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1 Introduction

A classical theorem of Jörgens (n = 2 [17]), Calabi (n ≤ 5 [7]), and Pogorelov

(n ≥ 2 [18]) states that any classical convex solution of

(1.1) det(D2u) = 1 in R
n

must be a quadratic polynomial. For n = 2, a classical solution is either convex or

concave; the result holds without the convexity hypothesis.

A simpler and more analytical proof, along the lines of affine geometry, of the

theorem was later given by Cheng and Yau [9]. The first author extended the result

for classical solutions to viscosity solutions [4]. It was proven by Trudinger and

Wang in [19] that the only open convex subset � of R
n which admits a convex C2

solution of det(D2u) = 1 in � with limx→∂� u(x) = ∞ is � = R
n . In this paper

we give the following extension to the theorem of Jörgens, Calabi, and Pogorelov:

Let u be a convex viscosity solution of det(D2u) = 1 outside a bounded subset of

R
n , n ≥ 3; then there exist an n × n real symmetric positive definite matrix A, a

vector b ∈ R
n , and a constant c ∈ R such that

lim sup
|x |→∞

|x |n−2
(

u −
[

1

2
x ′ Ax + b · x + c

])
< ∞ .

Our approach, different from previous ones, is based on the theory of the first au-

thor on Monge-Ampère equations [2, 3]. Our above-mentioned results also enable

us to establish an existence result for the Dirichlet problem on exterior domains

with prescribed asymptotic behavior at infinity. In R
2, similar problems are stud-

ied by L. Ferrer, A. Martínez, and F. Milán in [13, 14] using complex variable

methods. See also Delanoë [12].

For the reader’s convenience, we recall the definition of viscosity solutions (see

[5] and the references therein for an extensive study of viscosity solutions to fully

nonlinear elliptic equations of second order). Let � be an open subset of R
n ,
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g ∈ C0(�) a positive function, and u ∈ C 0(�) a locally convex function. We say

that u is a viscosity subsolution of

(1.2) det(D2u) = g in �

or a viscosity solution of

det(D2u) ≥ g in �

if for every x̄ ∈ � and every convex ϕ ∈ C 2(�) satisfying

ϕ ≥ u on � and ϕ(x̄) = u(x̄)

we have

det(D2ϕ(x̄)) ≥ g(x̄) .

Similarly, u is a viscosity supersolution of (1.2) if for every x̄ ∈ � and every

convex ϕ ∈ C2(�) satisfying

ϕ ≤ u on � and ϕ(x̄) = u(x̄)

we have

det(D2ϕ(x̄)) ≤ g(x̄) .

u is a viscosity solution of (1.2) if u is both a viscosity subsolution and a viscosity

supersolution of (1.2).

In this paper we study convex viscosity solutions to

(1.3) det(D2u) = f on R
n ,

where f ∈ C0(Rn) satisfies

(1.4) 0 < inf
Rn

f ≤ sup
Rn

f < ∞

and

(1.5) support ( f − 1) is bounded.

First is the extension of the classical theorem of Jörgens, Calabi, and Pogorelov

for classical solutions to viscosity solutions, due to the first author.

THEOREM 1.1 [4] For n ≥ 2, any convex viscosity solution of (1.1) must be a
quadratic polynomial.

Let

A = {A : A is real n × n symmetric positive definite matrix with det(A) = 1} .

The following theorem gives asymptotic behavior of solutions of (1.3) under

the hypotheses (1.4) and (1.5).

THEOREM 1.2 Let f ∈ C0(Rn) satisfy (1.4) and (1.5). Assume that u is a convex
viscosity solution of (1.3). Then



EXTENSION TO A THEOREM OF JÖRGENS, CALABI, AND POGORELOV 551

(i) For n ≥ 3, there exist some c ∈ R, b ∈ R
n , and A ∈ A, such that E(x) :=

u(x) − ( 1
2 x ′ Ax + b · x + c) satisfies

(1.6) lim sup
|x |→∞

|x |n−2|E(x)| < ∞ .

Moreover, u is C∞ in the complement of the support of ( f − 1) and

(1.7) lim sup
|x |→∞

|x |n−2+k |Dk E(x)| < ∞ ∀k ≥ 1 .

(ii) For n = 2, there exist some c ∈ R, b ∈ R
n , and A ∈ A such that

E(x) := u(x) −
(

1

2
x ′ Ax + b · x + d log

√
x ′ Ax + c

)
satisfies

(1.8) lim sup
|x |→∞

|x ||E(x)| < ∞ ,

where

(1.9) d = 1

2π

∫
R2

( f − 1) .

Moreover, u is C∞ in the complement of the support of ( f − 1) and

(1.10) lim sup
|x |→∞

|x |k+1|Dk E(x)| < ∞ ∀k ≥ 1 .

COROLLARY 1.3 Let O be a bounded open convex subset of R
n , and let u ∈

C0(Rn \ O) be a locally convex viscosity solution of

det(D2u(x)) = 1 , x ∈ R
n \ O .

Then u ∈ C∞(Rn \ O), and we have the following:

(i) For n ≥ 3, there exist some c ∈ R, b ∈ R
n , and A ∈ A such that (1.6) and

(1.7) hold.
(ii) For n = 2, there exist some c, d ∈ R, b ∈ R

2, and A ∈ A such that (1.8)

and (1.10) hold. Moreover, if O = ∅, then d = 0.

Remark 1.4. For n = 2, Corollary 1.3 is known (see [14]).

The theorem of Jörgens, Calabi, and Pogorelov is an easy consequence of

Corollary 1.3. Indeed, let u ∈ C 2 be a convex solution of (1.1). Then, by Corol-

lary 1.3, for some c, b, and A ∈ A,

E(x) := u(x) −
(

1

2
x ′ Ax + b · x + c

)
→ 0 as |x | → ∞ .

Since

det(A + D2 E) − det(A) = det(D2u) − 1 = 0
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and (A + D2 E) = (D2u) is positive definite, it follows from the mean value

theorem that for some positive definite matrix function (ai j (x)),

ai j Di j E = 0 in R
n .

By the maximum principle, E(x) ≡ 0, i.e., u(x) ≡ 1
2 x ′ Ax + b · x + c.

Corollary 1.3 enables us to establish the following existence theorem for the

Dirichlet problem on exterior domains with prescribed asymptotic behavior at in-

finity.

THEOREM 1.5 Let D be a smooth, bounded, strictly convex open subset of R
n ,

n ≥ 3, and let ϕ ∈ C2(∂ D). Then for any given b ∈ R
n and any given A ∈ A,

there exists some constant c∗, depending only on n, D, ϕ, b, and A, such that for
every c > c∗ there exists a unique function u ∈ C∞(Rn \ D) ∩ C0(Rn \ D) that
satisfies {

det(D2u) = 1, (D2u) > 0, in R
n \ D,

u = ϕ on ∂ D,

and

lim sup
|x |→∞

(
|x |n−2

∣∣∣∣u(x) −
[

1

2
x ′ Ax + b · x + c

]∣∣∣∣) < ∞ .

Remark 1.6. The Dirichlet problem on exterior domains of R
2 was studied by

Ferrer, Martínez, and Milán in [13, 14] using complex variable methods.

Our next theorem gives the existence of solutions of (1.3) with given asymptotic

behavior at infinity.

THEOREM 1.7 For n ≥ 3, let f ∈ C0(Rn) satisfy (1.4) and (1.5). Then for any
c ∈ R, b ∈ R

n , and A ∈ A, there exists a unique convex viscosity solution u of
(1.3) satisfying

(1.11) lim|x |→∞ E(x) = 0 ,

where E(x) = u(x) − ( 1
2 x ′ Ax + b · x + c). Moreover, u is C∞ in the complement

of the support of ( f − 1), and E satisfies

(1.12) (1 + |x |n−2)|E(x)| ≤ C , x ∈ R
n ,

In addition, for any k ≥ 1,

(1.13) |x |n−2+k |Dk E(x)| ≤ C , |x | ≥ r ,

where C and r are some positive constants depending only on n, f , and k.

Remark 1.8. Let u be the convex viscosity solution in Theorem 1.7. Then for

M > C , {x : u(x) < M} contains a ball of radius
√

2(M − C) and is contained

in a ball of radius
√

2(M + C). By the works of the first author [2, 3], u is strictly

convex. Moreover, if f ∈ C k,α(O) for some k ≥ 0, 0 < α < 1, and some open

subset of R
n , then u ∈ Ck+2,α(O).
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Remark 1.9. For smooth f , Theorem 1.7 is a special case of results that Delanoë

[12] obtained by different methods. For any general measurable function f satis-

fying (1.4), existence of infinitely many entire viscosity solutions was established

by Chou and Wang in [10].

2 Proof of Theorem 1.1

In this section we give a proof of Theorem 1.1, an extension, due to the first au-

thor ([4]), of the theorem of Jörgens, Calabi, and Pogorelov for classical solutions

to viscosity solutions. We need some well-known comparison principles. For the

reader’s convenience, we include the simple proofs.

PROPOSITION 2.1 Let � be a bounded open subset of R
n , n ≥ 2, and let g ∈

C0(�) be a positive function. Assume that w ∈ C 0(�) is a locally convex viscosity
subsolution (supersolution) of

det(D2w) = g in �,

and v ∈ C0(�) ∩ C2(�) is a locally convex supersolution (subsolution) of

det(D2v) = g in � .

Assume also that
w ≤ v (w ≥ v) on ∂� .

Then
w ≤ v (w ≥ v) on � .

PROOF: Without loss of generality, � ⊂ BR for some R > 0. For 0 < ε < 1

and λ ≥ 0, let

vε(x) = v(x) − ε(|x |2 − R2) and vε,λ(x) = vε(x) + λ .

For λ sufficiently large,

vε,λ ≥ w on � .

Let λ̄(ε) be the smallest λ ≥ 0 such that the above holds. We will show that

(2.1) λ̄ := lim sup
ε→0

λ̄(ε) = 0 .

Indeed, if λ̄ > 0, then there exist εj → 0+, λ̄j := λ̄j (εj ) → λ̄, and x̄ j ∈ � x̄ j → x̄ ,

such that

vεj ,λ̄j
(x̄ j ) = w(x̄ j ) ,

while

vεj ,λ̄j
≥ w on � .
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Since vε,λ̄ > w on ∂�, we have x̄ ∈ �. Since det(D2v) > 0 and v is convex,

we have (D2v(x̄)) > 0, so, for large j , vεj ,λ̄j
is strictly convex near x̄ j . By the

definition of viscosity solution and taking vεj ,λ̄j
as a test function, we have

det
(
D2vεj ,λ̄j

(x̄ j )
) ≤ g(x̄ j ) .

On the other hand, from the explicit expression of vε,λ̄, we have

det
(
D2vεj ,λ̄j

(x̄ j )
) = det

(
D2v(x̄ j ) − 2εj I

)
< det

(
D2v(x̄ j )

) ≤ g(x̄ j ) ,

a contradiction. So (2.1) holds, and therefore

w(x) ≤ lim
ε→0

vε,λ̄(ε)(x) = v(x) , x ∈ � .

The statement concerning viscosity supersolution w can be proven in a similar

way. �

There are two immediate consequences of Proposition 2.1:

COROLLARY 2.2 Let w ∈ C0(B R) be a locally convex viscosity subsolution of

det(D2w) = 1 on BR .

Then

(2.2) w(x) ≤ 1

2
(|x |2 − R2) + max

∂ BR
w ∀x ∈ BR .

COROLLARY 2.3 Let w ∈ C0(B R) be a locally convex viscosity supersolution of

det(D2w) = 1 on BR .

Then

w(x) ≥ 1

2
(|x |2 − R2) + min

∂ BR
w ∀x ∈ BR .

PROOF OF COROLLARY 2.2: The function

v(x) := 1

2
(|x |2 − R2) + max

∂ BR
w

is a C2 convex function in B R satisfying

det(D2v) = 1 on BR , w ≤ v on ∂ BR .

Estimate (2.2) follows from Proposition 2.1. �

PROOF OF COROLLARY 2.3: Let

v(x) := 1

2
(|x |2 − R2) + min

∂ BR
w

and apply Proposition 2.1. �

The following result is well-known; see, for example, [1] and [8].
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PROPOSITION 2.4 Let � be a bounded open convex subset of R
n , n ≥ 2, and let

f ∈ C0(�) ∩ C∞(�) be a positive function. Then there exists a convex solution
w ∈ C0(�) ∩ C∞(�) of {

det(D2w) = f in �

w = 0 on ∂�.

Remark 2.5. The locally convex viscosity solution to the above Dirichlet problem

is unique. This follows from Proposition 2.1.

Remark 2.6. If � is a C∞ strictly convex domain and f ∈ C∞(�) is positive, then,

by [6], w ∈ C∞(�).

To prove Theorem 1.1, we will first show that a convex viscosity solution of

(1.1) is a classical solution.

THEOREM 2.7 Let u be a convex viscosity solution of (1.1). Then u ∈ C ∞(Rn).

For M > 0, let �M = {x ∈ R
n : u(x) < M}.

PROPOSITION 2.8 Let u be a nonnegative convex viscosity subsolution of (1.1).
Then there exists some constant C, depending only on n, such that

�M ⊂ BC Mn/2 ∀M ≥ max
∂ B1

u .

Proposition 2.8 will be deduced from Corollary 2.2 and the lemma below. Let

e1 = (0, . . . , 0, 1) and, for δ > 0, B ′
δ = {(0, x2, . . . , xn) : |(0, x2, . . . , xn)| < δ}.

LEMMA 2.9 For δ, r, λ > 0, let K be the convex hull of B ′
δ ∪ {re1}, and let u ∈

C0(K ) be a nonnegative convex viscosity solution of

det(D2u) ≥ λ in the interior of K .

Assume, for some positive constant β, that

u ≤ β on B
′
δ .

Then, for some constant C = C(n) ≥ 1,

max{β, u(re1)} ≥ λ1/nδ
2(n−1)

n r2/n

C
.

PROOF: By the convexity of u,

max
K

u ≤ α := max{β, u(re1)} .

It is clear that we can put an ellipsoid E in K with

|E | ≥ δn−1r
C
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for some C = C(n) ≥ 1. For some a ∈ A, b ∈ R
n , and

A(x) = ax + b ,

we have, for some R > 0,

A(E) = BR .

Consider

w(x) = 1

λ1/n
u(A−1(x)) , x ∈ BR .

Then

det(D2w) ≥ 1 in BR

in the viscosity sense, and

w ≤ α

λ1/n
on ∂ BR .

It follows from Corollary 2.2 and the fact that u ≥ 0 that

0 ≤ w(0) ≤ −1

2
R2 + max

∂ BR
w ≤ −1

2
R2 + α

λ1/n
.

Thus

δn−1r ≤ C(n)|E | ≤ C(n)Rn ≤ C(n)αn/2

λ1/2
.

Lemma 2.9 follows from the above. �

PROOF OF PROPOSITION 2.8: For M ≥ max∂ B1 u, without loss of generality,

we may assume that

u(re1) = M .

We need to show that r ≤ C(n)Mn/2. By Corollary 2.2, max∂ B1 u ≥ 1
2 . So we

only need to consider r ≥ 2. Let K̃ denote the convex hull of B1 and re. By the

convexity of u and the fact that the values of u on ∂ B1 and at re are bounded by

M , we have

max
K̃

u ≤ M .

Proposition 2.8 follows from Lemma 2.9 (with K being the convex hull of K̃ ∩
{x1 = 1} and re1). �

Let u be a nonnegative convex viscosity subsolution of (1.1). By Proposi-

tion 2.8, �M is bounded and convex for every M > infRn u. By a normalization

lemma of John-Cordoba and Gallegos (see [11]), there exists some affine transfor-

mation

AM(x) = aM x + bM ,

where aM is an n × n matrix satisfying

(2.3) det(aM) = 1

and bM ∈ R
n such that

(2.4) BR ⊂ AM(�M) ⊂ Bn R for some R > 0 .
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PROPOSITION 2.10 Let 0 < λ < ∞, and let u be a convex viscosity solution of

(2.5) det(D2u) ≥ λ on R
n .

Assume that u is normalized to further satisfy

(2.6) u(0) = 0 , u ≥ 0 on R
n .

Then there exists some constant C ≥ 1 depending only only n such that

|�M | ≤ Cλ−1/2 Mn/2 ∀M > 0 .

PROOF: Let

AM(x) = aM x + bM

be an affine transformation satisfying (2.3) and (2.4). Consider

w(x) = λ−1/nu
(

A−1
M (x)

)
.

Then, by (2.5),

det(D2w) ≥ 1 on R
n and w ≤ λ−1/n M on ∂ BR .

Applying Corollary 2.2, we have

0 ≤ w(0) ≤ −1

2
R2 + max

∂ BR
w ≤ −1

2
R2 + λ−1/n M .

It follows that

|�M | ≤ C(n)Rn ≤ C(n)λ−1/2 Mn/2 .

�

Similarly, we have the following:

PROPOSITION 2.11 Let 0 < 
 < ∞, and let u be a convex viscosity solution of

(2.7) det(D2u) ≤ 
 on R
n .

Assume that u is normalized to further satisfy (2.6). Then there exists some constant
C ≥ 1, depending only only n, such that

|�M | ≥ C−1
−1/2 Mn/2 ∀M > 0 .

PROOF: In the proof of Proposition 2.10, we let instead

w(x) = 
−1/nu
(

A−1
M (x)

)
.

Then, by (2.7),

det(D2w) ≤ 1 on R
n and w ≥ 
−1/n M on ∂ Bn R .

Applying Corollary 2.3, we have

0 = w(AM(0)) ≥ −1

2
(n R)2 + min

∂ Bn R
w ≥ −1

2
(n R)2 + 
−1/n M .
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It follows that

|�M | ≥ C(n)−1 Rn ≥ C(n)−1
−1/2 Mn/2 .

�
PROPOSITION 2.12 For 0 < λ ≤ 
 < ∞, let u be a convex viscosity solution
of (2.5) and (2.7) that also satisfies the normalization (2.6), and let AM(x) =
aM x + bM be an affine transformation satisfying (2.3) and (2.4). Then for some
constant C, depending only on n, λ, and 
,

(2.8) 2n R ≥ dist
(

AM(�M/2), ∂ AM(�M)
) ≥ C−1 R ∀M > 0 .

Consequently,

(2.9) BR/C ⊂ aM(�M) ⊂ B2n R .

PROOF: Let w be defined on OM := 1
R AM(�M) by

w(x) = 
−1/n

R2
u
(

A−1
M (Rx)

) − 
−1/n M
R2

, x ∈ OM .

Then

B1 ⊂ OM ⊂ Bn , w = 0 on OM ,

and

det(D2w) ≤ 1 in OM .

It follows from Lemma A.1 that

w(x) ≥ −C(n) dist(x, ∂OM))
2

n+1 , x ∈ OM .

For ȳ ∈ AM(�M/2), M > 0, let x̄ = 1
R ȳ; we then have

−
−1/n M
2R2

= 
−1/n( M
2 − M)

R2
≥ w(x̄) ≥ −C(n) dist(x̄, ∂OM)

2
n+1 .

It follows from Proposition 2.10, (2.3), and (2.4) that for some C =C(n,
, λ)≥1,

dist(ȳ, ∂ AM(�M)) ≥ C−1 R .

Since AM(�M) ⊂ Bn R ,

dist(ȳ, ∂ AM(�M)) ≤ 2n R .

Estimate (2.8) is established. Estimate (2.9) follows from (2.8) and

dist(AM(0), ∂ AM(�M)) = dist(0, ∂aM(�M)) .

�

PROOF OF THEOREM 2.7: Without loss of generality, we may assume that u
further satisfies (2.6). For M > 0, by Proposition 2.8, �M is bounded and convex.

Applying Proposition 2.4 to w = u − M on � = �M , we have u ∈ C∞(�M).

Since R
n = ∪M>0�M , we have u ∈ C∞(Rn). �
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PROPOSITION 2.13 Let u ∈ C2(Rn) be a convex solution of (2.7) that further
satisfies normalizations (2.6) and

D2u(0) = I the identity.

For M > 0, let AM(x) = aM x + bM be some affine transformation satisfying (2.3)

and (2.4). Then for some positive constant C = C(n),

(2.10) C−1 M1/2 ≤ R ≤ C M1/2

and

(2.11) ‖aM‖ ≤ C ,
∥∥a−1

M

∥∥ ≤ C .

Moreover,

(2.12) sup
Rn

‖D2u‖ ≤ C .

PROOF: Estimate (2.10) follows from Propositions 2.10 and 2.11 and (2.4).

Consider

w(x) = 1

R2
u
(
a−1

M (Rx)
)
, x ∈ O := 1

R
aM(�M) .

By (2.9),

(2.13) B1/C ⊂ O ⊂ B2n .

By (1.1) ,

det(D2w) = 1 on O .

It follows from (2.10) that

C−1 ≤ w = M
R2

≤ C on ∂O .

By (2.13) and the interior second derivative estimates of Pogorelov,

(2.14) ‖D2w(x)‖ ≤ C ∀|x | ≤ 1

2C
,

in particular,

‖D2w(0)‖ ≤ C .

Recall the Pogorelov estimate: Let O be a bounded convex open set of R
n , and

let w ∈ C2(O) ∩ C0(O) be a convex function satisfying det(D2w) = 1 in O and

w = 0 on ∂O; then for any compact subset K of O , ‖D2w‖ ≤ C on K for some

constant C depending only on n, O , and K .

Since D2u(0) = I , we have

D2w(0) = (
a−1

M

)′(a−1
M

)
,

where (a−1
M )′ denotes the transpose of a−1

M . It follows that∥∥a−1
M

∥∥ ≤ C .
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Since det(a−1
M ) = det(aM) = 1, we then have

‖aM‖ ≤ C .

Estimate (2.11) is established.

By (2.14) and (2.11),

sup
|y|≤ R

2C

|D2u(y)| ≤ C where C = C(n) .

Since M can be arbitrary large (as can R), estimate (2.12) follows from the above.

�

Theorem 1.1 can be deduced from Theorem 2.7, (2.12), and the C 2,α interior

estimates of Evans and Krylov as follows:

PROOF OF THEOREM 1.1: By Theorem 2.7, u ∈ C∞(Rn). Then, by (2.12),

(2.15) |u(x)| ≤ C |x |2 , |x | ≥ 1 .

For x̄ ∈ R
n , we will show that D2u(x̄) = D2u(0). For R > 2(|x̄ |+1), we consider

w(y) = 1

R2
u(Ry) , y ∈ B1 .

By (2.15), (1.1), and (2.12),

|w| ≤ C , det(D2w) = 1 , |D2w| ≤ C on B1

where C = C(n). Let

ȳ = x̄
R

.

Then

|ȳ| ≤ 1

2
.

It follows from the above-mentioned estimates of Evans and Krylov that for some

α ∈ (0, 1) and C (independent of R),

|D2w(ȳ) − D2w(0)| ≤ C |ȳ|α ,

i.e.,

|D2u(x̄) − D2u(0)| ≤ C
|x̄ |α
Rα

.

Sending R → ∞, we have

D2u(x̄) = D2u(0) .

Since x̄ is arbitrary, u is a quadratic polynomial. Theorem 1.1 is established. �
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3 Proof of Theorem 1.2 and Corollary 1.3

We prove Theorem 1.2 and Corollary 1.3 in this section.

First we have the following:

LEMMA 3.1 Let u be as in Theorem 1.2; then u is C∞ in the complement of the
support of ( f − 1).

PROOF: Let x̄ be in the complement of the support of ( f − 1); without loss

of generality, x̄ = 0. Subtracting from u a supporting plane to the graph of u
at (0, u(0)), we may assume without loss of generality that u satisfies (2.6). It

follows from Proposition 2.8 that �ε is bounded and convex for ε > 0. Then by

[3, theorem 1] we have that {x ∈ �ε : u(x) = 0} = {0}. Taking ε > 0 small

enough, �ε belongs to the complement of the support of ( f − 1). It follows from

Proposition 2.4 that u ∈ C∞(�ε). �
Let u be as in Theorem 1.2. As explained above, we may assume that u also

satisfies (2.6). We know from Lemma 3.1 that for M large, u ∈ C∞(Rn \ �M) and

�M is bounded and strictly convex. Keep u fixed outside �M and redefine u inside

�M so that the new u is in C∞(Rn) and (D2u) > 0 on R
n . Let f = det(D2u) be the

new f . So we only need to establish Theorem 1.2 with the additional hypothesis

that u ∈ C∞(Rn) and u satisfies (2.6). These will be assumed in the rest of this

section.

Let AM(x) = aM x + bM be an affine transformation satisfying (2.3) and (2.4),

and let

ξ(y) = 1

R2
u
(
a−1

M (Ry)
)
, y ∈ O := 1

R
aM(�M) .

By (2.9),

B1/C ⊂ O ⊂ B2n .

Here and in the following, C ≥ 1 denotes some constant depending only on n and

f . Clearly

det(D2ξ) = f
(
a−1

M (Ry)
)
.

By Propositions 2.10 and 2.11,

(3.1) ξ = M
R2

∈ (C−1, C) on ∂O .

By Proposition 2.4 and Remark 2.5, there exists a unique convex solution ξ̄ :=
ξ̄O,M/R2 ∈ C0(O) ∩ C∞(O) of{

det(D2ξ̄ ) = 1 on O
ξ̄ = M

R2 on ∂O.

Because of (3.1), the interior second derivative estimates of Pogorelov, and the

C2,α estimates of Evans and Krylov (also use Schauder estimates), for every δ > 0,

there exists some positive constant C = C(δ), independent of M , such that

(3.2) C−1 I ≤ (D2ξ̄ (x)) ≤ C I , |D3ξ̄ (x)| ≤ C , x ∈ O, dist(x, ∂O) ≥ δ .
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LEMMA 3.2 For some positive constant C independent of M,

|ξ − ξ̄ | ≤ C R−1 in O .

PROOF: By the Alexandrov estimate (see, e.g., [16, lemma 9.2]),

− min
O

(ξ − ξ̄ ) ≤ C
{ ∫

S+

det(D2(ξ − ξ̄ )

}1/n

,

where

S+ = {x ∈ O : D2(ξ − ξ̄ )(x) > 0} .

On S+,

D2ξ

2
= D2(ξ − ξ̄ ) + D2ξ̄

2
,

so it follows from the concavity of (det)1/n ,

det

(
D2ξ

2

)1/n

≥ 1

2
det(D2(ξ − ξ̄ ))1/n + 1

2
det(D2ξ̄ )1/n ,

i.e.,

det(D2(ξ − ξ̄ )(y))1/n ≤ 1 − f
(
a−1

M (Ry)
)1/n

, y ∈ S+ .

It follows that

− min
O

(ξ − ξ̄ ) ≤ C
{ ∫

S+

[
1 − f (a−1

M (Ry))1/n]n
}1/n

≤ C
R

‖1 − f 1/n‖Ln( f <1) ≤ C
R

.

Similarly, we can show that

− min
O

(ξ̄ − ξ) ≤ C
R

‖ f 1/n − 1‖Ln( f >1) ≤ C
R

.

Lemma 3.2 is established. �

Let x̄ be the unique minimum point of ξ̄ in O . Recall that

AM(x) = aM x + bM

is an affine transformation satisfying (2.3) and (2.4). By Proposition 2.10 and

Proposition 2.11 ,

C−1 M1/2 ≤ R ≤ C M1/2 .

Let

EM = {x : x ′ D2ξ̄ (x̄)x ≤ 1} .
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PROPOSITION 3.3 There exist k̄ and C, depending only on n and f , such that for
ε = 1

10 , M = 2(1+ε)k , and 2k−1 ≤ M ′ ≤ 2k , we have(
2M ′

R2
− C2− 3εk

2

)1/2

EM ⊂ 1

R
aM(�M ′)

⊂
(

2M ′

R2
+ C2− 3εk

2

)1/2

EM ∀k ≥ k̄ .

(3.3)

PROOF: In the proof, C and k̄ denote various large constants with the specified

dependence, and we always assume that k ≥ k̄. Clearly,

C−12−εk ≤ M ′

R2
≤ C2−εk , C−12

(1+ε)k
2 ≤ R ≤ C2

(1+ε)k
2 ,

and {
ξ <

M ′

R2

}
:=

{
z ∈ O : ξ(z) <

M ′

R2

}
= 1

R
aM(�M ′) .

By Lemma 3.2,

|ξ − ξ̄ | ≤ C
R

≤ C2− (1+ε)k
2 on O .

Since
M ′

R2
 C

R
,

the level surface of ξ can be well approximated by the level surface of ξ̄ :

(3.4)

{
ξ̄ <

M ′

R2
− C

R

}
⊂

{
ξ <

M ′

R2

}
⊂

{
ξ̄ <

M ′

R2
+ C

R

}
.

By Lemma 3.2 and the fact ξ ≥ 0, we have

−C
R

≤ ξ(x̄) − C
R

≤ ξ̄ (x̄) ≤ ξ̄ (0) ≤ ξ(0) + C
R

= C
R

.

So, by Lemma A.1, B1/C(x̄) ⊂ O , and therefore by (3.2),∣∣∣∣ξ̄ (x) − ξ̄ (x̄) − 1

2
(x − x̄)′ D2ξ̄ (x̄)(x − x̄)

∣∣∣∣ ≤ C |x − x̄ |3 ∀x ∈ B1/C(x̄)

and
I
C

≤ (D2ξ̄ (x̄)) ≤ C I .

Estimate (3.3) follows from (3.4) and the above estimates by elementary consider-

ation. �

Let B denote the unit ball in R
n , and still let ε = 1

10 .
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PROPOSITION 3.4 There exist positive constants C and k̄ and some real invertible
upper-triangular matrices {Tk}k≥k̄ such that

(3.5) det(Tk) = 1 ,
∥∥Tk T −1

k−1 − I
∥∥ ≤ C2−εk ,

and

(3.6) (1 − C2−εk)
√

2M ′ B ⊂ Tk(�M ′) ⊂ (1 + C2−εk)
√

2M ′ B ,

2k−1 ≤ M ′ ≤ 2k .

Consequently, for some invertible T ,

(3.7) det(T ) = 1 , ‖Tk − T ‖ ≤ C2−εk .

PROOF: Let M = 2(1+ε)k and let 2k−1 ≤ M ′ ≤ 2k . By (3.3), there exist some

constants C and k̄ (depending only on n and f ) such that

(1 − C2−εk)
√

2M ′EM ⊂ aM(�M ′) ⊂ (1 + C2−εk)
√

2M ′EM , k ≥ k̄ .

Let Q be the positive definite matrix satisfying Q2 = D2ξ̄ (x̄), and let O be an

orthogonal matrix such that

Tk := O QaM is upper-triangular.

Clearly,

det(Tk) = det(O) det(Q) det(aM) =
√

det(D2ξ̄ (x̄)) det(aM) = 1

and

(3.8) (1 − C2−εk)
√

2M ′ B ⊂ Tk(�M ′) ⊂ (1 + C2−εk)
√

2M ′ B .

Taking some larger k̄, we deduce from (3.8), with M ′ = 2k and then M ′ = 2k−1,

that (with a larger C)

(1 − C2−εk)B ⊂ Tk T −1
k−1(B) ⊂ (1 + C2−εk)B , k ≥ k̄ .

Since Tk T −1
k−1 is still upper-triangular, we apply Lemma A.5 (with U = Tk T −1

k−1) to

obtain that ∥∥Tk T −1
k−1 − I

∥∥ ≤ C2−εk , k ≥ k̄ .

Estimates (3.5) and (3.6) are established. The existence of T and (3.7) (with a

larger C) follow by elementary consideration. Proposition 3.4 is established. �

Let v = u ◦ T . Then

(3.9) det(D2v) = 1 , R
n \ T −1(�M0) .

Since {x : v(x) < M ′} = T (�M ′), we deduce from (3.6) and (3.7) that

(1−C(M ′)−ε)
√

2M ′ B ⊂ {x : v(x) < M ′} ⊂ (1+C(M ′)−ε)
√

2M ′ B ∀M ′ ≥ 2k̄ .
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Consequently,

(3.10)

∣∣∣∣v(x) − 1

2
|x |2

∣∣∣∣ ≤ C |x |2−2ε , |x | ≥ 2k̄ .

LEMMA 3.5 Let w ∈ C∞(Rn \ B1) satisfy

(I + D2w(x)) > 0 , det(I + D2w(x)) = 1 on |x | > 1 ,

and, for some constants β > 0 and γ > −2,

|w(x)| ≤ β

|x |γ on |x | > 1 .

Then there exist some constants r = r(n, β, γ ) ≥ 1 such that for all k ≥ 1,

|Dkw(x)| ≤ C
|x |γ+k

on |x | ≥ r ,

where C depends only on n, k, β, and γ .

PROOF: Let

η(x) := |x |2
2

+ w(x) .

For |x | = R > 8, let

ηR(y) :=
(

4

R

)2

η

(
x + R

4
y
)

, |y| ≤ 2 ,

and

wR(y) :=
(

4

R

)2

w

(
x + R

4
y
)

= ηR(y) − 8

∣∣∣∣ x
R

+ y
4

∣∣∣∣2

, |y| ≤ 2 .

By the decay hypothesis on w, there exists some r = r(n, β) ≥ 1 such that for

|x | = R ≥ r ,

3 ≤ 4 − 16β2γ

Rγ+2
≤ ηR(y) ≤ 32 + 16β2γ

Rγ+2
≤ 33 , |y| ≤ 2 .

Since ηR satisfies

(D2ηR(y)) > 0 , det(D2ηR(y)) = 1 , |y| < 2 ,

by the estimates of Pogorelov, Evans-Krylov, and Schauder, we have, for every

k ≥ 1,

‖ηR‖Ck (B) ≤ C and
I
C

< (D2ηR) < C I on B .

Here and in the following, C ≥ 1 denotes some constant depending on n and k
unless otherwise stated.

It follows that

(3.11) ‖wR‖Ck (B) ≤ C and
I
C

< (I + D2wR) < C I on B .

Clearly, wR satisfies

âi j (y)Di jwR(y) = 0 on B2 ,
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where (âi j (y)) = ∫ 1
0 Fξi j (I + s D2wR(y))ds satisfies, in view of (3.11), that

‖âi j‖Ck (B) ≤ C and
I
C

< (âi j ) < C I on B .

Here and throughout the section, we use the notation

F(ξ) := det(ξi j )
1/n .

It is well-known that, in the open set of symmetric positive definite matrices, (Fξi j )

is positive definite and F is concave.

By Schauder theory,∣∣DkwR(0)
∣∣ ≤ C‖wR‖L∞(B) ≤ C(n, k, β, γ )

Rγ+2
.

It follows that

|Dkw(x)| ≤ C(n, k, β, γ )

|x |γ+k
.

�
LEMMA 3.6 For n ≥ 3, there exist b ∈ R

n , c ∈ R, and some positive constant C
such that∣∣∣∣v(x) −

( |x |2
2

+ b · x + c
)∣∣∣∣ ≤ C

|x |n−2
∀x ∈ R

n \ T −1(�M0) .

PROOF: Let

Ê := v(x) − |x |2
2

.

Then

(3.12) F(I + D2 Ê) = 1 in R
n \ T −1(�M0) .

By (3.10), we apply Lemma 3.5 to Ê (rather, to r−2 Ê(r x), for some harmless r )

with γ = 2ε − 2 to obtain

|D2 Ê(x)| ≤ C
|x |2ε

.

It follows that

(3.13) ãi j (x)Di j Ê(x) = F(I + D2 Ê) − F(I ) = 0 in R
n \ T −1(�M0) ,

where

ãi j (x) =
∫ 1

0
Fξi j (I + s D2 Ê(x))ds .

Let e ∈ R
n be a unit vector; applying De and Dee to (3.12) yields, in view of the

concavity of F(ξ), that

(3.14) ai j (x)Di j (De Ê(x)) = 0 , x ∈ R
n \ T −1(�M0) ,

and

(3.15) ai j (x)Di j (Dee Ê(x)) ≥ 0 , x ∈ R
n \ T −1(�M0) ,
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where

ai j (x) := Fξi j (I + D2 Ê(x)) .

Clearly, (ai j (x)) and (ãi j (x)) are positive definite and satisfy

|ãi j (x) − δi j | + |ai j (x) − δi j | ≤ C |x |−2ε .

It is well-known that for such coefficients, there exist positive solutions G(x) of

ai j (x)Di j G(x) = 0 satisfying lim|x |→∞(|x |n−2G(x)) = 1. By (3.15) and the max-

imum principle,

e′ D2 Ê(x)e = Dee Ê(x) ≤ CG(x) ≤ C |x |2−n , x ∈ T −1(�M0) .

This means that the largest eigenvalue of (D2 Ê(x)) is bounded from above by

C |x |2−n . By (3.13), the least eigenvalue of (D2 Ê(x)) is bounded below by a neg-

ative constant multiple (depending only on the ellipticity of (ãi j (x))) of the largest

eigenvalue of (D2 Ê(x)). Thus,

e′ D2 Ê(x)e = Dee Ê(x) ≥ −C |x |2−n .

It follows that

|D2 Ê(x)| ≤ C
|x |n−2

≤ C
|x | , R

n \ T −1(�M0) .

For 1 ≤ m ≤ n, Dm Ê satisfies (3.14) with De Ê replaced by Dm Ê . Applying

theorem 4 in [15] (with u = Dm Ê and r → ∞), Dm Ê(x) tends to some constant,

denoted as bm , as |x | tends to infinity, namely,

lim|x |→∞ DẼ(x) = 0 where Ẽ(x) := Ê(x) − b · x .

Since Dm Ẽ satisfies the same equation as Dm Ê (i.e., (3.14)), we deduce from

the maximum principle that

|DẼ(x)| ≤ C |x |2−n ≤ C
|x | , R

n \ T −1(�M0) .

By (3.13),

ãi j (x)Di j Ẽ(x) = 0 , R
n \ T −1(�M0) .

Applying again [15, theorem 4] to u = Ẽ as r → ∞, we have

lim|x |→∞ Ẽ(x) = c

for some constant c. Applying the maximum principle to Ẽ(x) − c, we have

|Ẽ(x) − c| ≤ C |x |2−n ,

namely,

|Ê(x) − b · x − c| ≤ C |x |2−n .

�
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3.1 Proof of Theorem 1.2
In this subsection we complete the proof of Theorem 1.2.

For n ≥ 3, inequality (1.6) follows from Lemma 3.6, and estimate (1.7) fol-

lows from (1.6) and Lemma 3.5 with γ = n − 2. This completes the proof of

Theorem 1.2 in the case n ≥ 3.

In the rest of this subsection we prove Theorem 1.2 when n = 2. First, instead

of Lemma 3.6, we have the following:

LEMMA 3.7 For n = 2, there exist b ∈ R
n , c, d ∈ R, and some positive constant

C such that∣∣∣∣v(x) −
( |x |2

2
+ b · x + d log |x | + c

)∣∣∣∣ ≤ C
|x | ∀x ∈ R

n \ T −1(�M0) .

PROOF: By (3.10) and Lemma 3.5, we have

|x |2ε−1|∇ Ê(x)| + |x |2ε|∇2 Ê(x)| + |x |1+2ε|∇3 Ê(x)| ≤ C , |x | ≥ 2k̄ ,

where

Ê(x) := v(x) − |x |2
2

.

Differentiating (3.9) and using the above decay estimates on D2 Ê , we have(
δi j + O(|D2 Ê |)Di j (Êm) = 0 , where Êm = ∂ Ê

∂xm
, m = 1, 2.

It follows that

�Êm = O(|D2 Ê ||D3 Ê |) = O
(

1

|x |1+4ε

)
.

Let

ψ̂m(x) = − 1

2π

∫
|y|≥2k̄

�Êm(y)(log |x − y| − log |y|)dy .

Then

�(Êm − ψ̂m) = 0 , |x | ≥ 2k̄ ,

and, for any ε ′ < 2ε,

|ψ̂m(x)| ≤ C(ε ′)|x |1−ε′
, |x | ≥ 2k̄ .

Since Êm − ψ̂m is harmonic in |x | > 2k̄ , and its growth is at most of order |x |1−2ε ,

Êm(x) − ψ̂m(x) = O(log |x |) ,

and therefore, for any ε ′ < 4ε,

|∇ Ê(x)| ≤ C(ε ′)(log |x | + |x |1−ε′
) .

Integrating the above, we have, for any ε ′ < 4ε,

|Ê(x)| ≤ C(ε ′)(|x | log |x | + |x |2−ε′
) .
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We have improved estimate (3.10) of |Ê(x)|. Applying Lemma 3.5 with this im-

proved estimate and arguing as above, we have, for any ε ′ < 8ε,

|Ê(x)| ≤ C(ε ′)(|x | log |x | + |x |2−ε′
) .

By induction, we have, for any ε ′ > 0,

|Ê(x)| ≤ C(ε ′)|x |1+ε′
, |x | ≥ 2k̄ .

Then by Lemma 3.5, we have, for any ε ′ > 0,

|x |−ε′ |∇ Ê(x)| + |x |1−ε′ |∇2 Ê(x)| + |x |2−ε′ |∇3 Ê(x)| ≤ C , |x | ≥ 2k̄ .

Since Ê satisfies

δi j + O(|D2 Ê |)Di j Ê = 0 ,

we have, for any ε ′ > 0,

�Ê = O(|D2 Ê |2) = O
(

1

|x |4−ε′

)
.

Let

ψ̂(x) = − 1

2π

∫
|y|≥2k̄

�Ê(y)(log |x − y| − log |y|)dy .

Then, for any ε ′ > 0,

|ψ̂(x)| ≤ C(ε ′)
|x |2−ε′ , |x | ≥ 2k̄ .

Since Ê − ψ̂ is harmonic in |x | > 2k̄ , and since its growth is at most of order

|x |1+ε′
, we have, for some b ∈ R

n and c, d ∈ R, that

Ê(x) − ψ(x) = b · x + d log |x | + c + O
(

1

|x |
)

.

By the decay of ψ ,

Ê(x) = b · x + d log |x | + c + O
(

1

|x |
)

.

�

Next we have the following proof:

PROOF OF THEOREM 1.2 FOR n = 2: Relation (1.8) follows from Lemma 3.7,

and estimate (1.10), for some d ∈ R, follows from (1.8) and Lemma 3.5 with

γ = 1. We only need to establish (1.9). In fact, by making an affine transformation,

we only need to establish (1.9) for A = I . We first prove it under an additional

hypothesis that f ∈ C∞(R2). In this case u ∈ C∞(R2). Write w = |x |2/2,

η = d log |x |, ū = w + η + E , and

det(D2ū) = ū11ū22 − ū2
12 = ∂1(ū1ū22) − ∂2(ū1ū12) .
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By (1.3) and u = ū + b · x + c,

det(D2ū) = det(D2u) = f .

By (1.10), as |x | → ∞,

|DE(x)| = O
(

1

|x |2
)

and |D2 E(x)| = O
(

1

|x |3
)

.

Integrating the equation of ū on Br and integrating by parts, we have, as r → ∞,∫
Br

f =
∫

|x |=r

[
(ū1ū22)

x1

|x | − (ū1ū12)
x2

|x |
]

=
∫

|x |=r

[
(w1w22)

x1

|x | − (w1w12)
x2

|x |
]

+
∫

|x |=r

[
(η1w22)

x1

|x | − (η1w12)
x2

|x |
]

+
∫

|x |=r

[
(w1η22)

x1

|x | − (w1η12)
x2

|x |
]

+ O
(

1

r

)

=
∫
Br

det(D2w) +
∫

|x |=r

(
[η1w22 + w1η22] x1

|x | − (η1w12)
x2

|x |
)

+ O
(

1

r

)
.

We know that ∫
Br

det(D2w) = πr2

and ∫
|x |=r

(
[η1w22 + w1η22] x1

|x | − (η1w12)
x2

|x |
)

= 2d
r3

∫
|x |=r

(x2
1)

= d
r3

∫
|x |=r

|x |2 = 2πd .

It follows that ∫
Br

( f − 1) = 2πd + O
(

1

r

)
as r → ∞ .

Formula (1.9) for A = I follows after sending r to infinity. As pointed out earlier,

formula (1.9) in general follows by applying the special case to ũ(x) = u(A−1/2x).

If f ∈ C0 only, let ūε = ū ∗ ρε , the convolution of ū and ρε with ρε(x) =
ε−2ρ(ε−1x), where ρ is some nonnegative smooth function of compact support

satisfying
∫

ρ = 1. For large r , Br contains the support of ( f − 1), and therefore

ū is C∞ near ∂ Br . We also know that

lim
ε→0

∫
Br

det(D2ūε) =
∫
Br

f .



EXTENSION TO A THEOREM OF JÖRGENS, CALABI, AND POGORELOV 571

As shown above,∫
Br

det(D2ūε) =
∫

|x |=r

[
(ūε1ūε22)

x1

|x | − (ūε1ūε12)
x2

|x |
]

.

Sending ε to zero, we have∫
Br

f =
∫

|x |=r

[
(ū1ū22)

x1

|x | − (ū1ū12)
x2

|x |
]

.

Following previous arguments, we obtain (1.9) (for continuous f ). �

3.2 Proof of Corollary 1.3
Finally, we can prove Corollary 1.3.

By enlarging O slightly, we may assume that u ∈ C 0(Rn \ O). We divide the

proof into three steps.

Step 1. First we prove Corollary 1.3 under the additional hypothesis that u can

be extended as a convex function on R
n .

In this case, we first show that

(3.16) u ∈ C∞(Rn \ O) .

For x̄ ∈ R
n \ O , by subtracting from u a supporting plane to the graph at

(x̄, u(x̄)), we may assume that u ≥ 0 on R
n \ O and u(x̄) = 0. An application of

Lemma 2.9 yields that u(x) → ∞ as |x | → ∞. For large M , {u < M} contains

x̄ and O . Applying theorem 1 in [3] on {u < M} \ O , we know that x̄ is the only

point in {u < M} \ O where u = 0. So for ε > 0 small, {u < ε} is a convex open

subset of R
n \ O . By Proposition 2.4 and Remark 2.5, u is C∞ in {u < ε}. In

particular, u is C∞ near x̄ . (3.16) is established.

For large M , {u < M} is a strictly convex, bounded open set containing O .

As explained at the beginning of Section 3, we can keep u fixed outside {u < M}
while redefining u inside {u < M} so that the new u is in C∞(Rn) and (D2u) > 0

on R
n . Let f = det(D2u); Corollary 1.3 follows from Theorem 1.2 applied to the

new u.

Step 2. We show that there exists some affine function l(x) such that

(3.17) u(x) − l(x) ≥ 0 in R
n \ O .

Without loss of generality, we may assume that O ⊂ B1. Fix some λ � 1;

by subtracting from u a supporting plane to the graph at (−λe1, u(−λe1)), we may

assume that u ≥ 0 on R
n \ �, where � denotes the cone generated by −λe1 and

B1. Fix some M > 0 such that

u(x) < M , x ∈ B3 \ O .

By Lemma 2.9, limα→∞ u(−αe2) = ∞. Let α be the largest value such that

u(−αe2) ≤ M . Then 3 ≤ α < ∞ and u(−αe2) = M . Let �i denote the closed

cone generated by −αe2 and Bi , i = 1, 2, and let l1(x) denote a supporting plane
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of the graph of u at (−αe2, u(−αe2)). Then l1(−αe2) = M and u(x) ≥ l1(x) for

x ∈ R
n \ �1. Since u ≤ M on B2 \ O , we know that l1(x) ≤ M on �2. Since λ is

large, �2 ∩ � is compact. By Lemma 2.9,

lim
x∈	1,|x |→∞ u(x) = ∞ .

It follows that

u(x) ≥ l1(x) on R
n \ {a compact set}.

Therefore (3.17) holds with l(x) = l1(x) − c2 for a suitably large c2.

Step 3. Now we can complete the proof of Corollary 1.3.

By step 2, we may assume without loss of generality that u ≥ 0 on R
n \ O . By

Lemma 2.9, lim|x |→∞ u(x) = ∞. It follows that, for large M , the function

ũ(x) =
{

M, x ∈ O,

max{M, u(x)}, x ∈ R
n \ O,

is convex on R
n . Corollary 1.3(i) and Corollary 1.3(ii) follow from step 2 applied

to ũ. In the following we show that u ∈ C∞(Rn \ O). For x̄ ∈ R
n \ O , let l(x) be

a supporting plane to the graph of u at (x̄, u(x̄)). We already know that u grows

quadratically at infinity. So, by applying [3, theorem 1], we know that x̄ is an

isolated local minimum point of u(x) − l(x). By the same argument as in step 1, u
is C∞ near x̄ .

4 Proof of Theorem 1.7

The uniqueness part in the proof of 1.7 can be deduced easily from the maxi-

mum principle (see, e.g., Lemma A.2). By the affine invariance of the problem, we

may assume A = I , b = 0, and c = 0. We may also assume that

support of ( f − 1) ⊂ B1 .

First, we explore the proof under the additional hypothesis that f ∈ C ∞(Rn).

For R > 1, let u R ∈ C∞(B R) be the unique convex solution of

(4.1)

{
det(D2u R) = f on BR

u R = R2

2 on ∂ BR.

We will show that as R tends to infinity, u R tends to some u that satisfies (1.3) and,

for some constant depending only on n, minRn f and maxRn f .

(4.2) sup
Rn

|u(x) − |x |2
2

| ≤ C .

To prove the above, we need some barrier functions. Let h(r) be defined on

r > 0, and let

u(x) = h(|x |) .
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Then

D2u(x) =


h′′(r)

h′(r)

r
. . .

h′(r)

r

 .

So,

det(D2u(x)) = h ′′(r)

(
h′(r)

r

)n−1

.

For a = 2n(maxRn f ), let

h−(r) =
{∫ r

1 (sn + a)1/n ds, r ≥ 1,

(maxRn f )1/n(r2 − 1), 0 ≤ r < 1,

and

u−(x) = h−(|x |) , x ∈ R
n .

Then u− ∈ C0(Rn) ∩ C∞(B1) ∩ C∞(Rn \ B1), u− is locally convex in R
n \ B1,

det(D2u−) = 1 on R
n \ B1 ,

det(D2u−) > f on B1 ,

and

(4.3) lim
r→1− h′

−(r) < lim
r→1+ h′

−(r) .

It is easy to see that (recall that n ≥ 3)

(4.4) sup
x∈Rn

∣∣∣∣u−(x) − |x |2
2

∣∣∣∣ < ∞ .

Next we define

h+(r) =
∫ r

1
(sn − 1)1/n ds , r ≥ 1 ,

and

u+(x) =
{

h+(|x |), |x | ≥ 1,

0, |x | < 1.

Then u+ ∈ C0(Rn) ∩ C1(B1) ∩ C∞(Rn \ B1), u+ is locally convex in R
n \ B1, and

det(D2u+) = 1 on R
n \ B1 .

We also know that

(4.5) h′
+(1) = 0

and

(4.6) sup
x∈Rn

∣∣∣∣u+(x) − |x |2
2

∣∣∣∣ < ∞ .
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By (4.4) and (4.6),

β+ := sup
x∈Rn

( |x |2
2

− u+(x)

)
< ∞

and

β− := inf
x∈Rn

( |x |2
2

− u−(x)

)
> −∞ .

We will use (u+ + β+) and (u− + β−) as barrier functions to establish the

following:

LEMMA 4.1 Let u R be defined in (4.1) for R > 1; then

(4.7) u−(x) + β− ≤ u R(x) ≤ u+(x) + β+ ∀x ∈ BR .

PROOF: Let R > 1; for β sufficiently large, we have

u+(x) + β ≥ u R(x) , x ∈ B R .

Let β̄ be the smallest number for which the above holds with β = β̄. If β̄ ≤ β+,

then the second inequality in (4.7) holds. Otherwise, β̄ > β+, and for some x̄ ∈
B R ,

u R(x̄) = u+(x̄) + β̄ .

In view of the boundary data of u R and the definition of β+ (recall that β̄ > β+),

we must have

|x̄ | < R .

We also know that

|x̄ | > 1 .

Indeed, if |x̄ | ≤ 1, the supporting plane of the graph of u R at (x̄, u R(x̄)) must be

horizontal ((4.5) is used when |x̄ | = 1), and therefore u R(x) = β̄ for all |x | ≤ 1,

which is impossible.

On the other hand, by the strong maximum principle, 1 < |x̄ | < R cannot occur

either. We have established the second inequality in (4.7).

To establish the first inequality, we argue similarly, using (u− +β−) as a barrier

function. First, we know that for β very negative, we have

u−(x) + β ≤ u R(x) , x ∈ B R .

Let β̄ be the largest number for which the above holds with β = β̄. If β̄ ≥ β−,

then the first inequality in (4.7) holds. Otherwise, β̄ < β−, and for some x̄ ∈ B R ,

u R(x̄) = u−(x̄) + β̄ .

Since

det(D2u−) ≥ det(D2u R) on BR \ B1
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and

det(D2u−) > det(D2u R) on B1 ,

we have, by the maximum principle, |x̄ | = 1. But this is impossible in view of

(4.3) and the smoothness of u R . The first inequality in (4.7) is established. �

By Lemma 4.1, we can apply Pogorelov estimates and then Evans-Krylov es-

timates and Schauder theory to u R to obtain that on every compact subset K of

R
n ,

‖u R‖Ck (K ) ≤ C(K , k) ∀k .

So along a subsequence Ri → ∞,

u Ri → u in Ck
loc(R

n) ∀k .

It follows that u is convex and satisfies (1.3) and

(4.8) u−(x) + β− ≤ u(x) ≤ u+(x) + β+ on R
n .

In particular, u ∈ C∞(Rn) and satisfies (1.3) and (4.2).

Without the additional smoothness hypothesis on f , let fε = f ∗ ρε , where ρε

is the usual mollifier. Let uε be the solution found above for fε . We know from

the proof that |uε(x) − 1
2 |x |2| ≤ C on R

n for some C depending only on n and f .

Then, by the convexity of uε and the above estimates, {|uε| + |Duε|} is uniformly

bounded on any compact subset of R
n . Passing to a subsequence (still denoted as

{uε}), uε → u in C0
loc(R

n) for some convex function u. So u is a viscosity solution

of (1.3) and satisfies (4.2).

By Theorem 1.2, there exist b ∈ R
n , c ∈ R, and A ∈ A such that (1.6) holds.

In view of (4.2), A = I and b = 0. Replacing u by u − c (but still calling it u),

clearly E(x) := u(x) − [|x |2/2 + c] satisfies (1.11). To see (1.12), we first deduce

from (4.8) that

|E(x)| ≤ C , x ∈ R
n .

Here and in the following, C and r denote various large positive constants depend-

ing only on n and f . Applying Lemma 3.5, with γ = 0, we have

|D2 E(x)| ≤ C
|x |2 , |x | ≥ r .

Since E satisfies

ãi j (x)Di j E = 0 on R
n \ B1 with ãi j (x) =

∫ 1

0
Fξi j (I + s D2 E(x))ds .

In view of the above estimates on D2 E , the Green’s function for (ãi j (x)) is bounded

by C |x |2−n for |x | ≥ r . Estimate (1.12) then follows from (1.11) and the maximum

principle. Estimate (1.13) follows from (1.12) and Lemma 3.5 with γ = n − 2.

Theorem 1.7 is established.
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5 Proof of Theorem 1.5

By an affine transformation and by subtracting a linear function from u, we

only need to prove the theorem for A = I , b = 0, and B2(0) ⊂ D. These will be

assumed below.

LEMMA 5.1 There exists some constant C, depending only on n, ϕ, and D, such
that, for every ξ ∈ ∂ D, there exists x̄(ξ) ∈ R

n satisfying

|x̄(ξ)| ≤ C and wξ < ϕ on ∂ D \ {ξ} ,

where

wξ (x) := ϕ(ξ) + 1

2

(|x − x̄(ξ)|2 − |ξ − x̄(ξ)|2) , x ∈ R
n .

PROOF: Let ξ ∈ ∂ D. By a translation and a rotation, we may assume without

loss of generality that ξ = 0 and ∂ D is locally represented by the graph of

xn = ρ(x ′) := 1

2

∑
1≤α,β≤n−1

Bαβ xαxβ + ◦(|x ′|2) ,

and ϕ locally has the expansion

ϕ(x ′, ρ(x ′)) = ϕ(0) + ϕx1(0)x1 + 1

2

∑
1≤α,β≤n−1

Aαβ xαxβ + ◦(|x ′|2) ,

where x ′ = (x1, . . . , xn−1) and (Bαβ) is positive definite.

Let

x̄ = (−ϕx1(0), 0, . . . , 0, x̄n)

and

w(x) = ϕ(0) + 1

2
(|x − x̄ |2 − |x̄ |2) , x ∈ R

n .

Then

w(x ′, ρ(x ′)) = ϕ(0) + ϕx1(0)x1 + 1

2

[|x ′|2 + ρ(x ′)2] − x̄nρ(x ′) .

It follows that

(w − ϕ)(x ′, ρ(x ′)) =
1

2

[|x ′|2 + ρ(x ′)2] − 1

2

∑
1≤α,β≤n−1

Aαβ xαxβ − x̄nρ(x ′) + ◦(|x ′|2) .

By the strict convexity of ∂ D, there exists some constant δ > 0 depending only on

D such that

(5.1) ρ(x ′) ≥ δ|x ′|2 ∀|x ′| < δ .

Clearly, for large x̄n , we have

(w − ϕ)(x ′, ρ(x ′)) < 0 ∀0 < |x ′| < δ .
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The largeness of x̄n depends only on δ and ϕ.

On the other hand,

w(x) = ϕ(0) + 1

2
|x |2 + ϕx1(0)x1 − xn x̄n .

By the strict convexity of ∂ D and (5.1),

xn ≥ δ3 ∀x ∈ ∂ D \ {(x ′, ρ(x ′)) : |x ′| < δ} .

It follows that

w(x) ≤ ϕ(0) + 1

2
|x |2 + ϕx1(0)x1 − δ3 x̄n ∀x ∈ ∂ D \ {(x ′, ρ(x ′)) : |x ′| < δ} .

By making x̄n larger (still under control), we have

w(x) − ϕ(x) < 0 ∀x ∈ ∂ D \ {(x ′, ρ(x ′)) : |x ′| < δ} .

Lemma 5.1 is established. �

Fix some c1 ∈ R
n such that

wξ (x) ≤ 1

2
|x |2 + c1 ∀ξ ∈ ∂ D, x ∈ R

n \ D, dist(x, ∂ D) ≤ 1 .

For x ∈ R
n \ D, let Sc,x denote the set of functions in C0(Rn \ D) that are

locally convex viscosity subsolutions of

det(D2w) ≥ 1 in R
n \ D

satisfying

w ≤ ϕ on ∂ D
and

w(y) ≤ 1

2
|y|2 + c ∀y ∈ R

n \ D, |y − x | ≤ 2 diam(D) .

Clearly Sc,x is nonempty for all x and c.

Define

uc(x) = sup{w(x) : w ∈ Sc,x} , x ∈ R
n \ D .

LEMMA 5.2 We have

(i) uc(x) ≤ 1
2 |x |2 + c, x ∈ R

n \ D;
(ii) uc is a locally convex viscosity subsolution of det(D2uc) = 1 in R

n \ D;
(iii) uc can be extended to a continuous function on R

n \ D with uc = ϕ on ∂ D;
and

(iv) uc is a viscosity solution of det(D2uc) = 1 on R
n \ D.

PROOF: (i) follows from the definition since w(x) ≤ 1
2 |x |2 +c for all w ∈ Sc,x .

(ii) holds since uc locally is the sup over a family of convex viscosity subsolutions.

For ξ̄ ∈ ∂ D and x close to ξ̄ , since wξ ∈ Sc,x for all ξ ∈ ∂ D, we have

uc(x) ≥ wξ (x) for x close to ξ̄ . It follows that lim infx→ξ̄ uc(x) ≥ ϕ(ξ̄ ). On

the other hand, lim supx→ξ̄ uc(x) ≤ ϕ(ξ̄ ). Indeed, if along a sequence xi → ξ̄ ,
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limi→∞ uc(xi ) ≥ ϕ(ξ̄ ) + 3δ for some δ > 0. Then by the definition of uc, there

exists wi ∈ Sc,xi such that wi (xi ) ≥ ϕ(ξ̄ ) + 2δ for large i . But wi is locally convex

and, for ξ close to ξ̄ , wi (ξ) ≤ ϕ(ξ) < ϕ(ξ̄ ) + δ. This forces wi to be unbounded

near ξ̄ , contradicting the fact that wi ∈ Sc,xi . (iii) is established.

For x̄ ∈ R
n \ D, fix some ε satisfying 0 < ε < 2 diam(D) and Bε(x̄) ⊂ R

n \ D.

By the definition of uc,

uc(y) ≤ 1

2
|y|2 + c ∀|y − x̄ | ≤ ε .

It is well-known (see, e.g., the appendix) that there is a unique convex viscosity

solution ũ ∈ C0(Bε(x̄)) to{
det(D2ũ) = 1 in Bε(x̄)

ũ = uc on ∂ Bε(x̄).

By the maximum principle, ũ ≥ uc on Bε(x̄). Define

w(y) =
{

ũ(y) if y ∈ Bε(x̄)

uc(y) if y ∈ R
n \ (D ∪ Bε(x̄)) .

Clearly, w ∈ Sc,x . So, by the definition of uc, uc ≥ w on Bε(x̄). It follows that

uc ≡ ũ on Bε(x̄). (iv) is established. �

For b ∈ R and a > −1, let

wa,b(x) = b +
∫ |x |

1
(sn + a)1/n ds .

Then wa,b is a locally convex smooth solution of{
det(D2wa,b) = 1 , R

n \ B1 ,

wa,b = b , ∂ B1 .

Let r̄ = 2 diam(D) and b(a) := min∂ D ϕ−∫ r̄
1 (sn +a)1/n ds; clearly wa,b(a) ≤ ϕ

on ∂ D. It is easy to see that

lim|x |→∞

(
wa,b(a)(x) − |x |2

2

)
= b(a) − 1

2
+

∫ ∞

1
s
((

1 + a
sn

)1/n

− 1

)
ds

= µ(a) := min
∂ D

ϕ − 1

2
−

∫ r̄

1
(sn + a)1/n ds +

∫ ∞

1
s
((

1 + a
sn

)1/n

− 1

)
dsr

= min
∂ D

ϕ − 1

2
− 1

2
(r̄2 − 1) +

∫ ∞

r̄
s
((

1 + a
sn

)1/n

− 1

)
ds .

Clearly µ(a) is smooth, strictly monotonically increasing, and µ(a) → ∞ as

a → ∞.
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Fix some a∗ > −1 such that c∗ := µ(a∗) ≥ c1.

LEMMA 5.3 For c > c∗,

lim inf|x |→∞

(
uc(x) − 1

2
|x |2

)
≥ c .

PROOF: For all µ−1(c∗) < a < µ−1(c),

lim|x |→∞

(
wa,b(a)(x) − |x |2

2

)
= µ(a) < c .

It follows that wa,b(a) ∈ Sc,x for sufficiently large |x |. It follows that uc(x) ≥
wa,b(a)(x) and therefore

lim inf|x |→∞

(
uc(x) − |x |2

2

)
≥ µ(a) .

Lemma 5.3 follows after sending a to µ−1(c). �

PROOF OF THEOREM 1.5: It follows from Lemma 5.2, Lemma 5.3, and Theo-

rem 1.2. �

Appendix

The following lemma and its proof can be found in [3]. For the reader’s conve-

nience, we include them here.

LEMMA A.1 Let � be a convex open set with diam(�) ≤ 1, and let u ∈ C 0(�) be
a convex viscosity solution of{

det(D2u) ≤ 1 in �

u ≥ 0 on ∂�.

Then

u(x) ≥
{

−C(n) dist(x, ∂�)2/n ∀x ∈ �, n ≥ 3,

−C(α) dist(x, ∂�)α ∀x ∈ �, n = 2, 0 < α < 1.

PROOF: Pick a point on ∂�, call it the origin 0, and then let the xn-axis point

in the inward normal direction of ∂�. Let

h(x) =
{

(|x ′|2 − C)x2/n
n , n ≥ 3 ,

(x2
1 − C)xα

2 , n = 2 ,

where 0 < α < 1. As in [3], for C suitably large (depending only on n when

n ≥ 3, while depending only on α when n = 2), h satisfies

(D2h) > 0 , det(D2h) ≥ 1 on �, and h ≤ 0 on ∂� .
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By the maximum principle,

h ≤ u on �,

in particular,

u(x ′, xn) ≥ h(x ′, 0) , (x ′, xn) ∈ � .

Lemma A.1 follows. �
LEMMA A.2 Let B be a ball in R

n , n ≥ 2, and let f be a positive continuous
function on B. Assume that u and v are convex continuous functions on B that
satisfy, in the viscosity sense,

det(D2u) ≤ f in B and det(D2u) ≥ f in B .

Assume also that
u ≥ v on ∂ B .

Then
u ≥ v on B .

PROOF: We may assume without loss of generality that u > v on ∂ B. Indeed,

we may consider u + ε for ε > 0 and then let ε tend to zero. We prove it by

contradiction. Suppose the contrary; for some x̄ ∈ B,

(u − v)(x̄) = min
B

(u − v) < 0 .

Let { f −
j }, { f +

j } ⊂ C∞(B), satisfy

f −
j > f > f +

j on B and f ±
j → f in C0(B) .

Let ϕ ∈ C∞(∂ B) satisfy v + ε < ϕ < u − ε on ∂ B where 3ε = min∂ B(u −v) > 0.

By Proposition 2.4, let w±
j ∈ C0(B) ∩ C∞(B) be strictly convex solutions of{

det(D2w±
j ) = f ±

j in B
w±

j = ϕ on ∂ B.

Using w±
j as test functions in the definition of viscosity solutions, we have

u − ε ≥ w−
j on B and w+

j ≥ v + ε on B ;
in particular,

u(x̄) − ε ≥ w−
j (x̄) , w+

j (x̄) ≥ v(x̄) + ε .

Since u(x̄) < v(x̄), we have

(A.1) w+
j (x̄) ≥ w−

j (x̄) + 2ε .

By the Alexandrov estimate and (A.1), we have

(A.2) 2ε ≤ − min
B

(
w−

j − w+
j

) ≤ C
(∫

S+
j

det
(
D2(w−

j − w+
j )

))1/n

,
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where S+
j = {x ∈ B : D2(w−

j − w+
j )(x) > 0}.

Write
D2w−

j (x)

2
= [D2w−

j (x) − D2w+
j (x)] + [D2w+

j (x)]
2

.

For x ∈ S+
j , D2w−

j (x) − D2w+
j (x) is positive definite, so by the concavity of

(det)1/n , we have(
det

[ D2w−
j (x)

2

])1/n

≥
1

2

(
det

[
D2w−

j (x) − D2w+
j (x)

])1/n + 1

2

(
det

[
D2w+

j (x)
])1/n

,

i.e.,
1

2
f −

j (x)1/n ≥ 1

2

(
det

[
D2w−

j (x) − D2w+
j (x)

])1/n + 1

2
f +

j (x)1/n .

Since f ±
j → f in C0(B), we have

sup
x∈S+

j

det
[
D2w−

j (x) − D2w+
j (x)

] → 0 .

Sending j to ∞ in (A.2), we have 2ε ≤ 0, which is a contradiction. �
LEMMA A.3 Let B be a ball of R

n and ϕ ∈ C0(∂ B). Assume that u ∈ C0(B) is a
convex viscosity subsolution to det(D2u) ≥ 1. Then{

det(D2u) = 1 in B
u = u on ∂ B

has a unique convex viscosity solution u ∈ C 0(B).

Remark A.4. The same conclusion holds when replacing B by any bounded convex

open set of R
n .

PROOF: Uniqueness follows from the maximum principle. Let ϕi ∈ C∞(∂ B)

satisfy

(A.3) u < ϕi ≤ u + 1

i
on ∂ B and ϕi → u in C0(∂ B) .

It follows from [6] that there exists a unique, strictly convex solution u i ∈ C∞(B)

of det(D2ui ) = 1 in B and ui = ϕi on ∂ B. By the maximum principle, u ≤ u i ≤ hi

on B, where hi is the harmonic function on B with boundary value ϕi . By the

convexity and the uniform bound of {u i }, |∇ui | is bounded on compact subsets of

B. So, after passing to a subsequence, u i uniformly converges on compact subsets

of B to some convex function u ∈ C 0(B). Consequently, u is a viscosity solution

to det(D2u) = 1. Clearly, u ≤ u ≤ h on B, where h is the harmonic function on

B with boundary value h = u. It follows that u can be extended as a continuous

function on B with u = u on ∂ B. Lemma A.3 is established. �
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The following is a linear algebra lemma.

LEMMA A.5 Let U be an n × n real upper-triangular matrix. Assume that the
diagonals of U are nonnegative and, for some 0 < ε < 1,

(A.4) (1 − ε)B ⊂ U (B) ⊂ (1 + ε)B ,

where B ⊂ R
n is the unit ball centered at the origin. Then for some constant

C = C(n),

(A.5) ‖U − I‖ ≤ Cε .

PROOF: Letting U = (Ui j ), we know that Ui j = 0 for i < j . Since U (B)

contains an open neighborhood of R
n , U is invertible, and therefore Ui i > 0 ∀i .

Write U−1 = (U i j ); then U−1 is also upper-triangular, U i i = 1/Ui i for every i ,
and, by (A.4),

1

1 + ε
B ⊂ U−1(B) ⊂ 1

1 − ε
B .

For 1 ≤ k ≤ n, let ek denote the unit vector with the k th component equal to 1 and

all the other components equal to zero. By (A.4)

(A.6) ‖Uek‖ =
√√√√ n∑

j=1

U 2
jk ≤ 1 + ε ;

in particular, Ukk ≤ 1 + ε, 1 ≤ k ≤ n. The same argument can be applied to U −1,

so, in particular,
1

Ukk
= U kk ≤ 1

1 − ε
, 1 ≤ k ≤ n .

We deduce from the above two estimates that

(A.7) 1 − ε ≤ Ukk ≤ 1 + ε , 1 ≤ k ≤ n .

It follows from (A.6) and (A.7) that

(A.8)
∑
j �=k

U 2
jk ≤ (1 + ε)2 − (1 − ε)2 = 4ε , 1 ≤ k ≤ n .

Estimate (A.5) follows from (A.7) and (A.8). �
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