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Abstract

We establish both upper and lower bounds of the gradient estimates for the
perfect conductivity problem in the case where perfect (stiff) conductors are closely
spaced inside an open bounded domain and away from the boundary. These results
give the optimal blow-up rates of the stress for conductors with arbitrary shape and
in all dimensions.

1. Introduction

LetΩ be a bounded open set in R
n with C2,α boundary, n � 2, 0 < α < 1, D1

and D2 be two bounded strictly convex open subsets in Ω with C2,α boundaries
which are ε apart and far away from ∂Ω , that is

D1, D2 ⊂ Ω, the principal curvature of ∂D1, ∂D2 � κ0,

ε := dist(D1, D2) > 0, dist(D1 ∪ D2, ∂Ω) > r0, diam(Ω) <
1

r0
,

(1.1)

where κ0, r0 > 0 are universal constants independent of ε. We will assume that the
C2,α norms of ∂Di are bounded by some constant independent of ε. This implies
diam(Di ) � r∗

0 for some universal constant r∗
0 > 0 independent of ε. We denote

˜Ω := Ω\D1 ∪ D2.

Given ϕ ∈ C2(∂Ω), consider the following scalar equation with Dirichlet boundary
condition:

{

div(ak(x)∇uk) = 0 in Ω,

uk = ϕ on ∂Ω,
(1.2)
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where

ak(x) =
{

k ∈ (0,∞) in D1 ∪ D2,

1 in Ω\D1 ∪ D2.
(1.3)

It is well known that there exists a unique solution uk ∈ H1(Ω) of the above
equation, which is also the minimizer of Ik on H1

ϕ (Ω), where

H1
ϕ (Ω) := {u ∈ H1(Ω) | u = ϕ on ∂Ω}, Ik[v] := 1

2

∫

Ω

ak |∇v|2.

As explained in the introduction of [10], the above equation in dimension n = 2
can be used as a simple model in the study of composite media with closely spaced
interfacial boundaries. For this purpose, the domain Ω would model the cross-
section of a fiber-reinforced composite, D1 and D2 would represent the cross-
sections of the fibers, ˜Ω would represent the matrix surrounding the fibers, and the
shear modulus of the fibers would be k and that of the matrix would be 1. Equation
(1.2) is then obtained by using a standard model of anti-plane shear, and the solution
uk represents the out of plane elastic displacement. The most important quantities
from an engineering point of view are the stresses, in this case represented by ∇uk .

It is well known that the solution uk satisfies ‖uk‖C2,α(Di )
< ∞. In fact, if ∂D1

and ∂D2 are Cm,α , we have ‖uk‖Cm,α(Di ) < ∞. Such results do not require Di to be
convex and hold for general elliptic systems with piecewise smooth coefficients; see
for example theorem 9.1 in [10] and proposition 1.6 in [9]. For a fixed 0 < k < ∞,
the Cm,α(Di )-norm of the solution might tend to infinity as ε → 0. Babuska,
Anderson, Smith and Levin [4] were interested in linear elliptic systems of elasticity
arising from the study of composite material. They observed numerically that, for
solution u to certain homogeneous isotropic linear systems of elasticity, ‖∇u‖L∞
is bounded independently of the distance ε between D1 and D2. Bonnetier and
Vogelius [6] proved this in dimension n = 2 for the solution uk of (1.2) when
D1 and D2 are two unit balls touching at a point. This result was extended by
Li and Vogelius in [10] to general second order elliptic equations with piecewise
smooth coefficients, where stronger C1,β estimates were established. The C1,β

estimates were further extended by Li and Nirenberg in [9] to general second order
elliptic systems including systems of elasticity. For higher derivative estimates,
for example an ε-independent L∞-estimate of second derivatives of uk in D1, we
draw the attention of readers to the open problem on page 894 of [9]. In [10] and
[9], the ellipticity constants are assumed to be away from 0 and ∞. If we allow
ellipticity constants to deteriorate, the situation is different. It has been shown in
various papers, see for example [7] and [11], that when k = ∞ the L∞-norm of
∇uk for the solution uk of equation (1.2) generally becomes unbounded as ε tends
to zero. The rate at which the L∞ norm of the gradient of a special solution has
been shown in [7] to be ε−1/2.

In this paper, we consider the perfect conductivity problem, where k = +∞. It
was proved by Ammari, Kang and Lim in [1] and Ammari, Kang, H. Lee, J. Lee
and Lim in [3] that, when D1 and D2 are balls of comparable radii embedded in
Ω = R

2, the blow-up rate of the gradient of the solution to the perfect conductivity
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problem is ε−1/2 as ε goes to zero; with the lower bound given in [1] and the
upper bound given in [3]. Yun in [12] generalized the above mentioned result in [1]
by establishing the same lower bound, ε−1/2, for two strictly convex subdomains
in R

2. In this paper, we give both lower and upper bounds to blow-up rates of
the gradient for the solution to the perfect conductivity problem in a bounded
matrix, where two strictly convex subdomains are embedded. Our methods apply
to dimension n � 3 as well. One might reasonably suspect that the blow-up rate
in dimension n � 3 should be smaller than that in dimension n = 2. However we
prove the opposite: As ε goes to zero, the blow-up rate is ε−1/2, (ε| ln ε|)−1 and
ε−1 for n = 2, 3 and n � 4, respectively. We also give a criteria, in terms of a
linear functional of the boundary data ϕ, for the situation where the rate of blow-up
is realized. Note that [1] and [3] contain also results for k < ∞.

The perfect conductivity problem is described as follows:
⎧

⎪

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎪

⎩

∆u = 0 in ˜Ω,

u|+ = u|− on ∂D1 ∪ ∂D2,

∇u ≡ 0 in D1 ∪ D2,
∫

∂Di

∂u
∂ν

|+ = 0 (i = 1, 2),
u = ϕ on ∂Ω.

(1.4)

where

∂u

∂ν

∣

∣

∣

∣

+ := lim
t→0+

u(x + tν)− u(x)

t
.

Here and throughout this paper ν is the outward unit normal to the domain and the
subscript ± indicates the limit from outside and inside the domain, respectively.
The existence and uniqueness of solutions to equation (1.4) are well known, see
the Appendix. Moreover, the solution u ∈ H1(Ω) is the weak limit of the solutions
uk to equations (1.2) as k → +∞. It can be also described as the unique function
which has the least energy in appropriate functional space, defined as I∞[u] =
minv∈A I∞[v], where

I∞[v] := 1

2

∫

˜Ω

|∇v|2, v ∈ A ,

A :=
{

v ∈ H1
ϕ (Ω) |∇v ≡ 0 in D1 ∪ D2} .

The readers can refer to the Appendix for the proofs of the above statements.
We now state more precisely what it means by saying that the boundary of a

domain, say Ω , is C2,α for 0 < α < 1: In a neighborhood of every point of ∂Ω ,
∂Ω is the graph of some C2,α functions of n−1 variables. We define the C2,α norm
of ∂Ω , denoted as ‖∂Ω‖C2,α , as the smallest positive number 1

a such that in the
2a−neighborhood of every point of ∂Ω , identified as 0 after a possible translation
and rotation of the coordinates so that xn = 0 is the tangent to ∂Ω at 0, ∂Ω is given
by the graph of a C2,α function, denoted as f , which is defined as |x ′| < a, the
a−neighborhood of 0 in the tangent plane. Moreover, ‖ f ‖C2,α(|x ′|<a) � 1

a .
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Theorem 1.1. Let Ω, D1, D2 ⊂ R
n, ε be defined as in (1.1), ϕ ∈ C2(∂Ω). Let

u ∈ H1(Ω)∩C1(˜Ω) be the solution to equation (1.4). For ε sufficiently small, there
is a positive constant C which depends only on n, κ0, r0, ‖∂Ω‖C2,α , ‖∂D1‖C2,α

and ‖∂D2‖C2,α , but independent of ε such that

‖∇u‖L∞(˜Ω) � C√
ε
‖ϕ‖C2(∂Ω) f or n = 2,

‖∇u‖L∞(˜Ω) � C

ε| ln ε| ‖ϕ‖C2(∂Ω) f or n = 3,

‖∇u‖L∞(˜Ω) � C

ε
‖ϕ‖C2(∂Ω) f or n � 4.

(1.5)

Remark 1.1. We draw the attention of readers to the independent work of Yun [13]
where he has also established the upper bound, ε−1/2, in R

2. The methods are very
different. Results in this paper and those in [12] and [13] do not really need D1
and D2 to be strictly convex, the strict convexity is only needed for the portions in
a fixed neighborhood (the size of the neighborhood is independent of ε) of a pair
of points on ∂D1 and ∂D2 which realize minimal distance ε. In fact, our proofs of
Theorem 1.1–1.2 also apply, with minor modification, to more general situations
where two inclusions, D1 and D2, are not necessarily convex near points on the
boundaries where minimal distance ε is realized; see discussions after the proofs
of Theorem 1.1–1.2 in Section 1.3.

To prove Theorem 1.1, we first decompose the solution u of equation (1.4) as
follows:

u = C1v1 + C2v2 + v3 (1.6)

where Ci := Ci (ε) (i = 1, 2) is the boundary value of u on ∂Di (i = 1, 2)

respectively, and vi ∈ C2(˜Ω) (i = 1, 2, 3) satisfies
{

∆v1 = 0 in ˜Ω,

v1 = 1 on ∂D1, v1 = 0 on ∂D2 ∪ ∂Ω, (1.7)

{

∆v2 = 0 in ˜Ω,

v2 = 1 on ∂D2, v2 = 0 on ∂D1 ∪ ∂Ω, (1.8)

{

∆v3 = 0 in ˜Ω,

v3 = 0 on ∂D1 ∪ ∂D2, v3 = ϕ on ∂Ω.
(1.9)

Define

Qε[ϕ] :=
∫

∂D1

∂v3

∂ν

∫

∂Ω

∂v2

∂ν
−

∫

∂D2

∂v3

∂ν

∫

∂Ω

∂v1

∂ν
, (1.10)

then Qε : C2(∂Ω) → R is a linear functional.
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Theorem 1.2. With the same conditions in Theorem 1.1, let u ∈ H1(Ω) ∩ C1(˜Ω)

be the solution to equation (1.4). For ε sufficiently small, there exists a positive
constant C which depends on n, κ0, r0, ‖∂Ω‖C2,α , ‖∂D1‖C2,α , ‖∂D2‖C2,α and
‖ϕ‖C2(∂Ω), but is independent of ε such that

‖∇u‖L∞(˜Ω) � |Qε[ϕ]|
C · 1√

ε
f or n = 2,

‖∇u‖L∞(˜Ω) � |Qε[ϕ]|
C · 1

ε| ln ε| f or n = 3,

‖∇u‖L∞(˜Ω) � |Qε[ϕ]|
C · 1

ε
f or n � 4.

(1.11)

Remark 1.2. If ϕ ≡ 0, then the solution to equation (1.4) is u ≡ 0. Theorem 1.1
and Theorem 1.2 are obvious in this case. So we only need to prove them for
‖ϕ‖C2(∂Ω) = 1, by considering u/‖ϕ‖C2(∂Ω).

Remark 1.3. It is interesting to know when |Qε[ϕ]| � 1
C for some positive constant

C independent of ε. Roughly speaking Qε[ϕ] → Q∗[ϕ] as ε → 0, and this amounts
to Q∗[ϕ] 
= 0. For details, see Section 3.

Theorem 1.1–1.2 can be extended to equations with more general coefficients
as follows: Let n, Ω , D1, D2, ε and ϕ be the same as in Theorem 1.1, and let

A2(x) :=
(

ai j
2 (x)

)

∈ C2(˜Ω)

be n × n symmetric matrix functions in ˜Ω satisfying for some constants 0 < λ �
Λ < ∞,

λ|ξ |2 � ai j
2 (x)ξiξ j � Λ|ξ |2, ∀x ∈ ˜Ω, ∀ξ ∈ R

n, (1.12)

and ai j
2 (x) ∈ C2(Ω\D1 ∪ D2).

We consider
⎧

⎪

⎪

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎪

⎪

⎩

∂x j

(

ai j
2 (x) ∂xi u

)

= 0 in ˜Ω,

u|+ = u|− on ∂D1 ∪ ∂D2,

∇u = 0 in D1 ∪ D2,
∫

∂Di
ai j

2 (x)∂xi uν j |+ = 0 (i = 1, 2),
u = ϕ on ∂Ω.

(1.13)

where repeated indices denote summations as usual.
Here is an extension of Theorem 1.1:

Theorem 1.3. With the above assumptions, let u ∈ H1(Ω)∩C1(˜Ω) be the solution
to equation (1.13). For ε sufficient small, there is a positive constant C which
depends only on n, κ0, r0, ‖∂Ω‖C2,α , ‖∂D1‖C2,α , ‖∂D2‖C2,α , λ,Λ and ‖A2‖C2(˜Ω)

,

but independent of ε such that estimate (1.5) holds.

Similar to the decomposition formula (1.6), we decompose the solution u of
equation (1.13) as follows:

u = C1V1 + C2V2 + V3 (1.14)
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where Ci := Ci (ε) (i = 1, 2) is the boundary value of u on ∂Di (i = 1, 2)

respectively, and Vi ∈ C2(˜Ω) (i = 1, 2, 3) satisfies

{

∂x j

(

ai j
2 (x) ∂xi V1

)

= 0 in ˜Ω,

V1 = 1 on ∂D1, V1 = 0 on ∂D2 ∪ ∂Ω, (1.15)

{

∂x j

(

ai j
2 (x) ∂xi V2

)

= 0 in ˜Ω,

V2 = 1 on ∂D2, V2 = 0 on ∂D1 ∪ ∂Ω, (1.16)

{

∂x j

(

ai j
2 (x) ∂xi V3

)

= 0 in ˜Ω,

V3 = 0 on ∂D1 ∪ ∂D2, V3 = ϕ on ∂Ω.
(1.17)

Define

Qε[ϕ] :=
∫

∂D1

ai j
2 (x) ∂xi V3 ν j

∫

∂Ω

ai j
2 (x) ∂xi V2 ν j

−
∫

∂D2

ai j
2 (x) ∂xi V3 ν j

∫

∂Ω

ai j
2 (x) ∂xi V1 ν j , (1.18)

then Qε : C2(∂Ω) → R is a linear functional.

Theorem 1.4. With the same conditions in Theorem 1.3, let u ∈ H1(Ω) ∩ C1(˜Ω)

be the solution to equation (1.13). For ε sufficiently small and Qε[ϕ] defined by
(1.18), there is a positive constant C which depends only on n, κ0, r0, ‖∂D1‖C2,α ,

‖∂D2‖C2,α , λ, Λ and ‖A2‖C2(˜Ω)
, but independent of ε such that estimate (1.11)

holds.

Along the approach in this paper, we have extended, in a subsequent paper [5],
Theorem 1.1 and 1.3 from two inclusions to multiple inclusions, see Theorem 1.5
below.

The complementary problem to the perfect case is the insulated case when
k = 0 in (1.2). For n = 2, Ammari, Kang, H. Lee, J. Lee and Lim have given
in [1] and [3] the optimal bound when D1 and D2 are balls of comparable radii
embedded in Ω = R

2. The blow-up rate of the gradient of solutions is ε−1/2 as
the distance between D1 and D2, ε, goes to zero. They obtained this by converting
the insulated case to the perfect case using harmonic conjugators. The situation for
n � 3 is different since the k = 0 case can not be converted to the k = ∞ case. In
the subsequent paper [5], we have proved that the above mentioned optimal upper
bound ε−1/2 is also an upper bound of ‖∇u‖L∞ for n � 3. In fact, what we have
obtained is a local version of the estimates, see Theorem 1.6 below. On the other
hand, we do not know yet whether the estimates are sharp for n � 3.

Now let, as before,Ω be a bounded open set in R
n with C2,α boundary, n � 2,

0 < α < 1. Instead of two inclusions, let {Di }, i = 1, 2, . . . ,m, be m strictly
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convex open subsets in Ω with C2,α boundaries, m � 2, satisfying

Di ⊂ Ω, the principal curvature of ∂Di � κ0,

εi j := dist(Di , D j ) > 0, (i 
= j)

dist(Di , ∂Ω) > r0, diam(Ω) <
1

r0
,

(1.19)

where κ0, r0 > 0 are universal constants independent of εi j . As before we will
assume that the C2,α norms of ∂Di are under control, while εi j can become very
small.

For i 
= j , let

dist(xi
i j , x j

i j ) = dist(Di , D j ) = εi j > 0, xi
i j ∈ ∂Di , x j

i j ∈ ∂D j ,

and

x0
i j := 1

2
(xi

i j + x j
i j ).

It is easy to see that there exists some positive constant δ which depends only on
κ0, r0 and {‖∂Di‖C2,α }, but is independent of {εi j } such that any ball of radius 2δ
can intersect at most two elements in {Di }. We will only be interested in those pair
i, j satisfying

Bi j := B(x0
i j , δ) intersects both Di and D j . (1.20)

Given ϕ ∈ C2(∂Ω), consider, for m � 2,
⎧

⎪

⎪

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎪

⎪

⎩

∂x j

(

ai j
2 (x) ∂xi u

)

= 0 in ˜Ω := Ω
∖∪m

i=1 Di ,

u|+ = u|− on ∂Di (i = 1, 2, . . . ,m),
∇u = 0 on Di (i = 1, 2, . . . ,m),
∫

∂Di
ai j

2 (x)∂xi uν j |+ = 0 (i = 1, 2, . . . ,m),
u = ϕ on ∂Ω,

(1.21)

where ai j
2 (x) satisfies condition (1.12). Then we have

Theorem 1.5. ([5]) Let Ω, {Dl} ⊂ R
n, {εkl} be defined as in (1.19), n � 2,

ϕ ∈ C2(∂Ω), and let u ∈ H1(Ω) ∩ C1(˜Ω) be the solution to equation (1.21),
with u ≡ Cl on Dl . Then for any pair i, j satisfying (1.20),

‖∇u‖L∞(˜Ω∩Bi j )
� C

|Ci −C j |
εi j

+ C‖ϕ‖C2(∂Ω)

�

⎧

⎪

⎪

⎨

⎪

⎪

⎩

C√
εi j

‖ϕ‖C2(∂Ω) f or n = 2,

C
εi j | ln εi j | ‖ϕ‖C2(∂Ω) f or n = 3,

C
εi j

‖ϕ‖C2(∂Ω) f or n � 4,

(1.22)

where C depends only on n, m, κ0, r0, ‖∂Ω‖C2,α , {‖∂Dl‖C2,α }, λ, Λ and
{

‖akl
2 ‖

C2(˜Ω)

}

.
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All our previous theorems concern perfect inclusions (k = ∞). Now we con-
sider the complementary problem when k = 0 (insulated inclusions) in (1.2).

Let Ω, Di ⊂ R
n , εi j be defined as in (1.19), ϕ ∈ C2(∂Ω). The insulated

conductivity problem can be described as follows, for i = 1, 2, . . . ,m,

⎧

⎪

⎨

⎪

⎩

∂x j

(

ai j
2 (x) ∂xi u

)

= 0 in ˜Ω,

ai j
2 (x)∂xi uν j |+ = 0 on ∂Di ,

u = ϕ on ∂Ω.

(1.23)

The existence and uniqueness of solutions to equation (1.23) are elementary. By
the maximum principle, ‖u‖L∞(˜Ω) � ‖ϕ‖L∞(∂Ω).

To obtain an upper bound of ‖∇u‖L∞(˜Ω) for solutions, we only need to consider
the following local situation: For any pair i, j satisfying (1.20), consider

⎧

⎪

⎨

⎪

⎩

∂x j

(

ai j
2 (x) ∂xi u

)

= 0 in ˜Ω ∩ B(x0
i j , 2δ),

ai j
2 (x)∂xi uν j |+ = 0 on (∂Di ∪ ∂D j ) ∩ B(x0

i j , 2δ),
|u| � 1 in ˜Ω ∩ B(x0

i j , 2δ).

(1.24)

Then we have

Theorem 1.6 ([5]). LetΩ, {Dl} ⊂ R
n, {εkl} be defined as in (1.19), n � 2. For any

pair i, j satisfying (1.20), let u ∈ C1(˜Ω ∩ B(x0
i j , 2δ)) be a solution to equation

(1.24). Then

‖∇u‖L∞(˜Ω∩Bi j )
� C√

εi j
, (1.25)

where the constant C depends only on n, m, κ0, r0, ‖∂Di‖C2,α , ‖∂D j‖C2,α , λ, Λ

and {‖akl
2 ‖

C2(˜Ω)
}.

The paper is organized as follows. In Section 2 we prove Theorem 1.1−1.2. In
Section 3 we give a criteria for |Qε[ϕ]| to be bounded below by a positive constant
independent of ε. Theorem 1.3−1.4 are proved in Section 4. In the Appendix we
present some elementary results for the conductivity problem.

2. Proof of Theorem 1.1 and 1.2

In the introduction, we write u = C1v1 + C2v2 + v3 as in (1.6). To prove
our main theorems, we first estimate ‖∇u‖L∞(˜Ω) in terms of |C1 − C2|, and then
estimate |C1 − C2|.

In this section we use, unless otherwise stated, C to denote various positive
constants whose values may change from line to line and which depend only on n,
κ0, r0, ‖∂Ω‖C2,α , ‖∂D1‖C2,α and ‖∂D2‖C2,α .
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Proposition 2.1. Under the hypotheses of Theorem 1.1, let u be the solution of
equation (1.4). There exists a positive constant C, such that, for sufficiently small
ε > 0,

1

ε
| C1 − C2 |� ‖∇u‖L∞(˜Ω) � C

ε
| C1 − C2 | + C‖ϕ‖C2(∂Ω). (2.1)

To prove this proposition, we first estimate the gradients of v1, v2 and v3. Without
loss of generality, we may assume throughout the proof of the proposition that
‖ϕ‖C2(∂Ω) = 1; see Remark 1.2.

Lemma 2.1. Let v1, v2 be defined by equations (1.7) and (1.8), then for n � 2, we
have

‖∇v1‖L∞(˜Ω) + ‖∇v2‖L∞(˜Ω) � C

ε
,

∥

∥

∥

∥

∂v1

∂ν

∥

∥

∥

∥

L∞(∂Ω)
+

∥

∥

∥

∥

∂v2

∂ν

∥

∥

∥

∥

L∞(∂Ω)
� C.

Proof. By the maximum principle, ‖v1‖L∞(˜Ω) � 1, and since v1 achieves constants
on each connected component of ∂ ˜Ω , and each connected component of ∂ ˜Ω is C2,α

then the gradient estimates for harmonic functions implies that

‖∇v1‖L∞(˜Ω) � C‖v1‖L∞

dist(∂D1, ∂D2)
= C

ε
.

Similarly, we can prove ‖∇v2‖L∞(˜Ω) � C/ε. The second inequality follows from
the boundary estimates for harmonic functions. ��

Before estimating |∇v3|, we first prove:

Lemma 2.2. Let ρ ∈ C2(˜Ω) be the solution to:
{

∆ρ = 0 in ˜Ω,

ρ = 0 on ∂D1 ∪ ∂D2, ρ = 1 on ∂Ω.
(2.2)

Then ‖∇ρ‖L∞(˜Ω) � C.

Proof. Let ρi (i = 1, 2) ∈ C2(Ω\Di ) ∩ C1(Ω\Di ) be the solution to:
{

∆ρi = 0 in Ω\Di ,

ρi = 0 on ∂Di , ρi = 1 on ∂Ω.

Again by the maximum principle and the strong maximum principle, we obtain
0 < ρ1 < 1 in Ω\D1. Since D2 ⊂ Ω\D1, we have ρ1 > 0 = ρ on ∂D2. And
since ρ1 = ρ on ∂D1 and ∂Ω , therefore ρ1 > ρ on ˜Ω . Now because ρ1 = ρ = 0
on ∂D1 and ρ1 > ρ > 0 on ˜Ω , so

‖∇ρ‖L∞(∂D1) � ‖∇ρ1‖L∞(∂D1) � C.

Similarly,

‖∇ρ‖L∞(∂D2) � ‖∇ρ2‖L∞(∂D2) � C.

By the boundary estimate of harmonic functions, we know that ‖∇ρ‖L∞(∂Ω) � C .
Since ∆ρ = 0 in ˜Ω , ∂xiρ is also harmonic, by the maximum principle,

‖∇ρ‖L∞(˜Ω) � max
(‖∇ρ‖L∞(∂D1), ‖∇ρ‖L∞(∂D2), ‖∇ρ‖L∞(∂Ω)

)

� C.

��
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Now, we estimate |∇v3|:
Lemma 2.3. Let v3 be defined by equation (1.9), for n � 2, we have

‖∇v3‖L∞(˜Ω) � C.

Proof. Since v3 = −ρ = ρ = 0 on ∂Di (i = 1, 2), and −ρ � v3 = ϕ � ρ on
∂Ω , we have, by the maximum principle,

−ρ � v3 � ρ in ˜Ω.

It follows, for i = 1, 2, that

‖∇v3‖L∞(∂Di ) � ‖∇ρ‖L∞(∂Di ) � C.

By the boundary estimate,

‖∇v3‖L∞(∂Ω) � C.

By the harmonicity of ∂xi v3 and the maximum principle,

‖∇v3‖L∞(˜Ω) � C.

��
Remark 2.1. Without assuming ‖ϕ‖C2(∂Ω) = 1, we have

‖∇v3‖L∞(∂D1∪∂D2) � C‖ϕ‖L∞(∂Ω),

where C has the dependence specified at the beginning of this section, except that
it does not depend on ‖∂Ω‖C2,α . This is easy to see from the proof of Lemma 2.3.

The above lemma yields the main result of [2].

Corollary 2.1 ([1]). Let B1 and B2 be two spheres with radius R and centered at
(±R ± ε

2 , 0, . . . , 0), respectively. Let H be a harmonic function in R
3. Define u to

be the solution to
⎧

⎨

⎩

∆u = 0 in R
3\B1 ∪ B2,

u = 0 on ∂B1 ∪ ∂B2,

u(x)− H(x) = O(|x |−1) as |x | → +∞.

Then there is a constant C independent of ε such that

‖∇(u − H)‖L∞(R3\B1∪B2)
� C.

Proof. By the maximum principle and interior estimates of harmonic functions, the
C3 norm of u|B2R(0) is bounded by a constant independent of ε. Apply Lemma 2.3
with Ω = B2R(0) and ϕ = u|B2R(0), we immediately obtain the above corollary.
��
With the above lemmas, we give the
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Proof of Proposition 2.1. Since u = C1 on ∂D1, u = C2 on ∂D2, and dist(∂D1,

∂D2) = ε, by the mean value theorem, ∃ ξ ∈ ˜Ω such that

‖∇u‖L∞(˜Ω) � |∇u(ξ)| � |C1 − C2|
ε

.

By the decomposition formula (1.6),

∇u = C1∇v1 + C2∇v2 + ∇v3 = (C1 − C2)∇v1 + C2∇(v1 + v2)+ ∇v3.

Hence,

‖∇u‖L∞(˜Ω)� |C1 − C2|‖∇v1‖L∞(˜Ω) + |C2|‖∇(v1 + v2)‖L∞(˜Ω) + ‖∇v3‖L∞(˜Ω).

By Lemma 2.2, since v1 + v2 = 1 − ρ in ˜Ω , we have

‖∇(v1 + v2)‖L∞(˜Ω) = ‖∇(1 − ρ)‖L∞(˜Ω) = ‖∇ρ‖L∞(˜Ω) � C.

Using the fact we showed in the Appendix, ‖u‖H1(Ω) � C , so |C1| + |C2| � C .
Therefore using also Lemma 2.1 we obtain,

‖∇u‖L∞(˜Ω) � C

ε
| C1 − C2 | + C.

This proof is now completed. ��
Later we will give an estimate of |C1 − C2|, which, together with Proposition 2.1,
yields the lower and upper bounds of ‖∇u‖L∞(˜Ω) for strictly convex subdomains
D1 and D2.

2.1. Estimate of |C1 − C2|

Back to the decomposition formula (1.6), denote

ai j =
∫

∂Di

∂v j

∂ν
(i, j = 1, 2), bi =

∫

∂Di

∂v3

∂ν
(i = 1, 2). (2.3)

We first give some basic lemmas:

Lemma 2.4. Let ai j and bi be defined as in (2.3), then they satisfy the following:

1. a12 = a21 > 0, a11 < 0, a22 < 0,
2. −C � a11 + a21 � − 1

C , −C � a22 + a12 � − 1
C ,

3. |b1| � C, |b2| � C.

By the fourth line of equation (1.4), C1 and C2 satisfy

{

a11C1 + a12C2 + b1 = 0,

a21C1 + a22C2 + b2 = 0.
(2.4)
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By solving the above linear system, using a12 = a21 and a11a22 − a12a21 > 0
which follows from Lemma 2.4, we obtain

C1 = −b1a22 + b2a12

a11a22 − a2
12

, C2 = −b2a11 + b1a12

a11a22 − a2
12

, (2.5)

and therefore,

|C1 − C2| = |b1 − αb2|
|a11 − αa12| , where α = a11 + a12

a22 + a12
> 0. (2.6)

Based on this formula, we will give the estimates for |a11 − αa12| and |b1 − αb2|,
then the estimate for |C1 − C2| follows immediately.

Proof of Lemma 2.4. (1) By the maximum principle and the strong maximum prin-
ciple,

0 < v1 < 1 in ˜Ω.

By the Hopf Lemma, we know that

∂v1

∂ν

∣

∣

∣

∣

∂D1

< 0,
∂v1

∂ν

∣

∣

∣

∣

∂D2

> 0,
∂v1

∂ν

∣

∣

∣

∣

∂Ω

< 0.

Similarly,

∂v2

∂ν

∣

∣

∣

∣

∂D1

> 0,
∂v2

∂ν

∣

∣

∣

∣

∂D2

< 0,
∂v2

∂ν

∣

∣

∣

∣

∂Ω

< 0.

Thus a11 < 0, a12 > 0, a21 > 0 and a22 < 0.
Also, since v1 and v2 are the solutions of equations (1.7) and equations (1.8),

respectively, we have

0 =
∫

˜Ω

∆v1 · v2 −
∫

˜Ω

∆v2 · v1 = −
∫

∂D2

∂v1

∂ν
· 1 +

∫

∂D1

∂v2

∂ν
· 1

= −a21 + a12, (2.7)

that is a21 = a12.
(2) We will prove the first inequality, the second one stands for the same reason.

By the harmonicity of v1 in ˜Ω ,

a11 + a21 = −
∫

˜Ω

∆v1 +
∫

∂Ω

∂v1

∂ν
=

∫

∂Ω

∂v1

∂ν
< 0.

By Lemma 2.1,

a11 + a21 =
∫

∂Ω

∂v1

∂ν
� −C.

On the other hand, since 0 < v1 < 1 in ˜Ω and v1 = 1 on ∂D1, by the boundary
gradient estimates of a harmonic function, ∃ B(x̄, 2r̄) ⊂ ˜Ω , such that v1 > 1/2 in
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B(x̄, r̄), where r̄ is independent of ε. Let ρ ∈ C2(Ω\D2 ∪ B(x̄, r̄)) ∪ C1(∂Ω ∪
∂D2 ∪ ∂B(x̄, r̄)) be the solution of the following equation:

{

∆ρ = 0 in Ω\D2 ∪ B(x̄, r̄),
ρ = 1/2 on ∂B(x̄, r̄) ρ = 0 on ∂D2 ∪ ∂Ω.

By the maximum principle and the strong maximum principle, 0 < ρ < 1/2 in
Ω\D2 ∪ B(x̄, r̄). A contradiction argument based on the Hopf Lemma yields,

−∂ρ
∂ν

� 1

C
on ∂Ω.

On the other hand, since ρ � v1 on the boundary of Ω\D1 ∪ D2 ∪ B(x̄, r̄), we
obtain, via the maximum principle, 0 < ρ � v1 in Ω\D1 ∪ D2 ∪ B(x̄, r̄). It
follows, using ρ = v1 = 0 on ∂Ω , that

∂v1

∂ν
� ∂ρ

∂ν
on ∂Ω.

Thus,

a11 + a21 =
∫

∂Ω

∂v1

∂ν
�

∫

∂Ω

∂ρ

∂ν
� − 1

C
.

(3) Clearly,

0=
∫

˜Ω

∆v1 · v3−
∫

˜Ω

∆v3 · v1 =
∫

∂Ω

∂v1

∂ν
· ϕ+

∫

∂D1

∂v3

∂ν
· 1=

∫

∂Ω

∂v1

∂ν
· ϕ+b1.

Thus,

|b1| =
∣

∣

∣

∣

∫

∂Ω

∂v1

∂ν
· ϕ

∣

∣

∣

∣

�
∫

∂Ω

∣

∣

∣

∣

∂v1

∂ν

∣

∣

∣

∣

� C.

Therefore, we finished the proof. ��

2.2. Estimate of |a11 − αa12|
By a translation and rotation of the axis, we may assume without loss of gen-

erality that D1, D2 are two strictly convex subdomains in Ω ⊂ R
n which satisfy

the following:

(−ε/2, 0′) ∈ ∂D1, (ε/2, 0′) ∈ ∂D2, ε = dist(D1, D2). (2.8)

Near the origin, we can find a ball B(0, r) such that the portion of ∂Di (i = 1, 2)
in B(0, r) is strictly convex, where r > 0 is independent of ε. Then ∂D1 ∩ B(0, r)
and ∂D2 ∩ B(0, r) can be represented by the graph of x1 = f (x ′) − ε/2 and
x1 = g(x ′)+ ε/2 respectively, where x ′ = (x2, . . . , xn). Thus f (0′) = g(0′) = 0,
∇ f (0′) = ∇g(0′) = 0, and −C I �

(

D2 f (0′)
)

� − 1
C I , 1

C I �
(

D2g(0′)
)

� C I .
With these notations, we first estimate aii for i = 1, 2.
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Lemma 2.5. Let aii be defined by (2.3), then

1

C
√
ε

� −aii � C√
ε
, for n = 2, i = 1, 2.

Proof. It suffices to prove it for a11. By the harmonicity of v1, we have

0 =
∫

˜Ω

∆v1 · v1 = −
∫

˜Ω

|∇v1|2 −
∫

∂D1

∂v1

∂ν
= −

∫

˜Ω

|∇v1|2 − a11,

that is

a11 = −
∫

˜Ω

|∇v1|2.

Now we construct a function (here in R
2, we let x = x1, y = x2)

w(x, y) = − x − g(y)− ε
2

g(y)− f (y)+ ε
(2.9)

on Or := ˜Ω ∩ {(x, y) | |y| < r }. It is clear that w(x, y) is linear in x for fixed y
and

w |B(0,r)∩∂D1= 1; w |B(0,r)∩∂D2= 0,

so we have
∫ g(y)+ ε

2

f (y)− ε
2

|∂xw(x, y)|2dx �
∫ g(y)+ ε

2

f (y)− ε
2

|∂xv1(x, y)|2dx,

that is

1

g(y)− f (y)+ ε
�

∫ g(y)+ ε
2

f (y)− ε
2

|∂xv1(x, y)|2.

Integrating on y we get

∫ r/2

0

∫ g(y)+ ε
2

f (y)− ε
2

|∂xv1(x, y)|2dxdy �
∫ r/2

0

1

g(y)− f (y)+ ε
dy

� 1

C

∫ r/2

0

1

y2 + ε
dy = 1

C
√
ε
. (2.10)

Thus

−a11 �
∫ r/2

0

∫ g(y)+ ε
2

f (y)− ε
2

|∂xv1(x, y)|2dxdy � 1

C
√
ε
.

On the other hand, we can find ψ ∈ C2(Ω) such that

ψ = 0 on Or/8, ψ = 1 on ∂D1\(Or/4), ψ = 0 on ∂D2\(Or/4),

ψ = 0 on ∂Ω, and ‖∇ψ‖L∞(Ω) � C.
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We can also find ρ ∈ C2(Ω) such that

0 � ρ � 1, ρ = 1 on Or/2, ρ = 0 on Ω\Or and |∇ρ| � C.

Let w = ρw + (1 − ρ)ψ , then w = 1 = v1 on ∂D1; w = 0 = v1 on ∂D2;
w = 0 = v1 on ∂Ω and w = w on Or/2. Then by the properties of ψ , ρ and the
harmonicity of v1, we have

∫

˜Ω

|∇v1|2 �
∫

˜Ω

|∇w|2 �
∫

˜Ω∩Or/2

|∇w|2 + C. (2.11)

A calculation gives

∂yw = g′(y)(g(y)− f (y)+ ε)− (g(y)− x + ε
2 )(g

′(y)− f ′(y))
(g(y)− f (y)+ ε)2

.

We will show
∫

˜Ω∩Or/2
|∂yw|2 � C . Indeed,

∫ r/2

0

∫ g(y)+ ε
2

f (y)− ε
2

|∂yw(x, y)|2dxdy

� 2
∫ r/2

0

∫ g(y)+ ε
2

f (y)− ε
2

×
(

g′(y)2

(g(y)− f (y)+ ε)2
+ (g(y)− x + ε

2 )
2(g′(y)− f ′(y))2

(g(y)− f (y)+ ε)4

)

dxdy

= 2
∫ r/2

0

g′(y)2

g(y)− f (y)+ ε
dy + 2

∫ r/2

0

(g′(y)− f ′(y))2

g(y)− f (y)+ ε
dy

� C
∫ r/2

0

y2

y2 + ε
dy + C

∫ r/2

0

y2

y2 + ε
dy

� C. (2.12)

Then by (2.11) and (2.12)

|a11| =
∫

˜Ω

|∇v1|2 �
∫

˜Ω∩Or/2

|∇w|2 + C

� C
∫ r/2

0

∫ g(y)+ ε
2

f (y)− ε
2

|Dxw(x, y)|2dxdy + C

= C
∫ r/2

0

1

g(y)− f (y)+ ε
dy + C � C

∫ r/2

0

1

y2 + ε
dy + C

� C√
ε
. (2.13)

The proof is completed. ��
Similarly, we have
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Lemma 2.6. Let aii be defined by (2.3),

1

C
| ln ε| � −aii � C | ln ε|, f or n = 3, i = 1, 2.

Proof. We consider

w(x1, x ′) = − x − g(x ′)− ε
2

g(x ′)− f (x ′)+ ε
(2.14)

on Or/2 := ˜Ω ∩ {(x1, x ′)| |x ′| < r
2 }. Use the same proof in Lemma 2.5, we have

∫ r/2

0

∫ g(x ′)+ ε
2

f (x ′)− ε
2

|∂x ′w(x1, x ′)|2dx1dx ′ � C.

Therefore, it suffices to verify that
∫

˜Ω∩Or/2

|∂x1w(x1, x ′)|2 ∼ | ln ε|.

Indeed,
∫

˜Ω∩Or/2

|∂x1w(x1, x ′)|2 =
∫

|x ′|<r/2

1

g(x ′)− f (x ′)+ ε
dx ′

∼
∫ r/2

0

t

Ct2 + ε
dt ∼ | ln ε|.

This completes the proof. ��
Lemma 2.7. Let aii be defined by (2.3),

1

C
� −aii � C f or n � 4, i = 1, 2.

Proof. We only need

∫

Or/2

|∂x1w(x1, x ′)|2 =
∫

|x ′|<r/2

1

g(x ′)− f (x ′)+ ε
dx ′ ∼

∫ r/2

0

tn−2

Ct2 + ε
dt ∼ C.

The proof is completed. ��
Lemma 2.8. Let α be defined by (2.6), we have

1

C
� α � C.

Proof. By the definition of α and using the second statement in Lemma 2.4, we
are done. ��
To summarize, we have
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Proposition 2.2. Let ai j and α be defined by (2.3) and (2.6), we have

1. 1
C

√
ε

� |a11 − αa12| � C√
ε

f or n = 2,

2. 1
C | ln ε| � |a11 − αa12| � C | ln ε| f or n = 3,

3. 1
C � |a11 − αa12| � C f or n � 4.

Proof. Since a11 < 0, a12 > 0, a11 + a12 < 0 and α > 0, we have

|a11| < |a11 − αa12| < (1 + α)|a11|.
Combining the results of Lemma 2.5, Lemma 2.6, Lemma 2.7 and Lemma 2.8, the
proof is completed. ��

2.3. Estimate of |b1 − αb2|
Proposition 2.3. Let b1, b2, α and Qε[ϕ] be defined by (2.3), (2.6) and (1.10), we
have

|Qε[ϕ]|
C

� |b1 − αb2| � C‖ϕ‖C2(∂Ω).

Proof. Combining the third result in Lemma 2.4 and Lemma 2.8, we have

|b1 − αb2| � |b1| + |α||b2| � C‖ϕ‖C2(∂Ω).

On the other hand, by the definition and the harmonicity of v1 and v2 and using
Lemma 2.4, we obtain

|b1 − αb2| = |b1(a22 + a12)− b2(a11 + a12)|
|a22 + a12|

� 1

C
·
∣

∣

∣

∣

∫

∂D1

∂v3

∂ν

∫

∂Ω

∂v2

∂ν
−

∫

∂D2

∂v3

∂ν

∫

∂Ω

∂v1

∂ν

∣

∣

∣

∣

= |Qε[ϕ]|
C

.

This completes the proof. ��
Now we are ready to prove our two main theorems:

Proof of Theorem 1.1–1.2. By Proposition 2.1 and (2.6), then using Proposition
2.2, 2.3, we are done. ��
As we mentioned in Remark 1.1, the strict convexity assumption of the two inclu-
sions can be weakened. In fact, our proofs of Theorem 1.1–1.2 apply, with minor
modification, to more general situations:

In R
n , n � 2, under the same assumptions in the beginning of Section 1.2

except for the strict convexity condition, ∂D1 ∩ B(0, r) and ∂D2 ∩ B(0, r) can be
represented by the graph of x1 = f (x ′) − ε

2 and x1 = g(x ′) + ε
2 , then f (0′) =

g(0′) = 0, ∇(g − f )(0′) = 0. Assume further that

λ0|x ′|2m � g(x ′)− f (x ′) � λ1|x ′|2m, ∀|x ′| � r/2, (2.15)

for some ε-independent λ0, λ1 > 0,m � 1 ∈ Z.
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Under the above assumption, let u ∈ H1(Ω)∩C1(˜Ω)be the solution to equation
(1.4). For ε sufficiently small, there exist positive constants C and C ′, such that

|Qε[ϕ]|
C ′ · ε− n−1

2m � ‖∇u‖L∞(˜Ω) � C‖ϕ‖C2(∂Ω) · ε− n−1
2m , if n − 1 < 2m,

|Qε[ϕ]|
C ′ · 1

ε| ln ε| � ‖∇u‖L∞(˜Ω)�C‖ϕ‖C2(∂Ω) · 1

ε| ln ε| , if n − 1=2m,

|Qε[ϕ]|
C ′ · 1

ε
� ‖∇u‖L∞(˜Ω) � C‖ϕ‖C2(∂Ω) · 1

ε
, if n − 1 > 2m,

(2.16)

where Qε[ϕ] is defined by (1.10), and C depends on n, m, λ0, λ1, r0, ‖∂Ω‖C2,α ,
‖∂D1‖C2,α and ‖∂D2‖C2,α , C ′ depends on the same as C and also ‖ϕ‖C2(∂Ω), but
both are independent of ε.

The proof is essentially the same except for the computation of
∫

˜Ω
|∇v1|2.

In fact,

∫ r/2

0

∫ g(x ′)+ ε
2

f (x ′)− ε
2

|∂x ′w(x1, x ′)|2dx1dx ′ � C,

still holds. Then by (2.10) and (2.13) we only need to calculate

∫

|x ′|<r/2

1

g(x ′)− f (x ′)+ ε
dx ′ ∼

∫ r/2

0

ρn−2

ρ2m + ε
dρ.

Indeed, if n − 1 < 2m,

∫ r/2

0

ρn−2

ρ2m + ε
dρ = ε

n−1
2m −1

∫ r/2ε
1

2m

0

sn−2

s2m + 1
ds ∼ Cε

n−1
2m −1,

if n − 1 = 2m,

∫ r/2

0

ρn−2

ρ2m + ε
dρ = 1

2m

∫ r/2

0

1

ρ2m + ε
dρ2m ∼ C | ln ε|,

if n − 1 > 2m,

∫ r/2

0

ρn−2

ρ2m + ε
dρ ∼ C.

Therefore, we obtain (2.16) by using the same arguments in the proofs of Theo-
rem 1.1 and Theorem 1.2.

Actually, we can replace 2m by any real number β > 0, the results still hold.
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3. Estimate of | Qε[ϕ]|
In order to identify situations when ‖∇u‖L∞ behaves exactly as the upper bound

established in Theorem 1.1, we estimate in this section |Qε[ϕ]|. To emphasize the
dependence on ε, we denote D1, D2 by D1ε, D2ε, denote ϕ by ϕε, and denote v1, v2,
v3 defined by equation (1.7), (1.8), (1.9) as v1ε, v2ε, v3ε. In this section we assume,
in addition to the hypotheses in Theorem 1.1, that along a sequence ε → 0 (we
still denote it as ε), D1ε → D∗

1 , D2ε → D∗
2 in C2,α norm, ϕε → ϕ∗ in C1,α(∂Ω).

We use notation ˜Ω∗ = Ω\D∗
1 ∪ D∗

2 , and assume, without loss of generality, that
D∗

1 ∩ D∗
2 = {0}. We will show that as ε → 0, viε converges, in an appropriate

sense, to v∗
i which satisfies

{

∆v∗
1 = 0 in ˜Ω∗,

v∗
1 = 1 on ∂D∗

1\{0}, v∗
1 = 0 on ∂Ω ∪ ∂D∗

2\{0}, (3.1)

{

∆v∗
2 = 0 in ˜Ω∗,

v∗
2 = 1 on ∂D∗

2\{0}, v∗
2 = 0 on ∂Ω ∪ ∂D∗

1\{0}, (3.2)

{

∆v∗
3 = 0 in ˜Ω∗,

v∗
3 = 0 on ∂D∗

1 ∪ ∂D∗
2 , v∗

3 = ϕ∗ on ∂Ω.
(3.3)

First we prove

Lemma 3.1. There exist unique v∗
i ∈ L∞(˜Ω∗) ∩ C0(˜Ω∗ \ {0}) ∩ C2(˜Ω∗),

i = 1, 2, 3, which solve equations (3.1), (3.2) and (3.3) respectively. Moreover,

v∗
i ∈ C1(˜Ω∗\{0}).

Proof. The existence of solutions to the above equations can easily be obtained
by Perron’s method, see theorem 2.12 and lemma 2.13 in [8]. For the reader′s
convenience, we give below a simple proof of the uniqueness. We only need to

prove that 0 is the only solution in L∞(˜Ω∗) ∩ C0(˜Ω∗ \ {0}) ∩ C2(˜Ω∗) to the
following equation:

{

∆w = 0 in ˜Ω∗,
w = 0 on ∂ ˜Ω∗\{0}. (3.4)

Indeed, ∀ ε > 0, we have

|w(x)| �
εn−2‖w‖L∞(˜Ω∗)

|x |n−2 , on ∂(˜Ω∗\Bε(0)).

By the maximum principle,

|w(x)| �
εn−2‖w‖L∞(˜Ω∗)

|x |n−2 , ∀ x ∈ ˜Ω∗\Bε(0).

Thus w ≡ 0 in ˜Ω∗. The additional regularity v∗
i ∈ C1(˜Ω∗ \ {0}) follows from

standard elliptic estimates and the regularity of the ∂Di and ∂Ω . ��
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Lemma 3.2. For i = 1, 2, 3,

viε −→ v∗
i in C2

loc(
˜Ω∗), as ε → 0, (3.5)

∫

∂Ω

∂viε

∂ν
−→

∫

∂Ω

∂v∗
i

∂ν
, as ε → 0, i = 1, 2, (3.6)

∫

∂Diε

∂v3ε

∂ν
−→

∫

∂D∗
i

∂v∗
3

∂ν
, as ε → 0. (3.7)

Proof. By the maximum principle, {‖viε‖L∞} is bounded by a constant independent
of ε. By the uniqueness part of Lemma 3.1, we obtain (3.5) using standard elliptic
estimates. By Lemma 2.3, {‖∇v3ε‖L∞} is bounded by some constant independent
of ε, so ‖∇v∗

3‖L∞ < ∞. Estimate (3.6) and (3.7) follow from standard elliptic
estimates. The proof is completed. ��
Similar to Qε[ϕε], we define

Q∗[ϕ∗] :=
∫

∂D∗
1

∂v∗
3

∂ν

∫

∂Ω

∂v∗
2

∂ν
−

∫

∂D∗
2

∂v∗
3

∂ν

∫

∂Ω

∂v∗
1

∂ν
, (3.8)

then Q∗ : C2(∂Ω) �→ R is a linear functional. Let Qε[ϕε] and Q∗[ϕ∗] be defined
by equation (1.10), (3.8), then, by the above lemmas,

Qε[ϕε] −→ Q∗[ϕ∗], as ε → 0.

Corollary 3.1. If ϕ∗ ∈ C2(∂Ω) satisfies Q∗[ϕ∗] 
= 0, then |Qε[ϕε]| � 1
C , for

some positive constant C which is independent of ε.

In the following we give some examples to show that, in general, the rates of
the lower bounds established in Theorem 1.2 are optimal. Let Ω ⊂ R

n , n � 2,
be a bounded open set with C2,α boundary, 0 < α < 1, which is symmetric with
respect to x1-variable, that is, (x1, x ′) ∈ Ω if and only if (−x1, x ′) ∈ Ω , where
x ′ = (x2, · · · , xn).

Let D∗
1 be a strictly convex bounded open set in {(x1, x ′) ∈ R

n|x1 < 0} with
C2,α boundary, 0 < α < 1, satisfying 0 ∈ ∂D∗

1 and D∗
1 ⊂ Ω . Set D∗

2 = {(x1, x ′) ∈
R

n|(−x1, x ′) ∈ D∗
1}.

Let ϕ ∈ C2(∂Ω)\{0} satisfy

ϕodd(x1, x ′) := 1

2

[

ϕ(x1, x ′)− ϕ(−x1, x ′)
]

� 0 (or � 0), (3.9)

on (∂Ω)+ := {(x1, x ′) ∈ ∂Ω|x1 > 0}.
For ε > 0 sufficiently small, let

D1ε :=
{

(x1, x ′) ∈ Ω
∣

∣

∣(x1 + ε

2
, x ′) ∈ D∗

1

}

,

D2ε :=
{

(x1, x ′) ∈ Ω
∣

∣

∣(x1 − ε

2
, x ′) ∈ D∗

2

}

,

ϕε := ϕ.
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Proposition 3.1. Under the above assumptions, we have |Qε[ϕ]| � 1
C , for some

positive constant C independent of ε. Consequently,

‖∇uε‖L∞(˜Ω) � 1
C

√
ε

for n = 2,

‖∇uε‖L∞(˜Ω) � 1
Cε| ln ε| for n = 3,

‖∇uε‖L∞(˜Ω) � 1
Cε for n � 4,

(3.10)

where uε is the solution to equation (1.4).

The above proposition can be easily obtained by the following lemma which
gives a necessary and sufficient condition instead of condition (3.9) on ϕ for the
lower bounds (3.10) to hold.

Let

(v∗
3)odd(x1, x ′) := 1

2

[

v∗
3(x1, x ′)− v∗

3(−x1, x ′)
]

, (3.11)

we have

Lemma 3.3. Under the same hypotheses in Proposition 3.1 except for the condition
(3.9), let Qε[ϕ] and (v∗

3)odd(x) be defined by equation (1.10) and (3.11), then the
following statements are equivalent:
1. For some positive constant C independent of ε, we have |Qε[ϕ]| � 1

C ,

2.
∫

∂D∗
2

∂(v∗
3 )odd
∂ν


= 0.

Proof. By symmetry, the strong maximum principle and the Hopf Lemma, we can
easily obtain

∫

∂Ω

∂v∗
1

∂ν
=

∫

∂Ω

∂v∗
2

∂ν
< 0.

Then

Q∗[ϕ] =
∫

∂Ω

∂v∗
1

∂ν

(

∫

∂D∗
1

∂v∗
3

∂ν
−

∫

∂D∗
2

∂v∗
3

∂ν

)

=
∫

∂Ω

∂v∗
1

∂ν

(

∫

∂D∗
1

∂(v∗
3)odd

∂ν
−

∫

∂D∗
2

∂(v∗
3)odd

∂ν

)

= −2
∫

∂Ω

∂v∗
1

∂ν

∫

∂D∗
2

∂(v∗
3)odd

∂ν
.

Hence, Q∗[ϕ] 
= 0 if and only if
∫

∂D∗
2

∂(v∗
3 )odd
∂ν


= 0. Then by Corollary 3.1, we
complete the proof. ��
Proof of Proposition 3.1. Note that (v∗

3)odd(0, x ′) = 0 by symmetry, and (v∗
3)odd

is harmonic with (v∗
3)odd = ϕodd � 0 (or � 0) but not identically zero on (∂Ω)+.

Now by using the strong maximum principle and the Hopf Lemma, it is clear that
∫

∂D∗
2

∂(v∗
3 )odd
∂ν


= 0, Hence, by Lemma 3.3 and Theorem 1.2, we are done. ��
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Remark 3.1. If ϕ = ∑n
i=1 bi xi with bi ∈ R and b1 
= 0, then by Proposition 3.1

we have |Qε[ϕ]| � 1
C . Therefore, by Theorem 1.1 and 1.2, the blow-up rates of

‖∇u‖L∞(˜Ω) are ε−1/2 in dimension n = 2, (ε| ln ε|)−1 in dimension n = 3 and
ε−1 in dimension n � 4.

Now instead of a bounded set Ω , we consider R
n :

⎧

⎪

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎪

⎩

∆uε = 0 in R
n\D1ε ∪ D2ε,

uε|+ = uε|− on ∂D1ε ∪ ∂D2ε,

∇uε ≡ 0 in D1ε ∪ D2ε,
∫

∂Diε

∂uε
∂ν

|+ = 0 (i = 1, 2),
lim sup|x |→∞ |x |n−1|uε(x)− H(x)| < ∞,

(3.12)

where H(x) is a given entire harmonic function in R
n .

we have the following result regarding the lower bound for |∇uε|:
Proposition 3.2. With the same assumptions on D1ε and D2ε as in Proposition 3.1,
and let H(x) be an entire harmonic function in R

n satisfying Hodd(x1, x ′) :=
1
2

[

H(x1, x ′)− H(−x1, x ′)
]

< 0 (or > 0) on R
n+ := {(x1, x ′) ∈ R

n|x1 > 0}, then
for some positive constant C independent of ε, we have

‖∇uε‖L∞(Rn\D1ε∪D2ε)
� 1

C
√
ε

f or n = 2,

‖∇uε‖L∞(Rn\D1ε∪D2ε)
� 1

Cε| ln ε| f or n = 3,

‖∇uε‖L∞(Rn\D1ε∪D2ε)
� 1

Cε f or n � 4,

(3.13)

where uε is the solution to equation (3.12).

Proof. Step 1. First, we show that there exists a positive constant C independent
of ε, such that for any small ε > 0,

|x |n−1|uε(x)− H(x)| � C, ∀ x ∈ R
n\D1ε ∪ D2ε. (3.14)

(i) For any bounded open set U ⊂ R
n with C1 boundary ∂U satisfying

∂U ∩ D1ε ∪ D2ε = ∅, we have, in view of the first and the fourth lines in (3.12),
∫

∂U

∂uε
∂ν

=
∫

U\D1ε∪D2ε

∆uε = 0. (3.15)

(ii) We show that there exists a positive constant M independent of ε, such that

‖uε − H‖L∞(Rn\D1ε∪D2ε)
� M, ∀ small ε > 0.

We only need to prove

‖uε − H‖L∞(Rn\D1ε∪D2ε)
�

2
∑

i=1

(

max
Diε

H − min
Diε

H

)

. (3.16)

Since ∇uε = 0 in D1ε ∪ D2ε, uε is constant on each Diε, denoted as Ci (ε). We
know that

lim|x |→∞(uε(x)− H(x)) = 0, (3.17)

and
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Ci (ε)− max
Diε

H � uε − H � Ci (ε)− min
Diε

H, on Diε, i = 1, 2. (3.18)

If (3.16) did not hold, say,

sup
Rn
(uε − H) >

2
∑

i=1

(

max
Diε

H − min
Diε

H

)

,

then, because of (3.17) and (3.18), there would exist 0 < a < sup
Rn
(uε − H) such

that U := {x ∈ R
n | (uε − H)(x) > a} 
= ∅ satisfies ∂U ∩ D1ε ∪ D2ε = ∅. We

may assume, by the Sard theorem, that a is a regular value of uε− H , and therefore

∂U is C1. By the Hopf lemma,
∂(uε − H)

∂ν
< 0 on ∂U , and therefore

∫

∂U

∂(uε − H)

∂ν
< 0.

On the other hand, using (3.15) and the harmonicity of H in U , we have
∫

∂U

∂(uε − H)

∂ν
= −

∫

∂U

∂H

∂ν
= −

∫

U
∆H = 0.

A contradiction.
(iii) Consider wε(x) := uε(x) − H(x). Fix a constant R0 > 0, independent of ε,
such that D∗

1 ∪ D∗
2 ⊂ BR0/2(0), and let

w̃ε(y) := 1

|y|n−2wε

(

y

|y|2
)

, 0 < |y| < 1

R0
.

Then w̃ε is harmonic in B1/R0\{0}. By the last line of (3.12), there exists a positive
constant C(ε) such that

|w̃ε(y)| � C(ε)|y|, 0 < |y| < 1

R0
.

Therefore,∆w̃ε = 0 in B1/R0 and w̃ε(0) = 0. By (ii), we have |w̃ε| � C , on ∂B1/R0 ,
for some positive constant C independent of ε. Hence, |w̃ε| � C, |∇w̃ε| � C in
B1/(2R0), then

|w̃ε(y)| � C |y|, |y| < 1

2R0
.

Therefore, also using (ii), (3.14) holds.
Step 2. For R > R0, let Ω = BR(0). Let ϕε := uε|∂Ω , then by Corollary 3.1
and Theorem 1.2 it is enough to show, for some R, that Q∗[ϕ∗] 
= 0, where ϕ∗ is
defined at the beginning of this section. By symmetry, we have

Q∗[ϕ∗] =
∫

∂Ω

∂v∗
1

∂ν

(

∫

∂D∗
1

∂v∗
3

∂ν
−

∫

∂D∗
2

∂v∗
3

∂ν

)

.
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Without loss of generality, we may assume Hodd(x) > 0 on R
n+. Recall that

v∗
3 is the solution of (3.3) with boundary data ϕ∗. In the following we use notation
(v∗

3)h to denote the solution of (3.3) with boundary data h. Since Q∗[ϕ∗] is linear
on ϕ∗ and by symmetry Q∗[Heven] = H [ϕ∗

even] = 0, where Heven(x) := H(x) −
Hodd(x) = 1

2

[

H(x1, x ′)+ H(−x1, x ′)
]

and similar for ϕ∗
even, we may assume

H(x) = Hodd(x).
Now consider w(x) = H(x)− (v∗

3)H (x). Then w(x) is harmonic in ˜Ω∗ which
is defined at the beginning of this section. By symmetry,w(−x1, x ′) = −w(x1, x ′),
w(x) = H(x) on ∂D∗

1 ∪ ∂D∗
2 and w(x) = 0 on ∂Ω . Therefore,

−2
∫

∂D∗
2

H
∂w

∂ν
=

∫

˜Ω∗
w(x)∆w(x)+

∫

˜Ω∗
|∇w|2 =

∫

˜Ω∗
|∇w|2 � 0.

On the other hand, (v∗
3)H = 0 on ∂D∗

2 , (v∗
3)H > 0 on (∂Ω)+ and, by the oddness of

(v∗
3)H , (v∗

3)H = 0 on {(x1, x ′) | x1 = 0}. Thus, by the maximum principle and the
strong maximum principle, (v∗

3)H > 0 in ˜Ω∗ and in turn, using the Hopf lemma,
∂(v∗

3)H

∂ν
> 0 on ∂D∗

2 . Hence, using the harmonicity of H ,

max
∂D∗

2

H
∫

∂D∗
2

∂(v∗
3)H

∂ν
�

∫

∂D∗
2

H
∂(v∗

3)H

∂ν
�

∫

∂D∗
2

H
∂H

∂ν
−

∫

∂D∗
2

H
∂w

∂ν

�
∫

D∗
2

|∇H |2 � 1

C
,

Therefore,
∫

∂D∗
2

∂(v∗
3)H

∂ν
� 1

C
,

for positive constant C independent of R.
For sε := ϕε − H on ∂Ω , by step 1, there exists a constant C > 0 which is

independent of ε and R, such that ‖sε‖L∞(∂Ω) � C R1−n . By Remark 2.1, we have
‖∇(v∗

3)s∗‖L∞(∂D∗
1∪∂D∗

2 )
� C‖s∗‖L∞(∂Ω), thus,

∣

∣

∣

∣

∣

∫

∂D∗
i

∂(v∗
3)s∗

∂ν

∣

∣

∣

∣

∣

� C
∫

∂D∗
i

‖s∗‖L∞(∂Ω) � C R1−n,

for some positive constant C independent of ε and R.
Therefore, for large enough R,

∫

∂D∗
2

∂(v∗
3)ϕ∗

∂ν
=

∫

∂D∗
2

∂(v∗
3)H

∂ν
+

∫

∂D∗
2

∂(v∗
3)s∗

∂ν
� 1

C

= 0.

It is also clear that
∫

∂Ω

∂v∗
1

∂ν
< 0, Thus,

Q∗[ϕ∗] = −2
∫

∂Ω

∂v∗
1

∂ν

∫

∂D∗
2

∂(v∗
3)ϕ∗

∂ν

= 0.

This proof is completed. ��
Remark 3.2. In R

2, when D1ε and D2ε are identical balls of radius 1, the estimate
(3.13) was established in [2] under a weaker assumption ∂x1 H(0) 
= 0.
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4. Proof of Theorem 1.3 and 1.4

In the introduction, similar to the harmonic case, we still decompose
u = C1V1 + C2V2 + V3 as in (1.14). Proposition 2.1 holds since Lemma 2.1−2.3
hold for V1, V2, V3 defined by (1.15)−(1.17) and ρ ∈ C2(˜Ω) which is the solution
to:

{

∂x j

(

ai j
2 (x) ∂xiρ

)

= 0 in ˜Ω,

ρ = 0 on ∂D1 ∪ ∂D2, ρ = 1 on ∂Ω.

The proofs are essentially the same. Now we start to estimate |C1 − C2|. By the
decomposition formula (1.14), instead of (2.3), we denote

alm =
∫

∂Dl

ai j
2 (x) ∂xi Vm ν j (l,m = 1, 2),

bl =
∫

∂Dl

ai j
2 (x) ∂xi V3 ν j (l = 1, 2).

(4.1)

Then Lemma 2.4 and (2.4)−(2.6) still hold for alm and bl defined above. In fact,
to prove Lemma 2.4 with general coefficients, we only need to change ∂∗

∂ν
to

ai j
2 (x) ∂xi ∗ ν j , change∆∗ in ∂x j

(

ai j
2 (x) ∂xi ∗

)

and change v1, v2, v3 in V1, V2, V3,

respectively, in the original proof of Lemma 2.4. For instance, (2.7) is changed to

0 =
∫

˜Ω

∂x j

(

ai j
2 (x) ∂xi V1

)

· V2 −
∫

˜Ω

∂x j

(

ai j
2 (x) ∂xi V2

)

· V1

= −
∫

∂D2

ai j
2 (x) ∂xi V1 ν j · 1 +

∫

∂D1

ai j
2 (x) ∂xi V2 ν j · 1

= −a21 + a12. (4.2)

Therefore, to estimate |C1 − C2|, it is equivalent to estimating |a11 − αa12| and
|b1 − αb2|. For |a11 − αa12|, Lemma 2.5−2.7 still hold for all(l = 1, 2) defined
by (4.1). The proof is quite similar and the only thing which needs to be shown is
the following:

0 =
∫

˜Ω

∂x j

(

ai j
2 (x) ∂xi V1

)

· V1

= −
∫

˜Ω

ai j
2 (x) ∂xi V1∂x j V1 −

∫

∂D1

ai j
2 (x) ∂xi V1 ν j · 1

= −
∫

˜Ω

ai j
2 (x) ∂xi V1∂x j V1 − a11,

that is

a11 = −
∫

˜Ω

ai j
2 (x) ∂xi V1∂x j V1.

Then by the uniform ellipticity of ai j
2 (x) and the harmonicity of v1,

|a11| � λ

∫

˜Ω

|∇V1|2 � λ

∫

˜Ω

|∇v1|2,
and
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|a11| �
∫

˜Ω

ai j
2 (x) ∂xiw∂x jw � Λ

∫

˜Ω

|∇w|2 � Λ

∫

˜Ω∩Or/2

|∇w|2 + C,

where w is defined in the proof of Lemma 2.5 with the same boundary data of V1
and w is defined by (2.9) and (2.14). Thus, Lemma 2.5−2.7 follow by the same
computations. Then Lemma 2.8 and Proposition 2.2 hold with the same proofs.
For |b1 − αb2|, Proposition 2.3 also holds for bl(l = 1, 2) defined by (4.1) and
Qε[ϕ] defined by (1.18). The proof is the same after changing ∂∗

∂ν
to ai j

2 (x) ∂xi ∗ ν j .
Combining the above propositions, we obtain our theorems.

Acknowledgments The second author is partially supported by NSF grant DMS-0701545.

5. Appendix: Some elementary results for the conductivity problem

Assume that in R
n , Ω and ω are bounded open sets with C2,α boundaries,

0 < α < 1, satisfying

ω =
m
⋃

s=1

ωs ⊂ Ω,

where {ωs} are connected components of ω. Clearly, m < ∞ and ωs is open for
all 1 � s � ω. Given ϕ ∈ C2(∂Ω), the conductivity problem we consider is the
following transmission problem with Dirichlet boundary condition:

{

∂x j

{[(

kai j
1 (x)− ai j

2 (x)
)

χω + ai j
2 (x)

]

∂xi uk

}

= 0 in Ω,

uk = ϕ on ∂Ω,
(5.1)

where k = 1, 2, 3, . . ., and χω is the characteristic function of ω.

The n × n matrices A1(x) :=
(

ai j
1 (x)

)

in ω, A2(x) :=
(

ai j
2 (x)

)

in Ω\ω are

symmetric and ∃ a constant Λ � λ > 0 such that

λ|ξ |2 � ai j
1 (x)ξiξ j � Λ|ξ |2 (∀x ∈ ω), λ|ξ |2 � ai j

2 (x)ξiξ j � Λ|ξ |2 (∀x ∈ Ω\ω)
for all ξ ∈ R

n and ai j
1 (x) ∈ C2(ω), ai j

2 (x) ∈ C2(Ω\ω).
Equation (5.1) can be rewritten in the following form to emphasize the trans-

mission condition on ∂ω:
⎧

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎩

∂x j

(

ai j
1 (x) ∂xi uk

)

= 0 in ω,

∂x j

(

ai j
2 (x) ∂xi uk

)

= 0 in Ω\ω,
uk |+ = uk |−, on ∂ω,

ai j
2 (x)∂xi ukν j

∣

∣

∣+ = kai j
1 (x)∂xi ukν j

∣

∣

∣− on ∂ω,

uk = ϕ on ∂Ω.

(5.2)

Here and throughout this paper ν is the outward unit normal and the subscript ±
indicates the limit from outside and inside the domain, respectively. We list the
following results which are well known and omit the proofs.



Gradient Estimates for the Perfect Conductivity Problem

Theorem 5.1. If uk ∈ H1(Ω) is a solution of equation (5.1), then uk ∈ C1(Ω\ω)∩
C1(ω) and satisfies equation (5.2).

If uk ∈ C1(Ω\ω) ∩ C1(ω) is a solution of equation (5.2), then uk ∈ H1(Ω)

and satisfies equation (5.1).

Theorem 5.2. There exists at most one solution uk ∈ H1(Ω) to equation (5.1).

The existence of the solution can be obtained by using the variational method.
For every k, we define the energy functional

Ik[v] : = k

2

∫

ω

ai j
1 (x)∂xi v∂x j v + 1

2

∫

Ω\ω
ai j

2 (x)∂xi v∂x j v, (5.3)

where v belongs to the set

H1
ϕ (Ω) := {v ∈ H1(Ω)| v = ϕ on ∂Ω}.

Theorem 5.3. For every k, there exists a minimizer uk ∈ H1(Ω) satisfying

Ik[uk] = min
v∈H1

ϕ (Ω)
Ik[v].

Moreover, uk ∈ H1(Ω) is a solution of equation (5.1).

Comparing equation (5.2), when k = +∞, the perfectly conducting problem
turns out to be:

⎧

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎩

∂x j

(

ai j
2 (x) ∂xi u

)

= 0 in Ω\ω,
u|+ = u|− on ∂ω,

∇u = 0 in ω,
∫

∂ωs

ai j
2 (x)∂xi uν j |+ = 0 (s = 1, 2, · · · ,m),

u = ϕ on ∂Ω.

(5.4)

We also have similar results:

Theorem 5.4. If u ∈ H1(Ω) satisfies equation (5.4) except for the fourth line, then
u ∈ C1(Ω\ω) ∩ C1(ω).

Proof. By the third line of equation (5.4), we have u ≡ const on each component
of ω, so u ≡ const on each component of ∂ω. Thus u ≡ const on each component
of ∂(Ω\ω).

Since u ∈ H1(Ω) satisfies ∂xi

(

ai j
2 (x) ∂xi uk

)

= 0 in Ω\ω, u|∂Ω =
ϕ ∈ C2(∂Ω) and u ≡ const on each component of ∂(Ω\ω), by the elliptic regu-
larity theory, we have u ∈ C1(Ω\ω) ∩ C1(ω). ��
Theorem 5.5. There exists at most one solution u ∈ H1(Ω) ∩ C1(Ω\ω) ∩ C1(ω)

of equation (5.4).
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Proof. It is equivalent to showing that if ϕ = 0, equation (5.4) only has the solution
u ≡ 0. Integrating by parts in the first line of equation (5.4), we have

0 = −
∫

Ω\ω
∂x j

(

ai j
2 (x) ∂xi uk

)

· u

=
∫

Ω\ω
ai j

2 (x)∂xi u∂x j u −
∫

∂Ω

u · ai j
2 (x)∂xi uν j

∣

∣

∣

∣

− +
∫

∂ω

u · ai j
2 (x)∂xi uν j

∣

∣

∣

∣+

� λ

∫

Ω\ω
|∇u|2 −

∫

∂Ω

ϕ · ai j
2 (x)∂xi uν j

∣

∣

∣

∣

− + Cs

∫

∂ωs

ai j
2 (x)∂xi uν j

∣

∣

∣

∣

+

= λ

∫

Ω\ω
|∇u|2.

Thus ∇u = 0 inΩ\ω. And since u = ϕ = 0 on ∂Ω , we have u ≡ 0 inΩ\ω. Since
u|+ = u|− on ∂ω and u ≡ C on ω, we get u = 0 on ω. Hence u ≡ 0 in Ω , that is
u ≡ 0 is the only solution of (5.4) when ϕ = 0. ��

Define the energy functional

I∞[v] := 1

2

∫

Ω\ω
ai j

2 (x)∂xi v∂x j v, (5.5)

where v belongs to the set

A :=
{

v ∈ H1
ϕ (Ω)|∇v ≡ 0 in ω

}

.

Theorem 5.6. There exists a minimizer u ∈ A satisfying

I∞[u] = min
v∈A

I∞[v].

Moreover, u ∈ H1(Ω) ∩ C1(Ω\ω) ∩ C1(ω) is a solution of equation (5.4).

Proof. By the lower-semi continuity of I∞ and the weakly closed property of A , it

is easy to see that the minimizer u ∈ A exists and satisfies ∂x j

(

ai j
2 (x)∂xi u

)

= 0 in

Ω\ω. The only thing which needs to be shown is the fourth line in equation (5.4),
that is

∫

∂ωs

ai j
2 (x)∂xi uν j |+ = 0, s = 1, 2, · · · ,m .

In fact, since u is a minimizer, for any φ ∈ C∞
c (Ω) satisfying φ ≡ 1 on ωs and

φ ≡ 0 on ωt (t 
= s), let

i(t) := I∞[u + tφ] (t ∈ R),

we have

i ′(0) := di

dt

∣

∣

∣

∣

t=0 =
∫

Ω\ω
ai j

2 (x)∂xi uφx j = 0 .
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Therefore

0 = −
∫

Ω\ω
∂x j

(

ai j
2 (x) ∂xi uk

)

φ

=
∫

Ω\ω
ai j

2 (x)∂xi uφx j +
∫

∂ωs

φ · ai j
2 (x)∂xi uν j |+

=
∫

∂ωs

ai j
2 (x)∂xi uν j |+,

for all s = 1, 2, · · · ,m. ��
Finally, we give the relationship between uk and u.

Theorem 5.7. Let uk and u in H1(Ω) be the solutions of equations (5.2) and (5.4),
respectively. Then

uk ⇀ u in H1(Ω), as k → +∞,

and

lim
k→+∞ Ik[uk] = I∞[u],

where Ik and I∞ are defined as (5.3) and (5.5).

Proof. Step 1. By the uniqueness of the solution to equation (5.4), we only need
to show that there exists a weak limit u of a subsequence of {uk} in H1(Ω) and u
is the solution of equation (5.4).

(1) To show that after passing to a subsequence, uk weakly converges in H1(Ω)

to some u.
Let η ∈ H1

ϕ (Ω) be fixed and satisfy η ≡ 0 on ω, then since uk is the minimizer
of Ik in H1

ϕ (Ω), we have

λ

2
‖∇uk‖2

L2(Ω)
� Ik[uk] � Ik[η] = 1

2

∫

Ω\ω
ai j

2 (x)ηxi ηx j � Λ

2
‖η‖2

H1(Ω)
,

that is

‖∇uk‖L2(Ω) � ‖η‖H1(Ω)
.= M,

where M is independent of k.
Since uk = ϕ on ∂Ω and supk ‖uk‖H1(Ω) < ∞, we have uk ⇀ u in H1

ϕ (Ω).

(2) To show that u is a solution of equation (5.4).
In fact, we only need to prove the following three conditions:

∂x j

(

ai j
2 (x) ∂xi u

)

= 0 in Ω\ω, (5.6)

∇u = 0 in ω, (5.7)
∫

∂ωs

ai j
2 (x)∂xi uν j |+ = 0, s = 1, 2, . . . ,m. (5.8)
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(i) For every k, since uk ∈ H1(Ω) is the solution of equation (5.1), then
∀ φ ∈ C∞

c (Ω), we have

k
∫

ω

ai j
1 (x)∂xi ukφx j +

∫

Ω\ω
ai j

2 (x)∂xi ukφx j = 0.

Thus, ∀ φ ∈ C∞
c (Ω\ω) ⊂ C∞

c (Ω),

0 =
∫

Ω\ω
ai j

2 (x)∂xi ukφx j −→
∫

Ω\ω
ai j

2 (x)∂xi uφx j ,

since uk ⇀ u in H1
ϕ (Ω) ⊂ H1(Ω).

Therefore,
∫

Ω\ω
ai j

2 (x)∂xi uφx j = 0, ∀ φ ∈ C∞
c (Ω\ω),

that is (5.6).
(ii) Let η ∈ H1

ϕ (Ω) be fixed and satisfy η ≡ 0 on ω, then since uk is the
minimizer of Ik in H1

ϕ (Ω), we have

kλ

2
‖∇uk‖2

L2(ω)
� Ik[uk] � Ik[η] = 1

2

∫

Ω\ω
ai j

2 (x)∂xi η∂x j η � Λ

2
‖η‖2

H1(Ω)
,

which implies

‖∇uk‖2
L2(ω)

→ 0, as k → ∞.

By (1), since uk ⇀ u in H1(Ω), then uk ⇀ u in H1(ω). Therefore, by the
lower-semi continuity, we get

0 � λ

∫

ω

|∇u|2 �
∫

ω

ai j
1 (x)∂xi u∂x j u �

∫

ω

ai j
1 (x)∂xi uk∂x j uk

� Λ‖∇uk‖2
L2(ω)

−→ 0, as k −→ ∞.

Hence,
∫

ω
|∇u|2 = 0 =⇒ ∇u ≡ 0 in ω, which is just (5.7).

(iii) By (i) and (ii), u satisfies (5.6) and is either constant orϕ on each component
of ∂(Ω\ω). Thus, u ∈ C2(Ω\ω). For each s = 1, 2, . . . ,m, we construct a function
ρ ∈ C2(Ω\ω), such that ρ = 1 on ∂ωs , ρ = 0 on ∂ωt (t 
= s), and ρ = 0 on ∂Ω .
By Green’s Identity, we have the following:

0 = −
∫

Ω\ω
∂x j

(

ai j
2 (x) ∂xi uk

)

ρ

=
∫

Ω\ω
ai j

2 (x)∂xi uk∂x jρ −
∫

∂Ω

ρai j
2 (x)∂xi ukν j

∣

∣

∣

∣

− +
∫

∂ω

ρai j
2 (x)∂xi ukν j

∣

∣

∣

∣+

=
∫

Ω\ω
ai j

2 (x)∂xi uk∂x jρ + k
∫

∂ωs

ai j
1 (x)∂xi ukν j |−

=
∫

Ω\ω
ai j

2 (x)∂xi uk∂x jρ.
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Similarly,

0 = −
∫

Ω\ω
∂x j

(

ai j
2 (x)∂xi u

)

ρ =
∫

Ω\ω
ai j

2 (x)∂xi u∂x jρ +
∫

∂ωs

ai j
2 (x)∂xi uν j |+.

Since uk ⇀ u in H1(Ω), it follows

0 =
∫

Ω\ω
ai j

2 (x)∂xi uk∂x jρ −→
∫

Ω\ω
ai j

2 (x)∂xi u∂x jρ.

Thus,
∫

∂ωs

ai j
2 (x)∂xi uν j |+ = 0,

for any s = 1, 2, . . . ,m. Therefore, we finish the proof of the first part.
Step 2. Since uk is a minimizer of Ik and ∇u = 0 in ω, for any k ∈ N,

Ik[uk] � Ik[u] = I∞[u].
Then lim supk→+∞ Ik[uk] � I∞[u].

On the other hand, by Theorem 5.7, since u is the weak limit of {uk} in H1(Ω),
we obtain

I∞[u] =
∫

Ω

ai j
2 (x)∂xi u∂x j u � lim inf

k→+∞

∫

Ω

ai j
2 (x)∂xi uk∂x j uk � lim inf

k→+∞ Ik[uk].

Therefore,

lim
k→+∞ Ik[uk] = I∞[u].

The proof is completed. ��

References

1. Ammari, H., Kang, H., Lim, M.: Gradient estimates to the conductivity problem. Math.
Ann. 332, 277–286 (2005)

2. Ammari, H., Dassios, H., Kang, H., Lim, M.: Estimates for the electric field in the
presence of adjacent perfectly conducting spheres. Quat. Appl. Math. 65, 339–355
(2007)

3. Ammari, H., Kang, H., Lee, H., Lee, J., Lim, M.: Optimal estimates for the electrical
field in two dimensions. J. Math. Pures Appl. 88, 307–324 (2007)

4. Babuska, I., Anderson, B., Smith, P.J., Levin, K.: Damage analysis of fiber compos-
ites. I. Statistical analysis on fiber scale. Comput. Meth. Appl. Mech. Eng. 172, 27–77
(1999)

5. Bao, E., Li, Y.Y., Yin, B.: Gradient estimates for the perfect and insulated conductivity
problem and elliptic systems (in preparation)

6. Bonnetier, E., Vogelius, M.: An elliptic regularity result for a composite medium
with “touching” fibers of circular cross-section. SIAM J. Math. Anal. 31, 651–677 (2000)

7. Budiansky, B., Carrier, G.F.: High shear stresses in stiff fiber composites. J. App.
Mech. 51, 733–735 (1984)



Ellen Shiting Bao, Yan Yan Li & Biao Yin

8. Gilbarg, D., Trudinger, N.S.: Elliptic partial differential equations of second order,
Reprint of the 1998 edition, Classics in Mathematics. Springer, Berlin, 2001

9. Li, Y.Y., Nirenberg, L.: Estimates for elliptic system from composite material. Comm.
Pure Appl. Math. 56, 892–925 (2003)

10. Li, Y.Y., Vogelius, M.: Gradient estimates for solution to divergence form elliptic
equation with discontinuous coefficients. Arch. Ration. Mech. Anal. 153, 91–151 (2000)

11. Markenscoff, X.: Stress amplification in vanishingly small geometries. Computational
Mechanics 19, 77–83 (1996)

12. Yun, K.: Estimates for electric fields blown up between closely adjacent conductors
with arbitrary shape. SIAM J. on Applied Math. (to appear)

13. Yun, K.: Optimal bound on high stresses occurring between stiff fibers with arbitrary
shaped cross-sections (preprint)

Department of Mathematics,
Rutgers University,

110 Frelinghuysen Road,
Piscataway, NJ 08854,

USA.
e-mail: shbao@math.rutgers.edu
e-mail: byin@math.rutgers.edu

and

School of Mathematical Sciences,
Beijing Normal University,

Beijing 100875,
China

and

Department of Mathematics,
Rutgers University,

110 Frelinghuysen Road,
Piscataway, NJ 08854,

USA.
e-mail: yyli@math.rutgers.edu

(Received September 15, 2007 / Accepted December 12, 2007)
© Springer-Verlag (2008)


	Gradient Estimates for the Perfect Conductivity Problem
	Abstract
	Introduction
	Proof of Theorem 1.1 and 1.2
	Estimate of bold0mu mumu ||[]||||bold0mu mumu QQ[]QQQQbold0mu mumu []bold0mu mumu [[[][[[[bold0mu mumu []bold0mu mumu ]][]]]]]bold0mu mumu ||[]||||
	Proof of Theorem 1.3 and 1.4
	Appendix: Some elementary results for the conductivity problem
	References


<<
  /ASCII85EncodePages false
  /AllowTransparency false
  /AutoPositionEPSFiles true
  /AutoRotatePages /None
  /Binding /Left
  /CalGrayProfile (None)
  /CalRGBProfile (sRGB IEC61966-2.1)
  /CalCMYKProfile (ISO Coated v2 300% \050ECI\051)
  /sRGBProfile (sRGB IEC61966-2.1)
  /CannotEmbedFontPolicy /Error
  /CompatibilityLevel 1.3
  /CompressObjects /Off
  /CompressPages true
  /ConvertImagesToIndexed true
  /PassThroughJPEGImages true
  /CreateJDFFile false
  /CreateJobTicket false
  /DefaultRenderingIntent /Perceptual
  /DetectBlends true
  /ColorConversionStrategy /sRGB
  /DoThumbnails true
  /EmbedAllFonts true
  /EmbedJobOptions true
  /DSCReportingLevel 0
  /SyntheticBoldness 1.00
  /EmitDSCWarnings false
  /EndPage -1
  /ImageMemory 524288
  /LockDistillerParams true
  /MaxSubsetPct 100
  /Optimize true
  /OPM 1
  /ParseDSCComments true
  /ParseDSCCommentsForDocInfo true
  /PreserveCopyPage true
  /PreserveEPSInfo true
  /PreserveHalftoneInfo false
  /PreserveOPIComments false
  /PreserveOverprintSettings true
  /StartPage 1
  /SubsetFonts false
  /TransferFunctionInfo /Apply
  /UCRandBGInfo /Preserve
  /UsePrologue false
  /ColorSettingsFile ()
  /AlwaysEmbed [ true
  ]
  /NeverEmbed [ true
  ]
  /AntiAliasColorImages false
  /DownsampleColorImages true
  /ColorImageDownsampleType /Bicubic
  /ColorImageResolution 150
  /ColorImageDepth -1
  /ColorImageDownsampleThreshold 1.50000
  /EncodeColorImages true
  /ColorImageFilter /DCTEncode
  /AutoFilterColorImages false
  /ColorImageAutoFilterStrategy /JPEG
  /ColorACSImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /ColorImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /JPEG2000ColorACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /JPEG2000ColorImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /AntiAliasGrayImages false
  /DownsampleGrayImages true
  /GrayImageDownsampleType /Bicubic
  /GrayImageResolution 150
  /GrayImageDepth -1
  /GrayImageDownsampleThreshold 1.50000
  /EncodeGrayImages true
  /GrayImageFilter /DCTEncode
  /AutoFilterGrayImages true
  /GrayImageAutoFilterStrategy /JPEG
  /GrayACSImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /GrayImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /JPEG2000GrayACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /JPEG2000GrayImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /AntiAliasMonoImages false
  /DownsampleMonoImages true
  /MonoImageDownsampleType /Bicubic
  /MonoImageResolution 600
  /MonoImageDepth -1
  /MonoImageDownsampleThreshold 1.50000
  /EncodeMonoImages true
  /MonoImageFilter /CCITTFaxEncode
  /MonoImageDict <<
    /K -1
  >>
  /AllowPSXObjects false
  /PDFX1aCheck false
  /PDFX3Check false
  /PDFXCompliantPDFOnly false
  /PDFXNoTrimBoxError true
  /PDFXTrimBoxToMediaBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXSetBleedBoxToMediaBox true
  /PDFXBleedBoxToTrimBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXOutputIntentProfile (None)
  /PDFXOutputCondition ()
  /PDFXRegistryName (http://www.color.org?)
  /PDFXTrapped /False

  /Description <<
    /ENU <>
    /DEU <>
  >>
>> setdistillerparams
<<
  /HWResolution [2400 2400]
  /PageSize [5952.756 8418.897]
>> setpagedevice


