
Starshaped Compact Hypersurfaces With Prescribed m-th MeanCurvature in Elliptic SpaceYan Yan Li1Rutgers UniversityNew Brunswick, New Jersey 08903 USAandVladimir I. Oliker2Emory UniversityAtlanta, Georgia USAAbstractWe consider the problem of �nding a compact starshaped hypresurface in a spaceform for which the normalized m-th elementary symmetric function of principal cur-vatures is a prescribed function. In this paper conditions for existence of at least onesolution to a nonlinear second order elliptic equation of that problem are establishedin case of a space form with positive sectional curvature.1 IntroductionLet Rn+1(1), n � 2, be a space form of sectional curvature 1 and m an integer, 1 � m � n.In this paper we establish conditions for existence of a smooth hypersurface M in Rn+1(1)which is starshaped relative to some point O and whose m-th mean curvature Hm =  jM ,where  is a given function in Rn+1(1): Here, by the m-th mean curvature we understandthe normalized elementary symmetric function of order m of principal curvatures �1; :::; �nof M , that is, Hm = 1(nm) Xi1<:::<in �i1 � � ��im :The proof of the main result uses a priori estimates obtained in preceding paper [1] anddegree theory for nonlinear elliptic partial di�erential equations developed by Yan Yan Li[6]. We refer the reader to [1] for the introductory material, including derivation of therequired partial di�rential equations, and some history of the problem.We now state the main result of this paper. First, we describe in a convenient formthe Riemannian space Rn+1(1). Let Sn+1 be a unit sphere in Euclidean space Rn+2 and hthe standard metric on Sn+1 induced from Rn+2. Let O be a point in Sn+1, Sn+1+ the openhemisphere with the pole O, and TO the hyperplane tangent to Sn+1 at O. In a naturalway TO can be identi�ed with the usual Euclidean space Rn+1 with a Cartesian coordinatesystem x = (x1; :::; xn+1) with origin at O. Using the inverse of the exponential map from TOto Sn+1+ , we may pull the metric h from Sn+1+ to an open ball x21+ :::+ x2n+1 < �=2 (= Bn+1)1Work partially supported by NSF grant DMS-01008192Supported by Emory University Research Committee and Emory-TU Berlin Exchange Program.1



in TO with center at O. The space (Bn+1; h) is the Rn+1(1). Obviously, it is isometric toSn+1+ .Introduce in Rn+1(1) polar coordinates (u; �), where for a point x 2 Rn+1(1) � is thegeodesic distance fromO to x and u is a point on a standard unit sphere Sn in Rn+1 centeredat O de�ning the direction of the geodesic from O to x.The metric h in these coordinates is given byh = d�2 + sin2 �e; 0 � � < �=2; (1)where e is the standard metric on the unit sphere Sn induced from Rn+1.We consider smooth hypersurfaces in Rn+1(1) which are starshaped relative to the originO and do not pass through O, that is, such hypersurfaces are radial graphs over the sphereSn in Rn+1(1) of positive smooth functions z(u); u 2 Sn.Theorem 1.1 Let 1 � m � n and  (x) a positive C1 function in the annulus �
 � Rn+1(1),�
 : u 2 Sn; � 2 [R1; R2]; 0 < R1 < R2 < �=2: Suppose  satis�es the conditions: (u;R1) � cotmR1 for u 2 Sn; (2) (u;R2) � cotmR2 for u 2 Sn; (3)and @@� h (u; �) cot�m �i � 0 for all u 2 Sn and � 2 [R1; R2]: (4)Then there exists a closed, C1, embedded hypersurface M in Rn+1(1) , M � 
, which is aradial graph over Sn of a function z andHm(�1(z(u)); :::; �n(z(u))) =  (u; z(u)) for all u 2 Sn: (5)This theorem extends to an arbitrary m; 1 � m � n, the analogous result established byOliker in [8] for m = n. In Euclidean space an analogous result for functions generalizingelementary symmetric functions of principal curvatures was established by Ca�arelli, Niren-berg and Spruck [3]. It should be noted that in contrast with the cases studied in [3] and[8] where the usual continuity method was applied to prove existence, we have to use herethe special degree theory developed in [6]. The reason for this is that the continuity methodrequires (among other things) that the corresponding linearized equation be invertible onany admissible solution and this result is not available in the case studied in this paper.However, within the framework of the degree theory it su�ces to know invertibility only onspheres and we establish this fact here.Finally, we note that for hyperbolic space Rn+1(�1) an existence result similar to Theo-rem 1.1 is not known except for the Gauss curvature case, that is, when m = n; see Oliker[8].2 The equation of the problemIn order to make our presentation reasonably selfcontained, we summarize here the neededfacts about starshaped hypersurfaces in Rn+1(1). More details can be found in [1]. Also, in2



order to make our notation here agree with those in [1], to which we will need to refer often,we put f(�) = sin2 � and q(�) = cot �.Unless explicitly stated otherwise, all latin indices are in the range 1; :::; n, the sums areover this range and summation over repeated lower and upper indices is assumed. For asmooth function z on Sn we put zi � r0iz = @z=@ui, where r0iz denotes the �rst covariantderivative in the metric e and u1; :::; un are some smooth local coordinates on Sn. The secondcovariant derivative in e is denoted by r0ijz.LetM be a hypersurface in Rn+1(1) given by r(u) = (u; z(u)); u 2 Sn, where z 2 C2(Sn)and positive function on Sn. The metric (� the �rst fundsamental form) g = gijduidujinduced on M from Rn+1(1) has coe�cientsgij = feij + zizj and det(gij) = fn�1(f + jr0zj2) det(eij): (6)The elements of the inverse matrix (gij) = (gij)�1 aregij = 1f "eij � zizjf + jr0zj2 # �zi = eijzj� : (7)The unit normal vector �eld on M is given byN = r0z � fRqf 2 + f jr0zj2 ; (8)where R = �=d� is the tangent vector �eld on Rn+1(1). The second fundamental form b ofM has coe�cients: bij = fqf 2 + f jr0zj2 "�r0ijz + @ ln f@� zizj + 12 @f@� eij# ; (9)With our choice of the normal the second fundamental form of a sphere z = const > 0 ispositive de�nite, since for Rn+1(1) @f=@� > 0.The principal curvatures ofM are the eigenvalues of the second fundamental form relativeto the metric g and are the real roots, �1; :::; �n, of the equationdet(aij � ��ij) = 0;where aij = gikbkj: (10)The elementary symmetric function of order m; 1 � m � n, of � = (�1; :::; �n) isSm(�) = Xi1<:::<in �i1 � � ��im and Sm(�) = (nm)Hm = F (aij); (11)where F is the sum of the principal minors of (aij) of order m. Evidently,F (aij) � F (u; z;r01; :::;r0nz;r011z; :::;r0nnz);3



and the equation (5) assumes the formF (aij) = � (u; z(u)); (12)where � � (nm) .Note that on a sphere z = const = c; 0 < c < �=2;F (aij) = (nm)qm(c): (13)Let � be the connected component of f� 2 Rn j Sm(�) > 0g containing the positive conef� 2 Rn j �1; :::; �n > 0g:De�nition 2.1 A positive function z 2 C2(Sn) is admissible for the operator F if the cor-responding hypersurface M = (u; z(u)); u 2 Sn, is contained in the annulus �
 de�ned inTheorem 1.1, and at every point of M with the choice of the normal as in (8), the principalcurvatures (�1; :::; �n) 2 �.3 A priori estimatesIt will be convenient for ease of reference to recall here the a priori estimates obtained in[1].Proposition 3.1 Let 1 � m � n and let  (x) be a positive continuous function in theannulus �
 : u 2 Sn; � 2 [R1; R2]; 0 < R1 < R2 < a: Suppose  satis�es the conditions: (u;R1) � qm(R1) for u 2 Sn; (14) (u;R2) � qm(R2) for u 2 Sn: (15)Let z 2 C2(Sn) be an admissible solution of equation (12) and R1 � z(u) � R2; u 2 Sn:Then either z � R1, or z � R2, orR1 < z(u) < R2; u 2 Sn: (16)Theorem 3.2 Let 1 � m � n and let  (x) be a positive C1 function in the annulus �
 : u 2Sn; � 2 [R1; R2]; 0 < R1 < R2 < a: Let z 2 C3(Sn) be an admissible solution of equation(12) satisfying the inequalities R1 � z(u) � R2; u 2 Sn: (17)Suppose, in addition, that for all u 2 Sn and � 2 [R1; R2]  satis�es the condition@@� h (u; �)q�m(�)i � 0; (18)Then jgrad zj � C1 (19)where C1 is a constant depending only on m;n;R1; R2;  ; and jgrad j.4



Theorem 3.3 Let 1 � m � n and let  (x) be a positive C2 function in the annulus �
 : u 2Sn; � 2 [R1; R2]; 0 < R1 < R2 < a: Let z 2 C4(Sn) be an admissible solution of equation(12) in Rn+1(1) satisfying the inequalitiesR1 � z(u) � R2; u 2 Sn; (20)and jgrad zj � C1 = const on Sn: (21)Then k z kC2(Sn)� C2; (22)where the constant C2 depends only on m;n;R1; R2; C1; and k  kC2(�
).4 Proof of Theorem 1.11. De�ne a family of functions t(u; �) = t (u; �) + (1� t)A�qm+�(�); t 2 [0; 1];where � is some �xed positive constant and A a positive constant to be speci�ed later.Consider the family of equations�(z; t) � F (aij(z))� � t(u; z(u)) = 0; u 2 Sn; (23)where � t(u; z(u)) � (nm) t(u; z(u)). For 0 � t � 1 we consider the family of operators�(�; t) : C4;�a (Sn) �! C2;�(Sn); 0 < � < 1, where C4;�a (Sn) denotes the subset of functionsfrom C4;�(Sn) which are admissible for the operator F .In order to apply the degree theory, as in [6] we need to carry out the following threesteps.Step I. It needs to be shown that for t = 0 there exists a unique admissible solutionz0 2 C4;�a (Sn) of the equation �(z; 0) = 0 and the derivative �z(z0; 0) is an invertibleoperator from C4;�(Sn) to C2;�(Sn).Step II. It needs to be shown that for all t 2 [0; 1] and any solution z 2 C4;�a (Sn) of equation(23) we have R1 < z(u) < R2; u 2 Sn; (24)and k z kC4;�(Sn)< C (25)for some constant C, depending only on m;n;R1; R2; k  kC2;�(�
).Step III consists in showing that the degree of the �(�; 1) 6= 0.2. Step I - existence and uniqueness of a solution to �(z; 0) = 0. Set t = 0 in(23) and �x some �R such that R1 < �R < R2, where R1 and R2 are as in Theorem 1.1. PutA = 1=q( �R): (26)5



The selected constant A will remain �xed for the rest of the paper. Taking into account(13), it is clear that z0 = �R is a solution of the equationF (aij) = (nm)A�qm+�(z); u 2 Sn: (27)Let us show that z0 is the only admissible solution of (27). Suppose that there existsanother admissible solution ~z of (27). Let �u 2 Sn be such that ~z(�u) = minSn ~z(u). At�u grad ~z = 0, Hess(~z) � 0 and(gij) = 1f (eij); (bij) = �Hess(~z) + fq(eij) � fq(eij); (aij) � q(�ij):Consequently, we have at �u,F (aij(~z)) = (nm)A�qm+�(~z) � (nm)qm(~z):Since q is strictly decreasing, it follows from the choice of A that ~z(u) � ~z(�u) � �R on Sn.By a similar argument it is shown that ~z � �R on Sn. Hence, ~z = �R = z0.3. Step I - Invertiblity of �z(z0; 0). By standard results from theory of linear ellipticequations, in order to establish invertibility of �z(z0; 0) : C4;� ! C2;�, it su�ces to showthat the ker�z(z0; 0) = f0g. We do this in two stages. First we transform the metrich of Rn+1(1) and the expressions for �rst and second fundamental forms of an arbitraryhypersurfaceM so that the operator F (aij) assumes a more convenient form for linearization.Then we compute the corresponding linearized operator on an arbitrary admissible solutionand for any t. Finally, determine its kernel at z0 and t = 0.3.1. The Cayley-Klein model of Rn+1(1). Let�� = 1q(�) ; 
(��) = 11 + ��2 : (28)Then f(�(��)) = 
��2 and h = 
(
d��2 + ��2eijduiduj):Geometrically, this is equivalent to transforming the coordinate � in Rn+1(1) so that incoordinates (u; ��); u 2 Sn; 0 � �� < 1; the metric (1) assumes the form corresponding tothe Cayley-Klein (projective) model of the elliptic space. In this model the space Rn+1(1) ismodeled on the entire Rn+1 with metric h as above.We now re-calculate the �rst and second fundamental forms of M using (28). Put� = 1q(z) :Thus, in coordinates (u; ��) M is the graph of the function �� = �(u); u 2 Sn.Di�erentiating �, we obtain zi = 
�i. It follows from (6) thatgij = 
�2eij + 
2�i�j = 
ĝij � �2
2�i�j; where ĝij = �2eij + �i�j:Note that ĝ = ĝijduiduj is the metric of M in euclidean sense, that is, ĝ is induced fromRn+1; see [7]. Put W = q�2 + jr0�j2; V = pW 2 + �4:6



Then for the inverse matrices we havegij = W 2
V 2  ĝij + �2eijW 2 ! ;where ĝij = 1�2  eij � �i�jW 2 ! (�i = eij�j): (29)Next, we re-calculate the second fundamental form b of M . For the factor in front of thesquare brackets in (9) we have fqf 2 + f jr0zj2 = �q�2 + 
jr0�j2 = �Vp
 :For the expression in the square brackets in (9) we need@ ln f@� j�=z = 2� ; 12 @f@� j�=z = 
�:Then �r0ijz + @ ln f@� zizj + 12 @f@p eij = �
r0ij� � 
i�j + 2
2� �i�j + 
�eij:Since 
i = �2
2��i, we obtainbij = p
V ���r0ij� + 2�i�j + �2eij� = Wp
V b̂ij; (30)where b̂ij = ��r0ij� + 2�i�j + �2eijW ; (31)which is the second fundamental form of M in euclidean sense [7]. Thusaij = gikbkj = W 3V 3p
  ĝikb̂kj + �2W 2 eikb̂kj! : (32)3.2. Linearization of (23) and completion of step I. Upon replacing z by � in (23)we get �(�; t) � F (aij(�))� � t(u; �(u)) = 0; u 2 Sn; (33)with aij given by (32) andF (aij) � F (u; �;r01�; :::r0n;r011�; :::;r0nn�):Lemma 4.1 Let z 2 C2(Sn) be an admissible solution of (23) for some t 2 [0; 1] and � thecorresponding solution of (33). Let ��(�; t) be the operator obtained by linearizing �(�; t)on �. Then the ker��(�; t) consists of functions v 2 C2(Sn) satisfying the equationv " �3�4V 2 + 
�2 � 1!m � t(�; �) + 2Q �2W 2F ji eikb̂kj � � t�(�; �)�#+ T (v) = 0 on Sn; (34)7



where Q(�) = W 3(�)V 3(�)q
(�)and T is a linear second order negatively elliptic operator with coe�cients depending on �and with no zero order term in v.Proof. Consider a deformation ofM given by �s = �+s�; where s is a small real parameterand � 2 C2(Sn). The equation obtained by linearizing (33) is given by��(�; t)(�) �Xi;j Fr0ij�r0ij� +Xi Fr0i�r0i� + F�� � � t�� = 0; (35)where the subscripts at F and � indicate di�erentiaton with respect to the correspondingvariables and s is set to zero after di�erentiation.We claim that the second order linear operator ��(�; t) is negatively elliptic on �. PutF ji = @F@aij :Fix an arbitrary point on Sn and diagonalize there the matrices (gij) and (bij) using anorthonormal set of principal directions as the basis. At that pointF ji = 0 when i 6= j and F ii = @Sm@�i > 0;where the inequality on the right follows from a well known property of elementary symmetricfunctions [2]. Then Xi;j Fr0ij�r0ij� = ��p
V F ii �iir0ii�and we conclude that ��(�; t) is negatively elliptic.Next, we derive (34). We make in (35) a substitution � = �v. Then, the equation satis�edby v is given byv 24Xi;j Fr0ij�r0ij� +Xi Fr0i�r0i� + F�� � � t��35 + T (v) = 0 at s = 0; (36)where T is a linear second order negatively elliptic operator with no zero order terms in v.We compute now the coe�cient at v.Note that24Xi;j Fr0ij�r0ij� +Xi Fr0i�r0i� + F�� � � t��35s=0 = d[F (aij(s�)� � t(u; s�]ds js=1 (37)and dF (aij(s�)ds js=1 = F ji daij(s�)ds js=1: (38)8



By (32) we have aij(s�) = Q(s�) âij(s�) + s2�2W 2(s�)eikb̂kj(s�)! ;where we put âij � ĝikb̂kj:It follows from (29) and (31) thatâij(s�) = (1=s)âij(�) and b̂kj(s�) = sb̂kj(�):The quotient s2�2=W 2(s�) is homogeneous in s of order zero. Thus we havedaij(s�)ds js=1 = Q0Q aij +Q �âij + �2W 2 eikb̂kj! at s = 1;where Q0 denotes the derivative with respect to s. Using (32) we obtaindaij(s�)ds js=1 =  Q0Q � 1! aij + 2Q �2W 2 eikb̂kj at s = 1: (39)We have Q0Q = �3�4V 2 + 
�2 at s = 1:Substituting it in (39) and noting thatF ji aij = mF (aij) = m � t(u; �) at s = 1;we obtain  Q0Q � 1!F ji aij =  �3�4V 2 + 
�2 � 1!m � t:This, together with (39), (38), (37) and (36) imply that v satis�es (34).Finally, we note that since � > 0 on Sn, any solution � of (35) can be obtained from v inobvious way. The lemma is proved.Lemma 4.2 ker��(�0; 0) = 0:Proof. Set in (34) � = �0 and t = 0. Then,�3�4V 2 + 
�2 � 1 = �(1 + 2
�2) with � = �0:It follows from (31) that b̂ij(�0) = �0eij. Using (32) and (29), we getaij(�0) = (�0)�1�ij = (�0)�2eikb̂kj(�0):9



Therefore, 2Q �2W 2F ji eikb̂kj = 2
�2m � 0 at � = �0:It follows now from (34) that the coe�cient at v is equal to�m � 0(�0)�0 � � 0�(�0)�0 = �A�(�0)�m��which is positive by our choice of �. Now the standard maximum principle implies thatker ��(�0; 0) = 0. The lemma is proved.The Lemma 4.2 and the theory of linear second order elliptic equations imply that��(�0; 0) : C4;�(Sn) �! C2;�(Sn) is invertible. The step I is now complete.
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4. Step II - a priori bounds. Let t 2 [0; 1] and z 2 C4;�a (Sn) is a solution of (23) suchthat R1 � z(u) � R2: (40)We may assume that z(u) � R1 and z(u) � R2 are not solutions of (5), - otherwise we aredone.Now we will show that z(u) � R1 and z(u) � R2 are not solutions of (23) for any t 2 [0; 1].In order to see that, note �rst that since z(u) � R1 does not satisfy (5), there exists some�u 2 Sn such that qm(R1) 6=  (�u;R1). Then, because of (2),qm(R1) <  (�u;R1):Since �R > R1, we have A�qm+�(R1) > A�q�( �R)qm(R1) = qm(R1):It follows that t(�u;R1) = t (�u;R1) + (1� t)A�qm+�(R1) > qm(R1) for any t 2 [0; 1]: (41)Therefore, z(u) � R1 is not a solution of (23) for any t 2 [0; 1].Similarly, it is shown that for some û 2 Sn t(û; R2) = t (û; R2) + (1� t)A�qm+�(R2) < qm(R2) for any t 2 [0; 1]; (42)and z(u) � R2 is not a solution of (23) for any t 2 [0; 1]. It also follows from (41) and(42) that  t(u; �) satis�es the conditions of Proposition 3.1. Consequently, any solutionz 2 C4;�a (Sn) of (23) must satisfy the inequalitiesR1 < z(u) < R2 for all u 2 Sn: (43)Next, because of condition (4), Theorems 3.2 and 3.3 imply that any solution z 2 C4;�a (Sn)of (23) satis�es k z kC2(Sn)� C2 (44)where the constant C2 depends only onm;n;R1; R2; and k  kC2(�
). Then, the C2;� estimateswith any � 2 (0; 1) follow from (44) and the results of L. C. Evans [4] and N. V. Krylov [5].In these circumstances the C4;� estimate (25) follow from C2;� estimates and the regularitytheory for second order uniformly elliptic equations. This completes the step II of the proofof Theorem 1.1.5. Step III - computing the degree of the map �(�; 1).Lemma 4.3 For any � > 0 and C > 0, there exists a bounded open set V � � (dependingon n;m;R1; R2; � and C) with �V � �, such that for any z 2 C4;�a (Sn) satisfying inequalities(40), estimate (25) and� � Sm(�1(z(u)); :::; �n(z(u)) � 1=� for all u 2 Sn; (45)we have (�1(z(u)); :::; �n(z(u)) 2 V for all u 2 Sn:11



Lemma 4.3 is evident and its proof is omitted.It is also easy to see that there exists � > 0 (depending on n and constant C in estimate(25)) such that � � � t(u; z(u)) � 1=� for all u 2 Sn; (46)where 0 � t � 1 and z 2 C4;�(Sn) satis�es (40) and (25).For C > 0 and � > 0 above, we de�ne an open bounded subset O� of C4;�(Sn) as follows:z 2 O� if z 2 C4;�(Sn), satis�es (43), (25) and(�1(z(u)); :::; �n(z(u)) 2 V for all u 2 Sn: (47)Lemma 4.4 If for some 0 � t � 1 and z 2 �O��(z; t) = 0; (48)then z 2 O�, that is, @O�\�(�; t)�1(0) = ;; 0 � t � 1; (49)where �(�; t) is viewed as map from �O� � C4;�(Sn) to C2;�(Sn).Proof. It follows from Step II that z satis�es (43), (25). Hence, (46) is satis�ed. With the� as in (46), the equation (48) and the explicit form of �(z; t) imply (45). By Lemma 4.3the condition (47) is satis�ed. Therefore z 2 O�.Consequently, by de�nition 2.2 in [6], the degree deg(�(�; t); O�; 0) is de�ned for all 0 �t � 1. By (49) and Proposition 2.2 in [6] deg(�(�; t); O�; 0) is independent of 0 � t � 1. Inparticular, deg(�(�; 1); O�; 0) = deg(�(�; 0); O�; 0):By Step I the equation �(z; 0) = 0; z 2 O�has a unique solution z = z0 2 O� and the operator �z(z0; 0) : C4;�(Sn) ! C2;�(Sn) isinvertible.By Proposition 2.3 in [6],deg(�(�; 0); O�; 0) = deg(�z(z0; 0); B1; 0);where B1 = fz 2 C4;�(Sn)j k z kC4;�(Sn)< 1g:By Proposition 2.4 in [6], deg(�z(z0; 0); B1; 0) = �1 6= 0:It follows that deg(�(�; 1); O�; 0) 6= 0:Therefore, the equation �(z; 1) = 0; z 2 O�has at least one solution. This completes the proof of Theorem 1.1.12
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