Math 311 Workshop

Yuchen Wei

September 13, 2021

Recall: The (axiomatic)definition of real numbers \mathbb{R} :
Let \mathbb{R} be a field extension of \mathbb{Q}, such that:
(1) The set \mathbb{R} is a field: (roughly meaning:) For any element r in \mathbb{R}, additive inverse exists $(-r)$, multiplicative inverse exists if it is nonzero! $(1 / r, r \neq 0)$ addition and multiplication of real numebrs are commutative $(x+y=y+x, x y=$ $y x)$, associative $(x+(y+z)=(x+y)+z,(x y) z=x(y z))$, and the distibutive property $(x(y+z)=x y+x z)$ holds.
(2) The field \mathbb{R} is ordered, meaning there exists a total order \geq such that for all real numbers x, y and z :
(a) if $x \geq y$, then $x+z \geq y+z$;
(b) if $x \geq 0$, and $y \geq 0$, then $x y \geq 0$.
(3) Axiom of completeness. Every nonempty set of real numbers that is bounded above has a least upper bound.

Remark: A partial order on a set S is a subset R of the set $S \times S$, such that:

1. For any element $x \in S,(x, x) \in R$ (Reflexive, in other words $x \geq x)$;
2. If for $x, y \in S,(x, y) \in R$ and $(y, x) \in R$, then we have $x=y$ (Antisymmetric, if $x \geq y$ and $y \geq x$, then $x=y)$;
3. If $(x, y) \in R$ and $(y, z) \in R$, then $(x, z) \in R$ (Transitive, if $x \geq y$ and $y \geq z$, then $x \geq z$.).

Well, a total order is a partial order where every two elements in the set S are comparable, namely, it satisfies the additional condition:

4*. Either $(x, y) \in R$ or $(y, x) \in R$ (Strongly connected, either $x \geq y$ or $y \geq x)$.

Example 1.3.7. Let $A \subseteq \mathbb{R}$ be nonempty and bounded above, and let $c \in \mathbb{R}$. Define the set $c+A$ by

$$
c+A=\{c+a: a \in A\} .
$$

Then $\sup (c+A)=c+\sup A$.
Solution: To show that $\sup (c+A)=c+\sup (A)$, we need to show that (1) $(c+\sup A)$ is an upper bound; and (2) for any upper bound u of $c+A$, we have $u \geq c+\sup A$.
(1): For any element $c+a \in c+A$, by the definition of $\sup A$, we have $\sup A \geq a$. By axiom (2)(a), for any $a \in A$, we have $c+\sup A \geq c+a(\operatorname{add} c$ on both sides of the inequality $\sup A \geq a)$.
(2): Since u is an upper bound of $c+A$, then for any $a \in A, u \geq c+a$, which implies $(u+(-c)=)=u-c \geq a(=c+a+(-c))$. So, $u-c$ is an upper bound of A. But by the definition of $\sup A, u-c \geq \sup A$. Hence $u \geq c+\sup A$. Because for any $a \in A$ we have $\sup A \geq a$ which implies $u \geq c+\sup A \geq c+a$. We are done.

Remark: This is vacuously true if $A=\varnothing$, since the infimum of the empty does not exist.

Workshop 1

Problems 1 and 2 are due tomorrow(Tuesday $9 / 14$) at 10 pm . You must submit your work through Canvas.

Problem 1. Let A be a bounded set of reals and z a real number such that the following holds:
(\dagger) For every $\varepsilon>0$, there is an $a \in A$ such that $a<z+\varepsilon$.
Hint: (f) and (\dagger) are actually equivalent! But if you want to use this, you must prove it first! Otherwise, you have to give case-by-case reasons.

