condition for solving (0.1) or (0.2) is that K be positive somewhere. 
For n = 2, this follows from integrating (0.2) on S2. For n Z 3, this follows from 
multiplying (0.1) by v and integrating by parts on S". It turns out that there is at 
least one other obstruction to solving the problem, the Kazdan-Warner condition 
(see 1271). In particular, if S" is embedded as usual in Rn+' and K(x)  E C1(§") 
is strictly monotonic in one direction, then the equation cannot be solved. The 
Kazdan-Warner condition is obtained by exploiting the centered dilation conformal 
transformations of S". In the same spirit, further obstructions are given in [9] by 
exploiting the full conformal transformation group of S". (See [18] and [251 for 
more discussions of the Kazdan-Warner-type conditions.) 

Recall that the centered dilation conformal transformations of S" are defined as 
follows: For P E S", 0 < t < 00, we define a centered dilation conformal trans- 
formation 9 p . r  : Sn - §" by y +. ty, where y E R" is the stereographic projection 
coordinates of points on S" while the stereographic projection is performed with 
P as the north pole to the equatorial plane of S". 

Much work has been devoted to the existence of solutions of (0.1) and (0.2). 
For the relation between this work and previous work, see the introduction and 
references in [30]. 

In this paper we first present some existence and compactness results for the 
problem on S4. The existence result extends that of Bahri and Coron [4], Be- 
nayed, Chen, Chtioui, and Hammami [6], and Zhang [39]. We also have a com- 
plete understanding of the compactness of solutions to the original equations and 
subcritical approximation equations that give rise to a degree-counting of all solu- 
tions. From our results we know when and where blowups occur. In fact, multiple 
point blowups may occur. The phenomena of multiple point blowups in dimension 
n ;r 4 is new and very different from that of lower-dimensional cases. 

After the study of the problem on S4, we study the problem on S" for all n 2 3. 
Notice that the problem is much less understood for higher dimensions compared 
to lower dimensions. For higher dimensions, one result is due to Escobar and 
Schoen [21] concerning curvature functions with group symmetry; another is due 
to Chang and Yang [16] concerning curvature functions close to constants. We 
also recall one of the results we obtained in [30], which can be viewed as a natural 
link between theorem I1 in [15], theorem 1 in [4], and theorem 2.1 in [21]. 

THEOREM L. ([30], a special case) For n t 3, we suppose that K E C1(§") is 
some positivefunction for which the following is true: For any critical point qo of 
K ,  there exists some real number p = &o) E (n - 2, n)  such that in some geodesic 
normal coordinate system centered at qo, K(y)  = K(O) + c,"=1 Q j I y j I P  + R(y), 
where aj = aj(q0) f 0, cy=l aj f 0, and R(y )  is CIP1-l*l near 0 and sutisjes 
lim~y~-o CosIrrIsIpl I ~ R ( Y ) ~  lyl++lal = 0. 
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Assume further that 

The key point in establishing the above is to obtain L^ apriori estimates for 
solutions of (0.1)- More precisely, it is shown in [30] that under the hypotheses 
of the above theorem, if we let K, = pK + (1 - p)Ro, and let v be any solution 
of (0.1) corresponding to K, for some 0 < p 5 1, then maxsn v 5 C. It is 
also shown that the Leray-Schauder degree of all solutions of (0.1) is equal to 
- 1 + (- 1)" ~ v ' , l l K ( q l , ) = o , ~ ; _ ,  oJ(41,)<o(- l)1(411). Here the proper flatness hypotheses 
near critical points of K (n - 2 < p < n) have been used. 

A natural question is what happens when /3 is equal to n - 2. The subtlety in 
this case has been illustrated by Bianchi and Egnell, who constructed in [8] some 
smooth axisymmetric positive function K with the order of flatness at north and 
south poles equal to n -2 and for which there is no axisymmetric solution to (0.1). 
We will show that, in general, the L" estimates for solutions of (0.1) fail when 
the order of flatness at critical points of K is allowed to be equal to n - 2. This 
is achieved by first establishing some existence results for those axisymmetric 
K that are close to Ro in the L" norm (see Theorem 0.18) and then argue by 
contradiction. Namely, if the L" estimates hold, we will be able to produce an 
axisymmetric solution to (0.1 ) by using a degree argument and Theorem 0.18. In 
fact, we know that what has happened in this case is that two isolated simple 
blowup points occur to the corresponding solutions of (0.1) simultaneously at the 
north and south poles. This phenomenon of multiple point blowups shows that 
higher-dimensional cases (n 2 4) are substantially different and more difficult than 
lower-dimensional cases. 

By assuming further some smallness hypothesis on the coefficients of Iyln-*, 
we still obtain the L" estimates as in [30] and hence some existence results. It 
follows from this existence result and section 6 of [30] that C" scalar curvature 
functions are dense in the C1."(O < a < 1) norm among all positive functions. 
This density result is generally false in the C2 norm. 

We first note some notation and definitions found in [30]. The notion of an 

Let R C R" (n 2 3) be a bounded domain, T ,  1 0 satisfy lim,-.= T ,  = 0, 
isolated simple blowup point was introduced by Schoen in [36] and [37]. 

pi = n-2 - ~ i ,  and {K,} E C'(fl) satisfy, for some constant A1 > 0, 

(0.3) 

n+2  

l/Al 5 K , ( x )  5 A,  for all x E 0.  

Consider 
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DEFINITION 0.1. Suppose that {Ki} satisfies (0.3) and {ui} satisfies (0.4). A 
point 7 E R is called a blowup point of {ui} if there exists a sequence yi tending 
to 7 such that ui(yi) - m. 

DEFINITION 0.2. Suppose that { K i }  satisfies (0.3) and {ui} satisfies (0.4). A 
point 7 E R is called an isolated blowup point of {ui} if there exists 0 < i; < 
dist(ji, do), c > 0, and a sequence yi tending to 7 such that yi is a local maximum 
of ui, ui(yi) - 00, and ui(y) 5 c l y  - y i 1 - 5  for all y E BF(yi). 

Let yi - 7 be an isolated blowup point of {ui}; we define 

DEFINITION 0.3. 7 E R is called an isolated simple blowup point if 7 is an 
isolated blowup point such that for some p > 0 (independent of i )  Ti has precisely 
one critical point in (0, p). 

DEFINITION 0.4. For any real number p 2 1, we say that a sequence of 
functions { K J  satisfies condition ( * ) p  for some sequences of constants {LI(p, i)} 
and &(p, i ) }  in some region Ri if {Ki} E C@l-'*'(ni) satisfies 

and, if p 2 2, then 

Remark 0.5. Let {Ki}  be bounded in Ce(B1) (4  2 2 is an integer) and have 
the Taylor expansion 

with QT' being some homogeneous polynomial of degree 4 satisfying 

for some positive constant A6 independent of i .  Furthermore, let Ri(y) satisfy 
Co+lse IPRi(y)l lyl-e+lal - 0 uniformly for i as IyI - 0. Then {Ki} satisfies 
( * )e  for Ll(4) and h ( 4 )  near the origin. Here Ll(4) and h ( 4 )  are some constants 
independent of i. 
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On a Riemannian manifold (M",g) ,  LgJ, = A& - c(n)RgJ, is called the con- 
formal Laplacian, where R, is the scalar curvature of g. The conformal Laplacian 
has the following invariance properties under the conformal change of metrics. 

4 
For g = u x g ,  u > 0, we have 

(0.5) ~ i +  = u - s ~ , ( ~ , u )  for all + E C Y M ) .  

Another well-known fact is that if 8M = 0, then for all J, E C"(M) we have 

Equation (0.6) can be derived easily from equation (0.5). See [7] for the proof of 
(0.5). 

Let P be the south pole and make a stereographic projection to the equatorial 
plane of §". Let x = ( x I , x ~ ,  . . . , x n + l )  E S", and let y = ( y l ,  . . . , y,)  E R" denote 
the stereographic projection coordinates of x. It is easy to see that 

lyl2-I  x, = 3, 1 5 i i n; x,+1 = lylz+1, 
yi  = x, { I-x"+, , 1 5 i 5 n .  

It follows that in the stereographic projection coordinates 

For P E S", let Gp(q) be Green's function of Lgo on S". It is well-known that 
Cp satisfies 

GP(q) > 0, LgoGP(q) = 0, for all q E \ { P I ,  { -&GPLgc,J,dVgc, = +(PI, for all I) E Coo(Sfl). 

In this paper, An will denote I§" I 
well-known (see [ 2 ] ) .  

graphic projection coordinates as introduced above, 

Jsn. The existence and uniqueness of Gp are 

Using (0.5) with g = d y 2 ,  j = go, it is elementary to see that in the stereo- 

(0.7) 

It is also easy to see that 

22-" I§" I 
(n  - 2 1 p - 1  I . minGp(q) = 

q€§" 
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For K E C2(Sfl), we introduce the following notation: 

x = {q E S" : V,,K(q) = O}, 
X+ = {q E S" : V,,K(q) = 0, AK(q) > O}, 
x- = {q E S" : V,,K(q) = 0, AK(q) < 0}, 
AK = {v E CW) : v satisfies (0.1) 0; (0.2)).  

We first present some compactness results and existence results for n = 4. For 
K E C2(!S4), we associate any k (k 2 1) distinct points q('),  . . . ,q(&) E X \ X+ 
with a k X k symmetric matrix M = (M(q( l ) ,  . . . , q"))) defined by 

(0.8) 

A K(q'") Let p ( M )  denote the least eigenvalue of M. When k = 1, p(M)  = M = - . 

Remark 0.6. Bahri and Coron discovered through the theory of critical points 
at infinity that some matrices like (0.8) play important roles in establishing exis- 
tence results for critical exponent equations. See [3] and [4]. 

Set 

.d = {K E C2(S4) : K > 0 on S4, A,,K f 0 on X ,  
p(M(q( ' ) ,  . . . ,q(k)))  f 0, V q(l), . . . ,q(k) E X - ,  k Z 2) . 

Observe that for any K E d, there exists some constant 6 > 0 depending only 
on min~4 K, l lK l lp (~4)  such that for all q(l), . . . ,@) with min,,, - q(')I 5 6 we 
have p(M(q( ' ) ,  . . . , q@))) S - 1. It follows that d is open in C2(S4). It is obvious 
that d is dense in C2(S4)+ = {K € C2(S4) : K > OonS4} with respect to the C2 
norm. 

(i) For any Morse function K E d with X -  = {q( ') ,  . . . , q'")}, we define 
We define Index : d - E by the following properties: 

m 
Index(K) = -1 + ( - 1 ) k - 1 + x : = t l ( 4 " J ) )  

k=l p(M(q'(1). ,q"k'))>O 
I S I I  < . <ti  5 m  

where i(q('J)) denotes the Morse index of K at q('J). 

is locally constant. 
(ii) Index : d - Z is continuous with respect to the C2(S4) norm of d and hence 

Remark 0.7. The existence and uniqueness of the Index mapping defined 
above follows from Theorem 0.8 and the proof of Theorem 0.9. 
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THEOREM 0.8. 

k E C2(S4), ((k - KIIC2(g) < 6, v E &, we have 
(a) For any K E d, there exists 6 = 6(K) > 0, C = C(K)  > 0, such that for all 

(b) For any K E C2(S4)+ \d = ad, them exists Ki - K in C2(S4) and vi E &, 
such that 

lim(max v;) = 00 , lim(min v;) = 0. 
i-00 s4 i-m 94 

(0.9) 

THEOREM 0.9. Suppose K E d. Then for all 0 < a < 1, there exists some 
constant C depending only on mins4 K, l l K ( l ~ ~ ( g ) ,  C2 modulo of continuity of K, 
minx IAR,,KI, and mini I 1.1 ( M ( q ( ' ) ,  . . . , q(k) ) )  1 : q(l), . . . , q(k) E %-, k 2 2) such 
that 

1/c < v < c, IIVIJC?."(S4) < c ,  
for all solutions v of (0.1). Furthermorv, for all R 2 C, 

(0.10) + 2) - ' (Kv3) ,0~ ,0 )  = Index(K), 

where OR = { v  E C2@(S4) : 1/R < v < R, I(vllp.~(s4) < R}, and deg denotes 
the Leray-Schauder degree in C2,0(§4). As a consequence, AK # 0 provided 
Index(K) # 0. 

THEOREM 0.10. Let K E C2(S4) be a positive function. There exists some 
number 6* > 0 depending only on ming4 K, IlKll~qg), and the C2 modulo of 
continuity of K with the following property: Let { p i }  satisfy pi S 3, pi - 3, 
{ K i }  E C2(S4) satisfy K;  - K in C2(S4), {v;} satisfy 

and 
lim max v; = 00 
i -3c  s4 

Then after passing to some subsequence we have 
(i) { V i }  (still denote the subsequence by {v;))  has only isolated simple blowup 

- q(')I 2 6*, V j  # I ,  and points q('), .  . . ,q(k)  E X \ X' (k 2 1 )  with 
1.1 ( M ( q ( ' ) ,  . . . , q(k) ) )  2 0. Furthermore, q"), . . . , q(k) E X -  i f k  2 2. 

(ii) 
A, := K(q(")-"2 lim Vi(qjl))v;(qj.")-' E (0, W) 

1 - 0 2  
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and 
pG) := lim 7ivi(qy))2 E [0, co), 

where qjj) - q(j) is the local maximum of vi. 

V j  : 1 S j d k ,  
1 - 0 3  

(iii) When k = 1, 

(0.1 1) p") = -24K(q"')-*Ag,,K(q'"). 

When k 2 2, 

(iv) pu) E (0, w), V j : 1 S j 5 k, if and only if p(M(q('), . . . , q(k))) > 0. 

COROLLARY 0.11. Let K E d be a Morse function satisfying #X- I 1 or 
for any distinct P, Q E X- ,  

Then for some constant C, 

for all solutions v of (0.11, a d  for all R 1 C, 

where i(qd denotes the Morse index of K at 40. Furthermore, if 

equation (0.1) has at least one solution. 

Using Theorems 0.8 through 0.10, we can completely characterize blowups of 
a sequence of solutions for (0.1) when n = 4. For K E C2(S4)', we define 

Y ( K )  = { (q('), . . . , q(k)) : k 1 1; qci) E X \ X', V j : 1 d j d k; 
q ( j )  # q('), V j * 1; p(M(q('), . . . , q(k))) = 0 }  . 
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It is easy to see that Y ( K )  = 0 if and only if K E d 

THEOREM 0.10. 
(a) Let K E C2(Si4)+ \ d, K, - K in C2, and vt E AK, with maxs4 vi - 00. Then 

for some (q( ' ) ,  . . . , @)) E Y ( K ) ,  { v,}, afer  passing to a subsequence, blows up 
at precisely the k points. 

(b) Let K E C2(S4)+ \ d and . . . , @)) E Y(O(K). Then there exists K, - K in 
C2,  v, E AK, such that { v , }  blows up at precisely the k points. 

COROLLARY 0.12. For any k ( k  2 1) distinct points q('), . . . , q(k) E S4, there 
exists a sequence of Morsefunctions { K i }  E d such that for some vi E &, { V i }  

blows up at precisely the k points. 

The compactness results (Theorem 0.8, Theorem 0.9, and Theorem 0.10') are 
new and optimal. The existence problem on S4 has already been studied in [4], 
[6], and [39]. In [4], Bahri and Coron stated some existence result on S4 with a 
brief description of the idea of a proof. Benayed, Chen, Chtioui, and Hammami 
proved in [6] the result. The existence part of Theorem 0.9 extends the result in [6] 
in two aspects. First is that we do not need to assume that K is a Morse function. 
In fact, K can have infinitely many critical points. Second, even for a Morse 
function K ,  our result assumes only that the least eigenvalue of M(q"), . . . , q(&)) 
is nonzero instead of all the eigenvalues. Notice that only the least eigenvalue 
of M(q( ' ) ,  . . . , q(k) )  plays a role in counting the total degree of solutions of (0.1) 
and the compactness of AK. For instance, considering a continuous family of 
K ,  the total degree of solutions of (0.1) changes when the least eigenvalue of 
M ( q ( l ) ,  . . . , q(k))  crosses zero, while the total degree remains the same when other 
eigenvalues of M(q( l ) ,  . . . , q(k))  cross zero. The existence result on §4 in [39] is 
contained in the result of [6]. 

Next we study (0.1) for n 2 3 and give an extension of theorem 0.5 in [30] that 
is more general than Theorem L stated earlier. We assume a K E C'(Sn) such that 
for any critical point qo of K there exists some real number p = p(q0) E [n - 2, n) 
for which, in some geodesic normal coordinate system centered at 90, 

(0.13) 

co) where Q(qn) satisfies 

(0.14) 
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for those E E 08" satisfying 

Set 

X, = { q o  E S" : V,,,K(qo) = 0, P(q0) = a}, n - 2 S a < n .  

We assume for qo E Xn-2 that 

(0.16) 

Let 

Ln VQ&*)(y + <)(1 + ly12)-"dy = 0 if and only if ( = 0 .  

X i - 2  = { qo E Xn-2 : z . VQ&2'(z)(1 + Iz12)-"dz < 0 }  , 

and for any distinct q(') ,  q(') E X -  n-27 M = M(q( ' ) ,  q")) is a symmetric 2 x 2 matrix 
given by 

P 

THEOREM 0.13. Suppose K E Cl(S") (n B 3) satisjes (0.13), (0.141, (0.151, 
(0.161, and either #Xi- ,  S 1 or MllM22 < M:2 for all distinct q(1),q(2) E 
Xi-,, M = M(q(') ,  q'"). 

Then for all 0 < a < 1, there exists some constant C such that 

1/c < v < c ,  IlVllC2."(S") < c ,  
for all solutions v of (0. l), 

Ln K 0 cpp,r(x)x + o for all P E ~ n ,  t 2 C, 

and for all R 2 C, t 2 C, 

deg ( v  - ( - Ago + c(n)Ro) ( c ( n ) K v s  ) , OR, 0) 

= (-1Ydeg (J S" K 0 pp, t (x)x.B,O) . 
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I f  we further assume that 

for t large, then (0.1) has at least one solution. 

Remark 0.14. In Theorem 0.13, B denotes the unit ball of Rn+', Sn = OB. 
The map ssn K 0 cpp,,(x)x was introduced in [ 161, and its many properties were 
studied in section 6 of [30]. 

COROLLARY 0.15. 
(0) 

For n 2 3, let K E C1 (S") be some positive function satisfy- 
ing (0.13) with Q(ol,I(y) = Cy=l ajlyj IP,  where aj = aj(qo) f 0, Cy=l aj * 0. AS- 
sume either #Xi.-2 5 1 or MllM22 < M:2 for all distinct &), q(2) € X,,, M = 
M(Q(') ,  q(')). - -  

Then for  all 0 < (Y < 1, there exists some constant C such that 

1/c < v < c ,  IIVllC2."(S") < c ,  
for all solutions v of (O.l), and for all R 2 C, 

C;=l a,(qd<O 

then (0.1) has at least one solution. 

COROLLARY 0.16. Given any positive numbers E > 0, 0 < (Y < 1, and any 
positive Cl," function K on 9, there exists k E Cm(Sn), Ilk - Kllclqsn) < E, 

such that is the scalar curvature function of some smooth metric confomal to 
go. 

Remark 0.17. A C2 density result is false in general. For example, it follows 
from the compactness results in [30] that for n = 3,4, (0.1) has no solution for 
any function K which is C2 close to x"" + 2. For n = 2, the previous statement 
is still valid following from the compactness results in [24] and [13]. 
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We have proved in [30] that if K satisfies ( *)"-2 then solutions of (0.1) either 
stay bounded or have only isolated simple blowups; if K satisfies ( * ) p  on S" for 
some p > n - 2 then solutions of (0.1) either stay bounded or have precisely one 
isolated simple blowup point on S". The following questions are natural. 

Question: Assume that K is a positive smooth function on S" (n 1 5 )  satis- 
fying 

P K ( q o )  = 0 ,  2 5 )(YI 6 n - 3 ,  for all qo E S",  VK(qo) = 0.  

Is it true that solutions of (0.1) either stay bounded or have only isolated simple 
blowup points? 

Question: Assume that K is a positive smooth function on S" (n 1 4) satis- 
fying 

Is it true that solutions of (0.1) either stay bounded or have precisely one isolated 
simple blowup point on S"? 

Next we look at a special situation when K E Ci(§") depends only on the 
latitude. Here we assume K E C' for the sake of simplicity. For most of the results 
in this case this smoothness condition can be weakened. Notice that not all of our 
existence results in this case are new; there is much overlap with previous work 
(see, e.g., [8], [20], [19], and the references therein). Our approach is different, 
and the interesting part is that we can see that more than one blowup point indeed 
occur. 

Let X = ( X I ,  ..., X " + l )  E S", X"+I = cos8, 0 6 8 6 7r. Suppose that K(x)  = 
K(8) .  Here we have abused the notation, but the meaning is evident. In the 
following we say that K is axisymmetric if K depends only on 8. For 0 < (Y < 1, 
let 

Hf(S") = {u E H1(Sfl)  : u depends only on 8 } ,  

C?(Sfl) = {u E C2*u(§fl) : u depends only on 8 ) .  

Let N denote the north pole of S" and let (PN,, (0 < t < 00) denote the 
conformal transformation defined before. Furthermore, let 

For a conformal transformation 'p : S" - S", we set 

T,u = u 0 (PI d e t d V l 2 .  
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u = K ( w , ~ )  = T,&w, w E Y,, 0 < t < 00 

As in lemma 5.4 of (301, one can prove that K is a C2 diffeomorphism. 
For E ,  > 0, set 

x; = { w  E Y ,  : 1 1  w - 111 < E l }  , 
X;  = {U E X ,  : u = ~ ( w , t )  for some w E X i ,  0 < t < m}, 
X;  = { V E H ~ ( § ~ ) \ { O ) : C V E X ~  f o r s o m e c > ~ } .  

THEOREM 0.18. There exist some small constants E I  = q(n) ,  ~2 = ~ 2 ( n )  > 0 
with the property that for any function K(8) E c:(§") satisfying 

where 1 < p1,p2 < n, al,a2 + 0, Rl(e) = o ( ( r  - e p ) ,  %(e) = o ( ( r  - e)@l-l) 

as 8 - K, and R2(8) = 0(8@2), %(a) = o(8@2-1) as 8 - 0, there exists some large 
positive constant CI such that 

for all solutions v E (if there are any) of (0.1) and for all C L C1 

deg (v + L&l ( c ( n ) K v s )  ,N;n 

{v  E c?" : ~ ~ v ~ ~ @ y § n )  < c, 1/c < v < c}  ' 0 )  

1 
2 

= - (sign(a1) + sign(a2)) . 

In particular; (0.1) has at least one solution v E C?(§") n X ;  provided a1a2 > 0. 

THEOREM 0.19. Let K ( 8 )  E C!(§') be a nonnegativefinction satisfying (0.17) 
with K(o) ,  K ( T )  > 0, al,a2 # 0, Rl(e) = o ( ( K  - eP), %(e) = O((T - ep-1) as 
8 - K, and R2(6) = o(Os2), %(8) = o(Oa2-') as 0 - 0. Assume any of the 
following conditions: 
(i) n - 2 5 

(ii) n - 2 $ P I , P 2 < n ,  p l + P 2 + 2 n - 4 .  
< n, max(al,a2) > 0. 
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(iii) 1 < P1,/32 < n, ul,a2 > 0. 
Then there exists some positive constant C1 such that 

for all C?(Sn) solutions (if there are any) of (0.1) and for all C 2 C1, 

deg ( v  + L;,' (c(n)Kv 2 ) , 
{v E C Y  : IlVllC2."(§") < c, 1/c < v < C},  0 )  

1 
2 = - (sign(a1) + sign(a2)) . 

In particulal; (0.1) has at least one C:(S") solution under a firther assumption 
a1a2 > 0. 

CQ r2"-'dr 2 In the following we set c1 = (2n-2(n - 2) so 7i;~;~j;) 

THEOREM 0.20. Let K(0)  E C;(Sfl) be a nonnegativefunction satisfying 

for all axisymmetric solutions v of (0.1). Furthermore, for all C 2 C2 we have 

Remark 0.21. Since we often need to work with a family of K, we need to 
know the dependence of C2 on K in Theorem 0.20. This can be seen easily from 
the proof. For example, C2 is under control provided that K(O),K(n), -al, -az, 
and IK(O)K(n) - c~u1a21 are bounded above and below by positive constants and 
that K has certain uniform continuity near the poles. 
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COROLLARY 0.22. Under the hypotheses of Theorem 0.20, (0.1) has at least 
one C?(§") solution provided K(O)K(r)  > clala2. On the other hand, if we assume 
K(O)K(x) < clala2 and l l K - R o 1 1 ~ y y )  5 ~2 ( ~ 2  is deJined in Theorem 0.181, then 
(0.1) has at least two C:(W solutions. 

Remark 0.23. Examples given in [81 show that when K(O)K(.rr) < c1ala2, 
(0.1) may not have any C?(Sn) solution. 

COROLLARY 0.24. Let K,(O 5 t 5 2)  be a family of nonnegative C!(Sn) 
function. Writing 

K,(B) = K,(T) + al(t)(n - e y 2  + R,!(o), { &(el = K,(O) + a2(t)0"-2 + R?(B), 

where Kf(7r), K,(O), -al(t), -ad?) are positive continuous functions on the interval 
osrs2, 

R,!(e) = O ( ( T  - %(e) = O ( ( T  - as 0 - T ,  and Rf@) = 

= .(en-3) as e - o uniformlyfor o 5 t 5 2. 
Then there exists a sequence t; - 1 and a v; E C:(Sn) that is the solution of 

(0.1) corresponding to K,, such that 

limmaxv;= 0 0 .  
;-cc S" 

Furthermore, {v,} has precisely two isolated simple blowup points, which are the 
north and south poles. 

This paper is organized as follows: In Section 1 we recall some results used in 
[30]. In Section 2 we study the problem on S4 and establish Theorems 0.8,0.9, and 
0.10, as well as Theorem 0.10. Theorem 0.10 will be proved first, using results 
in [30]. Then we use Theorem 0.10 and some results in [30] to prove part (a) of 
Theorem 0.8. To prove Theorem 0.9, we consider a subcritical approximation of 
(0. l), namely, 

(0.20) -A,,,v + c(n)Rov = c(n)K(x)v3-', v > 0 on S4 

for T > 0 small. Thanks to part (a) of Theorem 0.8, we can assume with- 
out loss of generality that K is a Morse function. For any k distinct points 
PI ,..., pk E X- with p ( ~ ( P 1 ,  ..., P k ) )  > 0, we carefully construct some set 
C,(~I,. . . ,&) C H'(S4) - that consists of suitable functions which are highly con- 
centrated near PI, .  . . , P k .  Using Theorem 0.10 and some results in [30], we first 

- 
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establish Proposition 2.1, which asserts that for T > 0 very small, solutions of 
(0.20) either stay bounded or stay in one of the &(PI,. . . ,&). On the other hand, 
we establish Theorem 2.2', which asserts that for T > 0 small enough, (0.20) has 
precisely one solution in XT(pl,. . . ,&), which is nondegenerate with Morse index 

Now we point out a well-known fact (Proposition 2.7) which asserts that the H' 
total degree of solutions of (0.20) is equal to - 1  for all 0 < T < 2. It follows that 
the H' degree contribution of those solutions of (0.20) which remain bounded as T 

tends to zero is equal to Index(K). Some well-known results in degree theory imply 
that the H' degree contribution above is equal to the C2@ degree contribution of 
those bounded solutions of (0.20). Using part (a) of Theorem 0.8, Theorem 0.10 
and the homotopy invariance of the Leray-Schauder degree, we obtain (0.10). 
Theorem 0.9 is therefore established. Part (b) of Theorem 0.8 is proved by using 
Theorem 0.9, Theorem 0.10, part (a) of Theorem 0.8 and the homotopy invariance 
of the Leray-Schauder degree. The proof of Theorem 0.10 is similar to the proof 
of part (b) of Theorem 0.8, and is omitted. In Section 3 we establish Theorem 
0.13 by proving a more general result. In Section 4 we establish results in the 
axisymmetric case and demonstrate that when the order of flatness at critical points 
of K ( x )  is n - 2, the L" estimates for solutions fail in general. In Section 5 we 
give a simpler proof of a Sobolev-Aubin type inequality established in [16]. In 
Section 6 we list some elementary estimates. 

5k - c;=' @ j ) .  

1. Quick Review of Some Known Facts 

In this section we recall some results used in [30]. Let cr > 0 and B, be a ball 
of radius cr in R" (n  2 3).  

PROPOSITION 1 . 1 .  Let p 2 1 ,  K be a C1 function and u be a C2 solution of 

-Au = c ( ~ ) K ( x ) ~ u ~ ~ - ' u ,  x E B, .  

We have 

where 
n - 2  du 

B(o, X ,  U, V U )  = - u- - -1VU12  + ff 
2 dv 2 

It is elementary to check that the boundary term B(a ,x ,  u, Vu) has the following 
properties: 
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PROPOSITION 1.2. Let A E R and a ( x )  be some differentiable function near 
the origin with (~(0)  = 0. Then for u(x) = Ix12-n + A + a(x) ,  we have 

PROPOSITION 1.3. E R 
be an isolated blowup point. Then for any 0 < r < F/3, we have the following 
Harnack inequality: 

Let {Ki} satisfy (0.31, {ui} satisfy (0.41, and yi - 

where C is a positive constant depending only on n,c, and .supi l lK ; I l~y~~~, ) ) ,  and 
i; and c are the constants in Definition 0.2. 

PROPOSITION 1.4. Suppose {K;}  E C;&) is bounded in C,!&l) satisfying 
(0.3) and {u;}  satisfies (0.4). Let 7 E R be an isolated blowup point of {ui} and 
{yi} be the sequence of points as in Definition 0.2. Then for any R; - 00, ~i - Of,  
we have, afer passing to a subsequence (still denoted as {u;}, {y;}, erc.), that 

~ i u ; ( y ; ) - q  - o as i - o3 
where k; = c(n)(n(n - 2))- 'K;(y;).  

PROPOSITION 1.5. Suppose {Ki}  E CfJB2) satisfies (0.3) with R = B2 and 

for some positive constant A2. Suppose also that u; satisfies (0.4) with R = B2 and 
that yi - 0 is an isolated blowup point with, for some positive constant A3, 

Then there exists some positive constant C = C(n, A ' ,  A2, A3) such thaf 
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PROPOSITION 1.6. Suppose { K i }  C C;JB2) satisjes (0.3) with R = B2 and 
(1.1) for some positive constant A2. Suppose also that Ui satisfies (0.4) with R = B2 
and yi - 0 is an isolated simple blowup point with (1.2) for some positive constant 
A3. Then there exists some positive constant C = C(n, A l ,  A2, A3, p)  such that 

u i (y )  5 cui(yi)-l Iy - yi12-n for all Iy - yi I 2 1 

where p is the constant in DeJnition 0.3. 

a subsequence, that 
Furthermore, for some harmonic finction b(y)  in B I  we have, afer passing to 

where 
2-,, 2-n 2-n  

a = lim k i l  = c(n)”[n(n - 2)]+ (lim Ki(0))  . 
1 - 0 3  1 - 0 0  

2. Proofs of Theorems 0.8,0.9, and 0.10 

Proof of Theorem 0.10: It follows from theorem 4.1 of [30] that {vi} has only 
isolated simple blowup points q(’), . . . ,@) E X (k 2 1) with Iq(j) - q(‘)I L 6” 
( j  f 1) for some S *  depending only on the data stated in Theorem 0.10. 

be the local maximum of vi. Let qy’ be the south pole and make a stereographic 
projection to the equatorial plane of S” with y as the stereographic projection 
coordinates. Set 

Since q(’) is an isolated simple blowup point of vi, we let qy) - q(j)(i - 00) 

the equation (0.1) is transformed to 

1 
6 -Au~(Y)  = -Kj(y)H?(y)ui(y)”, y E R4, 

where Hi(y )  = 2/(1 + lyI2). 

proposition 2.3 of [30] that 
Let yp)  - 0 be the local maximum of ui as in Definition 0.2. It follows from 

ui (yp))ui ( y ) - h(j)(y) 
:= 48K(q(j))-l lylP2 + b(j)(y) in Ck(rW4 \ {q(’), . . . , q(k)} ) ,  

where b(’)(y) is some regular harmonic function in R“ \ Ul+j{q(l)}. It follows from 
the maximum principle that b(J)(y) = 0 if k = 1, and b(j)(y) > 0 if k 2 2. 
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It follows from [30] that 

559 

for q r f  q"' and close to q"), where b'j)(q) is some regular function in S4 \ 
U!* j{q( l ) }  satisfying LR0$) = 0 and the convergence is in the sense of &(S4 \ 
{p,. . . , q ' k ' } ) .  

When k 2 2, it follows from 
l S j S k ,  

the maximum principle and [30] that for all 

where the convergence is in C:,(S4\{q(1), . . . , q(k)}) .  It is not difficult to see (using 
the fact that the blowup is isolated simple) that v;(yf))v;(qy))-' - 1. It follows 
from (0.7) that for lyl > 0 small, 

It follows from lemma 2.4, lemma 2.6, lemma 2.7, and proposition 2.1 in [30] 
and the evenness of (1 + I z ~ * ) - ~  that 

Part (ii) of Theorem 0.10 follows from (2.1) and [30]. 
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It follows from Proposition 1.1 and (2.1) that for any 0 < o < 1 we have 

Multiplying the above by ~ i ( y y ) ) ~  and sending i to 00, we have 

Sending o to 0, it follows from Proposition 1.2 that 

It follows that q(j) E X\X+, 1 d j 5 k ,  and, when k Z 2, q(j) E X-, 1 5 j S k .  
When k = 1,  b(j)(O) = 0, we have verified (0.11). 
When k 2 2, for all 1 d j d k ,  

It follows that 
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We have established (0.12) and thus verified part (iii) of Theorem 0.10. It follows 
from linear algebra that there exists some i = ( i l , .  . .,Xk) f 0, Xe h 0 kit, such 
that 

- - 

k 

C Mpj(q(') ,  . . . , q'k')T;e = p ( M ) X j ,  1 5 j I k .  
e= I 

Multiplying (0.12) by xi and summing over j ,  we have 

It follows that p ( M )  B 0. We have verified part (i) of Theorem 0.10. 
Part (iv) of Theorem 0.10 follows from (i)-(iii) and some elementary arguments. 

Proof of part (a) of Theorem 0.8: Suppose the contrary is true. Then it is 
easy to see that there exists K; - K in C2(S4) such that max~4 v; - 0;) for 
some vi E AK,. It follows from Theorem 0.10 that {v;} has only isolated simple 
blowup points {q( ' ) ,  . . . , q(k)}.  It follows from theorem 4.4 in [30] that k > 1. 
It follows from Theorem 0.10 that q('), . . . , q(k) E X- and for all 1 S j 5 k ,  
I",=, Mejhe = 0, where Xe > 0 (1 5 4 5 k ) .  

Since p ( M )  has at least one nonnegative eigenvector and since eigenvectors with 
respect to different eigenvalues are orthogonal to each other, we have p ( M )  = 0. 
This fact contradicts the fact that K E a. 

The rest of this section is devoted to the proof of Theorem 0.9, and then part 
(b) of Theorem 0.8. Due to part (a) of Theorem 0.8, we only need to prove 
Theorem 0.9 for K E being a Morse function. Once this is achieved, Index(K) 
is well-defined. Therefore we always assume that K E d is a Morse function in 
the rest of this section. 

For n B 3, P E Sn, r > 0, set 6 ~ , ~  = Tvp,,I. 
It is well-known that u = hp,, satisfies -Lgou = c(n)Rou-2. 
We denote the H1 inner product and norm by 

n t ?  

Set for T > 0 small 

- 
Let P I , .  . . , P k  E x- be critical points of K with M(F1, .  . . , P k )  > 0. For EO > 0 
small, let ae,, = a,,,(F,, . . . , P k )  c ~ k ,  x x ( s ~ ) ~  be defined as 
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It follows from [3] and [4] that there exists EO > 0 small (depending only 
on min9 K and llKllp(~4)) with the following property: For any u E 
satisfying for some (&, f,p) E REo/2 the inequality IIu - c&, 6j6p,,g 11 < e0/2, we 
have a unique representation 

i=  I 

with (a, t , P )  E Re,, and 

We work in some orthonormal basis near Pi. -& denotes the corresponding 
derivatives. We denote the set of v E H1(S4) satisfying (2.2) by Er,p. It follows 
that in a small tubular neighborhood (independent of T )  of 
{cf=, aiSP,,t, : (a,  t,P) E flE(,/2}, (a, t,P, v) is a good parameterization. 

Set for large constant A 

XT = C,(P,, . * . ,pk) 
= {(a,t,  P,v) E 0&(,/2 x HI(S4) : 

IPi - Pi1 < ~ " ~ 1  lOgT1, A-IT-I '~ < ti <  AT-"^, v E Et,p, llvll < VO}. 
Without confusion we use the same notation for 

PROPOSITION 2.1. For K E d a Morsefunction, a E (0, l), there exists some 
positive constants uo << 1, A >> 1 ,  R >> 1 depending only on K such that when 
r > 0 is suficiently small, 

l.4 E O R  u { U & t  I  up1 ,..., pk E X - , M ( P ,  ...., ~ ~ ) > O ~ T ( P I ,  . * * ,  P k ) }  

for all u satisfying u E H ' ( S ~ ) ,  u > o a.e., z:(u) = 0. 

Proof The proposition follows from Theorem 0.10, (2.1), the properties of 
isolated simple blowup points established in [30], and some elementary arguments. 
We omit the details. 

THEOREM 2.2. Let K E A? be a Morsefunction, uo > 0 be suitably small, 
A > 0 be suitably large. Then for P I , .  . . , P k  E x-, M(P1, .  . . ,Pk) > 0, k 2 1, 
and r > 0 suficiently small, we have 

deg,l ( u  - z(-A8,, + ~ ) - ' ( K I u I ~ - ~ u ) , ~ ~ ( ~ , ,  ..., P ~ ) , O )  

- 

1 

- - (-l)k+C!=l i(P,) 
9 
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where deg,, denotes the Leray-Schauder degree on H1(S4). 

In fact, we can establish a stronger result. 

THEOREM 2.2’. Under the same hypotheses of Theorem 2.2, there exists a 
unique critical point o f t ,  in  PI,. , . , pk). The critical point is nondegenerate 
with Morse index 5k - xf=1 i(Pi).  

Remark 2.3. 
[28] for a proof. 

For 7 > 0 small, u E Z7,1 i (u)  = 0 implies u > 0 on S4. See 

In this paper we will prove only Theorem 2.2, which is enough to establish the 
results in this paper. The proof of Theorem 2.2‘ is similar to that of Theorem 2.2. 
The difference is that we make the calculation at the level of one more derivative 
of I,. With Theorem 2.2’ and the compactness results we have established in 
Theorems 0.8 and 0.9, we can immediately establish some more general existence 
results by recording the information at the level of Morse inequality. 

and (7, a, t ,  P )  y Vr(a, t ,  P )  is a C2 map to H1(S4). 

Proof: 
Appendix that 

For ( a , t , P , v )  E Z,, it follows from (2.2) and Lemma A.2 of the 

i =  I 
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where JV(T, a, t, P, v)l S Cllv1I3 and C depends only on K, VO, and A. 
For p,v  E E t p ,  set 

It is proved in [3] and [4] that there exists some SO > 0 (independent of T )  such 
that 

Qo(v,v) ~ o I I v I I * ,  v v  E Erp .  

We choose EO > 0 sufficiently small from the beginning. Using some elemen- 
tary estimates as in the Appendix, we have, for T > 0 small, 

It follows from Lemma A.l, (A.15), (2.2), and (A.18) that 

Using (A.20), we have, for all (a, t, P, v) E Z, that 

The existence, uniqueness, and C2 dependence of the minimizer ij = &(a, 
t,P) as stated in Proposition 2.4 follows from standard arguments in functional 
analysis. 
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Setting P = (PI,. . . , P k ) ,  Pi = (Yi - (12/K(pi))'I2, vi- It follows from (A.9), 
(A.ll),LemmaA.2,LemmaA.l,and(A.l5)that 

Using (A.21, (A.151, (A.6), (2.2), (A.201, and (A.191, we have 

Hence 

where V ,  satisfies, for (a, r, P, v) E C,, Va,(r,  a, t ,  P, v)  = O(l,B1* + T I  log71 + 
II v II *). 
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It follows that 

Proof Using (2.2) we have 

It follows from (A.6), (A.10), and (A.20) that 
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LEMMA 2.6. 

Proof: It follows from Lemma A.2, Lemma 2.5, and (A.16) that 

5 CT11Vll. 

It follows from Lemma 2.6, (A.10), Lemma A.l,  (A.17), (A.18), and (A.15) 
that 
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It follows from Lemma A.l that 

Using (A.24) and the above, we have 

Using (A.25), 
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It follows from (A.71, (A.3), and (A.8) that 

(2.6) 

Using Lemma A.2, Lemma A.l, and (2.2), we have 

It follows from Lemma A.2 that 
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Using (A. 181, (A.91, (A.61, (A.231, the Sobolev embedding theorem, and the 
above we have 

Using Lemma A.l, (A.24), (A.9), (A.23), and (A.15), we have 
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namely, 

where r&, T ,  a, t ,  P ,  v) 2 vl > 0 with V I  independent of T and 

We write z:(u) E T , H ’ ( S ~ )  as 

asp,.,, Obp,.r, where c E Et,P, 17 E SPan@P,,t#, at,, =I. 
For all cp E E t p ,  it follows, as in the proof of Proposition 2.4, that 

where V ,  is some function satisfying 11 V J T ,  a, t ,  P ,  v) 11 5 C I( v I I  
Taking cp = v, we have, using (2.3), that 

k 
u = & Y i 6 P i . t ,  + v E c, : llvll < 71 log.13, 1/31 < 71 log712 

i= I 

It follows from Proposition 2.4 and (2.5) that Z:(u) f 0, V u  E C, \ zT. 
For u = Zf=l aibp,,t, + v E %,, it follows from (2.4) that 

= -41S41/3; + V a , ( ~ , a , t , P , v )  
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with V,, satisfying IV,, ( .r ,a,f ,P,v) I 5 C(lPI2 + 71 log.rI). 
It follows from (2.6) that 

with V,, satisfying IVf,(T, a, t ,  P, v)l = 0(7~/~). 
It follows from (2.7) that 

1 8  
( q , % )  = - -1, c ff;Sp, , r ,  + v 

aidpi  (;:I ) 

with Vp, satisfying ~ V P , ( T ,  a, t ,  P,  v)l 5 C f i .  
It is well-known that l:(u) = E + q is of the form Id +compact in H1(S4). 
We define 

X@ = < @ + q @ ,  056 5  1, 

by the following: For all cp E E,p,  0 5 6 5 1, 

where Pi(0) is the shortest geodesic trajectory on S4 with P;(l) = P;, P;(O) = F;.  

It is easy to see that XO is well-defined in g,. In addition, from the Sobolev 
compact embedding theorem, the explicit forms of V,, V,,, V,,, Vp,, AV2 < $/.r < 
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A2,  and the estimates we have obtained, Xe is of the form Id + compact. Further- 
more, it is not difficult to see that Xe (0 S 0 I 1 )  is an admissible homotopy with 
Xe IijE, + 0. 

It follows that 

(2.8) degp (XI,%,O) = deg,! (XO,%, ,O) .  

( 7 0 ,  %) = -VK(P;) 

k It is easy to see that Xo(u) = 0, u = xi=, a&,,,, + v E %,, if and only if 

a; = (12/K(Fi))'/2, Pi = P;, v = 0, 

Setting 

It is easy to see that 

Therefore 
aF 
at; 

(To,%) = 161S31-(tl ,..., t k ) .  

Clearly VF(t1,. . . , tk) = 0 if and only if VF(s1,. . . , sk) = 0. I t  is also easy to 
see that F(s1,. . . , sk) is a strictly convex function having a unique critical point in 
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the first quadrant, which has a positive definite Hessian. It follows that F(t l ,  . . . , t k )  
has a unique critical point in the first quadrant with Morse index zero. 

Since XO has precisely one nondegenerate zero in %', it is elementary to see 
that 

Theorem 2.2 follows from (2.8) and (2 .9) .  

PROPOSITION 2.7. Let K E C?(S4) be a positive function, 0 < TO S T 5 
4/ (n  - 2)  - TO. There exists some constant C depending only on TO, min9 K and 
the modulo of continuity of K such that 

(2.10) 

where YC = { u E H1(S4) : IIu-Il < 1/C, l /C < llull < C } .  Furthermore, 

(2.1 1) 

{u E HI(§') : u > o ax. ,  I:(u) = O} c Y C ,  

deg,l (u - ;(-A,,, 1 + 2)-1(Klu12-'u),l~.0) = - 1  

Proof: Consider K ,  = tK + (1 - r ) K * ,  K * ( x )  = x5 + 2. It follows from the 
Kazdan-Warner condition that there is no solution to (0.1) with K = K* . Estimate 
(2.10) follows from the compactness results of [22]. Therefore we only need to 
establish (2.1 1) for K' and T > 0 very small. This follows from Theorem 0.10, 
Proposition 2.1 and Theorem 2.2. 

For 6 > 0 suitably small, let OR,J = {u E H1(S4) : infWEoR IIu - w J I  < 61. 
It follows from theorem B.2 of 1301 that 

deg,! (u - ;(-A,,, 1 + 2)-1(Klul2-'u),b~;,.0) 

+ 2 ) - 1 ( K l u 1 2 - ' u ) , 0 ~ , 0 )  . 

Using (2.11), Proposition 2.1, Theorem 2.2, and the homotopy invariance of 
the Leray-Schauder degree, we have 

Theorem 0.9 follows from the above. 

Proof of part (b) of Theorem 0.8: It is not difficult to see that Morse functions 
in C2(S4)+ \ a? = ad are dense in C2(S4)+ \ d = a d .  Therefore we assume 
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without loss of generality that K E a d  is a Morse function. Let X \ X +  = 
{q(l), . . . , q'")}, it follows from the definition that there exists 1 5 il < -. . < 
ik 5 m (k 2 1) such that p(M(K;q('I), . . . , = 0. By making small C2 
perturbations of K, we can assume without loss of generality that there is only 
one such (il, . . . , ik). We can easily produce a smooth, one-parameter family of 
Morse functions {K,} (-1 S t 5 1) with the following properties: 
(i) For - 1 5 t 5 1, {K,} have the same critical points with the same Morse index 

as K, KO = K, and {K,} are identically the same as K except in some small 
balls around . . . , c f k ) .  

(ii) K, E A? for t f 0. 
(iii) For any 1 5 j1 < ... < j ,  d m,(jl, ..., jr) f (il, ..., id, p(M(K,;q(jl) ,..., 

&I))) have the same sign for - 1 < t < 1. 
(iv) p(M(Kt ;q ( i l ) ,  . . . , q(4))) < 0 for -1 < t < 0, but p(M(K,; . . . , q'"))) > 0 

f o r O < t <  1. 
The above can be achieved easily. The idea is to perturb the function K near 

Using (0.10), we see that 
. . . , q(ik) to change the Hessian of K at . . . , q(jk). 

It follows from Theorem 0.10, (2.12), and the homotopy invariance of the Leray- 
Schauder degree that there exist ti and vi E &,, such that 

It follows from the above, the Harnack inequality, and standard elliptic estimates 
that (0.9) holds. Using part (a) of Theorem 0.9 and (ii), we know that ti - 0. In 
fact, we know that {vi} blows up exactly at the k points q(jl), . . . , q(ik). 

Proof of Theorem 0.10: The proof of Theorem 0.10 is similar to the proof 
of part (b) of Theorem 0.8 and is left to the reader. 

3. Proof of Theorem 0.13 

We consider a situation more general than that in Theorem 0.13. Let K E 
C1(S") be some positive function satisfying that for any critical point qo E S" of 
K, there exists some real number p = p(q0) E [n - 2,n) such that (0.13), (0.14), 
and (0.15) hold in some geodesic normal coordinate system centered at 40. 

Let X,, denote the set of critical points qo of K with P(q0) = n - 2 and 
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THEOREM 3.1. Suppose that K E C'(§") is some positive function satisfying 
that for any critical point qo E §" of K, there exists some real number ,d = 
,d(qo) E [n - 2, n) such that (0.13), (0.14), and (0.15) hold in some geodesic normal 
coordinate system centered at qo. Supposefurther that either #Xi-,  i 1 or for any 
two points q('), q'2' E Xi- ,  and any $) E 88" solving (3.1) with qo = q"', 70 = q(j), 
we have MllM22 < M:2. 

Then for all 0 < a < 1, there exists some constant C such that 

1/c < v < c, IIVI(C2,"(S") < c ,  
for all solutions v of (O.l) ,  

L,, K 0 pPJ(x)x + o for all P E V, t 2 C ,  

and for all R h C, t L C, 

deg ( v  - (-Ag,, + c(n)Ro)-' ( c ( n ) K v s )  , OR, 0 )  

If we further assume that 

for t large, then (0.1) has at least one solution. 

PROFWITION 3.2. Suppose that K E Cl(§"), minqEsll K(q) 2 l/Al for some 
positive constant A I ,  and for any qo E §", V,,K(qo)  = 0, there exists some real 
number P = ,d(qo) E [n - 2 ,n )  such that (0.13), (0.14), and (0.15) hold in some 
geodesic normal coordinate system centered at 90. 

Let {vi} be a sequence of solutions of (0.1) that blows up at {q( ') ,  . . . , q ( k )  }, 
k 2 2. Then we have {q( ' ) ,  . . . , @)} E Xi-,, and for some q(j)  E R" satisfying 
(3.1) with qo = q"), 770 = 77") ( 1  5 j d k) ,  the equation 

k 
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has at least one solution XI,. . . , hk > 0. 

Proof It follows from theorem 4.1 in [30] that, after passing to a subse- 
quence, {v ; }  has only isolated simple blowup points. If {v;} blows up at {q('), . . . , q'k)}, 
k L 2, then it follows from the proof of theorem 4.2 in [30] that p(q'j)) = n - 2, 
l S j S k .  

Since q'j) is an isolated simple blowup point of vi, we let q?' - q'j) (i - 00) 

be the local maximum of vi. Let q?) be the south pole and make a stereographic 
projection to the equatorial plane of S" with y being the stereographic projection 
coordinates. Set 

It follows that (see (0.7)) 

for q f q(J) and close to q'j) where &(q) is some regular function near q(j) satisfying 
L8(,&(q) = 0 near q(j) and the convergence is in the sense of Ck.  

After assing to a subsequence, it follows from the maximum principle that 
for q # qR, v 1 s  j 5 k, 

Let y?) --. 0 denote the local maximum of ui; it is not difficult to see (using 
the fact that the blowup is isolated simple) that Vj(y?))Vi(qY))-' - 1. It follows 
that for lyl > 0 small, 
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Applying Proposition 1.1, we have, for o > 0 small, that 

Multiplying the above by ~ ~ ( y ? ) ) ~ ,  sending i to co, and arguing as before, we have 

( j )  1 0) where ((1) = lim I - x  ul(yl  ) n  ? y ,  
= c(n)[n(n - ~ ) ] - I K ( ~ ' J ) ) .  

It follows from Proposition 1.2 that 

E R" (lemma 2.6 in [30] is used here) and 

It follows that 

Let 
A = ~ ( q ( ~ ) ) ( 3 - " ) / 2  lim vl(q:'))vl(q?))-'.  

It follows from Proposition 1.6, Proposition 1.5, and lemma 2.3 in [30] that 0 < 
A, < 00. 

1-3Li 
J 

Making a change of variable, we obtain that 

K@))F2A,/ y .  VQ$i2'(y + q(J))(l + ly12)-"dy 
R" 

(3.3) 
= -(n - 2)IS"-' l 2  IS" ) - I  CK(q'J')-'12K(q'Y')-1/2Gq(,)(q''))Ap, 

t*J 
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where $ )  = 

Next we derive the equation satisfied by r j ( j ) .  Multiplying (3.2) by Vui  and 
integrating on B,(yy)),  we have 

Integrating by parts we have 

Sending i to 00 we have 

Sending rs  to 0 we have 

Proposition 3.2 follows from (3.3) and (3.4). 

Proof of Theorem 3.1: Let h be a C" function satisfying 

1, O S r  5 1/2, 
0, r ?  1 ,  

h(r) = 

with h'(r) S 0 for all r z 0. 
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For 0 < E < 1, we choose 8 = T(E)  > 0 very small and define, for 2 S s S 1, 

KS(y )  = K(O) + (1 - (1  - s)h(Iyl/T))QcP)(y) + R(y ) ,  

in %geodesic balls of critical points of K and KS = K elsewhere. Clearly K = K ' .  
It is elementary to see that if s is small enough, KS ( E  S s S 1) have the same 
critical points as K and we can, under the hypotheses of Theorem 3.1, apply 
Proposition 3.2and the Kazdan-Warner identity to this family to conclude that all 
solutions v of (0.1) with K replaced by KS (E 5 s 5 1) satisfies C($l < v < C(E) 
on §" and therefore J I v l l p  < C(E). Setting = K", it follows from the homotopy 
invariance of the Leray-Schauder degree that for all R 2 C(E), 

(3.5) deg (v + L;: ( c ( n ) K v S ) , O ~ , 0 )  = deg (v + Li,' ( c (n )kvs ) ,OR,O)  . 

Set 

Let B denote the open unit ball in R"", dB = §", and define 7r : YO x B - X 
by u = 7r(w,[) = T$,w, where w E 9'0, [ = sP(0 5 s < l), P E §", s = 
'-1 (1 5 t < 03). 

It is easy to see that 

T&!,w = T,,;w; pi,: = p-p,! = pp,f-l; pp.1 = Id, V P  E §". 

It follows that 

u = dw, 5) = TIP_p,lw, w = TIPp.lu. 

It follows from lemma 5.4 in [30] that ?r : YO x B - X is a C2 diffeomorphism. 
Now define on X the following functionals: 

j& ( I vu12 + c(n)Rou2) 

(&" Ro Iu( 2 ) 
&" (IVu12 + c(n)Rou2) 

E R , , ~ )  = , EK(u)  = 
(&,JyI.l%) !? 

Let P E §", t 2 1, and let 'p = pP,, be the conformal transformation we have 
defined. It is well-known that 

It is elementary to derive that 

T I X  = span(spherica1 harmonics of degree I 1 } , 
T I  Yo = span{ spherical harmonics of degree 2 2) , 
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where T I X  denotes the tangent space of X at u = 1 and T l Y o  denotes the tangent 
space of Yo at u = 1. 

It is also elementary to see that for W E T I Y O ,  W close to 0, there exist 
p(G) E R, T = T(W)  E Rn+l that are C2 functions such that 

Furthermore, p(0) = 0, ~ ( 0 )  = 0, Dp(0) = 0, Dq(0) = 0. 

corresponds to w = 1. 
Let us use W E T1Yo as local coordinates of w E 90 near w = 1. W = 0 

Let 
2-n 

E ~ ( G )  = E ~ , , ( W )  = ~~2 f,,, 1 v w 1 2  + +)Row', 

where W E T l Y o  and w = 1 + G + p(W) + q(W)  - x  as above. 
It follows from a straightforward computation that 

2-n 
(3.6) E o ( W )  = c(n)Ri'" + Ro" ( IVW12 - nG2) + O ( ~ ~ W ~ ~ ~ ) ,  W E T I Y O .  

The quadratic form in (3.6) is clearly positive definite in T I Y O .  
f,. 

The following propositions are established in [30]. 

PROPOSITION 3.3. There exist 123 = ~ 3 ( n )  > 0, ~4 = ~ 4 ( n )  > 0, such that, if 
IIK - ROIIL"(§l) 5 E 5 E 3 ,  

min EK(w) 
W ~ ~ I ,  

Ilw-III<&4 

has a unique minimizer W K .  Furthermore, D2EK I y , , ( ~ ~ )  is positive definite and 

WK > 0 on. S", 

llwK - 111 5 C(n) inf llK - cIIL&(s,#) 9 
C€R 

IlWK - Illcl s o m ,  
where o,(l)  denotes some quantity depending only on n, which tends to 0 as E 

tends to 0. 

Let 

Nl = {w E Yo : IIw - 111 < ~ ( n ) } ,  

t - 1  
P E S", s = __ 

t 

N 2 0  = { u  E X : u = ~ ( w ,  I)  for some w E N ,  and < = s P ,  

( l S t < ? )  , I 
Jy^2 = J2(m) ,  

N3 = N3(00). 

A'3(?) = { v  E H'(s")  \ (0) : cv E N2(?) for some c > 0} , 
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Remark 3.4. Since 1 4  = &) > 0 is chosen to be small, it is not difficult 
to see that for IIK - R O ~ ~ L X  5 1, any nonzero solution v E X,  of  -&,v = 
~ ( n ) K l v 1 ~ / ' ' - ~ v  on 9' has to be positive and Js,, I V I * ~ / ( ~ - * )  2- l /C(n)  for some 
positive constant C(n) depending only on n. 

PROPOSITION 3.5. There exists some constant 15 = q ( n )  E (0, 11) such that for 
any T I  > 0 and any nonincreasing positive continuousfunction w(r)  (1 S t < 00) 

satisfying 1imrdx w(t) = 0, if a nonconstant function K E Co(Sn) satisfies, for 
t 2 T I ,  that 

IK - RollLxcsl, 5 € 5 9  

IIK O 9 P . r  - K(P)IIL2(§9IIK O VPJ - K(P)ll,&,,) 4) lk,, K O VP.r(x)xl 

for all P E S" and 

then (0.1) has at least one solution. Furthermore, if we assume that K E Ca(S") 
(0 < (Y < l), then there exists some positive constant C2, T2 depending only on 
n,a,TI ,  and w such that, for all t 2 T z ,  R 2 C2, 

- 
Set K ,  = pK + (1 - ~ ) R o  for 0 5 p 5 1. 

Claim: There exists some constant ~7 > 0 such that, for 0 5 p 5 17, 

In addition, if we write any solution v of (0.1) with K = K, (0 d p d 17) in the 
form ~ ~ ' ( c v )  = (w,<), (w,E) E 90 x B,  cv E X ,  then we have w E X I .  

For the proof of the above claim, use the proof of a similar claim in section 7 
of [30] and just substitute Proposition 3.2 from this paper where theorem 4.2 is 
cited there. 

Once E > 0 is chosen small enough, we can apply Proposition 3.2, theorem 
4.4 in [30], and the Hamack inequality to conclude that there exists some constant 
R > 1 such that for all €7 5 p d 1, 

1/R < v, < R ,  

where v, is any solution of (0.1) with K = K,. 
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It follows from the homotopy invariance of the Leray-Schauder degree and 
corollary 6.1 in [30] that 

- n + 2  
deg ( v  + L&, l ( c (n )Kvz ) ,O~ ,O)  = deg ( v  + Li; (c(n)K,,vs),OR,O) 

= (- 1)" deg (kn K,, 0 (PP,,(x)x, S", 0) 

Theorem 3.1 follows immediately from the above, (3 .3 ,  and Proposition 3.5. 

Proof of Theorem 0.13: This theorem follows from Theorem 3.1. 

Proof of Corollary 0.15: This corollary follows from Theorem 0.13 and 
corollary 6.2 of [30]. 

4. Axisymmetric Case and More Than One Blowup Point 

Let y = ( y l , .  . . , y") E W", r = + . . . + (X)2 .  In this section all functions 
are radially symmetric, namely, depending only on r. Let B I  C R" be the unit 
ball, we consider 

- Au = c(n)K(r)uP in B1 , 
u > 0, u is radially symmetric, 

n + 2  2 
-7, o s - r < -  

n - 2 '  

PROPOSITION 4.1. Suppose that K E G$'(Bl) (n 2 3) satisfies, for some positive 
constant Al, that 

(4.2) 

Let u satisfy (4.1). Then for any 0 < E < i, we have 

1/Al 5 K(r) 5 A1 V r  : 0 5 r 5 1 .  

u ( r ) S C ,  V r : & S r s l - & ,  

where C is some positive constant depending only on n, E, A], and the modulo of 
continuity of K in B I .  

PROPOSITION 4.2. Suppose that K E G$'(BI) (n 2 3) satisfies (4.2) for some 
positive constant Al. Then there exists some constant C2 depending only on n, Al, 
and the modulo of continuity of K in B1 such that, for any solution u of ( 4 4 ,  we 
have 

(4.3) u(0) = maxu 
B1/2 
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and 

(4.4) 

Proof of Propositions 4.1 and 4.2: Since u is superharmonic, (4.3) follows 
from the maximum principle. Estimate (4.4) follows from some quite standard 
blowup arguments, uniqueness results of [ 111 and [22], and the radial symmetry 
of u. See, for example, the proof of proposition 2.1 in [28] for an idea of the 
proof. 

PROPOSITION 4.3. Let K E ~ ( B I )  be a nonnegative function and u satisfy 
(4.1). Then u'(r) d Ofor all 0 5 r 5 1. 

Proof 

Let 0 5 T ;  5 n-2 satisfy limi+,s ~i = 0, pi = n-2 - 7;. We consider 

Once we write A as r'-"(r'-'u')', the proposition follows immedi- 
ately. 

2 n + 2  

- Au, = c(n)Ki(r)uiPi in B I  , 
ui > 0, ui is radially symmetric. (4.5) 

Re.mrk 4.4. It follows from Proposition 4.2 that if { K ; }  is a sequence of func- 
tions in Cf(B1) with uniform C' modulo of continuity that satisfy (4.2) for some 
positive constant A, and {u i }  is a sequence of solutions of (4.5) with limi-.m maxB,,2 
ui = 00, then, by setting yi = 0, yi - 0 is an isolated blowup point of {ui}  (see 
Definition 0.2). 

It is not difficult to see that 

PROPOSITION 4.5. For G E T I  Y',, iT close to 0, there exist C2functions p(G) E 
R and q = q(G) E R such thar 
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Furthemtore, p(0) = 0, q(0) = 0, Dp(0)  = 0, Dq(0) = 0. 

The proof of Proposition 4.5 is elementary. 
Let 

where G E T I Y r  and w = 1 + W + p(G) + q(G)x"+' as in Proposition 4.5. It 
follows from a straightforward computation that 

The quadratic form in (4.6) is clearly positive definite in T I Y , .  

Proof of Theorem 0.18: With the above results, we only need to follow the 
arguments in section 6 of [30]. The details are left to the reader. 

Proof of Theorem 0.19: Consider K ,  = p K  + (1 - p)Ro (0 5 p 5 1). Choose 
E > 0 small so that llKE - R o l l ~ x  5 c2, where E~ is the constant in Theorem 
0.18. Under hypothesis (i) or (ii), it follows from Propositions 4.2 and 4.3 and 
the results in section 4 of [30] that there exists CI (depending on n, K ,  E )  such that 

1/c, < v < CI, IIVIIC2~"(§") < CI, 

for all C:(Sn) positive solutions of (0.1) with K = K, ,  E 5 p 5 1. Under hypoth- 
esis (iii), the above estimate is still valid. This can be seen from the computation 
in [30]. In addition, we know OK,@) 2 0 for O small and (T - O)K'(O) 5 0 for O 
close to T. Therefore, in the geodesic normal coordinate system centered at the 
north pole or south pole, we have y V K ( y )  2 0. This information is enough to 
establish that the blowup has to be isolated simple and cannot have more than one 
isolated simple blowup point on S". Applying the Kazdan-Warner identity as in 
[30], we eventually conclude that a blowup can never occur. 

With the above estimates we can establish Theorem 0.19 by using the homotopy 
invariance of the Leray-Schauder degree and Theorem 0.18. 

Proof of Theorem 0.20: Estimate (0.18) follows from Propositions 4.2 and 
4.3, Proposition 3.2, and some standard elliptic estimates. In the following we 
establish (0.19). 

Case I. K(O)K(r )  > clala2. 
In this case, we can actually assume 

(4.7) K ( 0 )  = K ( r )  = 1, la11 + la21 << 1 .  
This can be achieved by constructing a nice family of nonnegative functions 
K,(O 5 t 5 1) such that KO = K, 

K,@)  = K , ( ~ )  + - e y 2  + R : ( e ) ,  c K,(O) = K,(O) + ~ 2 ( t ) O " - *  + Ri(O) ,  
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where K,(n),  K,(O), -al(t), -u.z(t) are positive continuous functions on the inter- 
v a l O S t 5  1, 

K,(O)K,(d > clal(r)a~(r), 0 5 t s 1, 

Ki(0 )  = K I ( ~ )  = 1, lar(l) + la?(l)l << 1 ,  

R',(8) = O ( ( T  - W 2 ) ,  s ( 8 )  = O ( ( T  - 8)nP3) as 8 - T ,  and Ri(8)  = 0(OnP2), 

z ( 8 )  = 0 ( P 3 )  as 8 - 0 uniformly for 0 5 t 5 1. Using Propositions 4.2 and 
4.3 and Proposition 3.2 (keeping track of the dependence of the constants) we 
conclude that the degree for K = KO is the same as the degree for K I that satisfies 

Once K satisfies (4.7), we consider K ,  = pK + (1 - p)Ro (0 S p d 1). It 

dR,  

(4.7). 

follows that for E > 0 small and all sufficiently large C = C(E), 

= deg(v + L;,' (c(n)K,v-), 

Case 11. K(O)K(T) < clala2. 
In [8] Bianchi and Egnell constructed an axisymmetric function K * ( @  > 0 with 
the properties that limodo 02-"K * (13) < 0, lime-,- ( X - ~ ) ~ - " K  * (8)  < 0. In addition, 
(0.1) has no axisymmetric solution for this function. We can easily construct a 
nice family of functions K,, keeping K,(O)K,(r) > clal(t)a~(t) (0 5 t 5 1) and 
connecting K to K * . It follows as before that for all C large, 

= deg(v + & , I  ( c (n )K*v: : f i ) ,  

= o  

Proof of Corollaries 0.22 and 0.24: These corollaries follow from the homo- 
topy invariance of the Leray-Schauder degree and the results we have established. 
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5. A Simpler Proof of a Sobolev-Aubin-Type Inequality in [la] 

For u E H'(Sn), a > 0, set 

Y p  = { u E H ' ( W  :A,, IUlPX = o} , 

The Sobolev Inequality 

For n 2 3, 

(5.1) 

The Aubin Inequality [l] 

For n 2 3 and given any E > 0, there exists some constant C, such that 

The following lemma is pointed out in [ 161 and can be proved in the same way 
as the above Aubin inequality. 

LEMMA 5.1. For n 2 3, 2 < p d 2, given any E > 0, there exists some 
constant C, such that 

(5.2) 

Sobolev-Aubin-ppe Inequality [ 161 

For n Z 3, there exist some constants a*(n)  < 1 and p*(n)  < such that 
for all p*(n)  5 p s 2 
(5.3) 
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The above Sobolev-Aubin type inequality is established in [161. The rest of 

Set 
this section will be devoted to providing a simpler proof of it. 

A,,p = inf Z,(u). 
U € 9 ;  

It is well-known that for u > 0 and 2 5 p < &, A,,, is achieved. 

LEMMA 5.2. 

2n 
A,,, I c(n)Ro for all 0 I a I 1, 2 5 p 5 - n - 2 '  

2n 
lim A,,, = c(n)Ro uniformly for 2 5 p 5 - 
0- I n - 2 '  

Proof The first inequality follows easily by taking the test function u = 
1. The second inequality follows from the Sobolev inequality and the Holder 
inequality. 

Suppose that (5.3) does not hold. Then there exist sequences {Uk},{pk} E R, 
2n 2n 

{ U k }  E ppl, such that Uk < 1, Uk -. 1, pk < n-2, pk -+ n-2, U k  2 0, and 

It follows from (5.4) and (5.2) that for some positive constant C(n)  (independent 
of k )  we have 

Ibkl lHi(S") 5 C(n),  f,.u: 2 1 / C ( n ) .  

It follows, after passing to a subsequence, that Uk - E weakly in HI(§") for some 
u E HI(§") \ (0). 

The Euler-Lagrange equation satisfied by Uk is 

where dh!k = Aak,pk and hk E Rn+'.  
Multiplying (5.5) by Uk and integrating over S'' we have, by using Lemma 5.2, 

that 

(5.6) 

Proof Suppose the contrary; let <k = &/Ink) and (after passing to a sub- 
sequence) [ = limk-, & E §". Let 7 E Cm(Sn) be any test function. We 



590 Y. Y. LI 

multiply (5.5) by lAkl-'q, integrate it over S', and then send k to 00. It follows 
immediately that An< . ~ @ + ~ ) / ( ~ - ~ ) r ]  = 0. Hence U = 0, which is a contradiction. 

Clearly U satisfies 

(5.7) -AZ + c ( n ) ~ o a  = , ( , ) ~ ~ i ; i ( n + 2 ) / ( " - 2 )  + A . &n+2)/ (n-2)  , 

where A = limk-, Ak. 
The Kazdan-Warner identity [27] gives 

It follows that 

A = lim A k  = 0 
k-oo 

It follows from (5.1), (5.71, and (5.8) that 

Therefore A,, I u ~  2 1. 

(5.7) and (5.8)) that 
On the other hand, &,, lUl 5 liminfk-, An Iuklpk = 1. It follows (using also 

(5.9) 

From (5.6) and (5.9) we have that 

Clearly ti E 9% and hence by Obata's result (see [33]) that U = 1. 

easy to see that 

"-2 

In the following we expand ZJu) for u E YE and I(u - l I I , q ( ~ t t )  small. It is 

= span(spherica1 harmonics of degree 2 2). 

Here TIYF denotes the tangent space of 9'; at u = 1. The following lemma is 
elementary. 
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5 p d 2, U E T I Y E ,  U close to 0, there exist C2 LEMMA 5.4. For 
functions p($ E R and 77 = q($ E R"+' such thar 

11 + U + p + q . x I P  = 1 ,  {;: 11 + ii + p + q . x I P x  = 0 .  

Furthermore, p ( 0 )  = 0, ~(0) = 0, Dp(0) = 0, D$O) = 0, and p and 7 have 
uniform (with respect to p )  C2 modulo of continuity near 0. 

It is not difficult to see that for U E T1Y;  

Let us use U E TI  
corresponds to u = 1. 

as local coordinates 

Let 

It follows that there exists some positive constant C(n) (determined by the differ- 
ence of the first and the second eigenvalue of -Ag,)) such that for a close to 1 and 
p close to 2 we have 

It follows from (5.10) and (5.11) that for k large we have IaI(uk) 2 c(n)Ro. 
This is a contradiction. The Sobolev-Aubin-type inequality is thus established. 

Appendix 

Let d(P, x) denote the geodesic distance between P,  x E 9; it is not difficult 
,,-1 

to see that 

t 

1 + v ( 1  - cosd(P,x) )  
6 P , r ( X )  = 
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Let P be the south pole of §" and make a stereographic projection with respect 
to the equatorial plane; we then have 

It is not difficult to see that 

For n = 4, it is easy to see that 

We list below some estimates that can be verified by elementary calculations. 
The above formulae are helpful in verifying Lemmas A.4 through A.7. 

LEMMA A.l. There exists some universal constant C > 0 such that for any 
2 5 a 5 3 andany a,b 2 0 we have 

I ( u  + b)" - aa - b" - aa"-'bJ 5 C U " - ~ ~ ~ ,  

I(a + b)" - aa - b"( 5 C(a"-'b + aha-1). 

LEMMA A.2. For 2 5 CY 5 p, there exists some constant C = C(p) depending 
only on a such that for any a 2 0, b E R, we have 

where y = max(0,a - 3). 

a, b 2 0, we have 
For 1 5 a S 2, there exists some universal constant C > 0 such that for any 

I(a + b)" - ua1 5 C(a"-'b + b"). 

LEMMA A.3. 
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For all the equations above, 

10(T21 lOgT1) I  5 cT21 l O g T ( ,  10(T5/’1 lOgT1) I  5 CT5/’I lOgT1 ,  ... , 

for some constant C depending only on EO and A. 
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LEMMA A S .  Under the hypotheses of Lemma A.4 and t f m, 

(A.9) 

(A.lO) 

(A. 1 1) 

(A.12) 

(A. 13) 

(A. 14) 

(A. 15) 

(A.16) 

(A.17) 

(A. 18) 

(A. 19) 



(A.21) 

where rl, r2 > 0 are some universal constants and C depends only on q , A .  

where C = C(EO,A). 

LEMMA A.I.  
K E C1(S4). Then 

In addition to the hypotheses of Lemma A.4, we assume that 

(A.25) 

where 10(r2)1 5 C r 2  and C denotes some constant depending only on EO,CO, 
IIK IILw, and II OK ll~x(s4). 
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