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1 Introduction

A classical theorem of Jorgens (n = 2 [17]), Calabi (n < 5 [7]), and Pogorelov
(n > 2 [18]) states that any classical convex solution of

(1.1) det(D*u) =1 inR”

must be a quadratic polynomial. For n = 2, a classical solution is either convex or
concave; the result holds without the convexity hypothesis.

A simpler and more analytical proof, along the lines of affine geometry, of the
theorem was later given by Cheng and Yau [9]. The first author extended the result
for classical solutions to viscosity solutions [4]. It was proven by Trudinger and
Wang in [19] that the only open convex subset £ of R” which admits a convex C?
solution of det(D?u) = 1 in Q with lim,_, 5o u(x) = oo is @ = R". In this paper
we give the following extension to the theorem of Jorgens, Calabi, and Pogorelov:
Let u be a convex viscosity solution of det(D?u) = 1 outside a bounded subset of
R", n > 3; then there exist an n x n real symmetric positive definite matrix A, a
vector b € R”, and a constant ¢ € R such that

lim sup |x|" > <u - |:lx/Ax +b-x+ c]) < 00.
|x|—o00 2

Our approach, different from previous ones, is based on the theory of the first au-
thor on Monge-Ampere equations [2, 3]. Our above-mentioned results also enable
us to establish an existence result for the Dirichlet problem on exterior domains
with prescribed asymptotic behavior at infinity. In R?, similar problems are stud-
ied by L. Ferrer, A. Martinez, and F. Mildn in [13, 14] using complex variable
methods. See also Delanoég [12].

For the reader’s convenience, we recall the definition of viscosity solutions (see
[5] and the references therein for an extensive study of viscosity solutions to fully
nonlinear elliptic equations of second order). Let 2 be an open subset of R”,
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g € C%) a positive function, and u € C°(R2) a locally convex function. We say
that u is a viscosity subsolution of
(1.2) det(D*’u) =g inQ
or a viscosity solution of
det(D*u) > g inQ
if for every X € Q and every convex ¢ € C*(Q) satisfying
¢>uon and @) =u(x)
we have
det(D*9(3)) = g(¥) .
Similarly, u is a viscosity supersolution of (1.2) if for every x € 2 and every
convex ¢ € C%(Q) satisfying
¢ <uon and @X)=ux)
we have
det(D*¢(3)) < g(¥).

u is a viscosity solution of (1.2) if u is both a viscosity subsolution and a viscosity
supersolution of (1.2).

In this paper we study convex viscosity solutions to

(1.3) det(D*u) = f onR",
where f € CO(R") satisfies

1.4) O<iﬂgnff§s§npf<oo
and

(1.5) support (f — 1) is bounded.

First is the extension of the classical theorem of Jorgens, Calabi, and Pogorelov
for classical solutions to viscosity solutions, due to the first author.

THEOREM 1.1 [4] For n > 2, any convex viscosity solution of (1.1) must be a
quadratic polynomial.

Let
A =1{A: Aisreal n x n symmetric positive definite matrix with det(A) = 1}.

The following theorem gives asymptotic behavior of solutions of (1.3) under
the hypotheses (1.4) and (1.5).

THEOREM 1.2 Let f € CO(R") satisfy (1.4) and (1.5). Assume that u is a convex
viscosity solution of (1.3). Then
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(i) Forn > 3, there exist some c € R, b € R", and A € A, such that E(x) =
u(x) — (%x’Ax + b - x + c¢) satisfies

(1.6) limsup |x|" 2| E(x)| < 00.

[x]—00
Moreover, u is C* in the complement of the support of (f — 1) and
(1.7) limsup |x|" > |D*E(x)] <00 Vk>1.

|x|—00

(i) Forn =2, there exist some ¢ € R, b € R", and A € A such that

1
E(x) :=u(x) — <§x’Ax +b-x+dlogvx'Ax + c)

satisfies
(1.8) limsup |x||E(x)| < o0,
|x]—o00

where

1
(1.9) dzz—/(f—l).

b4

R2

Moreover, u is C* in the complement of the support of (f — 1) and
(1.10) limsup |x|*" ' | D*E(x)| <0 Vk=>1.

Ix]—o00
COROLLARY 1.3 Let O be a bounded open convex subset of R", and let u <
CO(R™ \ 0) be a locally convex viscosity solution of
det(D’u(x)) =1, xeR'\O.
Thenu € C®(R" \ 0), and we have the following:

(1) Forn > 3, there exist some c € R, b € R", and A € A such that (1.6) and
(1.7) hold.

(i1) Forn = 2, there exist some c,d € R, b € R?, and A € A such that (1.8)
and (1.10) hold. Moreover, if O = @, then d = 0.

Remark 1.4. For n = 2, Corollary 1.3 is known (see [14]).

The theorem of Jorgens, Calabi, and Pogorelov is an easy consequence of
Corollary 1.3. Indeed, let u € C? be a convex solution of (1.1). Then, by Corol-
lary 1.3, for some ¢, b, and A € A,

1
E(x) :=ulx) — (Ex/Ax+b-x+c> — 0 as|x| > o0.

Since
det(A 4+ D*E) — det(A) = det(D*u) —1 =0
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and (A + D?E) = (D%u) is positive definite, it follows from the mean value
theorem that for some positive definite matrix function (a;;(x)),

aij D,"/'E =0 in R" .
By the maximum principle, E(x) = 0, i.e., u(x) = %x/Ax +b-x+c.
Corollary 1.3 enables us to establish the following existence theorem for the

Dirichlet problem on exterior domains with prescribed asymptotic behavior at in-
finity.

THEOREM 1.5 Let D be a smooth, bounded, strictly convex open subset of R",
n > 3, and let ¢ € C*(D). Then for any given b € R" and any given A € A,
there exists some constant cy, depending only on n, D, ¢, b, and A, such that for
every ¢ > ¢, there exists a unique function u € C*(R" \ D) N C°(R"\ D) that
satisfies

{det(D2u) —1, (D*u) >0, inR"\D,

u=g onoD,
><oo.

Remark 1.6. The Dirichlet problem on exterior domains of R? was studied by
Ferrer, Martinez, and Milén in [13, 14] using complex variable methods.

and
lim sup (|x|”_2

|x]—00

1
u(x) — |:5x/Ax+b-x+cj|

Our next theorem gives the existence of solutions of (1.3) with given asymptotic
behavior at infinity.

THEOREM 1.7 Forn > 3, let f € C°(R") satisfy (1.4) and (1.5). Then for any
ceR beR, and A € A, there exists a unique convex viscosity solution u of
(1.3) satisfying

(1.11) lim E(x)=0,

|x]—00

where E(x) = u(x) — (%x’Ax 4+ b -x 4+ c). Moreover, u is C*™ in the complement
of the support of (f — 1), and E satisfies

(1.12) 1+ x"HEx)| <C, xeR",
In addition, for any k > 1,
(1.13) X" DFEx) <€, x| >,

where C and r are some positive constants depending only on n, f, and k.

Remark 1.8. Let u be the convex viscosity solution in Theorem 1.7. Then for
M > C, {x : u(x) < M} contains a ball of radius v/2(M — C) and is contained
in a ball of radius /2(M + C). By the works of the first author [2, 3], u is strictly
convex. Moreover, if f € C*%(0) for some k > 0,0 < o < 1, and some open
subset of R”, then u € C*+>%(0).
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Remark 1.9. For smooth f, Theorem 1.7 is a special case of results that Delanog
[12] obtained by different methods. For any general measurable function f satis-
fying (1.4), existence of infinitely many entire viscosity solutions was established
by Chou and Wang in [10].

2 Proof of Theorem 1.1

In this section we give a proof of Theorem 1.1, an extension, due to the first au-
thor ([4]), of the theorem of Jorgens, Calabi, and Pogorelov for classical solutions
to viscosity solutions. We need some well-known comparison principles. For the
reader’s convenience, we include the simple proofs.

PROPOSITION 2.1 Let 2 be a bounded open subset of R", n > 2, and let g €
C%(R) be a positive function. Assume that w € C°(Q) is a locally convex viscosity
subsolution (supersolution) of

det(D*’w)=g inQ,
andv € CO(Q)NC*(Q) isa locally convex supersolution (subsolution) of
det(D*v) = g inQ.
Assume also that
w<v(w=>v) onof2.

Then

w<v(w=>v) onS.

PROOF: Without loss of generality, @ C By for some R > 0. For0 < € < 1
and A > 0, let

ve(x) = v(x) —e(|x)* = R?) and v, (x) = v (x)+ A.
For X sufficiently large,
Vesy > w ong.
Let A(¢) be the smallest A > 0 such that the above holds. We will show that

(2.1 A :=limsupAi(e) =0.

e—0
Indeed, if A > 0, then there existe; — 0%, 4; := Aj(¢;) — A, and X; € Q X; — ¥,
such that
Ve, 2 (X)) = w(x;),
while

Vg5, = w on 2.
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Since v.; > w on 952, we have x € . Since det(D?v) > 0 and v is convex,
we have (D?v(x)) > 0, so, for large j, Ve, 7, is strictly convex near x;. By the
definition of viscosity solution and taking v, ;. as a test function, we have

det (Dzvq’;}, (X)) < g(%).
On the other hand, from the explicit expression of v, 5, we have
det (D?v,, ;, (%)) = det (D*v(%)) — 2¢;1) < det (D*v(%))) < g(;),
a contradiction. So (2.1) holds, and therefore
wx) < !13(1) Ve i) =v(x), x¢€ Q.

The statement concerning viscosity supersolution w can be proven in a similar
way. g

There are two immediate consequences of Proposition 2.1:

COROLLARY 2.2 Let w € C°(By) be a locally convex viscosity subsolution of
det(D*>w) =1 on Byg.
Then

1
(2.2) wx) < =(Ix|* = R*>) + maxw Vx € Bg.
2 dBR

COROLLARY 2.3 Let w € C°(By) be a locally convex viscosity supersolution of
det(D*w) =1 on Bg.
Then

1
wx) > —(|x|* = R?>) + minw Vx € Bg.
2 9Bg

PROOF OF COROLLARY 2.2: The function
Ll o
v(x) := =(|x| R?) + max w
2 3Bk
is a C? convex function in B satisfying
det(D*>v) =1 on Bg, w <v ondBg.
Estimate (2.2) follows from Proposition 2.1. O
PROOF OF COROLLARY 2.3: Let
v(x) = l(|x|2 — R?) + minw
2 0BR
and apply Proposition 2.1. U

The following result is well-known; see, for example, [1] and [8].
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PROPOSITION 2.4 Let Q2 be a bounded open convex subset of R", n > 2, and let

fecC 0(?) N C*(K2) be a positive function. Then there exists a convex solution
w e CO%Q) N C®(Q) of

det(D*w) = f inQ
w=20 on 0%2.

Remark 2.5. The locally convex viscosity solution to the above Dirichlet problem
is unique. This follows from Proposition 2.1.

Remark 2.6. 1f Q is a C* strictly convex domain and f € C % (Q) is positive, then,
by [6], w € C*®(RQ).

To prove Theorem 1.1, we will first show that a convex viscosity solution of
(1.1) is a classical solution.

THEOREM 2.7 Let u be a convex viscosity solution of (1.1). Then u € C*(R").
For M > 0,1let Qy = {x e R" : u(x) < M}.

PROPOSITION 2.8 Let u be a nonnegative convex viscosity subsolution of (1.1).
Then there exists some constant C, depending only on n, such that
Quy C Beoyne YM > maxu .
dB

Proposition 2.8 will be deduced from Corollary 2.2 and the lemma below. Let
e; =(0,...,0,1)and, for 6 > 0, By = {(0, x2, ..., x,) : [(0, x2, ..., x,)| <8}

LEMMA 2.9 For é,r, . > 0, let K be the convex hull ofB_g U {rei}, and let u €
C%(K) be a nonnegative convex viscosity solution of
det(D*u) > A in the interior of K .
Assume, for some positive constant B, that
u<p on §; .
Then, for some constant C = C(n) > 1,
Al/ng2e=t o/n

max{f, u(re))} = c

PROOF: By the convexity of u,
ml?xu <o :=max{B,u(re;)}.

It is clear that we can put an ellipsoid E in K with

sy
|E| >
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for some C = C(n) > 1. Forsome a € A, b € R", and

Ax)=ax +b,
we have, for some R > 0,
A(E) = Bg.
Consider .
W) = 7u(A7N®), ¥ € Bg.
Then

det(D*w) > 1 in By
in the viscosity sense, and

o
UJSW on dBg.

It follows from Corollary 2.2 and the fact that # > 0 that

0<w©) < — LR+ < lpy @
Swl) = TR = =R T
Thus n
ne . Cma"
8"'r < C(m)|E| < C(mR" < BV
Lemma 2.9 follows from the above. O

PROOF OF PROPOSITION 2.8: For M > maxyp, u, without loss of generality,
we may assume that
u(re)) =M.
We need to show that r < C(n)M"/?. By Corollary 2.2, maxyp, u > % So we
only need to consider r > 2. Let K denote the convex hull of B, and re. By the
convexity of u# and the fact that the values of u on d By and at re are bounded by
M, we have

maxu < M.
K
Proposition 2.8 follows from Lemma 2.9 (with K being the convex hull of K N
{x; = 1} and rey). O

Let u be a nonnegative convex viscosity subsolution of (1.1). By Proposi-
tion 2.8, 2, is bounded and convex for every M > infg: #. By a normalization
lemma of John-Cordoba and Gallegos (see [11]), there exists some affine transfor-
mation

AM()C) =ayx + bM ,
where ay; is an n X n matrix satisfying
(2.3) det(ay) =1
and by, € R" such that

2.4) Br C Ay(R2y) C B,g forsome R > 0.
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PROPOSITION 2.10 Let 0 < A < 00, and let u be a convex viscosity solution of

(2.5) det(D*u) > A onR".
Assume that u is normalized to further satisfy
(2.6) u@ =0, u=>0onR".

Then there exists some constant C > 1 depending only only n such that
|Qu| < CA7V2M"? VM > 0.

PROOF: Let
Ay(x) =ayx + by
be an affine transformation satisfying (2.3) and (2.4). Consider
wx) =2""u(Ay ().
Then, by (2.5),
det(D>w)>1 onR" and w<A"Y"M ondBg.
Applying Corollary 2.2, we have

15 1 —1/n
O0<w@0) <—R " 4+maxw < ——R "+ A M.
2 dBRr 2

It follows that
1Qu| < Cm)R" < C(m)A~ Y2 M">? .

Similarly, we have the following:
PROPOSITION 2.11 Let 0 < A < 00, and let u be a convex viscosity solution of
2.7 det(D’u) < A onR".

Assume that u is normalized to further satisfy (2.6). Then there exists some constant
C > 1, depending only only n, such that

IQu| > C'ATV2MY? VM > 0.

PROOF: In the proof of Proposition 2.10, we let instead
wx) = A"u(Ay ).
Then, by (2.7),
det(D>w) <1 onR" and w>A"""M ondB,x.
Applying Corollary 2.3, we have

1 1
0=w(Ay0)>—=nR)?+minw > —=nR)>*+A"""M.
2 dByg 2
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It follows that
[2u] = C(n)*lR" > C(n)*lA*1/2Mn/2.
O

PROPOSITION 2.12 For 0 < A < A < o9, let u be a convex viscosity solution
of (2.5) and (2.7) that also satisfies the normalization (2.6), and let Ay (x) =
ayx + by be an affine transformation satisfying (2.3) and (2.4). Then for some
constant C, depending only on n, A, and A,

(2.8) 2nR > dist (Ay(Qup), dAu(Qy)) > C'R VM > 0.
Consequently,
(2.9 Br/c C ap(2m) C Bayr -

PROOF: Let w be defined on Oy, := %AM(SZM) by

—1/n A—l/nM

w=""Tua o) -2 o
wx) = R2 u(Ay, X R , X M -

Then
B,cCcOyCB,, w=0 onO0y,

and
det(D*w) <1 in Oy, .

It follows from Lemma A.1 that
w(x) > —C(n)dist(x, BOM))n_erl , X€O0y.
Fory € Ay (Qup), M >0, let x = %y; we then have
AV AT — M
2R? R?
It follows from Proposition 2.10, (2.3), and (2.4) that for some C=C(n, A, 1) > 1,

dist(y, dA () = C7'R.

> w(x) > —C(n) dist(x, d0 )7 .

Since Ay (2y) C Byur,
dist(y, 0Ap(R2u)) < 2nR.
Estimate (2.8) is established. Estimate (2.9) follows from (2.8) and
dist(Ap(0), 0A () = dist(0, day (2y)) .
O

PROOF OF THEOREM 2.7: Without loss of generality, we may assume that u
further satisfies (2.6). For M > 0, by Proposition 2.8, €2, is bounded and convex.
Applying Proposition 2.4 to w = u — M on Q@ = Qy, we have u € C®(Qy).
Since R” = U0y, we have u € C°(R"). [
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PROPOSITION 2.13 Let u € C*(R") be a convex solution of (2.7) that further
satisfies normalizations (2.6) and

D*u(0) =1 the identity.

For M > 0, let Ay (x) = ayx + by be some affine transformation satisfying (2.3)
and (2.4). Then for some positive constant C = C(n),

(2.10) C'M'?<R<cM'?
and

(2.11) lavll <C. Jay'| =C.
Moreover,

(2.12) sup | D*ul| < C.

PROOF: Estimate (2.10) follows from Propositions 2.10 and 2.11 and (2.4).
Consider . |
w(x) = Fu(a;ll(Rx)), xe0 = EaM(QM)'
By (2.9),

(2.13) Bl/C C O C By,.

By (1.1),
det(D*w)=1 onoO.
It follows from (2.10) that

~1 M
CT ' <w=—<C ondo0.
R2
By (2.13) and the interior second derivative estimates of Pogorelov,

1
2.14 D? <C Vx| < —,
(2.14) D w)| < lx| < e

in particular,
ID*w ()| < C.
Recall the Pogorelov estimate: Let O be a bounded convex open set of R”, and
let w € C%(0) N C°(0) be a convex function satisfying det(D’*w) = 1 in O and
w = 0 on 3 O; then for any compact subset K of O, |D?>w| < C on K for some
constant C depending only on n, O, and K.
Since D*u(0) = I, we have

D*w(0) = (ay') (ay) -
where (a;,ll )" denotes the transpose of a;,,l. It follows that

'l = €.
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Since det(an}l) = det(ay) = 1, we then have
laull < C.

Estimate (2.11) is established.
By (2.14) and (2.11),
sup |D*u(y)| < C where C = C(n).
O

I 5%
Since M can be arbitrary large (as can R), estimate (2.12) follows from the above.

Theorem 1.1 can be deduced from Theorem 2.7, (2.12), and the C>¢ interior

estimates of Evans and Krylov as follows:
PROOF OF THEOREM 1.1: By Theorem 2.7, u € C*°(R"). Then, by (2.12),
x| = 1.

u(x)| < Clx|?,

(2.15)
For x € R", we will show that D?u(x) = D*u(0). For R > 2(|x|+1), we consider

1
w(y) = Fu(Ry), y € B;.

|D2w| <C on By

By (2.15), (1.1), and (2.12),
lw| < C, det(D*w)=1,

>R

<
Il

where C = C(n). Let
Then
Iyl = :
Y= o
It follows from the above-mentioned estimates of Evans and Krylov that for some
a € (0, 1) and C (independent of R),
|D*w(3) — D*w(0)| < CI3I*,

x|
Re

ie.,
|D*u(x) — D*u(0)| < C
Sending R — oo, we have
D*u(¥) = D*u(0).
Since x is arbitrary, u is a quadratic polynomial. Theorem 1.1 is established
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3 Proof of Theorem 1.2 and Corollary 1.3

We prove Theorem 1.2 and Corollary 1.3 in this section.
First we have the following:

LEMMA 3.1 Let u be as in Theorem 1.2; then u is C™ in the complement of the
support of (f — 1).

PROOF: Let x be in the complement of the support of (f — 1); without loss
of generality, x = 0. Subtracting from u a supporting plane to the graph of u
at (0, #(0)), we may assume without loss of generality that u satisfies (2.6). It
follows from Proposition 2.8 that €2, is bounded and convex for ¢ > 0. Then by
[3, theorem 1] we have that {x € Q. : u(x) = 0} = {0}. Taking ¢ > 0 small
enough, 2, belongs to the complement of the support of (f — 1). It follows from
Proposition 2.4 that u € C*(2,). Il

Let u be as in Theorem 1.2. As explained above, we may assume that u also
satisfies (2.6). We know from Lemma 3.1 that for M large, u € C*(R" \ ) and
@, is bounded and strictly convex. Keep u fixed outside €2, and redefine u inside
Qs so that the new u isin C*®°(R") and (D?u) > OonR". Let f = det(D?u) be the
new f. So we only need to establish Theorem 1.2 with the additional hypothesis
that u € C*°(R") and u satisfies (2.6). These will be assumed in the rest of this
section.

Let Ay (x) = ayx + by be an affine transformation satisfying (2.3) and (2.4),
and let

§(0) = %u(a;}my)), yEO = %aM(szM).
By (2.9),
Bl/C C O C By,.
Here and in the following, C > 1 denotes some constant depending only on n and
f. Clearly
det(D’€) = f(ay' (Ry)).
By Propositions 2.10 and 2.11,
M -1

3. é:EG(C ,C) onado.

By Proposition 2.4 and Remark 2.5, there exists a unique convex solution £ :=
Eo.mr2 € C'(0) N C>®(0) of

det(D*6§) =1 on O
E=M on 4 0.

R2
Because of (3.1), the interior second derivative estimates of Pogorelov, and the
C? estimates of Evans and Krylov (also use Schauder estimates), for every § > 0,
there exists some positive constant C = C(§), independent of M, such that

(32) C'I<(D*%x)<CI, |D%(x)<C, xeO0,dist(x,30)>56.



562 L. CAFFARELLI AND Y.Y. LI

LEMMA 3.2 For some positive constant C independent of M,

E—E|<CR™" ino.

PROOF: By the Alexandrov estimate (see, e.g., [16, lemma 9.2]),

1/n
— min( — £) SC{/det(Dz(S—é)}/ ,
o A
where
={xe0:D*E-&x) >0}.
On ST,
D6 D —§) + D%
2 2 ’
l/n

so it follows from the concavity of (det)
e\ _ 1
det< > ) > 2 det(D*(& — &))" + det(ng)]/”
ie.,
det(D*(& — &))" < 1= f(ay' (R)"". yest.
It follows that

_ R e _C
—min( — &) < C /[1 ~fag T < S g < S
0 R R
S+
Similarly, we can show that
_ C C
—m_Oin(é —§) =< Ellfl/" —Upnipsn < R
Lemma 3.2 is established. O

Let % be the unique minimum point of £ in O. Recall that
Ay(x) =ayx +by

is an affine transformation satisfying (2.3) and (2.4). By Proposition 2.10 and
Proposition 2.11,
C'M/7?<R<cM'?.
Let
Ey = {x :x'D*E(%)x < 1}.
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PROPOSITION 3.3 There exist k and C, depending only on n and f, such that for

€ = %, M = 2049k apd k=1 < M’ < 2K we have
oM’ sk 172 1
R2 —C2 2 Ey C ﬁaM(QM/)
3.3)

2M/ ek 1/2 _
c(mtC2 ) Ew Vkzk.

PROOF: In the proof, C and k denote various large constants with the specified
dependence, and we always assume that k > k. Clearly,

c'2 < 1,‘: <cre, "™ <R<2"T,
and
§ M/ €0 :§(@2) ik : (S2m)
< —t:= : < —=t=—a .
Z b4 RZ R (2um
By Lemma 3.2,
_ C ’ _
E—El<—<C2" ™ onO.
R~
Since
M’ << C
R? R’
the level surface of £ can be well approximated by the level surface of &:
(3.4) 3 M/ ¢ C i€ M C & M c
. < — = = < — <—+—=1.
R R? R? R

By Lemma 3.2 and the fact £ > 0, we have

C - : c C
R = §(X)§$(0)§$(0)+E=E.
co

and therefore by (3.2),

C _
R = §(x) —
So, by Lemma A.1, By, c(X)

‘;?(x) —E(X) — 5<x — %) D) (x —%)| < Clx — x> Vx € Byjc(¥)

and

1 9z

c = (D°§(x)) =CI.
Estimate (3.3) follows from (3.4) and the above estimates by elementary consider-
ation. O

Let B denote the unit ball in R”, and still let € = %
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PROPOSITION 3.4 There exist positive constants C and k and some real invertible
upper-triangular matrices {T} };j such that
(3.5) det(Ty) =1, ||TT), — 1| <27,
and
(3.6) (1—C2™)V2M'B C T (Qu) C (1 + C2=YV2M'B,
2l < M < 2k,
Consequently, for some invertible T,

3.7 det(T)=1, |Tx—T| < C27k,

PROOF: Let 1_\/1 = 204k and let 2k-1 < M’ < 2. By (3.3), there exist some
constants C and k (depending only on n and f) such that

(1 =C2™MW2M'Ey Cay(Qu) C 1+ C2 HV2MEy, k>k.

Let Q be the positive definite matrix satisfying Q% = D?E(X), and let O be an
orthogonal matrix such that

T, := O Qay 1is upper-triangular.

Clearly,

det(Ty) = det(0) det(Q) det(ay) = +/det(D2E (X)) det(ay) = 1
and
(3.8) (1 =C2™"W2M'B C T(0y) € (1 + C2=V2M'B..

Taking some larger k, we deduce from (3.8), with M’ = 2% and then M’ = 2+~1,
that (with a larger C)

(1-C2*HBC T \(B)c (1+C2™"B, k>k.

Since T Tk__ll is still upper-triangular, we apply Lemma A.5 (with U = T Tk__ll) to
obtain that
InT, — 1] <Cc27*, k=>k.

Estimates (3.5) and (3.6) are established. The existence of T and (3.7) (with a
larger C) follow by elementary consideration. Proposition 3.4 is established. [

Letv =uoT. Then
(3.9) det(D*v) =1, R"\T Q).
Since {x : v(x) < M'} = T (), we deduce from (3.6) and (3.7) that
(1—CM)Y HV2M'B C {x : v(x) < M'} C 1+C (M) )V2M'B VM’ > 2*.
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Consequently,

(3.10) < C|x[*2, x| >2F.

1 2
v(x) — EIXI

LEMMA 3.5 Let w € C*(R" \ By) satisfy
(I + D*w(x)) >0, det(I +D*wx) =1 onl|x|>1,

and, for some constants B > 0and y > —2,

p
lw(x)| < W onl|x| > 1.

Then there exist some constants r = r(n, B, y) > 1 such that for all k > 1,
C
k
|ID w(x)| < P onlx|=r,

where C depends only on n, k, B, and y.
PROOF: Let
|x|?
nx) = BN + w(x).

For |[x| = R > 8, let

(4 R -
nr(y) == <E> n<x+zy>, vyl <2,

4\? R x oy 2
wr(y) = (—) w<x + —y) =nr(y) — S'E + =

and

<2.
R 1 i Iyl <

By the decay hypothesis on w, there exists some r = r(n, ) > 1 such that for
x| =R >r,

1682 1662

34— = m(y) =324

ey <3, bls2.

Since ng satisfies
(D* () >0, det(D*ng(y) =1, |y| <2,

by the estimates of Pogorelov, Evans-Krylov, and Schauder, we have, for every
k Z 17

I
Inellceg < C  and c < (D*ng) < CI on B.

Here and in the following, C > 1 denotes some constant depending on n and k
unless otherwise stated.
It follows that

1
(3.11) lwrllerg =€ and = < (T + D*wg) <CI onB.

Clearly, wy satisfies
a;j(y)Dijwg(y) =0 on B,
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where (a;;(y)) = fol F; (I + sD*wg(y))ds satisfies, in view of (3.11), that

N 1 n
laijllceg < C  and c < (a;j) <CI onB.

Here and throughout the section, we use the notation

F(§) = det(5;)"/".
It is well-known that, in the open set of symmetric positive definite matrices, (Fg,;)
is positive definite and F is concave.
By Schauder theory,
C(n, k,B,y)
|D*wr(0)] < Cllwgllzm < —

It follows that Cink. . y)
k n’ L) sy
Dhwe] £ =2

O

LEMMA 3.6 Forn > 3, there exist b € R", ¢ € R, and some positive constant C
such that

2
v(x) — ﬁ—|—b-x+c < VxeR”\T_I(QMO).
2 |x|n72
PROOF: Let
E (x) |x|2
=v(x) — —.
2
Then
(3.12) FI+D?E)y=1 inR"\ T (Qy,).

By (3.10), we apply Lemma 3.5 to E (rather, to r2E (rx), for some harmless r)
with y = 2¢ — 2 to obtain

|D*E(x)| < i
It follows that
(3.13)  @;(x)Di,;E(x) = F(I + D*E) = F(I) =0 inR"\ T~ (Qu,)
where 1

aij(x) = / Fe, (I +sD*E(x))ds .
Let e € R” be a unit vector; appl())/ing D, and D,, to (3.12) yields, in view of the
concavity of F (&), that
(3.14) aij(x)Dij(D,E(x)) =0, x eR"\T ' (Quy,),
and
(3.15) a;j(x)Dij(Dec E(x)) 20, x e R"\ T (Qu).
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where
a;j(x) = Fg, (I + D?E(x)).
Clearly, (a;j(x)) and (a;;(x)) are positive definite and satisfy
|ij (x) = 8;;1 + lai; (x) — 8;;] < Clx| 7.
It is well-known that for such coefficients, there exist positive solutions G (x) of
a;j(x)D;;G(x) = 0 satisfying lim|x|_>oo(|x|"_2G(x)) = 1. By (3.15) and the max-
imum principle,
¢ D*E(x)e = Do E(x) < CG(x) < Clx|*™, xeT ' (Qu,).
This means that the largest eigenvalue of (DZE (x)) is bounded from above by

C|x|*™. By (3.13), the least eigenvalue of (D?E(x)) is bounded below by a neg-
ative constant multiple (depending only on the ellipticity of (a;;(x))) of the largest

eigenvalue of (D?E (x)). Thus,
¢'D*E(x)e = D, E(x) > —Clx|*™.
It follows that

C
< R\ T~ (Qu,) -

IDEON= =y

For 1 < m < n, D, E satisfies (3.14) with D, E replaced by D,E. Applying
theorem 4 in [15] (withu = D,,E and r — 00), D,, E(x) tends to some constant,
denoted as b,,, as |x| tends to infinity, namely,

lim DE(x)=0 where E(x):=E(x)—b-x.

|x]—o00

Since Dmg satisfies the same equation as DmE (i.e., (3.14)), we deduce from
the maximum principle that

~ C
IDE)| = Cle”™ < 70 RINT Q).
X
By (3.13),
G;(x)DE(x) =0, R'\T ' (Qu,).
Applying again [15, theorem 4] to u = E as r — oo, we have

lim E(x) =c
|x]—00

for some constant c. Applying the maximum principle to E(x) — ¢, we have
[E@) —c| < ClxP™,

namely,
|E(x) —b-x —c| < Clx[*™".
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3.1 Proof of Theorem 1.2

In this subsection we complete the proof of Theorem 1.2.

For n > 3, inequality (1.6) follows from Lemma 3.6, and estimate (1.7) fol-
lows from (1.6) and Lemma 3.5 with y = n — 2. This completes the proof of
Theorem 1.2 in the case n > 3.

In the rest of this subsection we prove Theorem 1.2 when n = 2. First, instead
of Lemma 3.6, we have the following:

LEMMA 3.7 For n = 2, there exist b € R", c,d € R, and some positive constant
C such that

|x|?
v(x) — T+b-x+dlog|x|+c

C
<o Vx € R\ T (Quy,) -
X

PROOF: By (3.10) and Lemma 3.5, we have
XPNVE@)| + XX IVE@)| + x"PVE@) < C, x| = 2F,

where
B = vio - 2F
X) =vvX) — —.
2
Differentiating (3.9) and using the above decay estimates on D?E, we have
. OE

(8;; + OUD?E|)D;j(En) =0, where E, = m=1,2.

Xy
It follows that |
r 2 360y —
AE, = O(|D°E||D’E|) = O<W>.
Let |
I = =5 [ BEa)ogh - yI - loglydy.
NE
Then A )
A(Ey —Ym) =0, |x|>2",
and, for any €’ < 2¢,
Ym0 < CEx'"™, 1z = 25,
Since E,, — 1/},,1 is harmonic in [x| > 2k and its growth is at most of order |x|' =%,
Ep(x) = Y (x) = O(log x|,
and therefore, for any €’ < 4e,
IVE(x)| < C(¢')(log |x| + |x|'~) .
Integrating the above, we have, for any €’ < 4e,

|E(x)] < C(e)(|x|log |x| + x]*).
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We have improved estimate (3.10) of |E(x)]. Applying Lemma 3.5 with this im-
proved estimate and arguing as above, we have, for any €’ < 8¢,

|E()] < C(e)(xllog x| + 7).
By induction, we have, for any €’ > 0,
[E@) < C@lxl™, x| = 2F,
Then by Lemma 3.5, we have, for any €’ > 0,
X IVE@)] + 'V E@)| + Ik IVEW) < €, x| = 25,

Since E satisfies
8;; + O(ID*E|)D;;E =0,

we have, for any €’ > 0,
. b as I
AE=0(D*EP)=0(—— ).
|x|476
Let .
I =5 / AE(y)(log|x — y| — log|y)dy.

ES

Then, for any €’ > 0,

C(€)

|x|2_€/ ’

0 k

V()| = x| > 2%.

Since E — ¥ is harmonic in |x| > 2k, and since its growth is at most of order
|x|'*€, we have, for some b € R" and c, d € R, that

I:I(x)—l//(x):b-x—i—dloglxl—i-c—i-O(I)lc—').

By the decay of v,

A 1
E(x):b-x+dlog|x|+c+0(—).

x|

Next we have the following proof:

PROOF OF THEOREM 1.2 FOR n = 2: Relation (1.8) follows from Lemma 3.7,
and estimate (1.10), for some d € R, follows from (1.8) and Lemma 3.5 with
y = 1. We only need to establish (1.9). In fact, by making an affine transformation,
we only need to establish (1.9) for A = I. We first prove it under an additional
hypothesis that f € C®(R?). In this case u € C*®(R?). Write w = |x|?/2,
n=dlog|x|,u =w+n+ E,and

det(D?it) = ity itay — ity = 1 (it1idan) — (il yit12) -
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By(13)andu =u+b-x+c,
det(D%i) = det(D*u) = f .
By (1.10), as |x| — oo,

|DE(x)|=0<i) and |DZE(x)|:0(L).
|x]? x|

Integrating the equation of # on B, and integrating by parts, we have, as r — oo,

B/f: / |:(M1M22)ﬁ_( uu IZ)H]

|x|=r
= / [( 1w22)ﬁ—(w1w12)—] /|:(771w22)——(771 12)|—|]
|x|=r |=r
+ / |:(w17722)ﬁ—(w17712)_:| ( )
1
=/det(D2w)+ / ([U1w22+w17722]|);| (Ulwlz)ﬁ) 0(;)
B, |x|=r

We know that
/det(Dzw) =nr?

B
and
/ ([mwzz + wmzz]ﬁ — (mw 12)—) = / (D)
[x|=r [x|=r
d 2
r
|x|=r

It follows that

[(f—1)=271d+0(%) asr — 00.
B

Formula (1.9) for A = I follows after sending r to infinity. As pointed out earlier,
formula (1.9) in general follows by applying the special case to it (x) = u(A~"/?x).

If f e c’ only, let u, = u * p., the convolution of u and p, with p.(x) =
€ 2p(e~'x), where p is some nonnegative smooth function of compact support
satisfying [ p = 1. For large r, B, contains the support of (f — 1), and therefore
u is C* near 0 B,.. We also know that

lim det(D%i,) = f f.

e—0
By
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As shown above,

_ _ X _ X
/det(Dzue) = f [(”51”622)_1 - (MGIMGIZ)_2:| .
4 . x| x|

. x|=r

Sending € to zero, we have

/fz / [(ﬂlﬂzz)ﬁ—@amﬂ]
;o x| x|

Following previous arguments, we obtain (1.9) (for continuous f). O

3.2 Proof of Corollary 1.3

Finally, we can prove Corollary 1.3.

By enlarging O slightly, we may assume that u € C°(R" \ O). We divide the
proof into three steps.

Step 1. First we prove Corollary 1.3 under the additional hypothesis that u# can
be extended as a convex function on R”.
In this case, we first show that

(3.16) ueC®R"\ 0).

For X € R"\ O, by subtracting from u a supporting plane to the graph at
(%, u(x)), we may assume that ¥ > 0 on R” \ O and u(X) = 0. An application of
Lemma 2.9 yields that u(x) — oo as |x| — oo. For large M, {u < M} contains
% and O. Applying theorem 1 in [3] on {u < M} \ O, we know that X is the only
point in {u < M} \ O where u = 0. So for € > 0 small, {u < €} is a convex open
subset of R” \ O. By Proposition 2.4 and Remark 2.5, u is C*® in {u < €}. In
particular, u is C* near x. (3.16) is established.

For large M, {u < M} is a strictly convex, bounded open set containing O.
As explained at the beginning of Section 3, we can keep u fixed outside {u < M}
while redefining u inside {# < M} so that the new « is in C*°(R") and (D*u) > 0
on R”". Let f = det(D?u); Corollary 1.3 follows from Theorem 1.2 applied to the
new u.

Step 2. We show that there exists some affine function /(x) such that
(3.17) u(x) —I1(x)>0 inR"\ O.

Without loss of generality, we may assume that O C B,. Fix some A > I;
by subtracting from u a supporting plane to the graph at (—Ae;, u(—Xep)), we may
assume that # > 0 on R” \ I', where I' denotes the cone generated by —Ae; and
B;. Fix some M > 0 such that

ux) <M, xeB3\O.

By Lemma 2.9, lim,_ o u(—ae;) = oco. Let o be the largest value such that
u(—aey) < M. Then 3 < o < oo and u(—we;) = M. Let I'; denote the closed
cone generated by —ae, and B;, i = 1, 2, and let /;(x) denote a supporting plane
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of the graph of u at (—ae;, u(—aey)). Then [;(—ae;) = M and u(x) > [(x) for
x € R"\T';. Sinceu < M on B, \ O, we know that /;(x) < M on I',. Since A is
large, I'; N I" is compact. By Lemma 2.9,
Iim u(x)=o00.
xely,|x|—>o0
It follows that
u(x) > 1;(x) on R" \ {a compact set}.
Therefore (3.17) holds with I[(x) = [;(x) — ¢, for a suitably large c;.

Step 3. Now we can complete the proof of Corollary 1.3.
By step 2, we may assume without loss of generality that u > 0 on R"” \ O. By
Lemma 2.9, lim|y |, u(x) = oo. It follows that, for large M, the function

- M, x €0,
u(x) = —
max{M, u(x)}, x€R"\ O,

is convex on R”. Corollary 1.3(i) and Corollary 1.3(ii) follow from step 2 applied
to u. In the following we show that u € C*°(R" \ 0). Forx € R* \ 0, letI(x) be
a supporting plane to the graph of u at (x, u(x)). We already know that u grows
quadratically at infinity. So, by applying [3, theorem 1], we know that x is an
isolated local minimum point of u(x) — [(x). By the same argument as in step 1, u
is C*™ near x.

4 Proof of Theorem 1.7

The uniqueness part in the proof of 1.7 can be deduced easily from the maxi-
mum principle (see, e.g., Lemma A.2). By the affine invariance of the problem, we
may assume A = I, b = 0, and ¢ = 0. We may also assume that

supportof (f — 1) C By.

First, we explore the proof under the additional hypothesis that f € C*(R").
For R > 1, letugr € C*(Bg) be the unique convex solution of

det(D’ug) = f on By

R2

4.1
( ) Ur = ) onBBR.

We will show that as R tends to infinity, u gz tends to some « that satisfies (1.3) and,
for some constant depending only on 7, ming» f and maxg: f.
|x|?
4.2) sup lu(x) — —| < C.
Rn 2

To prove the above, we need some barrier functions. Let /(r) be defined on

r > 0, and let
u(x) = h(lxl).
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Then
B (r)
K (r)
D%u(x) = "
ey
So,
h/ n—l
det(D2u(x))=h”(r)< (r)) .
r

For a = 2" (maxg» f), let
o) = 16" T ds, r> 1,
(maxgn f)l/”(r2 -1, 0<r<l,

and

u_(x)=h_(x)), xeR".
Then u_ € CO(R") N C*®(B;) N C®(R" \ By), u_ is locally convex in R" \ By,

det(D>u_)=1 onR"\ B,

det(Dzu,) > f on By,

and
“4.3) lim A (r) < lim+ h ().
r—1- r—1
It is easy to see that (recall that n > 3)
x|?
4.4) sup {u_(x) — —| < oco.
xeR? 2

Next we define
hy(r) =/ " —=D'"ds, r>1,
1

and

ooy 2 D, =
* 0, x| < 1.

Then uy € C°RMHNCY(B) NC®(R"\ B)), u. is locally convex in R" \ By, and
det(D*u,) =1 onR"\ B;.
We also know that

4.5) h’+(1) =0
and
|2
4.6) sup |uy(x) — —| < o0
XER" 2
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By (4.4) and (4.6),

and

Il
=
=
=

o (IxP
B-: Inf (T — u(x)) > —00.

We will use (uy + B+) and (u_ + B_) as barrier functions to establish the
following:

LEMMA 4.1 Let ug be defined in (4.1) for R > 1; then
.7 u_(x)+p- <ur(x) <uy(x)+py Vx € Bg.

PROOF: Let R > 1; for g sufficiently large, we have
up(x)+ B >ugr(x), x¢€Bg.

Let B8 be the smallest number for which the above holds with 8 = 8. If B < B,
then the second inequality in (4.7) holds. Otherwise, 8 > B, and for some X €
Bk,
ug(x) = up (%) + B.
In view of the boundary data of u and the definition of 8, (recall that 8 > B,),
we must have
X] < R.
We also know that
|x] > 1.
Indeed, if |x| < 1, the supporting plane of the graph of uy at (x, ug(x)) must be
horizontal ((4.5) is used when |X| = 1), and therefore uz(x) = B for all |x| < 1,
which is impossible.
On the other hand, by the strong maximum principle, 1 < |x| < R cannot occur
either. We have established the second inequality in (4.7).
To establish the first inequality, we argue similarly, using (#_ + 8_) as a barrier
function. First, we know that for 8 very negative, we have

u_(x)+ B <ur(x), x¢€Bg.

Let f be the largest number for which the above holds with g = B. If B > B,
then the first inequality in (4.7) holds. Otherwise, 8 < B_, and for some x € By,

ur(X) = u_(x) + B.

Since
det(D?*u_) > det(D*ug) on Bg \ B,
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and

det(D*u_) > det(D*ug) on By,
we have, by the maximum principle, |x| = 1. But this is impossible in view of
(4.3) and the smoothness of ug. The first inequality in (4.7) is established. ]

By Lemma 4.1, we can apply Pogorelov estimates and then Evans-Krylov es-
timates and Schauder theory to ug to obtain that on every compact subset K of
R”,

lurllcrxy = C(K, k) Vk.
So along a subsequence R; — oo,
ug, — u in Cf (R") Vk.
It follows that u is convex and satisfies (1.3) and
4.8) u_(x)+B- <ulx) <uy(x)+py onR".

In particular, u € C*°(R") and satisfies (1.3) and (4.2).

Without the additional smoothness hypothesis on f, let f. = f * p., where p,
is the usual mollifier. Let u. be the solution found above for f.. We know from
the proof that |u.(x) — %lxlzl < C on R” for some C depending only on n and f.
Then, by the convexity of u. and the above estimates, {|u.| 4+ |Duc|} is uniformly
bounded on any compact subset of R”. Passing to a subsequence (still denoted as
(ue)), ue — uin C° _(R™) for some convex function u. So u is a viscosity solution

loc

of (1.3) and satisfies (4.2).

By Theorem 1.2, there exist b € R", ¢ € R, and A € A such that (1.6) holds.
In view of (4.2), A = I and b = 0. Replacing u by u — ¢ (but still calling it u),
clearly E(x) := u(x) — [|x]?/2 + c] satisfies (1.11). To see (1.12), we first deduce
from (4.8) that

|[E(x)|<C, xeR".

Here and in the following, C and r denote various large positive constants depend-
ing only on n and f. Applying Lemma 3.5, with y = 0, we have

|ID*E(x)| < x| >r.

|x2”

Since E satisfies
1
éij(x)DijE =0 onR" \El with &,-j(x) =/ FEij(I +SD2E(X))dS .
0

In view of the above estimates on D?E, the Green’s function for (&; ;j(x)) is bounded
by C|x|>~" for |x| > r. Estimate (1.12) then follows from (1.11) and the maximum
principle. Estimate (1.13) follows from (1.12) and Lemma 3.5 with y = n — 2.
Theorem 1.7 is established.
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5 Proof of Theorem 1.5

By an affine transformation and by subtracting a linear function from u, we
only need to prove the theorem for A = I, b = 0, and B,(0) C D. These will be
assumed below.

LEMMA 5.1 There exists some constant C, depending only on n, ¢, and D, such
that, for every & € 0D, there exists x(§) € R”" satisfying

5(E) <C and w; <¢ ondD\ (£},

where

1
we (x) := @(&) + §(|x —XEP —E—5®I), xeR".

PROOF: Let & € 0D. By a translation and a rotation, we may assume without
loss of generality that £ = 0 and 0D is locally represented by the graph of

/ 1 I
Xy, = P(x ) = E Z Baﬁxaxﬁ + O(|x |2)’

1<a,<n-—1

and ¢ locally has the expansion

1
o, p) =90+ Ox1+ 5 D Awpxaxs +o(x1),

1<a.f<n—1
where x" = (x1, ..., x,—1) and (Byp) is positive definite.
Let
X =(—¢y0),0,...,0,x,)
and
w(x) = ¢0) + %(Ix —x*—1x*, xeR".
Then

1 )
w(x’, p(x')) = @(0) 4 ¢y, (0)x; + E[Ix/l2 + p(x)?] = Zup ().
It follows that
(w—@)(x', p(x)) =
1 1
S+ o] = 5 M;H AapXaXp — X0 (") + o(|x'?) .

By the strict convexity of d D, there exists some constant § > 0 depending only on
D such that

(5.1 p(x)) = 8IxX'|> Vx| <$.
Clearly, for large x,,, we have
(w—e)x,p(x) <0 VO<I|x'|<3$.
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The largeness of x, depends only on § and ¢.
On the other hand,

w(x) = ¢0) + %le2 + @2, (0)x1 — XuX,, .
By the strict convexity of D and (5.1),
X, >80 VxedD\{(x, p(x)):|x'| <8}.
It follows that
w(x) < ¢0) + %IXI2 + 9 (0)x; — 8%, Vx € D\ {(', p(x) : [x'] < 8}
By making x,, larger (still under control), we have
wx) —p(x) <0 VxedD\{(x, px")):|x'| <8}.
Lemma 5.1 is established. U

Fix some ¢; € R” such that
1
we(x) < 5|x|2 +c¢; VEe€edD, x e R"\ D, dist(x,dD) < 1.

For x € R"\ D, let S..» denote the set of functions in CO(R™ \ D) that are
locally convex viscosity subsolutions of

det(D*w) >1 inR*"\ D
satisfying
w<=<¢ ondD
and
w(y) < %Iyl2 +c¢ VyeR"\D, |y—x| <2diam(D).

Clearly S, is nonempty for all x and c.
Define
uc(x) =sup{lwx) :w e S..}, xeR'\D.
LEMMA 5.2 We have
@ uc(x) < 3l +e¢ x €R"\ D;
(i) u. is a locally convex viscosity subsolution of det(D*u.) = 1 in R" \ D;
(iii) u. can be extended to a continuous function on R"\ D withu. = ¢ on 0 D;

and
(iv) u. is a viscosity solution of det(D*u.) = 1 on R" \ D.

PROOF: (i) follows from the definition since w(x) < %|x |>+cforallw e Sex-
(i) holds since u, locally is the sup over a family of convex viscosity subsolutions.
For € € 9D and x close to &, since wg € S, for all £ € 9D, we have
uc.(x) > we(x) for x close to £. Tt follows that liminf, zu.(x) > ¢(&). On
the other hand, limsup, ,z u.(x) < @(&). Indeed, if along a sequence x; — &,
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lim; o0 ue(x;) > <p(§) + 36 for some § > 0. Then by the definition of u., there
exists w; € S, such that w; (x;) > <p(§) + 24 for large i. But w; is locally convex
and, for & close to &, w; (§) < (&) < @(£) + 8. This forces w; to be unbounded
near é contradicting the fact that w; € S, ;. (iii) is established.

For x € R” \5, fix some € satisfying 0 < € < 2diam(D) and B.(x) C R" \5,
By the definition of u.,
1 _
ue(y) < 5lyP+e Viy—F <e.
It is well-known (see, e.g., the appendix) that there is a unique convex viscosity
solution & € C°(B. (X)) to
det(D*%) =1 in B.(X)
U= U, on 9B, (X).
By the maximum principle, & > u, on B¢(X). Define
u(y) ify € Be(x)
w(y) = . ) _
uc(y) ify e R*\ (DU Bc(x)).

Clearly, w € S, ;. So, by the definition of u., u. > w on B.(x). It follows that

u. = on B.(x). (iv) is established. O

Forb e Randa > —1, let
[x]

Wap(x) =b+ " +a)"ds.
1

Then w, p is a locally convex smooth solution of

det(D*w, ;) =1, R"\ By,
Wy p = b y 881 .

Let7 = 2diam(D) and b(a) := minyp (p—ff(s"—i-a)l/" ds; clearly w, ) < @
on dD. Itis easy to see that

bm ( ) IXIZ)
i Wy pa) (X)) — —
xloo \ V@ 2
1 o0 1/]1
=b(a)——+/ s((l—i—i) —l)ds
2 1 sn
1 7 00 a 1/n
= pu(a) :=ming — = —/ (s"+a)/"ds +/ s((l + —) — 1)dsr
aD 2 1 1 s"

. 1 1(_2 1)+ 00 - a 1/n Ay
= ming 5 2r i s = s .

Clearly p(a) is smooth, strictly monotonically increasing, and pu(a) — oo as
a — o0.
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Fix some a, > —1 such that ¢, := u(a,) > c;.

LEMMA 5.3 Forc > c,,

1
lim inf (uc(x) — —|x|2) >c.
[x]—00 2

PROOF: Forall = '(c,) <a < u='(c),
. |x|?
lim | wgpe(x) — —— ) =npa) <c.
|x|—00 2

It follows that w, ) € S for sufficiently large |x|. It follows that u.(x) >
Wa,b(e) (x) and therefore

. |x|?
liminf | u.(x) — — | = u(a).
[x|—>00 2
Lemma 5.3 follows after sending a to i =!(c). O
PROOF OF THEOREM 1.5: It follows from Lemma 5.2, Lemma 5.3, and Theo-
rem 1.2. U
Appendix

The following lemma and its proof can be found in [3]. For the reader’s conve-
nience, we include them here.

LEMMA A.1 Let Q be a convex open set with diam(Q) < 1, and let u € C*(Q) be
a convex viscosity solution of

det(D*u) <1 inQ
u=>0 on 052.

Then

) > —C(n) dist(x, 9Q)>" Vx e Q, n > 3,
u(x
| —C() dist(x, 02)¢ VxeQ, n=2 0<ua<l.

PROOF: Pick a point on 9€2, call it the origin 0, and then let the x,-axis point
in the inward normal direction of <2. Let

"2 _c 2/" ’ >3,
ho < [P Om" 0z
(xy — O)x5, n=2,
where 0 < o < 1. As in [3], for C suitably large (depending only on n when

n > 3, while depending only on & when n = 2), h satisfies

(D*h) >0, det(D*h)>1on€, and h <0 ond<.



580 L. CAFFARELLI AND Y.Y. LI

By the maximum principle,
h<u onQ,

in particular,

ulx', x,) > h(x,0), &', x,)eQ.
Lemma A.1 follows. ([
LEMMA A.2 Let B be a ball in R", n > 2, and let f be a positive continuous

function on B. Assume that u and v are convex continuous functions on B that
satisfy, in the viscosity sense,

det(D*u) < f inB and det(D*u) > f inB.

Assume also that
u>v onoB.

Then
u>v onB.

PROOF: We may assume without loss of generality that ¥ > v on 9 B. Indeed,
we may consider u + € for € > 0 and then let € tend to zero. We prove it by
contradiction. Suppose the contrary; for some x € B,

(u —v)(x) =min(u —v) <0.
B

Let (£}, (]} € C™(B), satisty
fi>r> fj+ on B and fjjE — f in C°%(B).
Letp € C*(0B) satisfy v+€ < ¢ <u—eondB where 3¢ = minyg(u —v) > 0.
By Proposition 2.4, let w;E e C%(B) N C*®(B) be strictly convex solutions of
det(D*w;") = f* in B
wf =g on dB.
Using w‘f as test functions in the definition of viscosity solutions, we have

u—e>w; onB and w;’zv+e on B;

in particular,

ux) —e > wj_(i), w;r(i) >v(x)+e.
Since u(x) < v(x), we have
(A.1) wi (%) = w; (%) 4 2.

By the Alexandrov estimate and (A.1), we have

1/n
(A2) 2¢ < —min (w; —w/) < c(/ det (D*(w; — wf))) :
un v, . A 4

+
5
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where SJ.Jr ={xeB: Dz(wj_ — w;“)(x) > 0).
Write
D*w; (x)  [D*w; (x) — D*w; (x)] + [D*w; (x)]
2 2 '
For x € Sj+, Dzw;(x) — Dzw;r(x) is positive definite, so by the concavity of
(det)'/”, we have

2.0 1/n
(W[5
2
1/n

(det [Dzwj_(x) - Dzw;'(x)])l/n + %(det [Dzw;'(x)]) ,

1
2
1.€e.,
| .1 _ yn 1
S I 0" = 2 (det [D?w; (x) — D (0)]) "4 SYAOKE
Since fjjE — fin C°(B), we have
sup det [Dzwj_(x) — Dzw;r(x)] — 0.
xeSj+
Sending j to oo in (A.2), we have 2¢ < 0, which is a contradiction. ([

LEMMA A.3 Let B be a ball of R" and ¢ € C°(dB). Assume that u € C°(B)isa
convex viscosity subsolution to det(D*u) > 1. Then

det(D*’u) =1 in B
Uu=u on oB

has a unique convex viscosity solution u € C°(B).

Remark A.4. The same conclusion holds when replacing B by any bounded convex
open set of R”.

PROOF: Uniqueness follows from the maximum principle. Let ¢; € C*(3dB)
satisfy

1
(A.3) u<@;<u+-ondB and ¢ — u in C°dB).
1

It follows from [6] that there exists a unique, strictly convex solution u; € C*®(B)
of det(D?u;) = 1in B and u; = ¢; on 3 B. By the maximum principle, u < u; < h;
on B, where h; is the harmonic function on B with boundary value ¢;. By the
convexity and the uniform bound of {u;}, |Vu;| is bounded on compact subsets of
B. So, after passing to a subsequence, u; uniformly converges on compact subsets
of B to some convex function u € C°(B). Consequently, u is a viscosity solution
to det(D%u) = 1. Clearly, u < u < h on B, where # is the harmonic function on
B with boundary value 7 = u. It follows that # can be extended as a continuous
function on B with u = u on 3 B. Lemma A.3 is established. U
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The following is a linear algebra lemma.

LEMMA A.5 Let U be an n x n real upper-triangular matrix. Assume that the
diagonals of U are nonnegative and, for some 0 < € < 1,

(A4 (1—e)BCU(MB)C(1+¢€)B,
where B C R" is the unit ball centered at the origin. Then for some constant
C =C(n),

(A.S) U —1] <Ce.

PROOF: Letting U = (U;;), we know that U;; = O fori < j. Since U(B)
contains an open neighborhood of R”, U is invertible, and therefore U;; > 0 Vi.
Write U~! = (U¥); then U~! is also upper-triangular, U = 1/U;; for every i,
and, by (A.4),

1 _ 1
1+eBC U (B) C l—eB'
For 1 < k < n, let ¢; denote the unit vector with the k™ component equal to 1 and
all the other components equal to zero. By (A.4)

(A.6)

in particular, Uy, < 1 4+ €, 1 < k < n. The same argument can be applied to U ',
s0, in particular,

1 ” 1

—=U"<—, 1<k<n.

Ukk “1-—¢ -
We deduce from the above two estimates that
(A7) l—e<Ugx=<1l4e€e, 1<k=<n.
It follows from (A.6) and (A.7) that
(A8) Y UL<(U+e’—(-e’=4e, l1<k<n.

J#k
Estimate (A.5) follows from (A.7) and (A.8). ]
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