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Abstract

We counsider the problem of finding a compact starshaped hypresurface in a space
form for which the normalized m-th elementary symmetric function of principal cur-
vatures is a prescribed function. In this paper conditions for existence of at least one
solution to a nonlinear second order elliptic equation of that problem are established
in case of a space form with positive sectional curvature.

1 Introduction

Let R"™1(1), n > 2, be a space form of sectional curvature 1 and m an integer, 1 < m < n.
In this paper we establish conditions for existence of a smooth hypersurface M in R"*1(1)
which is starshaped relative to some point O and whose m-th mean curvature H,, = 9,,,
where 1 is a given function in R"™'(1). Here, by the m-th mean curvature we understand

the normalized elementary symmetric function of order m of principal curvatures Ay, ..., A\,

of M, that is,
1

Hy=—-— > Xy,
() < i
The proof of the main result uses a priori estimates obtained in preceding paper [1] and
degree theory for nonlinear elliptic partial differential equations developed by Yan Yan Li
[6]. We refer the reader to [1] for the introductory material, including derivation of the
required partial diffrential equations, and some history of the problem.

We now state the main result of this paper. First, we describe in a convenient form
the Riemannian space R"™1(1). Let S™*! be a unit sphere in Euclidean space R"*? and h
the standard metric on S"*! induced from R"*2. Let O be a point in S™*!, S7*! the open
hemisphere with the pole O, and To the hyperplane tangent to S™™! at O. In a natural
way To can be identified with the usual Euclidean space R"™! with a Cartesian coordinate
system « = (x1, ..., £,4+1) with origin at O. Using the inverse of the exponential map from To
to St we may pull the metric k from S7*! to an open ball 23 + ...+ 22, < /2 (= B")
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in To with center at O. The space (B" h) is the R"*(1). Obviously, it is isometric to
St

Introduce in R"*'(1) polar coordinates (u, p), where for a point z € R"*(1) p is the
geodesic distance from O to z and u is a point on a standard unit sphere S™ in R"! centered
at O defining the direction of the geodesic from O to x.

The metric h in these coordinates is given by

h=dp*+sin®pe, 0<p<n/2, (1)

where e is the standard metric on the unit sphere S™ induced from R"*!.

We consider smooth hypersurfaces in R"™ (1) which are starshaped relative to the origin
O and do not pass through O, that is, such hypersurfaces are radial graphs over the sphere
S™ in R"*1(1) of positive smooth functions z(u),u € S™.

Theorem 1.1 Let 1 < m < n and ¢ (x) a positive C* function in the annulus Q C R™H(1),
Q: welS" pe[R, Ry, 0< Ry < Ry < 7/2. Suppose 1 satisfies the conditions:

P(u, Ry) > cot™ Ry foru e S", (2)
P (u, Re) < cot™ Ry for u e S™, (3)

and 9
o [@b(u,p) cot™™ p] <0 forallueS" andp € [Ry, Ry (4)

Then there exists a closed, C™, embedded hypersurface M in R"*(1) , M C Q, which is a
radial graph over S™ of a function z and

H,(A(z(w))y ooy An(2(w))) = Y(u, 2(w))  for all ue S™. (5)

This theorem extends to an arbitrary m, 1 < m < n, the analogous result established by
Oliker in [8] for m = n. In Euclidean space an analogous result for functions generalizing
elementary symmetric functions of principal curvatures was established by Caffarelli, Niren-
berg and Spruck [3]. It should be noted that in contrast with the cases studied in [3] and
[8] where the usual continuity method was applied to prove existence, we have to use here
the special degree theory developed in [6]. The reason for this is that the continuity method
requires (among other things) that the corresponding linearized equation be invertible on
any admissible solution and this result is not available in the case studied in this paper.
However, within the framework of the degree theory it suffices to know invertibility only on
spheres and we establish this fact here.

Finally, we note that for hyperbolic space R"™!(—1) an existence result similar to Theo-
rem 1.1 is not known except for the Gauss curvature case, that is, when m = n; see Oliker

[8].

2 The equation of the problem

In order to make our presentation reasonably selfcontained, we summarize here the needed
facts about starshaped hypersurfaces in R"**(1). More details can be found in [1]. Also, in
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order to make our notation here agree with those in [1], to which we will need to refer often,
we put f(p) = sin® p and ¢(p) = cot p.

Unless explicitly stated otherwise, all latin indices are in the range 1, ..., n, the sums are
over this range and summation over repeated lower and upper indices is assumed. For a
smooth function z on S™ we put z; = Viz = 9z/0u’, where V!z denotes the first covariant
derivative in the metric e and !, ..., u™ are some smooth local coordinates on S™. The second
covariant derivative in e is denoted by V;z.

Let M be a hypersurface in R"**(1) given by 7(u) = (u, z(u)), u € S™, where z € C?(S™)
and positive function on S™. The metric (= the first fundsamental form) g = g;;du’du’
induced on M from R"*!(1) has coefficients

g9ij = feij + 2z and det(gyy) = f"7H(f + [V'z]?) det(es;). (6)

The elements of the inverse matrix (¢") = (g;;) " are

iy = ij i i,

g l e W?l (=), "
The unit normal vector field on M is given by
V'z—fR

NGEENIZER

where R = §/dp is the tangent vector field on R"**(1). The second fundamental form b of
M has coefficients:

N =

(8)

bij —
VI IVl

With our choice of the normal the second fundamental form of a sphere z = const > 0 is
positive definite, since for R"*(1) af/0p > 0.

The principal curvatures of M are the eigenvalues of the second fundamental form relative
to the metric g and are the real roots, Aq, ..., A,, of the equation

(9)

f , Oln f 10f
Viiz+ o le]+28pe” ,

det(a} — A05) =0,

where ‘ ‘
aj = 9" by;. (10)

The elementary symmetric function of order m, 1 <m < n, of A = (A,..., A,) is

SN = 3 Ai--Ai, and Su(A) = (W) H, = Flal), (11)

m
11 <. <0p,

where F is the sum of the principal minors of (a?) of order m. Evidently,

F(a') = F(u,z, VY, ...V 2, V2, ..,V 2),

J
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and the equation (5) assumes the form
F(aj) = $(u, z(u)), (12)

where 1 = (%,)1).
Note that on a sphere z = const = ¢, 0 < ¢ < 7/2,

F(ay) = ()a" (0)- (13)

Let I' be the connected component of {A € R" | S,,(A) > 0} containing the positive cone
(INER" | Ay oos Ay > O}

Definition 2.1 A positive function z € C?*(S™) is admissible for the operator F if the cor-
responding hypersurface M = (u, z(u)), w € S™, is contained in the annulus Q0 defined in
Theorem 1.1, and at every point of M with the choice of the normal as in (8), the principal
curvatures (Mg, ..., A,) € L.

3 A priori estimates

It will be convenient for ease of reference to recall here the a priori estimates obtained in[1].

Proposition 3.1 Let 1 < m < n and let () be a positive continuous function in the
annulus : uw e S™ p€[Ry, Rs], 0 < Ry < Ry < a. Suppose ¢ satisfies the conditions:

P(u, Ry) > ¢™(Ry) forue S, (14)
P(u, Ry) < q"(Ry) for uwe S". (15)

Let z € C?*(S™) be an admissible solution of equation (12) and Ry < z(u) < Ry, u € S™.
Then either z = Ry, or z = Ry, or

Ry < z(u) < Ry, uesS" (16)

Theorem 3.2 Let 1 < m < n and let 1(z) be a positive C* function in the annulus Q : u €
S" p€[Ry,Ry], 0 < Ry < Ry < a. Let z € C3(S™) be an admissible solution of equation
(12) satisfying the inequalities

Rl S Z(U) S R2, ueS". (17)
Suppose, in addition, that for all w € S™ and p € [Ry, Rs] ¢ satisfies the condition

9,

9, P pa " (p)] <0 (18)

Then
lgrad z| < Cy (19)

where Cy is a constant depending only on m,n, Ry, Ry, 1, and |gradiy|.



Theorem 3.3 Let 1 < m < n and let )(z) be a positive C? function in the annulus Q : u €
S" pe[R, Ry, 0< Ry < Ry < a. Let z € C*(S™) be an admissible solution of equation
(12) in R™ (1) satisfying the inequalities

Ry < z2(u) < Ry, ues” (20)
and
|grad z| < Cy = const on S". (21)
Then
| 2 [lo2(sm)< Co, (22)

where the constant Cy depends only on m,n, Ry, Ry, Cy,and || 9 [|c2(q)-

4 Proof of Theorem 1.1

1. Define a family of functions

W' (u, p) = t(u, p) + (1 — 1) A¢"(p), t€[0,1],

where € is some fixed positive constant and A a positive constant to be specified later.
Consider the family of equations
O(z,t) = F(az(z)) — ' (u, z(u)) = 0, ue S", (23)
where ¢ (u, z(u)) = (%) (u, z(u)). For 0 < t < 1 we consider the family of operators
(-, t) : CH*(S") — C?*(S™), 0 < a < 1, where C»*(S™) denotes the subset of functions
from C**(S™) which are admissible for the operator F.
In order to apply the degree theory, as in [6] we need to carry out the following three
steps.
Step I. It needs to be shown that for ¢ = 0 there exists a unique admissible solution
2% € CF(S™) of the equation ®(z,0) = 0 and the derivative ®,(2°,0) is an invertible
operator from C*+*(S™) to C%*(S").
Step II. It needs to be shown that for all ¢ € [0, 1] and any solution z € C3%(S™) of equation
(23) we have
Ry < z(u) < Ry, weS", (24)

and
| 2 ||C4,a(5’n)< C (25)

for some constant C, depending only on m,n, Ry, Ry, || ¢ [|c2.e(q).
Step III consists in showing that the degree of the ®(-, 1) # 0.

2. Step I - existence and uniqueness of a solution to ®(z,0) =0. Set ¢t = 0 in
(23) and fix some R such that Ry < R < Ry, where R; and R, are as in Theorem 1.1. Put

A=1/q(R). (26)
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The selected constant A will remain fixed for the rest of the paper. Taking into account
(13), it is clear that 2 = R is a solution of the equation

F(d}) = ()Aq™(2), uwe S (27)

J

Let us show that z° is the only admissible solution of (27). Suppose that there exists
another admissible solution Z of (27). Let @ € S™ be such that Z(a) = mingn Z(u). At
@ grad Z =0, Hess(Z) > 0 and

1

(g¥) = ?(@U)7 (bij) = —Hess(z) + fqlei;) < fqleij), (aé) < q(5;)

Consequently, we have at @,
F(aj(2) = () A" () < (g™ (2).

Since ¢ is strictly decreasing, it follows from the choice of A that z(u) > Z(u) > R on S™.
By a similar argument it is shown that Z < R on S™. Hence, 7 = R = 2°.

3. Step I - Invertiblity of ®,(z°, 0). By standard results from theory of linear elliptic
equations, in order to establish invertibility of ®,(2°,0) : C** — C%¢, it suffices to show
that the ker®,(z°,0) = {0}. We do this in two stages. First we transform the metric
h of R"*1(1) and the expressions for first and second fundamental forms of an arbitrary
hypersurface M so that the operator F (aé-) assumes a more convenient form for linearization.
Then we compute the corresponding linearized operator on an arbitrary admissible solution
and for any t. Finally, determine its kernel at z° and t = 0.

3.1. The Cayley-Klein model of R"*(1). Let

= v(p) = : (28)

Then

flp(p)) = vp* and h = y(vdp® + pPespdu’du’).
Geometrically, this is equivalent to transforming the coordinate p in R"*(1) so that in
coordinates (u,p), u € S™,0 < p < 00, the metric (1) assumes the form corresponding to
the Cayley-Klein (projective) model of the elliptic space. In this model the space R"**(1) is

modeled on the entire R"™! with metric h as above.
We now re-calculate the first and second fundamental forms of M using (28). Put

1

q(2)

Thus, in coordinates (u, p) M is the graph of the function p = o(u), u € S™.
Differentiating o, we obtain z; = yo;. It follows from (6) that

2 2 ~ 2 2 ~ 2
gij =0 e,-j —I—’)/ O'iO'j = 'yg,-j — o O'iO'j, where g,-j =0 e,-j +O'Z'O'j.

Note that § = g;jdu’du? is the metric of M in euclidean sense, that is, § is induced from

R"™1; see [7]. Put
W =\/o?2+|V'a|?, V=vVW?2+
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Then for the inverse matrices we have

where

i 1 ij ool i ij
9" = — (ej— W2> (0" =e0j). (29)

Next, we re-calculate the second fundamental form b of M. For the factor in front of the
square brackets in (9) we have

f B o o
VP IR o eIVl VT

For the expression in the square brackets in (9) we need

oln f 2 10f

8,0 |p:z = ;7 58_p|p:z = 0.
Then oln | of )
n 1
_V;jz + a—pZiZj + iﬁ_peij = —VV;]-U — %05 + 2%0'1'0'3' + yoe;.
Since v; = —2v200;, we obtain
gl WV
bij = % (—O'V;J-O' —+ 20'i0'j + 0'2€ij) = T\/_bij, (30)
where ) )
Aij _ —O'VZ-]-U + 2005 +0 e,-j7 (31)
w
which is the second fundamental form of M in euclidean sense [7]. Thus
. . w3 on 0% ..
i ik _ ~ik ik
a; = gl bkj — VTW <gz bkj + W@ bm) . (32)

3.2. Linearization of (23) and completion of step I. Upon replacing z by o in (23)
we get . B
®(0,t) = F(aj(0)) — Y (u, o(u)) =0, ue S", (33)
with @} given by (32) and
F(a%) = F(u,0,V0,..V! Vo, .,V o).

J

Lemma 4.1 Let z € C*(S") be an admissible solution of (23) for some t € [0,1] and o the
corresponding solution of (33). Let ®,(o,t) be the operator obtained by linearizing ®(o,t)
on . Then the ker®,(o,t) consists of functions v € C*(S™) satisfying the equation

4 2 B
v K_SL +yo? — 1) myt (-, o) + 2Q%Ff@’kbk3~ — Yt o)l +T(v) =0 on S™ (34)
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where

W (o)
Qo) = ———7—
RN

and T 1s a linear second order negatively elliptic operator with coefficients depending on o
and with no zero order term in v.

Proof. Consider a deformation of M given by o, = o + s£, where s is a small real parameter
and ¢ € C?(S™). The equation obtained by linearizing (33) is given by

O, (0,1)(€) =D Fyy o Vil + > Fo, Vié + Fo€ — L6 = 0, (35)
i.j i

where the subscripts at F' and ¢ indicate differentiaton with respect to the corresponding
variables and s is set to zero after differentiation.
We claim that the second order linear operator ®,(o,t) is negatively elliptic on o. Put

. OF
F=_—.
Y Oal

J

Fix an arbitrary point on S™ and diagonalize there the matrices (g;;) and (b;;) using an
orthonormal set of principal directions as the basis. At that point

0Sm,

F/ =0 when i#j and F; =
; when ¢# j and F] Y

>0,

where the inequality on the right follows from a well known property of elementary symmetric
functions [2]. Then

S For V6 = oL i
o v
and we conclude that ®,(o,t) is negatively elliptic.

Next, we derive (34). We make in (35) a substitution { = ov. Then, the equation satisfied
by v is given by
irj i

v {Z vaijavgja +> Fy,Vio+ F,0 - wéa} +T(w)=0 at s=0, (36)

where 7' is a linear second order negatively elliptic operator with no zero order terms in v.
We compute now the coefficient at v.

Note that
_ d[F(a(so) — ! (u, so]
2, 3 s=0
e dF (d(s0) da (s0)
a; so _ i a; so 38
dS |3:1 ) dS |3:1' ( )



By (32) we have

5202

where we put a} = % by.
It follows from (29) and (31) that

at(so) = (1/s)as(o) and b (s0) = sby;(0).

The quotient s?0?/W?(so) is homogeneous in s of order zero. Thus we have

d i / 2
aj(sa)|sz1 Q +Q<_a +U_ekbkj> at s =1,

ds Q “j i w2
where ()" denotes the derivative with respect to s. Using (32) we obtain
da’(so) Q' o2
J _ ik7 _
ds ls=1 = (6 — 1) .+ 2Qﬁe bp; at s=1. (39)
We have o )
30

—i-’ya at s =1.
Q v

Substituting it in (39) and noting that

Fija;'- =mF(a}) =my'(u,0) at s=1,

(5= o

This, together with (39), (38), (37) and (36) imply that v satisfies (34).
Finally, we note that since o > 0 on S”, any solution £ of (35) can be obtained from v in
obvious way. The lemma is proved.

we obtain

Lemma 4.2
ker®,(c°,0) = 0.
Proof. Set in (34) 0 = 0 and ¢ = 0. Then,

3
VU2 + 0% — 1= —(1+2v0%) with o =0".

It follows from (31) that b;;(0°) = 6%e;;. Using (32) and (29), we get
0) = (09)716] = (09) by (0.
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Therefore,
2 3 . ~ —
2Q%Ff€lkbk9~ = 2va*mi’ at o =",
It follows now from (34) that the coefficient at v is equal to

—m)®(0%)o® — P2 (0")0” = eA(c”) ™ €

which is positive by our choice of €. Now the standard maximum principle implies that
ker @,(c",0) = 0. The lemma is proved.

The Lemma 4.2 and the theory of linear second order elliptic equations imply that
®,(c%,0) : C+*(S™) — C%(S") is invertible. The step I is now complete.
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4. Step II - a priori bounds. Let ¢t € [0,1] and z € C#*(S™) is a solution of (23) such
that

We may assume that z(u) = R; and z(u) = Ry are not solutions of (5), - otherwise we are
done.
Now we will show that z(u) = R; and z(u) = R, are not solutions of (23) for any ¢ € [0, 1].

In order to see that, note first that since z(u) = R; does not satisfy (5), there exists some
u € S" such that ¢"(Ry) # 9 (u, R1). Then, because of (2),

q"(R1) < ¥(a, Ry).
Since R > Ry, we have
ASqmT(Ry) > AT (R)q™ (Br) = q™ (Ba).
It follows that
Y, Ry) = tp(i, Ry) + (1 — t)A¢™ T (Ry) > ¢™(Ry) for any t € 0,1]. (41)

Therefore, z(u) = R; is not a solution of (23) for any ¢ € [0, 1].
Similarly, it is shown that for some o € S"

Vi (a, Ry) = tap(it, Ry) + (1 — ) A" (Ry) < ¢™(Ry) for any t € [0,1], (42)

and z(u) = R» is not a solution of (23) for any ¢t € [0,1]. It also follows from (41) and
(42) that 9"(u, p) satisfies the conditions of Proposition 3.1. Consequently, any solution
z € CH(S") of (23) must satisfy the inequalities

Ry < z(u) < Ry for all u € S™. (43)

Next, because of condition (4), Theorems 3.2 and 3.3 imply that any solution z € C»*(S™)
of (23) satisfies

| 2 [lezsm< Co (44)
where the constant Cy depends only on m, n, Ry, Ry, and || ¢ ||c2(q)- Then, the C?? estimates
with any a € (0,1) follow from (44) and the results of L. C. Evans [4] and N. V. Krylov [5].
In these circumstances the C*“ estimate (25) follow from C%“ estimates and the regularity

theory for second order uniformly elliptic equations. This completes the step II of the proof
of Theorem 1.1.

5. Step III - computing the degree of the map &(-,1).

Lemma 4.3 For any 0 > 0 and C' > 0, there exists a bounded open set V. C I (depending
onn,m, Ry, Ry, 6 and C) with V C T, such that for any z € C+*(S™) satisfying inequalities
(40), estimate (25) and

6 < Sp(Ar(z(w)), .oy Ap(2(w)) < 1/6 for all w € S™, (45)

we have
(AM(z(w)), ..., \(2(w)) € V' for all w € S™.
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Lemma 4.3 is evident and its proof is omitted.
It is also easy to see that there exists 0 > 0 (depending on n and constant C' in estimate
(25)) such that
§ < '(u,z(u)) <1/6 for allu € S", (46)

where 0 <t <1 and 2z € C**(S™) satisfies (40) and (25).
For C' > 0 and § > 0 above, we define an open bounded subset O* of C**(S™) as follows:
z € O* if z € CH*(S™), satisfies (43), (25) and

(M(z(w)), ..., An(2(u)) € V' for all u € S™. (47)
Lemma 4.4 If for some 0 <t <1 and z € O*
O(z,t) =0, (48)
then z € O*, that 1is,
00*(2(-,t)""(0) =0, 0<t<1, (49)
where ®(+,t) is viewed as map from O* C CH%(S") to C**(S™).
Proof. It follows from Step II that z satisfies (43), (25). Hence, (46) is satisfied. With the
d as in (46), the equation (48) and the explicit form of ®(z,¢) imply (45). By Lemma 4.3
the condition (47) is satisfied. Therefore z € O*.
Consequently, by definition 2.2 in [6], the degree deg(®(-,¢), 0*,0) is defined for all 0 <

t < 1. By (49) and Proposition 2.2 in [6] deg(®(-,t),0*,0) is independent of 0 < ¢ < 1. In
particular,

deg(®(-,1),07,0) = deg(®(-,0),0%,0).

By Step I the equation
®(2,0) =0, ze€O"

has a unique solution z = z° € O* and the operator @,(z° 0) : C**(S") — C?%(S") is
invertible.
By Proposition 2.3 in [6],

deg( ( ) O* ) deg(@z(zO,O),Bl,()),
where
Bl = {Z € O47a(Sn)| || z ||C’4,a(5’n)< ]_}

By Proposition 2.4 in [6],
deg(®,(2°,0), By,0) = £1 # 0.

It follows that
deg(®(+,1),0%,0) #0

Therefore, the equation
®(2,1) =0, z€O0O"

has at least one solution. This completes the proof of Theorem 1.1.
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