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1 Introduction

1.1 Background

In the closure D of a bounded domain in R”, we consider a composite media
whose physical characteristics are smooth in the closures of subdomains D,, but
possibly discontinuous across their boundaries. The physical properties of the me-
dia are described in terms of a linear second-order elliptic system in divergence
form. The coefficients of the system are smooth in each D,, but not across their
boundaries.

Before stating results we first describe the nature of our subdomains. D is
a bounded domain in R” that contains L disjoint subdomains Dy, ..., D, with
D = ((JD,) \ dD. If a point in D lies on some dD,,, then we assume for that
m, the component of dD,, containing the point is smooth. This implies that any
point x € D belongs to the boundaries of at most two of the D,,. Thus if the
boundaries of two D,, touch, then they touch on a whole component of such a
boundary. However, as will be explained in Remark 1.2, we may include domains
as shown in Figure 1.1.

m=8

FIGURE 1.1
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We consider a weak solution u in H'(D); u is vector-valued. In engineering,
one is interested in obtaining bounds on the stresses represented by Vu. For ¢ > 0
small, we set

D, = {x € D : dist(x, 0D) > ¢} .

Question. Away from d D, is Vu bounded independently of the distance between
the domains? Are higher derivatives also bounded? What about bounds being
independent of the number of regions?

Babuska et al. [2] were interested in elliptic systems arising in elasticity. They
observed numerically that, for certain homogeneous isotropic linear systems of
elasticity, indeed |Vu| is bounded independently of the distance between the re-
gions.

This paper is a continuation of a paper by Li and Vogelius [10]. There the case
of scalar elliptic equations for a single real function u was considered:

> 9 (A% (x)dpu) = RHS

a,f=1
where 9, = % and “RHS” denotes the right-hand side. The coefficients A%® are
measurable and uniformly elliptic,

MEP < AP (x)Ea8p < AIEP, A A >0,
and are C* (0 < u < 1) in each D,,. In [10] they obtained uniform estimates

for [Vul| and [[u|| 1.« for some 0 < o < i in each D,, N D,, independently of

the distance between the regions. Indeed, several regions D,, may even touch (of
course, then some d D,, are not smooth, as in Figure 1.1). The estimates, including
o', depend on the number of regions, on the C % smoothness of the 3 D,,, on A and
A, and on the C* norm of A on D,, (and of course on &). Their proof makes use
of the De Giorgi—-Moser estimates for scalar elliptic equations in divergence form.

Question. What about higher derivatives? They studied a special case in R?: D is
a disk {|x| < R}, and D; and D, are unit disks centered at (0, —1) and (0, 1), so
their closures touch at the origin, D3 = D \ (D1 U D) (Figure 1.2).

The equation is
di(a(x)du)=0 inD, ueH (D),
i.e.,

(1.1) /a(x)a,-ual{ =0 V¢ ey (D)

with a(x) = 1 in D3 and a(x) = a9 # 1 in D; and D;; here ay is a positive
constant. Thus the function u is harmonic in each D;,i = 1, 2, 3. It is easy to see
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FIGURE 1.2

from (1.1) that the function u is continuous in D and that at any boundary point
x # 0 of Dy or D, with exterior unit normal v,

aou,,(x)‘Dm = uv(x)|D3, m=1,2.

Here the left-hand side uses the exterior normal derivative from inside D,,,
while the RHS uses the interior normal derivative for D3. This problem was first
considered in [4], but in [10] they show that for sufficiently large R,

|D*u| < C;,  in D; and D, Vk
|D*u| < Cr, in D3N D, Vk.
Their proof made use of conformal mapping.

Open Problem. For the same problem in higher dimensions, can one estimate
derivatives of any order?

1.2 Elliptic Systems and Principal Results

We consider vector-valued functions u = (u!, ..., u"). The systems take the
form
(1.2) (AL ()dgu’) =b;, i=1,...,N.

(We use the summation convention: ¢ and 8 are summed from 1 to n, while i and
j are summed from 1 to N.)

The coefficients Af‘jﬁ , often denoted by A, are measurable and bounded,
(13) A7 ()] < A,

and they belong to C* in D,,,m = 1, L, for some 0 < @ < 1. Furthermore, for
some A > 0, we assume the (rather weak) ellipticity condition

(1.4) / A% (1)ag 057 > 2 f Vo> Vg e HI(D,RY).
D D
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A consequence of (1.4) is
AP )& Epn'n = MEPI® VEER", neRY.

Hypotheses (1.3) and (1.4) are clearly satisfied if the coefficients {Aff (x)} are
strongly elliptic in the sense that

MEP < AP (0ElE] < AP VEeR™, xeD.

The hypotheses are also satisfied by the linear systems of elasticity. Recall that a
system is called a system of elasticity if N = n, the coefficients satisfy

(1.5) A = ALY = AT

oj ?

and, for all n x n symmetric matrices {£},

(1.6) ME? < A (0)ELE] < AEP, xeD.

It is well-known that (1.3)—(1.4), with a smaller A and larger A, follow from (1.5)—

(1.6); see, for example, [11, chap. 1].
Concerning the b; in (1.2), we assume they have the form

and that
h ={h;} € L*(D)
="y eC D), m=1,...,L.

Our principal result yields C" interior estimates for u. First, we formulate
more precisely our conditions on the dD,, C D. We assume that each such D,, is
of class C'"*, 0 < o < 1; that is, in a neighborhood of every point of 3 D,,, dD,,
is the graph of some C!® function of n — 1 variables. For m > 0, we define the
C"* norm of a C'** domain D,, as the largest positive number a such that in the
a-neighborhood of every point of 9 D,,, identified as 0 after a possible translation
and rotation of the coordinates so that x,, = 0 is the tangent to dD,, at 0, dD is
given by the graph of a C!* function, denoted as f,,, which is defined in |x'| < 2a,
the 2a-neighborhood of 0 in the tangent plane. Moreover, || fiullcle(yj<2q) < é
The principal result gives interior C-¢" estimates of an H' solution u of (1.2) (with
b; of the form (1.7)); i.e., u belongs to H'!(D) and satisfies

/A?f(x)aﬂufaa;" +hit—glogr =0
D

for every vector-valued ¢ = (¢!, ..., ¢")in Cy° (D), and hence forall ¢ € HO1 (D).

THEOREM 1.1 Assume the conditions above, even if some D,, touch as in Fig-
ure 1.1 (see Remark 1.2 below). For any ¢ > 0, there exists a constant C such that

for any o' satisfying
. o
0 < o’ < min { 7} ,

b+
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we have form =1, ..., L,

L L
A8) > Nl p,np, < C(uuan(D) + Al ey + ) ||g||caf(Dm)> :

m=1 m=1

Here C depends onlyonn, N, L, 1, a, €, A, A, || Al co D) and the C'* norms of
the D,,; in particular,

L
IVl Lo, < c<||u||Lz<D) + 1Al + ||g||caf<Dm)) :

m=1

Remark 1.2. The solution u is unique if u|yp is a given function in H 123 D).
It follows that, by approximation, we may assume that the coefficients A and f
belong to C ®(D,,) Vm. Furthermore, it suffices to prove estimate (1.8) in case
no more than two of the D,, touch, for we may move or change them slightly to
achieve that. In addition, by approximation, we may suppose that d D,, is in C*
for m > 0. From now on, we assume all these conditions.

Remark 1.3. Theorem 1.1 for scalar equations was established in [10] for slightly

more restrictive o’: 0 < &’ < pand o’ < —2%—.
n(a+1)

1.3 Outline of Proof and C™ Property of u in Each D,, N D
In Section 2, using Remark 1.2, for D,, C D, we first prove the following:
PROPOSITION 1.4 For each m, the solution u belongs to C*(D,, N D).

Remark 1.5. Proposition 1.4 still holds for the more general operator
8u (AP0’ + BEu?) + CLogu! + Dyju’

o« cF

provided that Bj%, C};,

and D;; are also in C>®(D,,) for each m.

However, the proof of the proposition does not yield the kind of uniform bounds
that we desire. The proof of Proposition 1.4 is based on a result of Chipot, Kinder-
lehrer, and Vergara-Caffarelli [8] for solutions of laminar systems. We consider D
to be the cube €,

Q={x:|x;| <1} withx = (x', x,)
divided into €2,,. However, the €2, are different; they are “strips”:
Qn=xeQ:cn1 <x, <cn},

where the c¢,, are increasing constants lying between —1 and 1. There may be
infinitely many strips; if so, we set c_oo = —1 and coc = 1. In Q2 we consider
system (1.2) for a vector-valued function v,

(1.9) 3a(AT0507) = Hi + 0,(G¥), i=1,....N.
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The coefficients A are uniformly smooth in each Q,, and _satisfy (1.3) and (1.4).
The H; and the G are also assumed to be smooth in each €2,,,.

PROPOSITION 1.6 Assume the above. Let v € H' (2, R") be a weak solution of
(1.9). Then forall y', D;’, v e C%RQ), and for eachm, v € C*(RQ,,NQ). Moreover,
for any 0 < ¢ < 1, any nonnegative k, and any m,

||U||Ck(§mm(1_g)gz) < Clvll2@

+C Y |DLH] g +C D IDLG] g
ly'|<k—1 ly'|<k

where k = k + ["—51] + 2 and C depends on ¢, k, n, N, A, A, and the L°°(2) norm
ofD;’,/Afor ly'| < k.

COROLLARY 1.7 If we further assume in Proposition 1.6 that A = A, G = G,
and H = H are constants in each S2,,, then for any ¢ > 0, any nonnegative integer
k, and any m,

vl ek, na—e) < C(||U||L2(Q) + ”F”L“(Q) + ”E”LW(Q)) ,
where C = C(g,k,n, N, A, A).

Remark 1.8. Both Proposition 1.6 and Corollary 1.7 hold for more general sys-
tems as described in Remark 1.5. Naturally, the constants C in Proposition 1.6
ang gorollary 1.7 also depend on appropriate bounds of the coefficients B/}, C 5,
an ij-

Proposition 1.6 can be deduced from Proposition 2.1, a result in [8]. In Sec-
tion 2 we present a proof of Proposition 1.6 that is a bit different from that in [8].
In particular, our proof does not use the reverse Holder inequality. Proposition 1.4
follows from Proposition 1.6 and Remark 1.8 by straightening boundaries using a
smooth local diffeomorphism.

1.4 Outline of Proof of C1'®" Estimates

Most of the paper is devoted to these estimates. We make use of ideas of L. Caf-
farelli of [5, 6].

To estimate |Vu(x)| at a point x in D,, we need only consider the case that x is
close to some d D,,; otherwise, standard interior estimates yield the result. In that
case we approximate the problem by a laminar one as in the preceding section, with
a finite number of strips. To this end, in Section 2 we present a general perturbation
result, Lemma 3.1. It asserts, roughly, the following: Suppose u is a solution of
system

d(Adu) = 0g
in (for convenience) a cube 2. Suppose that B are the coefficients of a similar
system also satisfying (1.3) and (1.4) with the L' norm of (A — B) < & small.
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Then in 2, there is an H' solution of the “B system”

3
0(Bv) =0 in 2@ with [ — vl g0 < C(Iglia + ¢ lulli2e)

for some constant y > 0 and some C.

This is used only in the case that the system B is a laminar one, with piecewise
constant coefficients, which we rename A. Because of the geometry (here we take
x as the origin), we have for r small

N2
<][|A—A|2) < Er®.
rQ

We will describe below the ideas of the proof of Theorem 1.1 when the system
is homogeneous. Applying Lemma 3.1 on perturbation in a suitable cube €2, we
obtain a solution wy of the A system

- S+1+a’
3(Adwp) =0 with [lu — woll 210y < (Z) )
In addition, using Proposition 1.6, we show that
”VwO”LOC(%Q) <C.

By repeated use of Lemma 3.1, applied first to u — wg in smaller and smaller

cubes and by scaling, we obtain a sequence of functions wy, ws, ..., satisfying,
with C a fixed constant,

(1.10) IVl ou-wingy < C47 w(0)] < 47D,

and

< C4~kHDGHI+)
L2(4kQ)

(1.11) =y w
j=0

Using (1.10) and (1.11) finally yields

u—Y w;(0)
j=0

—(k+1 n+2
< 47
L2(4—(1<+])Q)

which yields
Vu(0)] < C.
The procedure is unfortunately rather long. It is carried out in Sections 2 and 3.
Sections 4 and 5, also technical, treat the Holder-continuity of Vu. Take two points

in some D, ; one we take as the origin while the other we call x. We wish to show
that for |x| small,

(1.12) |Vu(0) — Vu(x)| < Clx|* .
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Pick a point on | J,, dD,, such that the distance from the origin to this point is the
shortest distance from the origin to (_J,, d D,,. Let the line going through this point
and the origin be the x,-axis. This is illustrated in Figure 1.3.

\

FIGURE 1.3

To prove (1.12), we compare Vu at 0 and x with Vu at two other points x and z,
as in [10]. Since the number of regions D,, is finite, we may find x on the x,-axis
such that |x| ~ |x| and x + 8|x|<2 lies entirely in some D,,. We prove that

|Vu(x) — TVu(0)| < C|x|*,

where T is some invertible linear transformation with ||7|| and |7 '] bounded
from above by some universal constant. Similarly, we can find z with |z —x| < 2|x|
and

IVu(z) — TVu(x)| < Clx|*;

see Figure 1.4.
Finally, we show that

IVu(x) — Vu(y)| < Clx|¥ Vy € %+ 6[x|Q;

in particular,
IVu(x) — Vu)| < Clx|* .

The desired estimate (1.12) follows from the above.

Let {D,,} be domains of a flat torus T" as described above. Here T” is the
quotient of R" with respect to the equivalence relation x ~ y if and only if x* — y*
are integers. Based on Theorem 1.1 and the method in [1], we have the following
extension of a result of Avellaneda and Lin [1].
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X n
O(lxl) —— X -
\ x
(6]
FIGURE 1.4

THEOREM 1.9 Let {D,,} be as above and let A be “piecewise Holder” as described
earlier. Assume that A is 1-periodic in each x* and, for a unit ball By of R", that
u € H' (B, R") is a solution of

) <A?f<§)aﬂuf) —0, B

IVullLoos, 0y < Cllullz2(s,) »

Then

where C is independent of ¢ and the distances between the {0D,,}.

Remark 1.10. A W' estimate is given in the above theorem, while a W7 esti-
mate for p < oo is due to Caffarelli and Peral [7]. Under the additional hypothesis
that A is Holder on T", the W' estimate is due to Avellaneda and Lin [1].

2 Proofs of Propositions 1.4 and 1.6

Let €2 be the unit cube and €2, be the strips defined in the introduction. We
assume that coefficients A are uniformly smooth in each €2,, and satisfy (1.3) and
(1.4). H and G are also assumed to be smooth in each 2,,.

We first prove the following:

PROPOSITION 2.1 [8] Assume the above. Let v € H' (2, R") be a weak solution
of (1.9). Then for any 0 < ¢ < 1 and for any positive k, Dj:/v € HILC(Q) for
all |y'| < k, and, for some constant C depending only on n, N, A, A, &, and
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,y/
ZIy’lsk | Dy All L), we have

> [ ol =l € Y [0V H
VI=k 1 Ze)@ ly/|<k—1

DI L e

ly'|<k

2.1)

Moreover, for
w = (w;) = (A 950/ — GI),

we have D;’,/w, D;’,/a,,w e L2 (Q) forall|ly'| <k—1, and

loc

r2 ! 2
@2 ) (1Ph vl g + 1200w ] ge) =
ly'|<k—1

Clvldsg +C Y [DUH[Gg +C Y [DVG a) -
ly'|<k—1 ly'1<k

The proof of Proposition 2.1 relies on a convenient form of Sobolev’s inequal-
ity, which is fairly well known:

LEMMA 2.2 Let f be a real function in  with DY, f and D?,3, f € L*(Q) for all
0<1y'| <"1+ 1=k Then f € C°(Q) and

£l < C) Y (IDL 0 fll2) + IDL flle) -

ly'I<k

PROOF: Our conditions on f assert that f belongs to H' on [—1, 1] with values
in H*(—1, 11" Y). By the usual form of Sobolev’s inequality,

H (-1, 11" c C°(-1,11"").
Thus f is in H'((—1,1),C°([—1,1]""")) and hence in C°(Q). In fact, f is
Holder-continuous in 2. O

PROOF OF PROPOSITION 2.1: First we establish (2.1). We sketch the argu-
ment without giving every detail since the steps are all rather familiar ones. If we
multiply (1.9) by v and a suitable cutoff function, we find, on integrating by parts
and using (1.3) and (1.4),

(2.3) / IDv* < C(Ivl172g) + 1 HIIZ2g) + 1G5 -
(1-9)Q
To estimate higher derivatives, it is customary to differentiate the equation,
multiply by a suitable derivative of v and by a cutoff function, and integrate by

parts. Clearly, we are not allowed to apply 9, since the coefficients are smooth
only in x’ = (xy, ..., x,_1) derivatives. Furthermore, we do not yet know that v
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has additional derivatives in the x’-directions. So in place of taking derivatives, it
is standard to use difference quotients in these directions. To save space and the

reader’s patience, we shall simply differentiate. Applying D;’,/ for |y’| = 1to (1.9),
we obtain

0. (A 95(DY v7)) = D! H; + 3, (D7 G — (DY, AP)dgv)

and, consequently, as above,

Y2 2 Y 12 2
f |DDX/ U| = C(”H”LZ((]_%)Q) + ”Dx/ G”Lz((l—%)ﬂ) + ”DU”LZ((I_%)Q)) .
(1-e)Q

It follows, in view of (2.3), that

’ 2 ’
(1-6)Q2

We have established (2.1) for k = 1. Estimate (2.1) for general k follows by
induction through further differentiation in horizontal directions in a standard way.

Because of (2.1), DV w € LIZOC(Q) for |y’| < k — 1, and the estimate of

Zly <k—1 ||D w||L2 (=) in (2.2) also follows from (2.1) and (2.3). Rewriting
equation (1.9) as

dow=Hi+ Y 3,(G! — ATos07)

a<n—1

and applying horizontal differentiation to it, we obtain, in View of (2.1), DV’a w e

1OC(Q) (]y’| < k — 1) and the estimate of Zly f<k—1 ||D 8 wl|? 1n (2.2).
Proposition 2.1 is established. U

L2((1—¢

PROOF OF PROPOSITION 1.6: It is well known that for each m, v € C*°(£2,,).
For k > [%] + 1 and |y’'| 5/ k — [%] - 1/, by Proposition 2.1 and an application
of Lemma 2.2 with f = D;/, v, we have D;, v e C%Q) and

(2.4) > |plv|;
Iy |<k—[2511-1

/ 2 / 2
C||U||iz(9) +C E : ”Df/HHLZ(Q) +C Z ” DE/GHLZ(Q) ’
|B'1<k—1 1B'1<k

where C has the same dependence as in Proposition 2.1. Similarly, for k > [”T*I] +
2and |y'| <k — [%] — 2, by Proposition 2.1 and an application of Lemma 2.2
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with f = D, w, we have D’, w € C%(R2), and

(2.5) Z HDV w“LOO((l o) =

Iy |<k—["511-2

Cllol}agy+C D |DVH| g +C D [DLG g
ly'1<k—1 ly'I<k

where C has the same dependence as in Proposition 2.1. Consequently, Di’,,v €
*(), and

1oc

(2.6) Z I DDV v ||L°O((1 o) =
ly'|<k—["511-2

/ 2 / 2
C”U”i2(9) +C z : “ Df’H”Lz(Q) +C Z ||Df/ GHLZ(Q) )
1| <k—1 1B'1<k

Indeed, by (2.4), we only need to show that 9, DV v € Ly (£2) and establish (2.6)

for 13, D) vl 3 (1 _eyy- BY (24) and (2.5), A7#9,D7,v/ € Li%,(2) and

” A} Oy Dy v ||L°°((1 _o@) =

B |2 B 2
Clloliogy +C Y [DEH g +C D0 P0G g -
|8/ 1<k—1 1B'|<k
Because of (1.3) and (1.4), (A””) is a positive definite N x N matrix with eigen-
values in [A, A]. Consequently, D ve W () and

loc

”3 D}, v HLOO((I 09 =

C”v”LZ(Q) +C Z “ Df//H”iZ(Q) +C Z ”Df’/G”LZ(Q) :
|B/1<k—1 |B1<k

Inequality (2.6) gives us the desired bounds for tangential (i.e., x’) derivatives
of v and of 9,v. To estimate derivatives involving 3; v for Jj > 1, we simply ob-
serve that these may be derived recursively from those already established. Indeed,
according to (1.9),

Q2.7) Ao = =0, (A O 4+ fi = Y Ba (AT Bpv7)
a+p<2n
where fi; = H; + 0,(G7}).

Since the matrix Ajj' has a bounded inverse, we can estimate Dy d2v point-
wise for each open strlp Applying 0, to (2.7), we can then estlmate tangentlal
derivatives of 93v and so on. We thus obtain
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Z D" vl @, n1-0) <

ly|<k
Clivllze +C Z HD;’/H” e T C Z ” DJ):’/GHL2(S2) :
ly'|<k—1 1<k
Hence, v € C*®(Q2,, N Q). Proposition 1.6 is proven. O

Remark 2.3. The use of Proposition 1.6 shows that in some situations in The-
orem 1.1 we may allow infinitely many D,,. Here is an example. Suppose D
contains a closed ball centered, say, at the origin, of radius R, and suppose the
region D,, for m = (—oo, 0o) are infinitely many disjoint concentric shells lying
in R/2 < |x| < R with [JD,, = {R/2 < |x| < R}. Then the conclusion of
Theorem 1.1 holds. This is because about any point x with |x| = 3R/4 we may
make a smooth transformation of variable mapping {R/4 < |x| < R} N a cone cen-
tered at the origin into a cube in which the images of d D,, for all m lie on parallel
hyperplanes. This reduces the problem to that of Proposition 1.6.

3 A General Perturbation Lemma

In this section we present some perturbation lemmas in, for simplicity, the unit
cube Q2. Such perturbation lemmas will be used in our proof of Theorem 1.1 at
all scales. For0 < A < A < o0, we denote by A(A, A) the class of measurable
vector-valued functions {A?f} (x)} satisfying (1.3) and (1.4).

LEMMA 3.1 For0 <& < 1, let A, B € A(A, A) satisfy
3.1) /|A—B|<s.

Q
Then for any g = (giﬂ) € L*(Q, R"N) and any solution u € H'(Q) of
du (A ()0pu) = 8pgf . 1<i<N, inQ,

there exists some solution v € H 1(%52) of
o ; 3
% (B ()dpv') =0, 1<i<N, in e

such that
llu — U||H1(%g2) = C(||g||L2(Q) + 8y||u”L2(Q)) )
where C and y are some positive constants depending only on n, N, A, and A.

PROOF: By the ellipticity,
Il sy = CIIg N2 + Nl @) -
Then, by the Fubini theorem, there exists % < 0 < 1 such that

lull g o) < C(||8||L2(sz) + ||M||L2(Q)) .
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Let v € H'(0R) be the solution of

3, (B (x)9p0)) =0, 1 <i <N, inoQ,
v=u on d(0€2).

Fixing some 0 < § < 1, let U € H¥?>7%(c Q) be an extension of u on 3(c Q)

satisfying
VUl Liwo) < ClIUp3r-spa) < Cllullpi-spoa) < C(”g”LZ(Q) + ||M||L2(Q)) )
where p =2n/(n — 1 4+ 26) € (2,2n/(n — 1)). Sincev — U € HO1 (o 2) satisfies
(B ()30 — UN)) = =34 (B{F (1)05U7) inoQ,

it follows from the reverse Holder inequalities (see, e.g., [9, pp. 151-154], as out-
lined in the appendix) that for some 2 < p < p, depending only on n, N, A,
and A,

IV~ Wlieree < ClIVUIlree) < C(Iglee + 1ul2g) -

Consequently,

1
29

IVullree) < C(||8||L2(Q) + ||u||L2(Q))-
A combination of the equations of # and v leads to
3a (AT ()0 — 1)) = dpgh + 0. (B — A)dg07)
I1<i<N,incQ.

Multiplying the above equations by # — v and integrating by parts, we find, by
using the Holder inequality and (3.1), that

IV (@u— U)||L2(asz) = C(||g||L2(oQ) + 1B — A”sz/(P—z)(aQ)”vv”LP(oQ))
< C(||g||L2(Q) + 8(p_2)/(2p)||”||L2(asz)) .
Lemma 3.1 follows from the above with y = (p — 2)/(2p). U
Essentially the same proof yields the following more general lemma.

LEMMA 3.2 For 0 < ¢ < 1, let A, B € A\, A) satisfy (3.1). Then for any
g = () € LX(Q.R™), h = (b)) € L*(Q,RY), G = (Gf) € L*(Q,R"™Y), and
H = (H;) € L®(Q,R"), and for any solution u € H'(Q) of

0 (AL ()dgu’) =h; + 058’ . 1<i<N, inQ,
there exists some solution v € H l(%Q) of
0 (B (0)3pv)) = Hi+ 3G, 1<i<N, in-Q,
such that
llu — v”Hl(%Q) < C(Hh — Hll12@ + g — Gll2@
+ e[| H =@ + 1Glle=@ + lulli2e)])
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where C and y are some positive constants depending only on n, N, A, and A.
PROOF: By the ellipticity and the Fubini theorem, we can find % < o0 < 1such
that
lull ooy < C(||h||L2(Q) + gl 2@ + ||M||L2(Q)) .
Let v € H'(02) be the solution of

3 (B (0)0gv)) = H; + 8,G, 1 <i <N, inoQ,
v=u on d(0€2).

Fixing some 0 < § < let U € H*?7%(0 Q) be an extension of u on 3(c )

satisfying

I
2
IVUlLiway < CllUg3r-soa) < Cllullgi-spoa))
< C(”h”LZ(Q) + llgll2 + ||M||L2(Q)) ,
where p =2n/(n — 14+ 28) € 2,2n/(n — 1)). Sincev — U € HO1 (o) satisfies
3o (B{f (1)dp(v) — UN)) = H; + 85G) — 8,(BY (0)3sU7) ino,
it follows that for some 2 < p < p, depending only on n, N, A, and A,
IV —=U)llroa) < C(||H||L°°(Q) + Gl L= + |IVU||LP((TQ)) ,
SO
IVUllLrwe) < C(1H L@ + 1Gllx@ + VUl Lrow) -
Combining the equations of # and v leads to
3a (AT ()0 —v))) =
hi — H; + 95(80 — GP) + 8. ((BYf — A{)ogv’) inog.
Multiplying the above equations by u — v and integrating by parts, we obtain
IV (u— U)||L2(UQ)
= C(”h - H”LZ(GQ) + ||g - G”L2(os2) + ||B - A”LZP/(P*Z)(O-Q)||VU||LP(UQ))

< C(llh —Hllp2p0 + g — Glli2pa
+ &P P/CP[| H || o) + 1G Iy + lull2)]) -

Lemma 3.2 follows immediately. (|
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4 Preliminaries for Estimating |Vu|

As mentioned in Section 1.4, to estimate |Vu| at a point x in some D,,, we need
only consider the case that for some mg, x is in D,,, and close to 9 D,,,. We take x
as the origin. By suitable rotation and scaling, we may suppose that a finite number
of the 9 D,, lie in the usual cube 2 and that these take the form

= fi(x) VX e[ =1,
with
—-1< i) <---< fitx') <1
and with the f; in C*([—1,1]"""). We set fo(x’) = —1 and f;+; = 1, and have
[ + 1 regions
DmZ{XEQme_l(X/)<xn<fm(x/)}, I<m<Il+1.
We may suppose that f,,+1(0) < 0 < f,,(0"), and the closest point on 9 D,,, to
the origin is (0, f,,,+1(0")). Thus
V' fng1(0) = 0;
see Figure 4.1.

-
X, = £ mer (D)
—
D 0
x, = f, (O]

/

FIGURE 4.1

Our system (1.2) still takes the same form, with (1.3) and (1.4) still holding.
As before, the coefficients A, h;, and g are smooth in D,, N  Vm. Our desired
estimate for Vu(0) is given by the following:

PROPOSITION 4.1 Let u € H'() be a solution of (1.2) in Q with D,, as above.
Then, for any ¢ in (0, 1),

VuO)] = C(lulliz@ + Il + max lglens,).-
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where C depends only on n, N, I, o, , &, A, & maxi<m<it+1 |Allcucp,,) and

maxj<m</+1 ” fm ||C1+""

m)’

Proposition 4.1 will be proven using the perturbation lemma of Section 2 in €2.
We approximate the “A system” by a laminar system with coefficients A that are
piecewise constant. Namely, we introduce strips in €2,

Qm = {X €Q: fmfl(O/) <X < fm(o/)} s
and define the coefficients A as

limyep,, y—©. £, 100 AY), X € Qy,m >myg,
A(x) = { A0), X € Qpy,
limyep, y—©, fn0n AQY), X € Q) m <myg.

Using & and g, we similarly define piecewise constant vectors H and G.
We will measure A — A in terms of a norm Y*” defined below.

Definition 4.2. Fors > 0,1 < p < o0, and any vector- or matrix-valued function
F, we introduce the norm

1/p
| Fllysr = sup r“(][ |F|"> :
O<r<l1

rQ

We have the following lemma; it is proven in the same way as [10, lemma 5.2].

LEMMA 4.3 Let

o
O /< i ’ N
<a _mln{u 2(a+1)}

With A, A, g, and G as above, there exists a positive constant E, depending only
onn,l,a, o, A, and A, as well as maxj<p,</+1 ||A||ca’(5,,,)’ Maxj<m</+1 ||g||cm(5m),
and maxi<m<i+1 || fmllcrap,,) such that

IA — Allyisers + |h — Hllyriwrz + g — Gllyiraz < E.

We turn now to the proof of Proposition 4.1; here we use ideas of Caffarelli [5].

PROOF OF PROPOSITION 4.1: For simplicity, we treat the case b; = 0. We
will show that

4.1 [Vu(0)| < Cllull12(q) -
By Lemma 4.3,

IA—Allyiws <E.
In fact, we can further assume that

(4.2) 1A = Allyira < €0



ESTIMATES FOR ELLIPTIC SYSTEMS 909
for some small enough gy > 0 (depending only on n, N, A, A, &', and E). Indeed,
we pick ry satisfying r(‘j‘/(l + E) = gy and let

A(x) = A(rox),  A(x) = A(rox), and ii(x) = u(rox).
A simple calculation yields
1A = Allyrsaa < r§ 1A = Allyrsz < €0,
and, since b; = 0, _
0(Adu) =0 inQ.
In the following we will always assume the additional hypothesis (4.2) for suf-
ficiently small g3. We also assume that u is normalized to satisfy

||M||L2(sz) =1.

We will find wy € H'(27Q.RY), k > 0, such that for all k,

— 3
“4.3) d(Adwy) =0, WQ’

, _ k(n+2+20d") /4 —kad!
4.4) ”wk”Lz(ﬁQ) <C4 2 , ”Vwk”[‘m(ﬁg) <C'4"

k
(45) u— Z U)j < 4- (k+1)(n;—2+2a)
j=0 2

An easy consequence of (4.4) is
(4.6) [wi || oo sk ingy < C4~KFDUFD

In the following, C, C’, and gy denote various constants that depend only on
parameters specified in the proposition. In particular, they are independent of k.
C will be chosen first and will be large, then C’ (much larger than C), and finally
g0 € (0, 1) (much smaller than 1/C").

By Lemma 3.1, we can find wy € H'(3Q, R") such that

J— . 3 _ n4242d"
d(Adwg) =0 in 4_19 and [lu — woll2(1q) < Cey <47

o)
”wO”Lz(%Q) =< C < C/
and, by Corollary 1.7,
||Vw0||L00(%Q) <C<C.
We have verified (4.3)—(4.5) for k = 0. Suppose that (4.3)—(4.5) hold up to k
(k > 0); we will prove them for k + 1. Let
k
W(x) = (u = wj>(4-<’<+“x),
j=0
Apn () =A@ x) A () = 4@ ),
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k

g1 (x) =476+ ([Ak+1 — A1) Z(aw,-)m“‘*“x)) :
j=0
Then W satisfies
I(Ak+10W) = 3(gk+1) In Q2.
A simple calculation, using (4.2), yields

1/2
A A2 —(k+1)o’ A
[Ak+1 — Akrill2e) = ( ][ |A — Al ) <4 EDA — Al
4—k+1)Q

E 4—(k+1)a’80

By the induction hypothesis (see (4.4) and (4 5)), we have

Sl e T s cen
j=0
and
[W |2y < 4-FFDU+a)
SO
lgk+1llr2@) < C'4™ (kD14 g

By Lemma 3.1, there exists vy € H' (ZQ’ RY) such that

_ 3
9(Ak4+10v,41) =0 in ZQ

and
W = virill210) < € (lgrri iz +4 P W] o))
4.7 C (8() 4 8(1)’)4—(k+1)(1+a’) .
Let

3
Wi (1) = v @ x), x e WQ

A change of variables in (4.7) and in the equation of vy yields (4.3) and (4.5) for
k+1.
It follows from the above and Corollary 1.7 that

—(k+1)(14a’
||Vvk+l||L°0(%Q) =< C||vk+ll|L2(%Q) =< Cc4 G+ .

Estimates (4.4) for k + 1 follow from the above estimates for v ;. We have thus
established (4.3)—(4.5) for all k.
For |x| < 4~®+D using (4.4) and (4. 6) it follows that

ZwJ(X) Zw,(o) <CZ4 i x| + € Z 4-it+a)

Jj=k+1
< C|x| + 47RO
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So we derive from (4.5) that

oo
(4.8) U — Z w; (0) < C4_(k+1)2(n+2)
=0 L2(4-Gk+D Q)
Consequently,
o
4.9) u(0) = Z w;(0) and [Vu(0)| <C.

Jj=0

Estimate (4.1) is established. We have completed the proof of Proposition 4.1
when b; = 0. The general case can be established by similar arguments (using
Lemma 3.2 in the proof instead of Lemma 3.1). We leave the details to the inter-
ested reader. O

Remark 4.4. By Corollary 1.7 (applied to v1), we also know

(4.10) e Lo ane) < c4kt-a

This estimate will be used in our proof of (1.8), the Holder estimates of the
gradients of u.

5 Holder Estimates of the Gradient

We use the notation of Section 3.
PROPOSITION 5.1 Let A be as in Section 3, and letu € H' (2, RN) be a solution of
0(Adu) =0 inQ.
Then for all x € D,,, N %Q,
Vu(x) = Vu(0)| < Cllull 2 lx]* .

where a' = min{u, } and C depends only onn, N,l, a, i, A, and A, as well

o
2(a+1)
as maxi<m<; | finllcragor,1p-1y and maxi<pm<i |A" || cu5,,)-

The proof is rather technical.

5.1 Beginning of the Proof of Proposition 5.1
As explained in Section 3 we may assume without loss of generality that
lullz2) = 1 and A — Z||y1+a’.z =< ¢€o,

where g is the small constant in Section 3.
As in the proof of Proposition 4.1, we can find {w;}?°,, in H' (M%Q, R") such
that for k > 0, wy, satisfies (4.3), (4.4), (4.5), (4.6), (4.9), and (4.10).
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Associated with Z(m) = Zlgm, we introduce a linear transformation N :
RN — R"V a5 follows: For b = (b)) € RN (1 <a<n,1<i<N),
(N™b)! =bi l<i<N,l<a<n-—1,

(N™py, =A""bl, 1<i<N.

Since (an)nn) is a positive definite N x N matrix with eigenvalues in [A, A], it is
clear that N is invertible and

(5.1) INI NN < C, N, & A
We also define linear transformations 7 : R™V — R"V by setting
Tm — (N(m))—lN(mo) .
LEMMA 5.2
o
(5.2) Vu(0) = > Vw;(0),
j=0
and, for x € 4,%52 N2\ ﬁQ,
k k
> Vwix) = > T Vw;(0)
j=0 j=0

(5.3) <Clx|”.

PROOF: We first prove (5.2). For 4=**DVQ c @, . it follows from (4.10) that
lwj (x) = [w;0) + Vuw;(O)x]| < 1 xP?,  j <k, xed ®tq.
This, and (4.5), yield

k
(54) |u-— [Z w;(0) + Vw; (O)x] <
s L2@4—k+D Q)
k
C47k(n+2+20t’)/2 +C 241'(1701’)” |x|2||L2(47(1<+1)Q) < C4fk(n+2+2a’)/2 )
=0

From (4.6) and (4.4), we know that Z;io w; (0) and Z;io Vw;(0) are convergent
and

00 k
3 w0 — 3w (0)] < c4FIH,
j=0 j=0
(5.5)
00 k
D Vw0 = YV (0)| < c47T
j=0 j=0
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Combining (5.4) and (5.5), we have

u— |:Z w;(0) + Z ij(O)xi|
j=0 j=0

Equality (5.2) follows from the above.
Next we prove (5.3). The matching condition of w; at x, = ¢, is, for all
x'e (=1, )",

(5.6) N<'">Vw}’">(x/, C1) = N<'"—1>Vw;’"“)(x/, Cm_1) s

< C4fk(n+2+2a’)/2
L2(4—Gk+D Q) B

where w;”" = wjlg,,.

For m = my, (5.3) follows from (4.10). We will only show (5.3) form > my+1
since the proof is the same form < my— 1. Forx = (x’, x,,) € ﬁQﬂQm \ 4,(%9,
m > mgy + 1, we have

(m)
j

k
D Vw™ (x) = TV, (0)] <
j=0

Xk: (IVw™ @) = Vw0, )| + [V (O, cuer) — TV (0)]) .
j=0
By (4.10),
V™ () = V" (0 e)] = CATT (] 3 = ) < CAHO)x]
By (5.1), (5.6), and (4.10),

Vw0, eu1) — TV, (0)]

< CIN™Tw™ (O, cur) — N"OTw!™ (0)]

i Dy i— i—1
<C Y INOVw(O, cii) = NIV ¢iy))|
i=mgy+2
+ C|NFOvw ™t ¢,0) — NTOVW (0) |

<C Y INTUVwTPO, o) = NPV, 60
i=mo+2

+ CIN"OVw MO, y) — N V"0 (0)]

=C Z 470 ¢y — cip) + 4717 (¢, — 0)
i=my+2

=4/, | < C4I1x|.
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It follows that

k
DIV @) = T"Vw; )] < C4 x| < C4lx|”
j=0

Estimate (5.3) is established; so is Lemma 5.2. O

LEMMA 5.3 Let x be on the x,-axis and x + a|x|2 C D41 N Q41 for some
a > 0. Then

k

- _a _
(5.7) ‘VM(Y)—Zij(y)‘SC(a)IXI L yer+zlEe,
=0

where k satisfies 4~ *+2 < |x| < 4=%*+D: consequently,

(5.8) IVu(y) — Vu(z)| < C@)x|*, y,zei+gli|§2-

PROOF: Let
k

B(y) =u@@+alxly) = Y w;E+alkly), yeQ.
Jj=0

By the equations of u and w;,
I(A(X +alx])oD) =98 inQ,

where
k
g =—alx| Y (A" +alx|y) — ATV, ) dw; (% + alk]y)
j=0

with A™+D .= A|p

m+1°
Since X + a|x|Q € Dy N i1, the CH(Q)-seminorm of AV (x + a|x|)
is bounded by C(a)|x|*. Thus, by (4.4) and (4.10),

I8llen@) < Cla)|x]™"
We also deduce from (4.5) that

19112 = C@Iz|' ™.
By the Schauder theory,

A - 1 !
IVl g < C@IE

Estimate (5.7) follows from the above. Estimate (5.8) follows from (5.7) and
(4.10). 0
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5.2 Completion of the Proof of Proposition 5.1

For some small r;, depending only on the parameters specified in Proposi-
tion 5.1, if x satisfies |x| > ry, the desired estimate in Proposition 5.1 follows from
the gradient estimate in Proposition 4.1. So we always assume that x € D,,, \ {0}
and |x| < r;. In the following we repeatedly use the smallness of x (i.e., r;). We
select an x as follows. If ¢,,, > 80|x]|, set x = (0', 10]x|) (and m = mo — 1),
otherwise let m > mg be the smallest index for which ¢,,.1 — ¢;; > 80|x|, and set
x = (0, ¢, +10]x]). Clearly, 10|x] < |x| < 100(I4+1)|x]| and X +a|x|2 C D,,11N
Qu11, with @ = 8. With this choice of X, let k satisfy 4=%+2 < |x| < 4-*+D,
Then by (5.2), (5.3), and (5.7), we have

|Vux) — T™Vu(0)| <

k
Vu(®) — Y Vuw;(x)
j=0

5.9
+

k k
PRLTIGEDY T(’")ij(O)'
j=0 j=0

< CIx|¥ < Clx|¥.

Let z be on either the graph of f,,, or f,,,—1, so that the distance of x to z is the least
distance of x to the union of graphs of {f;}. Let L be the line passing through z
that is normal to this graph. Clearly x € L. Let /) denote the intersection of L
with the graph of f; formg — 1 < j < m + 1. Using the smallness of |x| and the
C' property of { f;}, it is not difficult to see that

(5.10) 29— (0, £;0))]| <4lx|], mo<j<m,

and
27D — 2™ = 40]x|.

Here m is as defined before, and we have used the fact that the point (0, f,,,—1(0"))
is the projection of the origin onto the graph of the function f,,,—;. The same
argument shows that we can find 7 on the segment determined by 7 and z"*+!
with |z — z| = 10|x| such that

[Vu@) - T"Vu)| < Clx|*,

where the {f(’")} are defined in the natural way. Due to (5.10) and the Holder
continuity of AY), we have

7 = T™) < Clx|*,
SO
(5.11) |Vu@) — T™Vu(x)| < Clx|”.
It is easy to see, by the smallness of r; and Holder-continuity of {V f;}, that

|x —z| < 2x]|.
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By (5.8),
(5.12) |Vu(x) — Vu(3)| < CI5|* < Clx|* .
A combination of (5.9), (5.11)—(5.12), and (5.1) yields
IVu(x) — Vu(0)| < C|T™[Vu(x) — Vu(0)]| < Clx|*".

Proposition 5.1 is established.
Similarly, we can prove the following more general proposition; we leave the
details to the interested reader.

PROPOSITION 5.4 Let A and g be as in Section 3, h € L¥(Q,RN), and u €
H' (2, RY) be a solution of

0(Adu)=h+9dg inQ2, 1<i<N.
Then for all x € ,,, N %Q,

Vu) = Vu(O)] = C(lull iz + Il =@ + max gl g,)x"

where o' = min{u, ﬁ} and C depends only onn, N, 1, o, i, A, and A, as well

as maxi<m<t || finllcreg-r, -1y and maxy<m< |All oo 5, -

6 Proof of Theorem 1.9

In this section we prove Theorem 1.9. Our proof is based on Theorem 1.1 and
the arguments of Avellaneda and Lin in [1], which we follow closely. They assume
Holder-continuity of the coefficients and make use of classical gradient estimates
while we rely on our Theorem 1.1.

Let A denote our class of coefficients (with control on the ellipticity and the
C"* norm of the dividing surfaces) on the flat torus R”/Z". For A € A, consider

for0 <e <1,
_ ap (X
La = —Ba(Aij (g)Bﬂ) .

In the following discussions, A € A
Let x = ( Xioj‘.) denote the corrector matrix, defined as the solution of

— 0, (AL () x) = Ba(AT)) inR",
X 1is l—periodicinxl,...,x", / x=0.
(0,1

For any B € R"V, let (x + £x(x/€))B denote the vector-valued function

J
x .
[<X+8X<g)>3] =x”B)f+XJ?;CB’;.
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It is easy to see that

ji%) Lg<(x+sx(§)>B):=0,
)

By Theorem 1.1, x satisfies
IVXIlLe@ny < C.
Let {u.} satisfy
L.u, =0 in an open bounded set D in R",
and, along a subsequence ¢ — 0,
u, converging weakly to uo in H'(D) .

It is known, following an argument in [3, chap. 1, sec. 3], that u satisfies a homog-
enized system

Loug=0 inD,
where
Lo =~ (AG;95)
is the homogenized operator with {Agfj.} constants satisfying
(6.2) lAol = A
and

ng‘f}aafpfa,w" > A/ IVo|* Ve € Hy(D,RY).
D D

It follows that
(6.3) AL eaggn'n = MEP I VE .
We first establish the following:
THEOREM 6.1 Given 0 < v < 1, suppose that u. satisfies
Liu; =0 in By and |ugll2p,) < 00.
Then

luellcvim, < Clluell2cs))

where C depends only on n, N, v, A, and A, the number of the dividing surfaces
{dD,,} and their C'* norms, and the Hélder-continuity of A in each D,,.

We will use the notation (it,)y,» = fp(x,rile-
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LEMMA 6.2 For every 0 < v < 1, there exist 0, g9 € (0, 1), depending only on n,
N, v, A, and A, such that ifu, € HY(B;,RM) satisfy

L.u, =0 1inB,
then, for 0 < e < g,
(6.4) f lue — (iie)ool* < 0% ][ Jue|”.
By By
PROOF: Fix av' € (v, 1), and let Ly = —8a(Ag£.8ﬂ) with Ag constant and

satisfying (6.2) and (6.3). By the interior gradient estimates of solutions of elliptic
systems with constant coefficients, there exists sufficiently small & > 0, depending
only onn, N, v/, A, and A, such that if uy € H'(B;, R") is a solution of

(65) Louo =0 in B,

then

(6.6) ][ lug — (it0)o.|* < CH? ][ luo|* < 6% ][ |uol* .
By By By

To prove (6.4), we argue by contradiction. Suppose the contrary, that there is a
sequence of ng in our class and u,; € H'(B;, R") satisfying

. ] 5
ngu5j=01n81, ][|u8_,.| =1, & —0,

B
but for which
6.7) ][ s, — Gis) ool > 67
By
By ellipticity,

el 18y < €

for some C independent of j. After passing to a subsequence, for some u, €
H,\}.(B1,R"), we have

Ug; converges weakly to ug in H Y(By, RY).

As explained earlier, u satisfies (6.5) with some L as above. Passing to the limit
in (6.7) and using (6.6), we have

2 - 2 2/ 2 _ o0
9U§f|uo—(uo)o,9| 59')][|Mo| <67,
By By

a contradiction. Hence (6.4) holds for some &y > 0. O



ESTIMATES FOR ELLIPTIC SYSTEMS 919

LEMMA 6.3 Given 0 < v < 1, let 0 and gy be as in Lemma 6.2. Then, for all u.
satisfying
Lgug =0 in B], ||ug||L2(BI) < 00,

and for all k > 1 such that 8/(9"*1 < &9, we have

(6.8) ][ [ S T i ][ |ue|? .
BOk By

PROOF: The proof is by induction on k. By Lemma 6.2, (6.8) holds for k = 1.
Assume that (6.8) holds for k. For k satisfying £/6% < &, set
(6.9) we(x) = ue(6x) — (@e)ogpr, x € By
Then
Lpcwe, =0 in B
and, by the induction hypothesis,

2 2k 2
][|w8| <0 ”][|ug| .
B B

Since £/6% < g;, we may apply Lemma 6.2 to obtain

(6.10) ][ lwe — (We)ogl* < 0% f lw, [* < 9TV ][ lue]? .
By B B

Rewriting (6.10) and using (6.9), we have
][ e — (@e)g v [P < 92CF ][ luel?;

Byk+1 B

i.e., (6.8) holds for k + 1. Lemma 6.3 is established. Il

PROOF OF THEOREM 6.1: We denote by C a generic constant depending on
admissible parameters, i.e., the parameters specified in Theorem 6.1. We need
only prove that

(6.11) e — (ite)rr)* < Cr|luel? Vo<r<2 |x|<l
. & eJx,r — &€ LZ(BI) — 47 2 .
By (x)
Without loss of generality (making a translation), we only need to establish (6.11)

for x = 0. By Lemma 6.3, (6.11) with x = 0 holds for r > ¢/g(. Set

We(x) = ug(ex) — (ﬁ8)0,2€/€0 .

Then
Llws =0 in Bz/go
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and, by (6.11) with 7 = 2¢/gp and x = 0 in (6.11), we have
”ws”LZ(BZ/EO) < Cr'llugllr2ep,) -

We have interior gradient estimates for w, (Theorem 1.1), in particular C" esti-
mates for w,, so

_ 1
J e = il = C e, V< o
By
It follows, by setting r = se, that
_ ; &
f = s = s, V= E
B,
We have established (6.11) for x = 0. As pointed out earlier, (6.11) is established.
O
6.1 Gradient Estimates for u,

In this section we establish Theorem 1.9, gradient estimates for u,.

LEMMA 6.4 There exist 0 < 0 < 1 and 0 < gy < 1, which depend on admissible
parameters, such that ifu, € H'(By, R") satisfies

Lgus =0 in B] s

then, for 0 < & < g,

e (x) — e (0) — (x +ex (g))(v_ug)e

where x is defined at the beginning of this section.

(6.12) sup

|x|<6

5/4
<0 / llueell zoo(By) »

PROOF: Let Lo be any operator that is obtained from a sequence of L. with
A, € A. Then L is a constant-coefficient operator with ellipticity under control.
Therefore there exists 0 < 6 < 1, depending only on n, N, A, and A, such that for
any

Louy =0 1in By,
we have
(6.13)  sup [uo(x) — uo(0) — x - (Vuo)s| < CO*|luollLz)) < 6> uollL=es) -

|x|<6

Fixing this value of 6, we prove (6.12) by a contradiction argument. Suppose
on the contrary that there exist A; € A and ¢; — 0 such that

Liug =0 in By, luglrem) =1,

and

(6.14) sup |, (x) — u,, (0) — (x +8ix (g))(ﬁaj)e

|x]<6 j

> 0>/4,
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Passing to a subsequence,
u.; converges weakly to some ug in H).(B)),
and, by Theorem 6.1,
u; converges to ug in Cﬁ)c(Bl) .
As explained at the beginning of this section, u satisfies a homogenized equation
Loug =0 1in By,

where L is as described earlier.
Clearly
luolloosy < 1.
By (6.13),
sup [uo(x) — uo(0) — x - (Vu)g| < 6°2.

|x]<6

Since |(Vug,)ol < C(0) by the H' bound of u,,

g X (;ﬁj)(m)a

Sending j to infinity in (6.14), we have

sup
|x|<6

<£C@6) = 0.

sup |ug(x) — ug(0) — x - (Vug)e| = 674,

|x|<6
so we have
95/4 > 93/2 ,
which contradicts the fact that 6 < 1. Estimate (6.12) is established, and so is
Lemma 6.4. O

LEMMA 6.5 Let 6 and &y be as in Lemma 6.4. Suppose that u, € H'(B;,R"Y)
satisfies

Lau.,=0 inB.
Then, for all k with ¢ < £00% 1, there exists a; € Rand B}, € R" such that
k=1
(6.15) lag| < Cilluelliz=m), 1Bl < Cz(l + Ze”“) llte Il 2By
j=0

(Cy and C, are generic constants, depending only on 0, ¢y, and admissible param-
eters) and

Sk/4
< 0 e Lo, -

6.16)  sup |us(x) — u(0) — eal — (x +ex (%))Bk

|x| <@k
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PROOF: We argue by induction. In the following, C, C, and C, have the
ordering C « C < C;. By Lemma 6.4, estimate (6.16) holds for k = 1 with

ai=0 and Bf = (Vu)y.
Suppose (6.16) holds for some k. For ¢ < gy8*, define on B,

0/(
we(x) = 9-5k/4||u8||zgc(31)|:u8(9kx) —uy(0) — 861; — (Qkx +&x (—x)>Blfi| .
e
Then, by using (6.1) and the equation of u,,
Liwg =0 in Bl .
ok

By (6.16) (the induction hypothesis), |w;| L~y < 1. Applying Lemma 6.4, we

have
£ 0k x —
we(x) — w.(0) — ()C + 9_kX< ))(sz)e

(6.17) sup — <94,
&

|x|<6

and, by ellipticity,
|((Vwe)g| = C.

Rewriting (6.17) in terms of u,, we have

k e k ekx &
sup (U (0"x) —u(0) +ex(0)B, — [ 0"x +ex —~ By
|x| <6

(6.18) £ 0% x N
— Nl | e @74 x + X\ = (Vwe)g
=< ||us||L°°(Bl)05(k+l)/4-
Define
(6.19) ai, = —xO)Bf, Bf, = B+ lluclli=m)0**(Vwe)s .
It follows, by the induction hypotheses, that
k—1
|ai 1| < C|Bf| < CC2<1 + 29”4> luelloos)y < Cilluellos)
j=0

and

k
|Bl§+l| = |Blf| + CQk/4||“e||L°°(BI) =< C2<1 + ZOj/4) ltell Lo,y -
Jj=0
So a;, and By, also satisfy (6.15) with k + 1 instead of k. Estimate (6.15) has
been established for all k > 1.

Substituting (6.19) into (6.18) and making a change of variables 6¥x — x, we
obtain (6.16) with k 4+ 1 instead of k. Lemma 6.5 is established. O
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PROOF OF THEOREM 1.9: Let k be a positive integer with

& &
— <& = .
ok 9k+1
By Lemma 6.5,
X
sup MAX)—MJOY—&ﬁ-—(x+8x(—>)3f:SQﬁMH%HUW&y
|x|<e/eo &

Rescaling the above, by (6.15),
ug(ex) — ug(0)
€

sup < Clluglizosy) -
|x|<1/g9
Define
— 0 1
(6.20) v (x) = M’ x| < —:
& o
then

Live =0 in By, and |vellLes, ) < ClluellLem)) -
By Theorem 1.1,
||Vvs||L°°(Bl/(2£0)) < Clluellz=e)
which, by (6.20), implies

||Vus||L°°(BS/(250)) < Clluellos) -

923

This estimate can be done in B,/ (x) for any x € Bj/;. Theorem 1.9 is estab-

lished.

Appendix: L7?-Integrability

g

ForO0 < A < A < oo,let A € AL, A); ie., {A?yg(x)} satisfies (6.12) and

(6.13), with D = Q 1= (=1, 1)".

THEOREM A.1 Let A be as above. There exists some py > 2, depending only on

n, N, A, and A, such that for a solution u € HO1 (Q,RM) of
—0, (AL (X)dpu) = dpgl . 1<i<N, inQ,
and for2 < p < po, we have Vu € LP(2) and

/IWI" < C/Igl”-
Q Q

PROOF: Let B,g = Bygr(x) be a ball of radius 2R contained in €2, and let n
be a smooth function with n = 1 in Bg and n = 0 outside B,g. Multiplying the

equation by nu and integrating by parts leads to

/Wm ‘/u+/w|
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Substituting u# by u—u, where u is the average of u on B,g, we may assume without
loss of generality that the average of u on B,g is zero. Thus, by the Poincaré
inequality, we have

C 2
fWqu ﬁ(f |W|n+z)+f|g|2,
Br B Bg

2R

ie.,
n+2

1/|V|2<c 1/|V|% "+1/||2

— u — uln — .

R ="\ & R | '8
Bg Bor Bor

By the reverse Holder inequality,

1 1 rec
Al — | |Vul? <C|— [ |Vul? — P,
an o [ sc(g [war) e e
Bg Bar Byr

where 2 < p < po, po > 2, and C has the dependence stated in the theorem.
For any ball Bg(x), we would like to show that for some py > 2 (possibly
smaller than the one above but having the same dependence) and any 2 < p < po,

L f |Vu|? < c(i / |Vu|2)p/2 +oL / lg]”.
R" - R" R
Br(x) Byg(x) By (x)
Here u has been extended as zero outside 2.
There are three cases: Case 1, where B 3 r(X) N Q2 = @, is the interior case, and
has been settled in (A.1). Case 2, where B% r(x) C L, is trivial. We only consider
case 3, where B%R(x) N # .

Let n be the same cutoff function. Multiplying the equation by n?u and inte-
grating by parts, we still have

C
fwzgﬁ / u® + / lgl?.

Br(x) Bap(x) Bar(x)

Since Byr(x) N 92 has a big enough portion and # = 0 on 9€2, we have, by the

Sobolev inequality,
n42
5 o n
u-<C |Vu|n+2 .

Byg(x) Byg(x)

Thus we still have

[ vt sc(g [vw) g [
— u — uln — .
R - R R"

BRr(x) Byg(x) Byg(x)

The desired inequality still follows from the reverse Holder inequality.
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It follows that for some p > 2, the L? norm of |Vu| is controlled by the
L? norm of |Vu| and the L? norm of g. On the other hand, we know that the
L? norm of |Vu]| is controlled by the L? norm of g. Therefore we have shown that,

for some p > 2,
/IWI" < c/|g|P.
Q Q
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